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Abstract—This paper introduces a framework to assess the
performance of manufacturing systems using hybrid simulation
in real-time. Continuous and discrete variables of different
machines are monitored to analyze performance using a virtual
environment running synchronous to plant floor equipment as
a reference. Data is extracted from machines using Industrial
Internet of Things (IIoT) solutions. Productivity and reliability
of a physical system are compared in real-time with data from a
hybrid simulation. The simulation uses Discrete Event Systems
(DES) to estimate performance metrics at a system level, and
Continuous Dynamics (CD) at a machine level to monitor input
and output variables. Simulation outputs are used as a reference
to detect abnormal conditions based on deviations of real outputs
in different stages of the process. This monitoring method is
implemented in a fully automated manufacturing system testbed
with robots and CNC machines. Machines are integrated on
an Ethernet/IP control network using a Programmable Logic
Controller (PLC) to coordinate actions and transfer data. Results
demonstrated the capacity to perform real-time monitoring and
capture performance errors within confidence intervals.

Note to Practitioners— Estimating expected performance of a
manufacturing system processing different parts across multiple
machines is a complex problem due to the lack of closed-
form equations. Existing solutions focus on monitoring stochastic
variables such as production or failure rate, or machine dynamics
in separate environments often running asynchronous to the real
system. This paper addresses the problem of monitoring and
assessing the performance of complex manufacturing systems
in real-time. The proposed framework uses a real-time hybrid
simulation of manufacturing at a machine and system level. The
hybrid approach is based on a discrete and continuous model of
manufacturing equipment integrated to run synchronously with
the real plant floor operation. Data from both the virtual and real
environments is merged to assess performance. Deviations from
expected values represent an error that can trigger a warning
signal to production, maintenance, and/or manufacturing per-
sonnel at the plant regarding health and productivity of plant
operations.

Index terms: Discrete Event Systems, Real-time Hybrid
Simulation, Manufacturing Automation and Control, Cyber-
Physical Systems

I. INTRODUCTION

The performance of manufacturing systems is affected by
both the behavior of independent machines and by their inter-
actions. Plant floor operational efficiency is often controlled by
monitoring some performance indicators and taking corrective
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actions when the system deviates from expectations. Metrics
such as throughput, processing time, reliability, and quality
are usually monitored in the plant floor to assess performance.
Manufacturing Execution Systems (MES) have been identified
as a solution to monitor and supervise factory operations [1]
using Overall Equipment Effectiveness (OEE) as the perfor-
mance indicator. This indicator is applied in a production envi-
ronment at the system level to assess availability, productivity,
and quality [2]. However, collecting, processing, and analyzing
data from the plant floor is a complex problem, particularly
when the system operates under non-steady state conditions
such as changes in demand, machine failure, rescheduling,
or system reconfiguration. To close the loop for controlling
manufacturing systems, it is necessary to have a reference for
the expected performance in real-time and compare it to actual
plant floor data. Considering that production requirements and
machine operations can change rapidly in a flexible manufac-
turing system, monitoring and assessment tools should be able
to adapt and run synchronously to the plant floor.

Manufacturing systems producing individual or separate
parts are often modeled using Discrete Event System (DES)
formalisms. However, the manufacturing operation can be
studied at two different levels. At a system level where
the operation is mainly discrete, performance is analyzed by
specifying a sequence of events into a DES model [3], [4]. Ata
machine level, models are often hybrid to capture a discrete set
of states and transitions along with some continuous dynamics.
Performance at a machine level can then be estimated by
simulating the effect of discrete and continuous input variables
over some machine output variables under specific working
conditions [5], [6]. The use of simulation to evaluate the per-
formance of a manufacturing system under different scenarios
using a plant or controller model has grown in recent years
[7]. However, often the machine and system-level simulations
run separately, limiting the capacity to evaluate the effects of a
sequence of events on the machine dynamics. Moreover, if the
simulations are not running in parallel and in the same context
as the plant floor operation, the simulation outputs might not
be a valid reference for real-time performance assessment.
The goal of this work is to answer the following questions:
1) How to evaluate performance at both the machine and
system levels in real-time when operating under non-steady
state conditions? 2) How to correlate system level performance
metrics to machine variables?

Machine and system level data from discrete and continuous
variables can be used for real-time monitoring, performance
assessment, and anomaly detection. Different variables related
to machine productivity and dynamics have been used to
evaluate machine health, detect faults, and control produc-
tion [8]. However, extracting machine data remains a major



implementation challenge. Recent developments in Industrial
Internet of Things (IIoT) and communication protocols have
simplified data collection, making possible advanced monitor-
ing techniques [9], [10], [11].

In this work, a new approach for modeling and assessing
the performance of manufacturing systems is proposed. One
of the main challenges of using a virtual model to evaluate the
performance of a real system is the asynchronous execution
of the virtual environment. Moreover, performance assessment
using simulation could be inaccurate due to the differences in
operational context between the real and virtual environments.
To address these challenges, the proposed models run in
real-time which is defined as “true” or “wall clock” time,
and concurrent which is defined as actions developing at the
same time in both plant floor and simulation. The plant floor
model captures the stochastic timed behavior of manufacturing
processes and machine dynamics combined into a single
environment. The proposed framework combines modeling of
hybrid systems with plant floor data extraction using IIoT to
solve some of the synchronization and performance assessment
challenges. By monitoring both the machine and system level
variables with synchronous operation between the real and vir-
tual environments, managers on the plant floor are supported in
their decision making. Analysis of simulation outputs obtained
under the same context as the plant floor provides a reference
for expected OEE performance in real-time for both steady-
state and non-steady-state operating conditions.

Initial work by the authors for real-time performance as-
sessment using hybrid simulation was developed in [12]. This
manuscript extends [12] with three main contributions.

The first contribution of this paper is a mathematical
framework for hybrid models and a simulation environment
capable of running in real-time. The model captures stochastic
operational time and deterministic machine dynamics within
a single virtual environment capable of running in synchrony
with real manufacturing systems.

The second contribution of this paper is to present a set of
rules to assess performance based on data from both virtual
and real environments. Statistical testing is described for model
validation and performance analysis at a machine and system
level. Rules are defined to identify abnormal conditions at a
machine level and the impact of these abnormal conditions on
system-level performance measures.

The third contribution is an experimental demonstration
of the proposed hybrid framework to detect anomalies and
monitor performance at a machine level considering system-
level interactions. The model has been evaluated on a fully
automated manufacturing testbed using IIoT to extract data
from the machines and the system controller.

The remainder of this paper is organized as follows. Section
2 provides background on the research area. Section 3 defines
the hybrid simulation providing details of discrete and con-
tinuous machine models. Section 4 describes the performance
analysis rules and plant floor data extraction. Section 5 demon-
strates the validity of the approach through a case study using
a University of Michigan testbed. Finally, Section 6 concludes
the paper and discusses other applications and future work.

II. BACKGROUND

In this paper, performance analysis at both machine and
system levels is based on comparing data from real and virtual
environments. This background section reviews the state-of-
the-art for modeling and simulation of discrete and continuous
plant floor operations, performance evaluation, and automation
for data extraction.

A. Models and Simulation of Manufacturing Systems

The goal of modeling manufacturing systems is to gain
insight into a specific aspect of the operation such as pro-
ductivity, safety, or controllability. Multiple methods have
been developed to model plant floor dynamics or controller
actions, often using a Discrete Event System (DES) formalism.
Selection of the adequate formalism depends on the required
analysis. With the proper DES model, the system response to
a specific set of inputs can be studied using simulation. A
comparison of modeling formalisms and simulation tools for
several types of manufacturing systems to study aspects such
as planning and scheduling, real-time control, and optimization
was presented in [7]. The results show an increasing trend in
the use of simulation to support plant floor decision making
and highlight the difficulties of real-time analysis due to
complexity, stochastic nature, and data collection challenges.
In [13], simulation and real-time machine information was
used to develop scheduling and dispatching rules. Simulation
has been implemented in semiconductor fabrication to develop
dispatching rules in real-time in reaction to unexpected events
[14]. However, it is common to call a simulation “real-time”
when inputs are received from the plant floor in real-time
and trigger a simulation that runs asynchronous to plant floor
systems. The results can be used to forecast performance over
a fixed period of time. Asynchronous simulations are helpful
when studying mass-production systems to reduce cost [15]
or improve productivity, however, for performance monitoring
and assessment it is evident the need of a synchronous simu-
lation running in real-time.

As companies seek to expand system level perspective of
their operations, DES models have been extended to capture
additional information about the plant floor such as machine
Continuous Dynamics (CD), financial information, and main-
tenance strategy. Industry’s interest in hybrid systems, which
is the combination of DES with CD, has grown in recent
years [16]. Hybrid models capturing system and machine level
interaction can help trace problematic behavior and identify
the root cause. In [17], an enterprise-level hybrid simulation
is presented to study the discrete operation and the continuous
dynamics of inventory, production, and sales. CD captured the
long-term effects while DES showed the short-term effects
of a decision. However, machine dynamics and interactions
needed to monitor machine health and identify the need of
maintenance action, or plant floor reconfiguration are not
considered in the model.

1) Discrete Models: For modeling processes where manu-
facturing machines and systems can be described by a set of
discrete states, different DES formalisms with event or time-
driven transitions have been developed. A detailed comparison



of some of these formalisms can be found in [18]. A discussion
on the selection of the formalisms and analysis framework
based on modeling viewpoint and concern aspect is presented
by Broman et al [19]. The study shows that syntax of some
formalisms might be better suited for performance analysis,
model checking, or controller design. Selection for the proper
abstract representation depends on the analysis requirements.

Some formalisms such as Finite State Machines (FSM) and
Petri Nets (PN) have been extensively implemented in the
design phase of a manufacturing system life cycle for control
verification. In [20], performance of a manufacturing operation
was improved by studying the robot dynamics in a discrete
set of conditions and programming an FSM as part of the
control strategy. However, due to challenges in scalability,
and constraints in capturing concurrent activities, FSM has
limitations when modeling large manufacturing systems [21].
PN is a graphical tool used for modeling large DES that
operates with concurrent tasks. Controllability and possibility
of deadlock or livelock in automated manufacturing systems
has been studied using hierarchical PN models [22]. Moreover,
the optimal configuration of the controller can be obtained by
formulating the PN structure as an integer linear programming
model to find a deadlock-free setup [23]. Finding proper
controller configurations can help improve utilization and
productivity of a manufacturing system. However, the latter is
affected by other aspects such as machine processing time and
reliability which are often not included in basic PN models. PN
have been used successfully for modeling the controllers [24],
[25]. Some features of the plant such as processing time have
been used to evaluate production rate, downtime and work-in-
process of a manufacturing system for different layouts and
production mix by extending PN models [26]. Similar work
was presented in [27] including machine degradation models to
estimate the effect of failure rates over utilization and work-in-
progress. However, due to increased complexity when adding
different features at a machine and system level, PN could
have limitations in modeling a plant.

Much of the research on modeling plant floor operations of
manufacturing systems has focused on throughput analysis,
production scheduling, process planning, and performance
measurement [16]. Some DES formalisms developed
specifically for simulation purposes have an increasing trend
in industry applications. Discrete Event System Specification
(DEVS) has been used for modeling and simulation of a
wide class of dynamics systems. Some of the key features
of DEVS for modeling manufacturing systems are modular
and hierarchical configurations, capacity to capture the
deterministic and stochastic event- or timed-based transitions,
ability to handle concurrent tasks, analysis of continuous
dynamics, and a wide range of available software packages
able to interact with other applications [28]. In manufacturing
applications, DEVS has been used to model automated
plant operations, where the simulation interacts with inputs
and outputs of the logic controller for process verification
[29]. The productivity of a manufacturing system has been
improved by combining DEVS models and Model Predictive
Control (MPC) in the semiconductor manufacturing domain
[30]. The use of simulations helped maintain stable operation

under nonlinear and stochastic plant dynamics. In [31], a
DEVS model built on Matlab/SimEvent was used to analyze
the fabrication process in a nuclear facility and gain insight
into an efficient operation schedule. Plant models developed
on DEVS thus far capture the time-driven transitions of
discrete states, however, the models do not include the
machine dynamics and are not real-time capable.

2) Continuous Models: Some key performance indicators of
a manufacturing process can be modeled based on continuous
dynamics. Robot, conveyor, and CNC machine dynamics can
be modeled using differential equations to monitor state-
variables and outputs. Different multi-body systems have been
modeled using equations of motion for kinematic and dynamic
analysis [32]. A model of a 6-DOF parallel robot built in
SimMechanics allowed joint position as a function of time to
be monitored [33], [34]. In [35], a virtual CNC machine (in-
cluding electrical and mechanical components) was modeled
to simulate position error over time. Component level dynamic
simulations have been used to simulate output variables given
an input. In a CNC machine, motor torque or current has been
simulated given a position command [36]. Simulation tools for
virtual commissioning in real-time can be used to visualize
control action and machine dynamics [37]. This approach has
been used to reduce time in design and validation stages, but
is yet to be extended to real-time performance monitoring to
leverage the capacity to synchronize controller and simulation.

When a system is better described by the evolution of
continuous variables while operating in a specific discrete
state it can be modeled as a hybrid system. Sung et al. [38]
developed a framework for simulation of hybrid systems for
high-level architectures using analog-to-event and event-to-
analog converters. The approach developed based on DES and
CD identified the need to study hybrid systems for machine
level applications [38]. A study of continuous dynamics has
been used for anomaly detection by monitoring residuals
between expected and real values. In [39] an anomaly detection
algorithm based on modeling machines as hybrid systems and
studying residuals between the model and current values of
continuous variables from the plant is presented. However,
these models are neither fully synchronized nor running in
real-time.

B. Manufacturing Systems Performance Analysis

The different performance metrics evaluated throughout a
manufacturing system life cycle are compared by Leung et
al. [40]. In design and validation stages, performance metrics
include the possibility of deadlock, reliability, and quality.
Once functionality of the process has been verified and the
manufacturing system is operational, performance is defined
by productivity metrics such as utilization, production rate,
work-in-process (WIP) and part flow time.

Production metrics and machine health are often monitored
by a Manufacturing Execution System (MES) [41]. MES links
Enterprise Resource Planning (ERP) with plant floor equip-
ment to monitor performance using Overall Equipment Effec-
tiveness (OEE) and Key Performance Indicators (KPI) [42].



The former combines availability, productivity, and quality in
a single metric. The latter is used to monitor product or pro-
cess variables that characterize performance. In [43] machine
downtime data was used to analyze severity of a fault based
on availability impact, showing the importance of monitoring
machine level performance to find the best maintenance policy
in parallel production systems. In [44], a data-driven KPI is
developed to predict, diagnose, and evaluate the performance
of an industrial hot strip mill. The mathematical model was
implemented to predict exit strip thickness as a function of
process variables. These applications showed the advantages of
using a dynamic approach and the importance of data-driven
decision making to improve manufacturing performance and
part quality. However, they do not provide an insight into the
expected performance in real-time.

Manufacturing system performance analysis is a complex
problem. The interaction of multiple machines and buffers
can be difficult to predict. Production System Engineering
(PSE) has developed an analytical solution to study throughput,
WIP, and blockage and starvation for a system operating
under steady-state conditions with a single part type [45].
PSE models machines using parametric distributions of pro-
ductivity and reliability, along with buffer capacity, to identify
bottlenecks based on blockages and starvations. At a machine
level, this modeling method can be implemented in other
frameworks, and presents a systematic approach for process
improvement. However, a PSE approach to modeling system
level interactions as Markov chains may fail to capture the
dynamics of a manufacturing system with different machines
and multiple stages processing various part types [46].

The importance of modeling and simulation of manufac-
turing systems to improve performance is demonstrated in
[47]. Results show how productivity of complex manufacturing
systems measured by OEE is affected by machine level per-
formance as described by cycle time, downtime, and quality.
Moreover, productivity is sensitive to machine location in
the system. A detailed analysis of the relationship between
equipment timing and location over system level performance
highlights the capability of simulation as a predictive tool for
bottleneck detection and performance diagnosis [48]. Nonethe-
less, the continuous machine dynamics are not included in
the analysis, and the concurrent analysis between the real and
simulated systems is not discussed.

C. Plant Floor Automation and Data Extraction

Collecting information from the plant floor and calculating
performance metrics in real-time can be challenging without
proper automation and control. Manufacturing systems gener-
ate a large amount of data that can be used for performance
analysis. Sensors, condition monitors, and machines connected
to the system level controller generate data that is can be used
in the estimation of states and machine health. Communication
between simulated and real environment can be used to test
extended versions of a manufacturing system [49]. In the real
system, a programmable Logic Controller (PLC) often supports
manufacturing control by coordinating tasks between machines
or devices based on a low-level logic program [50].

IToT has grown in popularity for data extraction. In [51],
MTConnect protocol was implemented to extract state vari-
ables and outputs from machine controllers. Data from these
state variables and simulation results were used to evaluate the
most sustainable manufacturing setup [52]. However, MTCon-
nect has been limited to machine level data extraction. In [53]
the implementation of IloT in a manufacturing system with a
focus on Radio Frequency Identifier (RFID) for data collection
was discussed. An RFID tag carries process information that
is used by the controller to trigger the proper CNC and robot
programs. In [54] , plant floor data describing processing tasks
and parts was extracted using RFID. Information of discrete
states was used to update a PN model and trigger transitions in
real-time. In [55] process time, quality, and cost calculations
helped manage the expectation of plant floor operations for
reconfiguration. However, the data extracted from the system
was only the machine’s discrete variables (e.g: machine states,
events); the continuous state variables while operating in a
specific discrete state were not included.

Some of the challenges for implementation of IIoT are
discussed in [56], where standardization, security, and data
synchronization are highlighted. The implementation of IloT
enables moving data from the resource to application layer
to identify, monitor, and manage manufacturing resources.
However, the interaction between a real plant floor and a virtual
plant model using data extract via IloT was not discussed.
Moreover, merging the two environment has the potential
to improve the performance analysis and control actions in
manufacturing systems.

III. HYBRID SIMULATION MODEL

To effectively evaluate manufacturing system productivity
and machine operations, a hybrid model combining discrete
and continuous parameters in real-time is developed. Machines
are modeled using discrete event systems with continuous
dynamics. System level behavior is studied by extending the
discrete event model to capture the interactions of multiple
components such as machines and buffers. This novel ap-
proach using real-time hybrid simulation to monitor and assess
manufacturing performance requires two steps: first, modeling
single machines and system interactions, and second, real-time
synchronization of the virtual and real environments. Note: If
x is a variable in the physical domain, Z is the corresponding
simulation variable.

A. Modeling machines and interactions

Machines are modeled as hybrid systems to capture both
discrete and continuous behavior. Given that manufacturing
equipment often operates on a discrete set of states with
event- or time-driven transitions, the asynchronous behavior is
modeled as a Discrete Event System (DES). The continuous
dynamics (CD) inside some states are studied using differential
equations to capture the rate of change of certain variables in
a synchronous model. Both discrete and continuous models
are then merged in a single simulation environment.



1) Discrete: In this paper we model manufacturing systems
using the Discrete Event System Specification (DEVS)
formalism [28]. The formalism models discrete-event systems
based on inputs, outputs, states, and transition functions.
DEVS is based on two types of models: atomic and coupled.
The atomic models describe individual component behavior,
while coupled models describe the connection or interaction
of several atomic components. An atomic model of each
component in the system is represented as a tuple H:

H = (U,Y, S, 0int, bcat, A, A tady) Where:

U={en,ei,...} Set of inputs
Y ={eo1,€02,...} Set of outputs
S ={s1,89,...} Set of states

Oint:S X {taqw,0} — S Internal transition function
Oegt:S XU — S External transition function
A = {0int, Oext} Set of Transition Functions
AA-SY Output function

tadw = {T1,T2,...} Set of transition times

Atomic models for event generators, buffers, and processors
are presented in [57]. A machine with event- and time-driven
transition functions is defined as follows:

® 0int(s;,7;) = s; defines a transition from s; to s, after
some time advance 7;.

® Oczt(Si,€;) = s; defines an transition from s; to s; given
that input event e; has occurred.

e \(dint) = e, defines an output function of transition ;4
which results an output event e,

e T, is a random variable in space of probability distribu-
tion functions ¢ over RT, so that T j & 5 . For example,
in Fig. 1 the time to process a job (cycle time) and time to
recover from a fault (time to repair), are specified by the
realization of the random variables 7, and 75 respectively.

Modeling machines requires a description of all possible

states. A simple example of an atomic model for a machine
m with only three possible states is shown in Fig. 1 and
represented by:

U = {job;n, fault}

Y = {jobout, ready}

S = {Idle, Busy, Down}

Oint(Busy, 1) = Idle

Oint(Down, 19) = Idle

5o — Oczt(Idle, job;y,) = Busy

et Sege(Idle, fault) = Down

= A(élnt(Busya Tl)) = jObout
Aint(Down, 19)) = ready

tady = {71’72}

6int =

Buffers are defined by a set of states and the maximum
capacity of events in queue. An example of a buffer b with
two states (Busy, Free) and occupancy w, € Z™' is shown
in Fig. 2. In this paper, machine and buffer parameters such
as states, transition times, and buffer capacity are based on
historical or experimental data and operation analysis.

Legend:

: 5ext(si;el) =S;

time 2 O4uils,T)=5;

Fig. 1. Machine Discrete Event System Model

System level interactions are represented in a coupled
model by specifying the interconnection of several atomic
models. A DEVS coupled model is defined by a tuple G:

G = (U,Y,M,EIC,EOC, IC, Select)

where U is a set of system input events, Y is a set of
system output events, and M is a set of DEVS atomic models
(i.e: buffers and machines). Coupling relations EIC, EOC,
IC represent machine interconnections that are specified by
the manufacturing process flow to map inputs and outputs.
EIC are external input couplings, connecting external or
system level inputs to component inputs. EOC are external
output couplings, connecting component level outputs to
external outputs. /C are internal couplings, interconnecting
components output to other components inputs. Select is a
tie-breaking function specifying hierarchy. Several examples
are presented in [28]. An example of a coupled model of two
machines (m;,m9) and one buffer (b;) is shown in Fig. 2.
The set of atomic models is defined by M = {my, ma,b;}.
The set of system level input and output events are defined
by U = {u1} and Y = {y2} respectively. These events
are defined as inputs and outputs of m; and my, and their
interactions are defined by EIC, FOC and IC.

EIg IC
> s 2,
!
4‘5 fomNetome]
2 nw
[Machine 1] Buffer] [Machine 2

Fig. 2. Coupled Discrete Event System Model

Given a string of inputs events E; € U™ arriving at a rate A,
the DEVS coupled model generates a string of output events
E, € Y* after some time t. The number of arrivals and
departures N; and N, respectively, are defined by the length
of E; and E, in the interval (0,¢]. A common assumption is
that a system operates under steady-state conditions, so that as
t — 0o, A(t) converges to a constant value A [58].

The focus of this work is to study manufacturing systems
operating under non-steady-state conditions with variable
arrival rates (A(t)) of different events in the input string (E;).



Moreover, performance metrics are monitored as a function
of time and synchronization between the real and virtual
environments supports concurrent performance analysis. Given
a timespan 7', buffer occupancy w of B number of buffers,
system level performance is characterized by Throughput p,
Work-in-Process 3, and Yield defined as the ratio between
throughput and arrival rate (u/A).

_AN;  Ni(t) = Ni(t - T)

Arrival Rate: At) = AL P r—
AN, Ny(t)— Noy(t—-T
Throughput: u(t) = A (t)— i —(T) )

B
Work-in-Process:  3(t) = Z w; (t)
i=1

Expected throughput (14(¢)) and work-in-process (5(t)) can
be used to identify system level features such as blockage
and starvation, and calculation of Overall Throughput
Effectiveness (OTE) [48]. Moreover, machine level variables
such as transition times can be combined into performance
metrics (e.g: availability, efficiency) to dynamically monitor
OEE [2]. The effect of machine transition times over system
level performance metrics will depend on the internal
couplings as defined by the plant floor layout or process flow
(e.g: parallel or series subsystems).

2) Continuous: Machine continuous dynamics (CD) are
studied along with their discrete-state representation. The
dynamic model captures parameters that can help evaluate
machine performance given the context of a specific input
event. State-space variables and outputs are studied based on
a deterministic model. In the most basic form, machines can
be studied as a system with input, outputs, and state variables.
The dynamics of a machine can be described by a differential
equation of the form & = f(x,u,t), where x is the continuous
state variable vector, v is the continuous input vector, and
t represents continuous time. For a machine with discrete
states shown in Fig. 1, given that 0 < ¢ < 7y, continuous
input signals u(t) are related to input events in U, and x(¢)
describes variables that operate in a state of S. In this work
continuous state variables are studied in discrete-time at some
time ¢ and a short time later ¢ + A¢. Time is discretized at a
fundamental step size At so that state variables are calculated
at x(kAt) where k € Z* represents the discrete-time unit.
For an input signal u(k) the machine dynamic model results
in a vectors of n state variables (k) and n’ outputs y(k).

y(k) = [y (k) -y (k)"

An example of a dynamic model of the actuator force Q
for an industrial robot arm represented as a kinematic chain is
given by [59]:

Q=M(q)i+Clq,q)i+ F(§) +G(q)+J(q)"g (1)

The model requires identification of key parameters such as
joint inertia matrix M (q), Coriolis and centripetal coupling

(k) = [z1(k) - zn (k)T

Input T Q @i
|

T . L
time
Output L XY €52
| ®
| 1 B
1 —>
time
Discrete 4 S S5
State Sp So
— »
Je— T 1 — time'
X,(1)

Continuous
Variables T /-\/_\_\ /\ R
WT:‘ m ]
. N

At
kAt | time

Fig. 3. Hybrid Discrete and Continuous Model

matrix C(q,q), friction force F'(§), gravity loads G(q), and
state variables {¢,4} denoting position and velocity in the
joint space respectively. Different machine models have been
studied in [33] or are available from the machine manufacturer.

3) Hybrid: Machine and system level performance can be
studied in parallel by merging discrete and continuous models.
In the hybrid workspace, a CD model is defined for set of
discrete states. An event triggers a state transition and dynamic
action. Initiation of the continuous dynamic simulation requires
signal conversion from event-based to time-based along with
input specifications. For manufacturing equipment, the series
of tasks or programs to perform in each state defines the
dynamic model inputs. As shown in Fig. 3, an event e;; in
the discrete model triggers both a transition from sg to sp
and dynamic model initiation (set ¥ = 0) simultaneously. At
stochastic time 7; the DES transitions back to state s, while
the CD model runs until some deterministic time kAt.

A hybrid model of a single machine given a single input
event e;; € U results in discrete and continuous outputs.
The discrete output is a vector W of cycle time to process
the event. The continuous outputs are matrices © and I' of
time-series vectors of machine state variables and outputs
respectively.

V=[] O=[z1)--

Discrete and continuous models differ in the way time is
managed. DES is asynchronous and skips time intervals where
the machine status does not change. CD are synchronous
and are studied in discrete-time. Discrepancy between DES
and CD running time are solved by synchronizing the hybrid
model to run in real-time.

B. Real-time Synchronization

In this work the term real-time refers to “true” or “wall
clock” time while concurrent refers to actions developing at
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the same time in both real and virtual environments. This
novel approach to monitor manufacturing system performance
requires synchronization of the virtual environment to run
in real-time and concurrent to plant floor operations. The
latter is accomplished by monitoring the string of events from
the physical system representing the production sequence or
schedule and using them as inputs to the model. Having the
simulation running in real-time under the same operational
context as the plant floor enables direct comparison between
the virtual and real environments for performance analysis.

Real-time execution of the virtual environment is achieved
by creating a virtual controller that emulates the time progress-
ing, and supervisory actions over events and signals of the
real controller. During simulation, time advances at constant
steps. The validity of simulation outputs will depend on both
model accuracy and computation time length. It is important to
define a time-step and solver that prevent an “overrun” defined
as computation of variables and outputs exceeding real-world
time of the system at a certain state.

A detailed description of solvers and performance compari-
son is discussed in [60]. Step size provides a metric to analyze
simulation time. Smaller step sizes leads to longer simulation
times with more accurate results. To assure the final outcome
of the simulation is not compromised by the time-step size,
first run the simulation using variable step size, then find
the minimum step size requirement throughout the simulation
running time. Fix the step size to the obtained minimum
and re-run the simulation. Finally evaluate output accuracy
and running time. Inappropriate selection of the solver, step
size, or a non real-time capable model can cause the solver
to skip solutions at a specific time-step and create gaps or
discontinuity in the continuous dynamics of the machine.
Discontinuities in state variables at each time step can be
detected based on zero-crossing detection [61].

Synchronization between the real and virtual environment
is accomplished by capturing a string of events from the plant
floor PLC, and using these events as inputs to the simulation.
Discrete and continuous signals used by the PLC for control

actions can be captured and extracted by an IloT adapter
connected in the control network. Using these signals in the
simulation requires plant floor data to be mapped to events.
A simple example is a presence sensor that enables signals
to be mapped to an input event job;, shown in Fig. 1. The
IIoT adapter converts plant floor signals into data packets. In
the virtual environment, the DEVS event generator model is
configured to read and interpret the packets, and create events
that initiate the simulation. Control actions for events such as
change of state, task, or specific trajectory in the simulation can
be programmed in the virtual PLC. Using plant floor events
as inputs in the model assures concurrent execution of the
simulation so that both real and virtual environments operate
in the same context.

In this work we use Rockwell Automation RSEmulate to
emulate a PLC operation and SimKit to describe the interaction
between the emulated PLC and simulation [62]. Discrete and
continuous signals are extracted from the real PLC using
Rockwell Automation IIoT adapter, and are interpreted by the
simulation using Matlab. As shown in Fig. 4, data streams from
both the simulated and real system enable real-time analysis.

IV. SHOP FLOOR PERFORMANCE ANALYSIS

Machine and system level performance assessment is based
on residual analysis. Implementation requires plant floor data
extraction of performance metrics and machine variables. In
this section we discuss our data extraction strategy from the
real system, and the performance analysis rules based on
comparing plant floor and real-time simulation data.

A. Shop Floor Integration

In an automated manufacturing system, a PLC serves as
supervisor or system level controller coordinating tasks based
on machine states and Input/Output signals. Data from sensors
and machines can be stored temporarily in “tags”, an in-
memory location. Tags can store binary or numeric values
required for performance analysis.



e Discrete signals: Events and states are monitored based on
binary signal values from a sensor. Common automation
components such as presence sensors can be used to
identify part arrival or departure events based on enable
or disable signals.

e Continuous signals: State variables and outputs can be
monitored based on digital signals. Data from condition
sensors such as encoders, current transformers, temper-
ature or pressure sensors is used to monitor machine
continuous variables in discrete-time.

Machine level performance analysis is based on studying the
actual transition times 7; together with time-series matrices
of state variables © and outputs I'. Assuming that machine
states can be monitored by the system level controller, 7; is
obtained by monitoring the time that a binary signal from the
machine is enabled while in state s;. State variables © and
output variables I" are monitored during the time interval 0 <
kAtrp < 7;, where Atp is the fundamental time-step of the
real system determined by the PLC scan rate.

System level performance analysis requires monitoring of
real buffer occupancy w and throughput . At a specific time,
the number of units stored in the buffer w(¢) is obtained either
by direct measurement or calculation w(t) = N;(t) — N,(t).
Throughput is obtained by calculating the number of parts
produced per unit of time.

Considering the effect of machine level timing over system
performance [47] [48], variables at both machine and system
level are temporarily stored in tags for later extraction. For
example, transition times 7; and 7o are monitored to estimate
machine availability which can affect the system throughput.

As noted earlier, we use an IIoT agent to extract data from
the PLC. The advantage of extracting the PLC data is that
multiple tags containing information from different machines
can be combined into a single data packet. Packets are sent
to a local repository for analysis as shown in Fig. 5. Machine
and system level performance metrics are evaluated based on
real tag values and simulation results.
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B. Shop Floor Performance Analysis

Analyzing productivity and health in a manufacturing sys-
tem with variable demand of different parts processed across
multiple machines can be challenging. Here is where the
synchronous interactions between the real and virtual envi-
ronments gains importance as the simulation provides insight
into the desired performance at both the system and machine
level at any point in time.

The novelty of this work is the development of a framework
that enables the comparison of plant floor data with real-time
simulation data to analyze performance at both machine and
system levels. For the z" event on a string, we monitor
discrete variables such as cycle time 7y, continuous state-
variables © and output-variables I', given a discrete time-step
k. Multiple strategies can be used for performance analysis.
In this work, we discuss a few of the possible multivariate
analysis techniques that leverage real-time data from the real
and virtual systems. At a machine level, residuals of discrete
and continuous variables are studied for performance analysis.
At a system level, a geometric framework to analyze residuals
of production metrics is proposed.

1) Machine Level: Given a string of input events F;, we
monitor residuals of discrete and continuous variables for each
event in the string.

e Discrete variables: The difference between transition
times of a real machine 7; and virtual machine 7; to
process the z'" event in the string, is calculated as:

rri(2) = 7i(2) = 7i(2) @)

e Continuous variables: The difference between the time-
series of the state variables (©, ©) and outputs (I',T") gen-
erated by the real and virtual machines when processing
the 2" event in the string are evaluated. Consider that the
length of a time-series matrix obtained from the real and
virtual systems & and k respectively are not necessarily
the same (k # k). The Dynamic Time Warping (DTW)
[63] is used to align signal features. The residual between
warped time-series is given by:

re(z) = \ Z(@i,m —0,(2))? 3)

D Mir(z) =T, 4(2))2 4)

i=1

rr(z) =

In this work a multivariate approach to monitor discrete and
continuous machine parameters is proposed. The analysis is
based on monitoring vector r for each event in E; and a sub-
string of F; defined by a sliding window v. Outlier detection
and distribution analysis are used to evaluate performance.

e Outlier detection: A set of historical or experimental
values of machine variables under normal operation define
the range of allowable variation. Limits are calculated
based on 95% confidence intervals of the covariance
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matrix. Outliers are detected using Olive-Hawkins method
[64] and Mahalanabis distance D(z) from a cluster in a
multivariate space:

D(z) = \/(x(z) ~ 1) TS 1(x(z) ~x0)  (5)

where r(z) = [, (2),70(2), rr(2)] is a vector combining
residuals of: transition time, state variables, and outputs
for the 2! event. ¥ is the robust covariance matrix,
ro is a vector that identifies the cluster centroid. An
example of the 95% confidence interval ellipsoid for a
three dimensional residual cluster is shown in Fig. 4.

e Distribution Analysis: In this work we use Kernels, a
non-parametric probability density function (pdf). Kernel
Density Estimation (KDE) is an iterative process that does
not require prior assumption of data distribution and is

defined by:
(i) >

1 J r—r
jhi:l ( h

(6)

where (r(1),7(2),...,7(j)) € v are experimental or
historical sample data of sliding window v, h is a
smoothing parameter, and K is the kernel. Kolmogorov-
Smirnov (KS) test is used to compare two sample KDE
of residuals [65]. The distance between distributions
of consecutive sliding windows is used for hypothesis
testing. The null hypothesis that both samples come from
a common distributions is evaluated for 95% confidence
intervals. A rejection of the null hypothesis identifies an
abnormal distributions of residuals.

2) System Level: Productivity metrics such as throughput
(1) and Work-in-Process () are key performance metrics
[45]. We use synchronous simulation as a reference to monitor
these metrics for a manufacturing system operating under non-
steady state conditions. To the best of our knowledge, no closed
form equation exists to model manufacturing systems, or to
correlate between performance metrics.

A geometric framework for detecting “faults” and estimating
possible root causes is defined. The direction of the residual
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vector provides insight on possible fault types, while length is
proportional to the fault magnitude. Directional residual anal-
ysis has been studied in Fault Detection and Isolation (FDI)
[5]. However, in this work a residual vector is not decomposed
into known fault vectors for isolation. Nonetheless, expert
knowledge can use residual analysis of a multivariate space
to assess manufacturing system performance. In this work we
define the system-level residual as:

Rut)] _ [u®)] _ [A(1)
R(t) = | (M e — 15
=) =[50 - 5o
Considering that the simulation outputs are generated in
real-time and concurrent with the plant floor operation, residu-
als describe deviation from the expected performance. For ex-
ample, an increase on throughput residual (R, (t)) and Work-

in-process (Rg(t)) can describe changes in the bottleneck
location.

C. Shop Floor Management

Having a reference of expected performance or OEE metrics
in real-time and under the same operational context of the plant
can support shop floor management and decision making. As
shown in Fig.4, direction and magnitude of the system level
residual vector can help identify issues such a bottleneck shift
or process delays causing starvation and negatively 1mpact1ng
throughput. To support shop floor management, changes in
system throughput detected by R, (t) can be traced back to
shifts in machine transition times T, to identify delays on
cycle time or time to repair. Management can then assess the
need for additional resources on a specific task, changes in the
process flow or creation of new workstations [66] [47].

The root cause of machine under-performance can be iden-
tified by analyzing the residuals of continuous input (rg(2))
and output (rp(2)) variables (e.g: velocity, torque). Moreover,
the residuals of continuous input and output variables can be
used to assess machine health. The need for a maintenance
action could trigger a change on the work schedule of specific
machines or part re-routing [67].
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V. IMPLEMENTATION AND EVALUATION

A hybrid simulation of an automated manufacturing testbed
installed at the University of Michigan was built to run in real-
time. The physical tesbed is equipped with two Fanuc robots,
four Denford CNC milling machines, and a conveyor loop [68].
The system is controlled with a Rockwell ControlLogix PLC
connected over Ethernet/IP. The PLC receives input signals
from the robots, a Variable Frequency Drive (VFD) controlling
conveyor speed, and sensors installed in different locations
across the conveyor. Parts are transported by the conveyor on
pallets. As parts go through the system, sensors are triggered
to initiate logic-driven operations embedded on the PLC such
as a robot pick-and-place action and CNC machining.

We modeled the testbed in Matlab/Simulink environment
using the framework described in section III-A. Data from the
testbed and simulation were collected in real-time. Machine
and system level performance were evaluated following the
analysis techniques described in section IV.

A. Modeling

Machine and system level interactions were modeled in a
Matlab/Simulink environment.

1) Machine Level: DES models of CNC machines, robots,
and conveyors were created using SimEvents and StateFlow
after identifying possible states, inputs, outputs, and transition
times. A DES model for a single CNC machine is shown in
Fig. 7. As represented in the DEVS formalism example shown
in section III-A, transition times 7; and 7o are scalars repre-
senting cycle time and repair time respectively are generated
given random variables 7; and 7.

Machine dynamics were simulated using SimMechanics. A
parametric model of a 6 Degree-of-Freedom (DoF) robotic arm
was created based on geometry and material information from
a 3D model. Trajectory requirements for a specific task such
as pick-and-place in the robot workspace was transformed to
position commands in the joint state space based on inverse
kinematics using Matlab Robotics Toolbox [69]. The model
inputs were commanded joint position, velocity, and accelera-
tion, and the model output was joint torque. An example of a
single joint model is shown in Fig. 8.

2) System Level: Machine interactions were defined based
on coupling relations between Input and Output events. To
capture productivity metrics, parts were abstracted as events
moving between machines given a specific process flow. For
this case study, a single part type modeled as event e;; was
processed by CNC machines, robots, and conveyors. Figure
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6 demonstrates the interaction between machines.

3) Real-Time Synchronization: Real-time synchronization
is done by the selection of a proper solver and time-step
size for the simulation, using Rockwell RSEmulate to define
a virtual PLC and control logic, and SimKit to define the
interactions between the virtual controller and simulation. We
first ran the simulation using variable step size and solver
ode23t (Dormand-Prince) to assess the required step size and
computation time. Then we fixed the time-step size and re-ran
the simulation to evaluate output errors and no zero-crossing
events. Lastly, we assessed simulation results using a fixed
time-step size and a less computationally expensive solver,
ode4 (Runge-Kutta). Then the simulation was integrated with
a virtual PLC created using RSEmulate by correlating PLC
logic to simulation parameters using SimKit. The integration of
Simulink, SimKit, and RSEmulate support real-time execution
of the simulation. Synchronization can be accomplished by
extracting events from the real PLC via Rockwell IIoT adapter
and using them as inputs in the simulation to assure concurrent
operation between the virtual and real environments.

B. Plant Floor Performance Analysis

For analysis, we compared data from the real and virtual
testbed. Data from the real testbed was collected from the
PLC using and IoT adapter. Data from the virtual testbed
was generated in real-time. Both real and virtual datasets were
analyzed to assess performance.

1) Plant Floor Integration: Plant floor data was collected
using an IIoT adapter. Variables for performance analysis
were temporarily stored on tags inside the PLC. Data was
collected in discrete time based on the PLC scan rates that
defined the fundamental step size Atp = 100ms. Discrete
variables such as transition time (7;) were monitored using a
“Timer-on-Delay” (TOD) function. To control transitions in
the CNC machine, additional logic was added on the PLC
to trigger and monitor CNC tasks. The machining task and
TOD was initiated by a binary signal from the PLC. Once the
machining task was completed, the CNC sent a binary signal
back to the PLC that stopped the TOD. Cycle time 7 was
computed by the PLC logic as the accumulated time in the
TOD. For our implementation, an IloT agent in the control
network connected to the PLC collected and sent variables
in data packets. Continuous variables in © were extracted
from machine controller. Robot position data in the machine
controller was defined as a monitoring variable. Data was



extracted by writing a computer program based on Fanuc’s PC
Developer Kit (PCDK) that enabled Ethernet communication
from a desktop computer to the robot controller to monitor
pre-defined variables. During a part moving task, data from
the robot controller extracted at a fundamental step size
Atr = 100ms were sent to a repository. Figure 6 shows the
dataflow of real and virtual environment.

2) Performance Analysis: Our case study was based on
univariate and multivariate analyses of different performance
metrics. For CNC machines, we monitored cycle time, the
time that the machine was in state “Busy” while processing a
part. For Robots, we monitored cycle time and state variables,
the time in state “Busy” while performing a pick-and-place
operation, and position in the world coordinate frame

a) Milling Machine: Univariate analysis for productivity
assessment was done based on cycle times 7; and 7. Transi-
tion time residual -, was calculated using (2). 7; was obtained
from a DES model after identification of states and transition
times pdf from 50 cycles under normal operation. A string
of 50 input events (e;;) was sent to both real and virtual
machines. For testing purposes, the feedrate of some cycles
was randomly changed to simulate an anomaly. Testing results
are summarized in Table I.

TABLE 1. TESTING SUMMARY
Cycles 9%Feedrate Avg. 11 (s) Std. 71 (s)
1-25 50 198.4 1.3
26-30 40-60 197.7 7.7
31-45 50 198.8 1.1
46-50 60-70 190.8 3.0

Performance analysis was based on distance using Eq. (5).
Figure 9 shows cycle time residual distance from the cluster
centroid for each event. Events outside the 95% confidence
interval were labeled as outliers. Changes in feedrate affected
the cycle time residual and can be detected using the proposed
framework.
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Fig. 9. Mahalanabis Distance of Cycle Time Residual

To study distributions, we used a sliding window of 5
samples. For each window we estimated a kernel using Eq.
(6). A two-sample KS-test was performed between subsequent
windows to evaluate statistically significant differences be-
tween the two distributions. The distributions and p-values
for each time window are shown in Fig. 10 and Table II
respectively.

Window Number

Fig. 10. Mahalanabis Distance of Cycle Time Residual

TABLE II. TWO-SAMPLE KS-TEST RESULT
Window # 1 2 3 4 5 6 7 8 9 10
p-value 0.679  0.963 0.809  0.660  0.679 0.044 0122 0.152  0.784 0.002
Condition OK OK OK OK OK NO OK OK OK OK NO OK

Changes in either the mean or distribution of the cycle time
residual could have a negative effect on system throughput.
Reduction of mean cycle time as detected in window number
10 from Fig. 9 could increase work-in-process causing a
blockage in the system. A change in cycle time distribution as
detected in window number 6 from Fig. 9 can affect idle time
of subsequent operations. Under-performance of the system
that is captured by machine and system-level residuals can
lead to improvements in plant floor control actions determined
at the managerial level. For example, the identification of an
important residual could lead to a change in the conveyor
speed, production routing or schedule of a maintenance action.

b) Robot: A multivariate analysis for productivity and
health assessment was done based on cycle time 7, and state-
variables during a pick-and-place task from the conveyor to
the CNC machine. The task was programmed in the real robot
(Fanuc M6i-B) using the teach pendant and initiated by a
signal from the PLC (e.g., part available for pick-up at CNC).
End-effector position of the real robot was extracted from the
robot controller at a scan rate of Atgp = 100ms. End-effector
position of the virtual robot was computed at a fundamental
time-step Aty = 10ms. A simulation of the virtual robot
operation was initiated by an input event and trajectory. Figure
11 shows the trajectory in each coordinate axis for both the
real and virtual robot.

Position data was collected over 75 cycles. To simulate an
anomaly, the trajectory of some cycles in the real robot were
modified to add a jerky motion and trajectory changes. We
compared the temporal position vector of each axis (XYZ)
by overlapping output signals from the physical robot with
the simulated trajectory. Due to differences in time-step size
between the real (Atg) and virtual (Aty) robots, and vari-
able cycle times of the real robot, the position vectors had
unequal length. As shown in Fig. 11, the simulated and real
trajectories have some differences in the number of samples
due to differences in time-step size. However, we expect to
capture anomalies on state-variables as long as the simulated
values are obtained at a smaller time-step than the values
sampled from the real robot Aty < Atg. Differences in
the location of features in the trajectory between the real and
virtual robots are caused by minor discrepancies in the robot
geometry. DTW was used to normalize and align features
in the temporal position vectors. The residual between time-
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series (O, ©) was computed using Eq.(3). Statistical analysis
aimed to monitoring changes in the expected residual rather
than absolute changes. This approach reduces noise from the
expected variation between the simulation and real systems.
Selection of simulation step-size and robot controller scan rate
can limit the type of anomalies that can be detected.

Abnormal cycles with changing trajectories were identified
using a multivariate analysis approach with cycle time residual
r, and state-variables residual rg. The proposed framework
was able to detect changes in the trajectory, even when those
changes had little effect on cycle time. Fig. 12 shows the
residual analysis and 95% confidence interval; outliers were
detected based on distance from the cluster centroid for all
abnormal cycles. Moreover, outliers in position residual can
be used as indicator of machine health, to identify the need
of a maintenance action. Changes in position accuracy for
robot operation might be of particular interest in welding or
machining operations.

VI. CONCLUSIONS

This paper presents a mathematical framework for real-time
modeling and synchronous simulation of a manufacturing plant
at both the machine and system-levels. This hybrid model
merges discrete and continuous variables at the machine level
and considers system level interactions. This novel approach
leverages Industrial Internet of Things (IIoT) to monitor events
on the plant floor and synchronize the real and virtual environ-
ments. Enabling the virtual environment to run in real-time and
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in the same context as the plant can help direct comparisons
of expected performance metrics at any given point in time.
New advancements in hybrid modeling, simulation, and real-
time synchronization along with the necessary techniques to
analyze the performance of the system were provided. An
evaluation of the proposed approach demonstrated a real-
world implementation of the framework on a physical testbed
equipped with CNC machines, conveyor, and robots using IIoT
for data extraction. A DES model of equipment was built
using SimEvents, while the CD of a robot were modeled using
SimMechanics. Plant floor information was extracted using
a Rockwell Automation IIoT adapter. Performance regarding
machine cycle time and continuous variables were compared
in the real and virtual environments to analyze residuals.

This work presents the first demonstration of a hybrid
model simulated in real-time and concurrent to the plant floor.
Experimental validation of this framework demonstrated how
to evaluate performance and detect anomalies in different
machines. This work has the potential to improve analysis of
OEE by using synchronous simulation to manage expectations.
Moreover, this framework provides insight into performance
at a machine and system level that could be used to identify
the need for actions such as maintenance, reconfiguration,
or rescheduling. Future work will consider additional dis-
crete variables such as quality and total energy consumption
and continuous variables such as current signature analysis.
Furthermore, the effect of simulation sampling rate on the
detection accuracy of different classes of anomalies is an open
area of research for future investigation.
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TABLE III NOMENCLATURE

[ Discrete

Machine Level
H Atomic model
U Set of inputs
Y Set of outputs
S Set of states
Sint Internal transition function
dext External transition function
A Set of transitions functions
A Output function
tadv Set of transition times
e; Input event
€o Output event
S; State
Tj Transition time
w Buffer occupancy
System Level
G Coupled model
UU~" Set of inputs, Kleene closure of set of inputs
Y Y* Set of outputs, Kleene closure of set of outputs
M Set of atomic models
EIC External input coupling
EOC External output coupling
IC Internal coupling
Select | Tie-breaker function
E; String of input events
E, String of output events
N; Number of arrivals
N, Number of departures
A Arrival rate
”w Throughput
B Work-in-process
v Vector of cycle times
[ Continuous |
(k) State-variable in discrete time
y(k) Output-variable in discrete time
O(z) Time-series matrix of state-variables to process 2'" event in E;
I'(z) Time-series matrix of outputs to process 2" event in E;




TABLE IV. NOMENCLATURE CONT.
[ Analysis |

rr(2) State-variable in discrete time
ro(z) Output-variable in discrete time
rr(z) Time-series matrix of state-variables to process 2™ event in E;
D(z) Time-series matrix of outputs to process z'" event in E;
r(z) Residual vector to process z'"* event in E;

o Residual cluster centroid

> Robust covariance matrix
f(r) Probability density function
R(t) System level residual vector
R, (t) | Throughput residual
Rz (t) | Work-in-process residual
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