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Computational docking is a promising tool to model three-dimensional (3D) structures of protein-
protein complexes, which provides fundamental insights of protein functions in the cellular life.
Singling out near-native models from the huge pool of generated docking models (referred to as the
scoring problem) remains as a major challenge in computational docking. We recently published iScore,
a novel graph kernel based scoring function. iScore ranks docking models based on their interface
graph similarities to the training interface graph set. iScore uses a support vector machine approach
with random-walk graph kernels to classify and rank protein-protein interfaces. Here, we present the
software for iScore. The software provides executable scripts that fully automate the computational
workflow. In addition, the creation and analysis of the interface graph can be distributed across
different processes using Message Passing interface (MPI) and can be offloaded to GPUs thanks to
dedicated CUDA kernels.
© 2020 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Motivation and significance

Interactions between proteins that lead to the formation of
a three-dimensional (3D) complex is a crucial mechanism that
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underlies major biological activities ranging from immune de-
fense system to enzyme catalysis. The 3D structure of such com-
plexes provides fundamental insights on the protein recogni-
tion mechanism and protein functions [1,2]. To complement the
labor-intensive experimental characterization of protein com-
plexes computational docking approaches have been developed
to predict their 3D structures [3,4]. The prediction of these struc-
tures using docking usually consists of two steps: First, the sam-
pling step that consists of systematically (or randomly) rotating
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and translating individual protein components to generate typi-
cally tens of thousands of candidate interaction models; second,
the scoring step that evaluates each of the models and selects the
ones that are most likely to occur in nature.

The scoring problem has been a highly challenging task for
decades. Many methods have been developed and can be largely
grouped into five types: (1) Shape complementarity based meth-
ods, favoring models that maximize the surface matching with
minimal shape penetration [5,6], (2) physical energy-based meth-
ods, which sum up all the pairwise interaction energies between
interface atom/residue pairs and are widely used in most modern
docking software [7-10], (3) statistical potential-based methods,
which coverts the interaction frequency of interface atom/residue
contact pairs observed in the experimentally solved protein com-
plexes to potentials using the Boltzmann distribution [11,12],
(4) machine learning based methods, which typically treat the
scoring problem as a binary classification problem, predicting a
docked model as near-native or not [13-15], and (5) co-evolution
based methods, which score models based on the co-occurrence
frequencies of residue pairs in sequence alignments [16]. Differ-
ent scoring approaches are regularly benchmarked against each
other during a community-wide challenge, the Critical Assess-
ment of Prediction of Interactions (CAPRI) [17].

Recently, we introduced a novel graph kernel based machine-
learning approach, called iScore [18]. iScore represents the in-
terface of a protein complex as an interface graph, with the
nodes being the interface residues and the edges connecting
the residues in contact. By comparing the graph similarity be-
tween the query graph and the training graphs, iScore predicts
the likelihood how close the query graph is to a near-native
model. We have demonstrated in our previous publication [18]
that iScore competes with, or even outperforms various state-
of-the-art approaches on two independent test sets: the new
entries of Docking Benchmark 5.0 set [19] and the CAPRI score
set [20]. Using only a small number of features, i.e. 1 evolutionary
feature and 3 physics energy terms, iScore performs well com-
pared with IRaPPA [15], the latest machine learning based scoring
function, which exploits 91 features. This demonstrates the ad-
vantage of representing protein interfaces as graphs as compared
to fixed-length feature vectors which discard information about
the interaction topology.

We present here the software for iScore. As explained in
the following, the software is easy to use thanks to dedicated
executable scripts that completely automate the computational
workflow. Furthermore, the software leverages distributed and
heterogeneous computing technologies to accelerate the gener-
ation of the required data and its analysis.

2. Software description

The underlying method is described in details in [18] and only
a summary is provided here to highlight the different compo-
nents of the software. As described in [18], the interface of each
protein-protein model is represented as a bipartite graph. Each
node is labeled with a 20 x 1 feature vector from the position-
specific scoring matrix (PSSM) of the corresponding residue.
PSSMs [21] are widely used in bioinformatics and encode the log-
likelihood ratio of the observed frequency of each amino acid type
at a specific sequence location against a background frequency.
They therefore represent the degrees of conservation for the
protein’s residues at their specific location in the sequence. The
similarity between two graphs is evaluated via a random walk
graph kernel (RWGK) approach [22]. The graph-pair similarity
matrix is used as input of a support vector machine (SVM) to
classify the interface graphs as near-native or non-near native.
The decision value of the SVM classification is then combined

with energetic terms to score each protein-protein interface
(PPI). As for any supervised learning approach, the SVM model is
first trained on a well defined dataset before being used to classify
new conformations.

The software presented here provides a fully automated end-
to-end training and testing platform for the ranking of PPIs fol-
lowing the iScore method. The software is organized as a Python
module containing dedicated classes in charge of specific steps
in the computational workflow. This workflow is fully automated
through executable scripts that orchestrates the entire computa-
tion from processing PDB files of the docked models to obtaining
the final score of each PPL

2.1. Software architecture

The general architecture of iScore for training a model and
scoring new conformations is represented in Fig. 1. The soft-
ware only requires PDB files of the docking models contained
in the dataset used for training or scoring. All other interme-
diary files are automatically generated and processed by the
software. We provide details in the following different steps of
the computational workflow and describe each module.

2.1.1. Generation of the PSSM files

PSSM files of docked conformations are generated by the
pssm_gen() class using PDB files for input. The calculation of the
PSSM relies on PSI-BLAST [23] using BLAST version 2.7.1+. The
default parameters of the BLAST (for example, substitution ma-
trix, gap costs, etc.) were set in agreement with the recommended
values provided in the BLAST user guide [24]. Other parameters
are provided in [18]. The pssm_gen() class also formats the PSSM
files for further processing. The class outputs resulting PSSM files
for each chain in the PDB files into a separate folder for further
processing.

2.1.2. Generation of interface bipartite graphs

The graph generation is handled by the iscore_graph() function
and relies heavily on our pdb2sql tool that allows manipulating
PDB files using SQL queries [25]. The contact residues are iden-
tified by the interface module of pdb2sql using a default contact
distance of 6.0 A. The PSSM files generated in the previous step
are then read and checked against the sequence of the protein.
The PSSMs are subsequently mapped onto the interface graph.
The resulting graph is then serialized using the pickle library in
order to exploit the object hierarchy in the next computational
steps. The class also provides options to export multiple graphs
in a single HDF5 file for further visual inspection (see Fig. 3).

2.1.3. Random walk graph kernels

The function iscore_kernel() is responsible for the computa-
tion of pairwise random-walk graph kernels . For each pair of
PPIs contained in the dataset, the corresponding graph files are
first “unpickled” and loaded in memory. The different elements
necessary to the computation of the RWGK are computed and
assembled in the final kernel value (see [18] for details on the
calculation). All kernel values are then stored in a dedicated pickle
file.

2.1.4. Training the SVM model

The function iscore_svm() can then be used to train an SVM
model from the previously computed RWGK. To this end, users
must also provide the ground truth, i.e. the binary class 0/1 of
each conformation contained in the training dataset. In iScore,
we choose the binary labels 1 and 0 to describe near-native and
non near-native conformations respectively. The function relies
on the libSVM library [26] to train the SVM model. To facilitate
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Fig. 1. Computational workflow of iScore during the training of a SVM model and during the utilization of pre-trained model to rank new PPIs.

the further exploitation of the trained SVM model, the SVM model
are efficiently packed into a dedicated archive together with
the graphs of all the conformations of the training set. This self
contained archive contains all the information required to score
new PPIs.

2.1.5. Scoring new PPIs

The workflow for ranking new PPIs is very similar to the one
used to train the SVM model. Users only need to provide PDB files
of new conformations and compute the corresponding PSSMs
and interface graphs. However, the RWGK are now computed
between the new conformations and the ones contained in the
training set. This can easily be done using the training archive
that contains all the relevant information. The resulting kernels
are then used as input for the SVM model, and the SVM decision
value is used as one component of the final scoring function.
The other component of the scoring function is provided from
energy terms that are directly computed from the PDB files of the
new conformations. The weight of each term in the final scoring
function has been optimized using genetic algorithm as explained
in [18].

2.2. Software functionalities

Beyond the individual modules described above, the software
provides crucial functions that facilitate and accelerate the pro-
cess of ranking PPIs.

2.2.1. Automation of the computational workflows

The software provides executable scripts that fully automate
the workflows illustrated in Fig. 1. These scripts seamlessly or-
chestrate all the computational steps at the exception of the
calculation of the PSSMs. This calculation can be rather demand-
ing and therefore must be performed as a pre-processing step
using the functions provided by the software.

The training of an SVM model from the PDB leads to the
creation of a training archive and is fully controlled by the iS-
core.train.mpi executable script. This script reads the PDB and
PSSM files, generates the interface graphs, computes all the pair-
wise RWGKSs, trains the SVM model, and finally assembles the
training archive. Similarly, the ranking of new conformations
using a trained model can simply be achieved via a single com-
mand: iScore.predict.mpi. This script reads the PDB and PSSM
files, generates all the interface graphs, computes the RWGK
between the new conformations and the conformations included
in the training set, and finally scores the new conformations.

To handle the potentially large computational cost associ-
ated with the calculation of the interface graphs and their pair-
wise RWGKs, these executable scripts support the distribution
of the computational load across different MPI processes using
mpidpy [27]. For the calculation of the graphs, the different
conformations are distributed among the different MPI processes,

[< N N N VOR N

and for the RWGK calculations all the pairwise combinations
are distributed among the MPI processes. Simple performance
benchmarks are reported in Fig. 2a showing good performance of
the MPI distribution. However, note that training the SVM model
and scoring new PPIs are done using a single process.

2.2.2. Calculation of the RWKG on GPUs

To accelerate the calculations of the graph kernels, we have
developed simple GPGPU kernels using pyCUDA [28]. The utiliza-
tion of these GPGPU routines can easily be turned ON or OFF
through one optional keyword argument of the iscore_kernel()
function. Fig. 2b shows the runtime of the CPU and GPU rou-
tines computing the RWGKs. As seen on this figure, a sizable
improvement of performance can be obtained for large graphs.
The software also provides solutions to tune the GPU kernels
through the kernel tuner library [29]. This allows to automatically
find the optimal configuration of the kernel in terms of blocs size,
threads size, etc.

While the GPU routines might be interesting to process very
large proteins or for other applications, we have exclusively used
the CPU routines in our evaluation of the iScore software tool be-
cause our protein interface graphs contain fewer than a hundred
nodes.

2.2.3. Visualization

As mentioned in Section 2.1.2, the interface graphs computed
by iScore can be stored in a HDF5 file for further analysis. The
resulting HDF5 file contains an entry for each graph where all
the relevant data are stored. To facilitate the inspection and
exploration of these interface graphs, we have developed a simple
graphical interface based on the customizable HDF5 browser
h5X[30]. This interface is accessible via the executable iScore.h5x.
This interface allows to quickly generate all the data for visualiza-
tion of a given graph connection using PyMol [31]. An example of
representation is shown in Fig. 3. This figure shows a single PPI.
All the contact residues are highlighted by a stick representation
and bright color whereas the rest of the protein structure is
represented by thin gray lines. Edges linking the contact residues
represent the contact between the two chains and the label of
each contact residue is displayed for clarity.

2.3. Code snippets

Beyond the executable scripts mentioned above, iScore can
also be used as a Python module and could therefore be inte-
grated in other applications. We illustrate here the use of iScore
through a small code snippet.

from iScore.graphrank.graph import GenGraph
from iScore.graphrank.kernel import Kernel

# generate the first graph
pdb = ’1ATN.pdb’
pssm = {’A’:’1ATN.A.pdb.pssm’,
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Fig. 2. (a) Scaling of iScore.train.mpi and iScore.predict.mpi with respect to the number of MPI processes. The training and testing set contained 234 and 599
conformations respectively. (b) Average run time on CPU (Intel Xeon E5-2650 v4 @ 2.20 GHz) and GPU (Nvidia GeForce GTX 1080 Ti) for the calculation of RWGK
for two graphs containing n nodes and 3n edges.

Fig. 3. Visualization of the connection graph of PDB ID: 1IRA using iScore.h5x with the PyMol molecular viewer. All interface residues are colored differently following
a rainbow color palette to facilitate their identification. The residues that are not part of the interface are represented as thin gray lines. The connection between
interface residues are shown as white lines. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

’B?:?1ATN.B.pdb.pssm’} 23 ker = K.compute_K(lamb=1.0, walk=4)
gen = GenGraph(pdb,pssm) . . . . )
G1 = gen.get_graph() As we can see on this snippet, iScore provides the solution
to generate graphs of given structures using PSSM as a node
i EemerEie Wi Secomdl Frepl attribute and to compute the random walk graph kernel between
pdb = *1IRA.pdb’ S )
, PR EICE L NG —— the graphs. The graph generation is done via the GenGraph() class
’B’:’1IRA.B.pdb.pssm’} that only takes PDB and PSSM files as input. The random walk
gen = GenGraph (pdb,pssm) graph kernel of the two graphs can then be computed using the
i G2 = gen.get_graph() Kernel() class and its methods.
# compute the kermnel .
K = Kernel () 3. Illustrative examples
K.compute_kron_mat (G1,G2)
K.compute_px(G1,G2) We present here the results on test cases extracted from
K

_conmie L0 EL 62 previous CAPRI competitions. In order to score the conformations
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Fig. 4. Comparison of the hit rates obtained by iScore and HADDOCK for four CAPRI targets.

contained in the test cases, a representative training set contain-
ing 234 distinct PPIs was first assembled. Half of these confor-
mations correspond to real experimental structures of complexes
chosen from the Docking Benchmark 4 (DB4) [32]. The second
half correspond to non-native docking models generated using
the HADDOCK docking software from entries of the DB4. Their i-
RMSD values are larger than 10 A. The resulting dataset is publicly
available [33].

The trained model was used to score and rank conformations
from previous CAPRI targets, namely targets T32, T41, T47 and
T50. Fig. 4 shows the corresponding hit rate plot obtained with
iScore and the HADDOCK scoring function. Hit rate plots are
commonly used to compare different scoring functions. The hit
rate at N represents the fraction of near-native models contained
in the best N models predicted by a scoring function. As seen in
Fig. 4 and Table 1, iScore performs better than HADDOCK on 2
of these cases (T32 and T41) and shows similar performance on
the remaining two. These results are in line with those reported
in [18] where iScore performed very well on a large range of test
cases.

4. Impact

The software presented in this paper provides ease of use in
end-to-end platform for scoring and ranking of PPIs. Thanks to
the provided executable scripts, users can easily generate the
graphs, compute their pairwise kernels and use them to train
a SVM model. The self-contained archive file generated during
the training contains all the necessary information to rank new
docking conformations. This enables to simplify data handling
and facilitates the exchange of trained model between different

Table 1

Performance of iScore and HADDOCK scoring functions on four CAPRI test cases.
The number in bracket represents the number of near-native conformations for
each case. The number in each column represents the number of near-native
conformations in the top 10, top 50 and top 100 conformations predicted by
the two methods.

iScore HADDOCK

Top 10 Top 50 Top 100 Top 10 Top 50 Top 100
T32 (15) 6 9 10 0 0 0
T41 (371) 8 48 97 1 24 46
T47 (611) 10 50 99 10 50 100
T50 (133) O 4 10 1 9 14

users. The dedicated scripts briefly described in Section 2.2.1 fully
automatize the computational workflows supporting the training
and testing of a SVM a model. This workflow not only makes
the use of the code easier, therefore facilitating its adoption by
the community, but also ensures greater reproducibility of the
analysis. The modular architecture of the software facilitates its
maintenance and further development.

The distribution of the computational load using MPI signif-
icantly reduces the time for training and using SVM models:
Training our SVM model used in Section 3 takes under 50 s using
16 cores while scoring the 600 conformations contained in the
T32 CAPRI test case takes less than 2 min.

The software presented in this paper has already been used in
a recently published paper that describes the underlying method-
ology and used it on a large range of test cases. In agreement with
Fig. 4, the results presented in [18] are competitive compared to
widely used scoring functions such as HADDOCK. The software
also recently has been used during the CAPRI competition.
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While the software has been developed specifically for ranking
PPIs, the method is generic and may be generalized for a broad
range of applications that involve ranking of graphs. Such a gen-
eralization would require users to specify the nodes and edges
features as well as the graph kernels.

5. Conclusions

We have presented a new software package, iScore, that pro-
vides an end-to-end solution for ranking protein-protein inter-
faces. The method is based on a support vector machine classifier
using random-walk graph kernels. The software is built as a
Python package that can be used either interactively or through
the use of dedicated executable scripts that fully automatize
the computational workflow. The calculations can be distributed
across multiple MPI processes and GPGPU Kkernels have been
developed to accelerate the calculation of graph kernels. The
software provides a user friendly solution for ranking PPIs more
efficiently and accurately.
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