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Abstract 
 

Manufacturing testbeds are used to develop, test, and analyze technologies that address 
some of the current challenges facing the manufacturing sector. This paper provides a 
classification of manufacturing testbeds and categorizes existing testbeds based on each 
category specification. In addition, this paper introduces the System-level Manufacturing 
and Automation Research Testbed (SMART), a multidisciplinary testbed used for 
manufacturing research and education at the University of Michigan. SMART consists of 
a physical serial-parallel line equipped with sensors to collect data at both the machine 
and system level. Various tools are used to aggregate, analyze, and display this data in a 
cloud infrastructure. The system set-up allows for the discovery, testing, implementation, 
and analysis of new technologies. In addition, different simulations of SMART have been 
developed to augment and study the testbed at the machine and system levels. A number 
of ongoing projects utilize SMART's physical and virtual capabilities. These projects 
cover a wide variety of areas, including centralized and decentralized control of 
manufacturing systems and performance monitoring and analysis.  

 
Keywords: System-level testbeds, Manufacturing Systems, Manufacturing Automation, 
Simulations 

1. Introduction 

A common approach for realizing advancements in the manufacturing sector is through the use of 
manufacturing system testbeds that simulate the industrial environment on a smaller scale. In the literature, 
there have been several surveys that outline metrics that must be met for specific categorization of 
manufacturing system testbeds. Each of these categories helps specify the manner in which an industrial 
testbed could be used for various types of manufacturing system research and education. In this work, 
we compile these surveys and provide example testbeds that fulfill the requirements for these categories 
with different combinations within a given testbed. In addition, we present a unique testbed installed at 
the University of Michigan that meets the requirements of several categories and is used for both 
research and educational purposes. 

The manufacturing sector is an integral part of the global economy, accounting for 16% of the 
global Gross Domestic Product (GDP) [1]. In the US, the manufacturing sector employs nearly 12 
million workers, while accounting for 13% of the US GDP [2]. It has the largest multiplier effect of any 
sector in the US, supporting many other services and sectors across the entire economy [2]. For every 
nation, it is imperative that the manufacturing sector remains as productive as possible. 

To stay competitive in this global market, manufacturers must work to face growing challenges in 
production and distribution of their products. These challenges can include integrating and 
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implementing new technologies, addressing security concerns, dealing with system malfunctions, and 
accounting for varying customer demands. To tackle these challenges, research regarding new 
manufacturing system strategies must be validated and analyzed before being implemented in industry. 
Manufacturing system testbeds provide a place where new ideas can be developed and tested without the 
need to disrupt the production or distribution capabilities of an industrial plant. In addition, these testbeds 
provide a way to showcase and disseminate novel manufacturing technologies and ideas. One such 
testbed is the System-level Manufacturing and Automation Research Testbed (SMART) at the University 
of Michigan, described in this paper. 

The main contributions of this paper are: first, a compilation of categories that can be used to classify 
manufacturing system testbeds, second, an identification of requirements necessary for cloud 
manufacturing testbeds, and third, a description of a specific testbed with unique capabilities. This paper 
presents several examples of how SMART is used to study different aspects of manufacturing.  

 The remainder of this paper is organized as follows. To begin, a variety of system-level testbed 
categories are identified and specified in Sect. 2. A comprehensive description of SMART, including an 
overview of the hardware and software installed in the testbed, is provided in Sect. 3. Current simulation 
environments available for manufacturing system research with the testbed and to augment the testbed 
are discussed in Sect. 4. Sect. 5 outlines how the physical and cyber components of SMART make it a 
unique system-level testbed by comparing it to other example testbeds. Sect. 6 overviews current research 
problems that are being addressed using SMART. Concluding remarks are provided in Sect. 7. 

2. Manufacturing Testbed Classifications 

Testbeds are frequently used to demonstrate manufacturing innovations. Based on a literature 
review, we have identified five categories that can be used to classify manufacturing testbeds. These 
categories are specified regarding the capabilities of a system to address challenges in various 
manufacturing related areas.  The five manufacturing testbed categories include: reconfigurable 
manufacturing testbeds, learning factories, industrial control system testbeds, Internet of Things testbeds, 
and cloud manufacturing testbeds. Surveys have been previously presented regarding reconfigurable 
manufacturing testbeds [3], learning factories [3], industrial control system testbeds [4], and Internet of 
Things testbeds [5]. The recent interest in the utilization of cloud services in manufacturing [6] has 
incentivized the need for testbeds in the area of cloud manufacturing. These categories have been chosen 
based on the state of manufacturing system technology research and education today. Descriptions of 
these categories, including the category requirements, are specified below. Note that the identified 
requirements are the necessary conditions for each category. 
 
Reconfigurable Manufacturing Testbeds: 

Reconfigurable manufacturing systems define a class of systems capable of responding to market 
variability by changing the system level structure, machine configuration or task, and control strategy. 
Requirements for reconfigurable manufacturing testbeds were identified in [3, 7, 8]. In [3], the authors 
present a survey of testbeds based on the necessary attributes of reconfigurable manufacturing systems. 
In this survey, the testbeds are compared using parameters of change-enablers. The necessary 
characteristics of reconfigurable manufacturing testbeds include [7]: 

 Customization: Flexibility to work with different parts with distinct features of a single 
product family 

 Convertibility:  Ability to change machine functionality to produce new parts  
 Scalability: Ability to scale-up or -down the production capabilities of the system based on 

demand 
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Learning Factories: 
Over the past few years, the term “learning factories” has been used to refer to manufacturing 

testbeds that serve educational goals [9]. The purpose of these testbeds is to create an environment to 
communicate theoretical knowledge utilizing practical applications such as automation, control, and 
manufacturing processes. In addition to this goal, these testbeds serve as developmental and validation 
facilities for novel technologies in a controlled industrial setting [3]. The necessary characteristic of a 
learning factory is [10]: 

 A practical manufacturing environment that provides teaching opportunities to students and 
industry personnel in the field of manufacturing system technology 

 
Industrial Control Systems Testbeds: 

Various types of Industrial Control Systems (ICS), such as programmable logic controllers, need to 
be tested to determine the vulnerability of the control systems. Testing cybersecurity on a working ICS 
could affect performance. Thus, testbeds that copy ICS architectures provide good alternatives to 
perform cybersecurity testing without the risk of causing a negative impact on an actual system [4]. In 
[4], a number of ICS testbeds are identified and briefly described. The four identified requirements for 
ICS testbeds are [4]: 

 Fidelity: Similar representation to an actual manufacturing system 
 Repeatability: Ability to reproduce results from studies 
 Measurement accuracy: Ability to monitor the testbed without interference   
 Safety: Ability to perform testing without compromising safe operation of machine or 

personnel. 
 

Internet of Things Testbeds: 
The Industrial Internet of Things (IoT) enables extensive data collection from machines and sensors 

[11]. Since IoT is still a developing research area, testbeds are needed to evaluate various IoT devices 
and data extraction and processing algorithms before implementation in real-world scenarios. In [5], a 
number of IoT testbeds were surveyed and a few of the testbeds were compared over a set of the 
identified necessary requirements for IoT research. These identified requirements include the following 
[5, 12]: 

 Scale: 1000s of IoT enabled devices 
 Heterogeneity: A variety of IoT devices 
 Repeatability: Ability to reproduce results from studies 
 Federation: Ability to connect with other IoT testbeds 
 Concurrency: Ability to have multiple experiments running at the same time 
 Experimental environment: Similar representation of the actual environment 
 Mobility: IoT devices can be moved to other locations 
 User Involvement and Impact: Ability to evaluate user response to IoT technology 

 
Cloud Manufacturing Testbeds: 

Cloud manufacturing, the utilization of cloud computing in the manufacturing sector, provides a 
platform to improve the performance of industrial processes [13]. Over the past several years, cloud 
manufacturing has been defined in two different ways. The first implementation of cloud manufacturing 
is to use cloud computing with a set of distributed services throughout different phases on the 
manufacturing process life cycle. The second definition of cloud manufacturing is to use cloud 
computing capabilities to process large amounts of data obtained on the factory floor for improving 
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machine and system level performance [6]. For the second definition of cloud manufacturing, research in 
the utilization of the cloud, including data processing and analysis, is required to understand the 
possibilities of using cloud manufacturing technologies. Since companies might be reluctant to test and 
evaluate new cloud manufacturing capabilities due to possible downtime or loss of data, manufacturing 
testbeds with cloud capabilities can be used to initially validate new data processing and analysis 
methods using cloud computing. 

Based on previous cloud computing requirements and our observations, we have developed a list 
of requirements for cloud manufacturing testbeds. A cloud manufacturing testbed should meet the 
following requirements: 

 Contain a cloud architecture that meets the cloud deployment, security, data migration, 
interoperability, and scalability requirements [14] 

 Utilize cloud computing capabilities to analyze data from the plant floor at both machine and 
system levels 

 Include user interface and data visualization capabilities for data analysis using the cloud 

3. SMART Overview 

The University of Michigan has developed the System-level Manufacturing and Automation 
Research Testbed (SMART) shown in Fig. 1. First built within the University of Michigan’s Engineering 
Research Center for Reconfigurable Manufacturing Systems in the early 2000s [8], the testbed has been 
used for a variety of manufacturing research projects including: the development and validation of a 
framework for logic control of a manufacturing system [15], testing a novel anomaly detection method 
[16], and implementing a Factory Health Monitoring system [17], among other things [18, 19, 20]. 
Recently, in partnership with Rockwell Automation, the testbed has been upgraded and equipped with 
the latest control system technologies. The long-term goals of SMART are: 
 

 To create an environment for identifying, developing, and testing new manufacturing system 
technologies. For these purposes SMART has been equipped with the latest control technology 
currently used in manufacturing production facilities. 

 To create an environment where industrially relevant research can be performed. New ideas and 
technologies can be tested on SMART without the need to disrupt production. Using both the 
real and virtual environments of SMART, multiple real-world scenarios can be studied. These 
scenarios can mimic challenges faced by the manufacturing sector today. 

 To foster collaboration between academia and industry so that new research ideas can be 
developed and validated before putting them into practice. 

 To consolidate the work of different fields: The research conducted in collaboration with 
SMART is multidisciplinary. Examples of current research directions are discussed in Sect. 6. 

 To provide educational opportunities for students in different areas of manufacturing. The 
testbed can be used to engage and educate people in emerging industrial technology. The 
transfer of knowledge regarding state-of-the-art technological advancements is vital for creating 
a highly skilled workforce for the continued improvement of the manufacturing sector. 

 
The testbed consists of a physical serial-parallel manufacturing line, a network of sensors that 
perform data acquisition from the testbed, and a cyber network that stores and analyzes the data for 
future use. The three subsystems of SMART are discussed in more detail below. 
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3.1  Physical Serial-Parallel Line 
 

 
Fig. 1: The SMART Serial-Parallel Line. The workblocks are moved between each cells using a 

conveyor system. 
 

 
Fig. 2: Various views of the components of SMART. The pictures are of: (a) the main conveyor line (b) 

Cell 1 (c) CNC and robot from Cell 1 (d) robot from Cell 2 
 

Currently, SMART is focused on producing discrete products that can be formed through the 
machining and assembly of multiple parts (e.g. a small car made using three separate wax parts). To 
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produce those types of products, SMART has three industrial robots and four CNC milling machines 
connected by a conveyor system, as shown in Fig. 1 and Fig. 2. The robots and CNCs are split into three 
cells. Pallets carrying the parts move around the testbed using the conveyor system. The main conveyor 
line handles the movement between Cells 1 and 2, while Cell 3 has its own conveyor line.  The main 
conveyor and the Cell 3 conveyor are each run by an AC motor (Sew Eurodrive DFT71D4 and Rockwell 
Automation CM220, respectively). To program and control a variety of conveyor line speeds a variable 
frequency drive (Allen-Bradley PowerFlex 525 VFD) runs each motor with an output frequency range of 
0-500 Hz. The speed at which the parts move between cells is dependent on the electric frequency of the 
VFD. The pallets are routed between the two lines using a controllable, pneumatic diverter. A total of 6 
radio-frequency identification (RFID) transceivers (Rockwell Automation 56RF-TR-8090) and 7 
proximity sensors (Rockwell Automation 871TM) are installed along the conveyor line to identify the 
location of parts in the system. The locations of these components are shown in Fig. 3. A pneumatically 
actuated stopper (FlexLink XKPD-32X15-A) is located next to each proximity sensor. The choices of 
sensor locations are discussed in Sect. 3.2. 

 

 
Fig. 3: Sensor and stopper locations around SMART’s conveyor system. 

 
Cells 1 and 2 each have a six degree of freedom robotic arm (Fanuc M-6iB). The robots are 

controlled using the controller and teach pendant from the robot manufacturer. The teach pendant is used 
to program pick and place actions (conveyor to CNC and CNC to conveyor) for each robot. The robots 
have a reach of 1373 mm, a payload at the wrist of 6 kg, and custom made gripping tools. The two robot 
gripping tools that move parts between the conveyor and the CNCs are a mechanical clamp and a 
pneumatic suction gripper. The robot clamp is used to move heavier, bulkier parts, while the suction 
gripper is used to move smaller, harder to grasp parts. These gripping tools are automatically 
interchanged by the robot based on the type of part that needs to be moved. Cell 3 has a single six degree 
of freedom robotic arm (ABB IRB 140) for part handling.  Similar to both the Cell 1 and Cell 2 robots, 
the Cell 3 robot is controlled via a controller and a teach pendant provided by the robot manufacturer. 
The robot has a reach of 810 mm and a 6 kg handling capacity. 
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Additionally, Cells 1 and 2 each have two four axis CNC milling machines (Denford Triton Pro). 
The control system of the CNCs has been updated to allow for easier access to real-time and historical 
CNC data. Each CNC is controlled using a programmable logic controller (1769 CompactLogix 5370 
PLC). Each CNC PLC has safety, input, and output modules for control of the CNC. Four variable 
frequency drives (Rockwell Kinetix 5500 S2 VFD) are integrated with the PLC. The VFDs are 
controlling four servo motors (Rockwell Kinetix VP Low Inertia Servo Motors) that are used to move 
the table and spindle in the coordinate planes, and rotate the spindle. These CNC machines have a 
working table size of 500 mm x 160 mm and a spindle speed of up to 3500 rpm. Utilizing this setup, the 
CNCs can cut wax, plastic, acrylic, copper, aluminum, and steel workpieces. Each of the CNCs has been 
pre-programmed to perform a number of manufacturing operations based on the inputs to the CNC 
controller.  

A centralized control system makes the material handling and processing decisions for SMART. The 
testbed is outfitted with an industrial programmable logic controller (Allen-Bradley ControlLogix PLC) 
that is responsible for the automation of SMART. The PLC includes the following components: a control 
module (Logix5571S), a safety module (Logix55L7SP), two Ethernet/IP modules, and a motion control 
module (Logix5550) for conveyor movement. The PLC was initially programmed by Rockwell 
Automation using standard industrial methods in ladder logic. Any updates to the logic algorithms (e.g. 
new tags, rungs, or ladder programs) are programmed via a software program (Rockwell Automation 
Studio 5000) on a separate workstation computer and uploaded to the PLC during SMART downtime. 
PLC and machine/robot data collected during operation can be sent to the cloud using an IoT adapter. 
Additional details regarding the data path and the cloud infrastructure are discussed in Sect. 3.3. Further, 
a human machine interface (HMI) touch-screen panel (Allen-Bradley PanelView Plus 6 1500 Terminal) 
provides an easy-to-use platform from which to operate SMART. The sensors, controllers, HMI, 
programming workstation, and adapter are connected over a single Ethernet/IP network. The network, 
shown in Fig. 4, has a hybrid ring-star topology. 
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Fig. 4: The SMART Network. The components are connected in a hybrid ring-star topology using an 

Ethernet/IP Network. 
 
SMART is configured to be a hybrid serial-parallel line. The parts can go through all the machines in 

sequence (serial configuration), or through some of the machines based on availability and process 
requirements (parallel configuration). The decision of which of the CNCs to use is programmed in the 
PLC logic. The serial-parallel configuration provides a variety of combinations for research in planning 
and scheduling of production line tasks. 

3.2 Data Acquisition from the Testbed 
 

The testbed is equipped with the latest sensing technology to obtain real-time data from components, 
machines, and parts by monitoring different types of signals. Each workpiece is outfitted with an RFID 
tag with re-write capabilities. The six RFID transceivers placed around the testbed are able to read and 
write data for each workpiece tag. The locations of these transceivers are shown in Fig. 3. The 
transceivers can send/receive information from the workpiece prior to entering each cell, before and after 
going through the machining process, and before changing conveyor lines. 

In addition to the RFID system, a camera (National Instruments 1752 Smart Camera) with machine 
vision capabilities has been installed in SMART. It has a built-in lighting controller, a resolution of 640 
x 480 pixels, and an acquisition rate of 60 frames per second. The camera, located at the entrance of Cell 
2, is able to capture an image of the work-part in between machining processes. The PLC compares part 
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dimensions obtained from the camera image to preset part tolerances for quality control of the various 
parts in the system. 

Information about the CNCs and robots is captured by tapping into the controllers of each of the 
machines. For each CNC, the position of the motor along each respective axis and the percentage load on 
the motor is obtained. For each robot, the position of the three joints and the position and angle of the 
end effector are obtained by tapping into the Fanuc robot controller (via the Fanuc PC development kit 
PCDK). 

The energy consumption of SMART is also captured. The conveyor system’s VFD drives monitor 
the energy usage of each of the conveyor lines. Additionally, four power monitors (Allen-Bradley 
PowerMonitor 5000) have been installed to measure the voltage, current, power, and energy 
consumption of SMART. Each monitor is responsible for measuring the energy usage of one machine. 
Both of the robots and 1 CNC from each cell are monitored. Finally, the percentage load output by the 
CNC VFDs provides information regarding the energy consumption of each of the servo motors in the 
CNC. 

3.3  Data Processing and Storage 
 

 
Fig. 5: The path of the data from the testbed to the cloud. 

 
The data path for the information that is collected from SMART is shown in Fig. 5. In addition to 

being utilized for configuring the PLC logic, the workstation computer is used to transfer data from 
SMART to a University of Michigan cloud server. The workstation computer contains a Rockwell 
Automation (RA) Internet of Things collector (IoT collector agent) and a Kafka producer. The RA IoT 
Collector obtains data from the PLC based on a manifest. This manifest identifies the tags that should be 
processed and analyzed in the cloud and the timing frequency of the data file generated by the RA IoT 
Collector. For example, a manifest could be written to collect the VFD voltage and current readings 
every 50 ms. The RA IoT Collector will then create a file every 50 ms with the VFD voltage and current 
readings at that time. Then, the Kafka data messaging service producer pulls the data collected by the 
RA IoT Collector and pushes it to a Kafka broker in the cloud. If the connection between the workstation 
and the cloud is lost, the data is temporarily stored locally in the RA IoT collector until the connection to 
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the cloud is reestablished. This approach prevents any data losses in the case of an interruption in the 
internet connection. The workstation computer is located behind a firewall in a private domain. 

Data is stored and processed utilizing two methods for real-time and historical data analysis. For 
real-time analysis, InfluxDB is used to store the data and Grafana is used to visualize it. A Kafka 
consumer written for InfluxDB immediately pulls the data from the Kafka broker and stores it in the 
InfluxDB database. The server for the InfluxDB database is located at the Flux high-performance 
computing (HPC) cluster run by the University of Michigan’s Advanced Research Computing 
Technology Services (ARC-TS) [21]. The University of Michigan servers are also located behind a 
firewall in a private domain. Grafana is used to obtain the InfluxDB data to create dashboards for real-
time data visualization. These dashboards are pushed to a public domain and they can be used by people 
with the required credentials. In addition, the Hadoop Distributed File System (HDFS) is used to store 
historical data. A Kafka consumer for HDFS immediately pulls the data from the Kafka broker and 
stores it in a working directory. After a user-defined amount of time (e.g. one day), the Kafka consumer 
for HDFS pushes all the collected data to the HDFS. The HDFS server is also located at the Flux HPC 
cluster. The data stored in the HDFS server can later be compiled to analyze historical trends and identify 
long-term time horizon performance capabilities. 

3.4  SMART Extensions 
 

SMART’s flexible cyber-physical architecture allows for easier extensibility of SMART in all 
the previously mentioned areas. New hardware can be added to the testbed and integrated into the 
Ethernet network. Various types of products can be manufactured by utilizing the different capabilities 
that this testbed offers. There is space on the line and the network for various types of stations, such as 
assembly and loading and unloading cells. Sensors, control equipment, and data retrieval tools can be 
added, integrated, tested, and analyzed with SMART. To improve system communication and 
information sharing, protocols, standards, and control strategies can be tested and demonstrated using 
various equipment installed on the testbed. Extensions to the cloud architecture will include the ability to 
analyze and display historical data. The flexibility of the cloud infrastructure allows for various types of 
data to be processed and analyzed on other computers or mobile devices. In addition, the described cloud 
infrastructure is easily scalable as the University of Michigan ARC-TS servers are meant to store a large 
amount of data. 

4. Simulations 

Simulations have been extensively used in conjunction with SMART for a variety of purposes. A 
new framework that merges signals from the physical components of SMART and from a simulation of 
the testbed has been implemented in the testbed to improve system productivity. Continuous and discrete 
time simulations of SMART have been developed to analyze system performance and virtually extend 
the testbed to mimic a real manufacturing plant floor. These models allow for more effective testing and 
analysis of novel technologies utilizing both the real and virtual domains. 

4.1  Simulations Augmenting the Testbed 
 

The integration of virtual models in each stage of the manufacturing system’s life-cycle has the 
potential to yield system productivity and performance improvements. During the implementation phase, 
virtual commissioning helps detect and solve problems before equipment installation takes place in the 
plant floor. Having a virtual environment that emulates the physical system is a useful tool to model and 
evaluate the control logic. 
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Hybrid Process Simulation (HPS), based on Hardware In the Loop (HIL), can separate the essence of 
a component from its effect [20]. Implementation of HPS at a machine level enables the replacement of 
real components with a virtual model, and allows the addition of equipment and cells in the virtual 
environment to be tested, and the control validated, before the physical change is made. HPS can be used 
to evaluate different machines and system configurations in a mixed virtual-real environment that is 
higher-fidelity than a pure simulation. Using a filter, a virtual model of the workpiece emulates the effect 
on the physical part in the system [22]. By decoupling the essence and effect of the workpiece, this 
virtual part can trigger action on the physical manufacturing system without being physically present. 
The virtual model of the part allows the entire physical system to be running, with the final control 
system, without risking damage to expensive parts. 

 

 
Fig. 6: Real and virtual environment interaction [24] 

 
Utilizing this framework, the testbed has simulation models that are run in parallel with SMART 

[22]. Synchronization of the real and virtual environments via SimKit [23] allows the simulations to run 
using the time step of the PLC. This real-time hybrid simulation allows for the comparison of 
performance indicators from SMART and a simulation of the testbed at any point in time, as shown in 
Fig. 6. The results can be used to evaluate the performance and detect anomalies of SMART [24]. 

4.2  Simulations of the Testbed 
 

Different simulation strategies can be used to model a manufacturing system during each phase of its 
life-cycle at both the machine and system level. At the machine level, simulations can evaluate 
technology prior to utilization, analyze the performance of individual components, and predict future 
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failures. At the system level, simulations can help examine new machine integration, analyze the 
performance of the system, and develop optimal production plans. The integration of both types of 
simulations results in high fidelity models of the system that can provide extensive information 
regarding its performance. These types of simulations can lead to better understanding and improvement 
of the production and distribution capabilities of a system in a cost-effective manner. A few simulations 
have been developed for SMART as a reference for studying manufacturing system performance. 
Additionally, these simulations serve as tools for manufacturing education. 

The purpose of continuous variable simulations is to study the temporal response of a component or 
machine to a specific input. Roboguide and SimMechanics have been used to create continuous 
simulations for the study of SMART’s robots. Roboguide is Fanuc proprietary software that has been 
used to create a hybrid simulation process along with the Fanuc PC development kit (PCDK) [25]. This 
physics-based modeling simulation offers a high level of accuracy and fidelity since both the physical 
robot (Fanuc M-6iB) and its virtual representation were developed by Fanuc. The virtual model interface 
and inputs replicate the parameters used to control the physical robot (e.g. robot coordinates, speed, and 
type of trajectory). Simulation outputs include the time, trajectory, and possibility of collision situations 
in the robot workspace for any programmed actions. These outputs can be used to assess the feasibility 
and efficiency of potential robot programs. Importantly, a continuous variable simulation can be used to 
validate the robot’s operation before implementing the program on the physical robot. 

In addition to the Fanuc Roboguide simulation, continuous simulations were developed using 
MATLAB’s SimMechanics environment and Robotics toolbox. A simulation program was used to study 
the dynamics of each robot joint and link for a variety of programmed paths [24]. Using a CAD file from 
Fanuc, a robot specification sheet, and measurements of the robot, the geometry and mass distribution of 
each robotic link was modeled. These links were then combined to create a 3D model of the system. This 
type of simulation can be used to provide insight on the status of the robot during point-to-point 
movements with different trajectories and varying torque and speed profiles. 

System-level manufacturing performance has typically been investigated using discrete event 
simulations (DES). The goal of DES with SMART is to analyze the operations and control of the 
manufacturing system based on the cycle times and reliability of each machine. Virtual representations 
of SMART have been developed using the SimEvents and ProModel software. The underlying analysis 
used for models developed in both software packages is based on queuing theory. Thus, the model inputs 
and simulation environments of these models are similar. Machines are modeled as servers with a 
capacity and a cycle time distribution. Buffers are modeled as queues with fixed capacity and a 
processing rule (Fist-In-First-Out or First-In-Last-Out). 

 

 
Fig. 7: DES model using the ProModel software package [26] 
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The ProModel software was used to develop models, such as the one shown in Fig. 7, for analyzing, 
optimizing, and visualizing the system-level performance of various configurations of SMART. The 
model was constructed using output data regarding the time it took for the material handling and 
machining operations to be performed on SMART. Additionally, the model was used to virtually extend 
the testbed beyond its physical constraints by adding extra conveyor lines, machines, and robots to 
mimic a factory floor. Virtually extending the testbed provides a link for SMART to generalize any 
findings to a larger industrial setting. A number of scenarios (e.g. varying processing times, different 
layout and cell configurations, the effect of machine failures, etc.) were tested on both the original 
simulation and the extended version of the testbed utilizing this software. The scheduling, production, 
and reliability of SMART and its virtual extensions were then analyzed based on the data obtained from 
the models built by this software [26, 27]. 

Another DES model built to model SMART uses SimEvents and StateFlow. Similar to the ProModel 
software, this model was used to analyze and optimize the performance of SMART [24]. Unlike the 
ProModel simulation, this model is able to synchronize with a virtual PLC using the Rockwell SimKit. 
While ProModel is able to visually represent the manufacturing system, the SimEvents model does not 
have the same visualization capabilities. Extendable versions of SMART have not been built or analyzed 
using this software even though the SimEvents model is scalable for the purposes of studying larger, 
full-scale manufacturing systems. Alternative DES simulation software tools have been explored to 
extract, analyze, and utilize system performance data from SMART [28, 29]. 

5.  Classification of Manufacturing Testbeds  

The categories presented in Sect. 2 can be used to classify existing manufacturing testbeds. In 
this section, SMART and selected manufacturing testbeds are evaluated using the requirements specified 
in Sect. 2. Table 1 shows the results of this comparison. 

5.1 SMART Classification 

SMART has been integrated with a variety of technologies as described in Sect. 3 and Sect. 4. Those 
components make SMART a unique multidisciplinary testbed with a wide array of extensions. With its 
cyber, physical, data processing, and simulation capabilities, SMART is a testbed that satisfies the 
requirements for most of the identified categories of testbeds. The only requirement not satisfied by 
SMART is the scale aspect for IoT testbeds, which currently include only network-based testbeds and 
hence contain a significantly large scalable requirement not seen in manufacturing testbeds. Thus, when 
compared to other testbeds shown in Table 1, SMART is shown to be unique manufacturing systems 
testbed. 

 
Reconfigurable Manufacturing Testbed: 

SMART was initially designed as a reconfigurable factory testbed [8]. The infrastructure of SMART 
satisfies the requirements of Reconfigurable Manufacturing Testbeds in the following manner: 

 Customization: The CNCs can make various parts from either the same or different product 
families. The interchangeable grippers and the conveyor lines allow for a variety of parts to 
be moved around the system. 

 Convertibility: The CNCs and robots can be reprogrammed to handle and machine different 
parts, in different sequences if necessary. 

 Scalability: The parameters of the various machines can be changed to alter system 
throughput (e.g. reroute parts, change speed of conveyor or robot operation, etc.). In 
addition, machines can be added and integrated into the system, if necessary. 
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Learning Factory: 

SMART serves as both a research facility and an educational tool at the University of Michigan. 
Some of the ongoing research that utilizes SMART is discussed in Sect. 6. The physical, cyber, and 
simulation components are maintained with the help of the Secure Cloud Manufacturing 
Multidisciplinary Design Program project team, which consists of undergraduate and graduate students 
who gain hands-on manufacturing experience. The students gain industry relevant experience in robot, 
CNC, and PLC programming, machine and system-level modeling, and cloud analytics, among a number 
of other topics. Thus, this testbed satisfies the requirement of being a learning factory. 

 
Industrial Control Systems Testbed: 

The network and controllers of SMART, described in Sect. 3.2, satisfy the requirements of ICS 
Testbeds, as described below. 

 Fidelity: SMART contains industry-level control and security that was set-up and 
programmed by Rockwell Automation using industrial standards to replicate a realistic 
manufacturing system. 

 Repeatability: SMART has been used to run a variety of repeatable studies regarding the 
control network 

 Measurement accuracy: The testbed has been set-up to be non-invasive for measurements of 
the network during testing. 

 Safety: A safety protocol has been embedded in all the controllers to protect machines and 
personnel while the system is operating. Industrial-level safety equipment such as light 
curtains and emergency stops have been installed in SMART. 

 
Internet of Things Testbed: 

Table 1: Summary of Representative Manufacturing Related System-level Testbeds. 
(*Partially in the IoT testbed category indicates that the scale is less than thousands of IoT nodes, 

but the other criteria are met) 
 

Testbed 
Reconfigurable 
Manufacturing 

Testbed 

Learning 
Factory 

ICS 
Testbed 

IoT 
Testbed 

Cloud 
Manufacturing 

Testbed 

SMART (this paper) Yes Yes Yes Partially* Yes 

SmartFactory KL 
[30, 31] 

Yes Yes Unknown Partially* Yes 

iFactory [35, 36] Yes Yes Unknown Partially* No 

MSU SCADA 
Testbed [37, 38] 

No Yes Yes Partially* No 

TWIST [39] No No No Yes No 

Smart Manufacturing 
Lab Testbed [40, 41] 

Yes Unknown Unknown Partially* No 
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SMART’s physical and cyber components, described in Sect. 3, satisfy most of the IoT Testbed 
requirements, except for scale. Each of the requirements is described in detail below. 

 Scale: SMART is made up of less than 20 IoT nodes and, thus, does not satisfy the scale 
requirement 

 Heterogeneity: The testbed has RFID transceivers, CNC PLCs, and central PLCs with IoT 
capabilities 

 Repeatability – see the ICS repeatability requirement 
 Federation: This testbed can be integrated with other, similar IoT testbeds 
 Concurrency: The SMART network and physical setup can perform concurrent experiments 

during run-time 
 Experimental environment – see the ICS fidelity requirement. Simulations can extend the 

environment to study larger manufacturing systems 
 Mobility: The testbed mirrors the mobility of parts and devices in a manufacturing setting 
 User Involvement and Impact: The HMI and  cloud interface provide local and remote user 

interfaces that can be used during experimentation 
 

Cloud Manufacturing Testbed: 
The cloud infrastructure of SMART, described in Sect. 3.3, satisfies the requirements of Cloud 

Manufacturing Testbeds in the following manner: 
 The SMART cloud infrastructure satisfies the cloud architecture requirements. The cloud 

deployment requirement is satisfied through the community cloud architecture provided by 
the University of Michigan ARC-TS service. The security and data requirements are met 
with the layered architecture shown in Fig. 5. The interoperability requirement is satisfied 
through the use of commonly used platforms (e.g. InfluxDB and Hadoop). The testbed is 
readily scalable, as described in Sect. 3.4.  

 The cloud infrastructure is set-up to obtain and store the manufacturing data obtained from 
SMART in the community cloud provided by University of Michigan. 

 The data pipeline and cloud infrastructure is able to analyze and display meaningful data 
either streaming or batching from the manufacturing floor, as described in Sect. 3.3.  

 
Thus, SMART can be classified and utilized in various types of research and educational activities.  

 5.2  Other Example Testbeds 

 A literature review of selected manufacturing testbeds around the world was compiled. In Table 1, 
these testbeds are compared to SMART based on their capabilities as learning factories and 
reconfigurable manufacturing, ICS, IoT, and cloud manufacturing testbeds. 

One testbed focused on validating new manufacturing technologies is the SmartFactoryKL in 
Kaiserslautern, Germany. This testbed focuses on developing modular, plug-and-play equipment for 
manufacturing facilities. Three types of production lines have been developed at this facility to test and 
demonstrate novel manufacturing systems technologies [30]. The modules used in these production lines 
include assembly stations, a mill for engraving, and machines used for mixing, dispensing, and labeling a 
liquid [31, 32]. Academic and industrial partners use the factory for individual and joint research 
projects. These projects focus on creating a blueprint for a future ”factory-of-things” with novel Internet 
of Things technologies such as RFIDs and wireless networks [31]. Some sections of the line are 
controlled by a centralized PLC [32], while other sections use microcontrollers based on a Service-
oriented Architecture (SOA) framework [33]. Operators for the testbed have access to some of the 
SmartFactoryKL data analytics performed in the cloud [34]. Thus, the SmartFactoryKL is a 
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reconfigurable manufacturing testbed, a learning factory, and a cloud manufacturing testbed. Similar to 
SMART and iFactory, this testbed does not have enough IoT nodes to be considered an IoT testbed. 
However, the ICS testing capabilities of SmartFactoryKL are unknown. 

One example of a prototypical learning factory is the iFactory at the University of Windsor, Canada. 
This testbed was set up in 2011 to study the challenges associated with a reconfigurable manufacturing 
system. Its modular layout consists of automated and manual assembly cells, inspection cells, and 
material handling machines, among a number of other smaller cells. In addition to the physical 
components, the testbed includes design (iDesign), as well as planning and simulation (iPlan) 
environments. The iFactory testbed provides students with an opportunity to participate in all aspects of 
the product life cycle [3, 35]. Each of the stations is connected with an Ethernet network and controlled 
using a SCADA (supervisory control and data acquisition) controller with a number of sensors that 
identify neighboring cells [36].  The iFactory is a reconfigurable manufacturing testbed and a learning 
factory. Similar to SMART, it does not have enough IoT nodes to be considered an IoT testbed. Based 
on the available literature, it does not appear to have the cloud infrastructure that makes it a cloud 
manufacturing testbed. Finally, the ICS testing capabilities of iFactory are unknown. 

One testbed that focuses on the testing of industrial controls systems is found in the Mississippi State 
University Supervisory Control and Data Acquisition (SCADA) security laboratory and Power and 
Energy Research laboratory. This testbed consists of seven industrial control systems that are responsible 
for a variety of physical processes and are controlled using remote terminal units, programmable logic 
controllers, and other types of common industrial automation technology. ICS testing is performed for 
systems in a number of industrial areas such as electric power transmission, gas distribution, and 
manufacturing, among others [37, 38]. In addition, this testbed has been integrated into the learning 
environment at Mississippi State University [37]. Thus, the MSU SCADA testbed is a learning factory 
and an ICS testbed. The testbed has some infrastructure that can be used for IoT testing, but it has not 
been used to perform any tests in that area. Finally, the MSU SCADA testbed does not meet any of the 
requirements of reconfiguration nor does it have a cloud infrastructure. Thus, it is neither a 
reconfigurable manufacturing testbed nor a cloud manufacturing testbed. 

Telecommunication Networks Group’s TKN Wireless Indoor Sensor network Testbed (TWIST) is a 
testbed developed at the Technische Universität Berlin. It is meant for testing Wireless Sensor Networks, 
as a basis for the Internet of Things. The testbed consists of a few hundred nodes that communicate over 
an Ethernet network. The purpose of this testbed is to test the effectiveness of Wireless Sensor Networks 
architectures in deployment, testing, and reconfiguration of the nodes [4, 39].  TWIST is an IoT testbed, 
but it does specifically target manufacturing research. Thus, it is not a reconfigurable manufacturing 
testbed, a learning factory, an ICS testbed, or a cloud manufacturing testbed. 

The automated production line in the State Key Laboratory for Manufacturing Systems Engineering 
at Xi’an Jiaotong University is a testbed used for manufacturing system research. It has four cells 
connected by a conveyor line. The machines in this testbed include a CNC lathe, two CNC mills, and a 
Kuka robot. A number of sensors, including RFID transceivers, are present in the testbed [40]. This 
testbed has been used for research in creating a smart manufacturing job shop [40, 41].  This testbed can 
be classified as a reconfigurable manufacturing testbed due to the presence of CNC machines. Similar to 
SMART, iFactory, and SmartFactoryKL, this testbed does not have enough IoT nodes to be considered 
an IoT testbed. It does not have a cloud infrastructure, thus it is not a cloud manufacturing testbed.  In 
addition, the ICS testing capabilities of this testbed and the educational opportunities offered by this 
production line are unknown. 

This survey represents a sample of some of the system-level research testbeds that are located 
around the world. A number of learning factories, ICS, and IoT testbeds can be found in the previously 
mentioned surveys [3, 4, 5]. In addition, other research testbeds are currently being developed across the 
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world. For example, in the United States, a recent emphasis on manufacturing has resulted in the 
development of several National Network for Manufacturing Innovation (NNMI) institutes. Many of 
these institutes have manufacturing testbeds that aim to fill the gap between academic research and 
industrial implementation in the US manufacturing sector [42]. Another example of manufacturing 
testbeds in development is the Industrial Internet Consortium (IIC) testbeds. This consortium, launched in 
2014, oversees designing and building of testbeds that will explore the advantages and challenges 
associated with the integration of the Industrial Internet across a variety of industries, including 
manufacturing. The proposed testbeds will range from a Trace and Track testbed for locating and 
managing tools in a factory to an Industrial Digital Thread testbed to collect, analyze, and distribute data 
on the industrial floor [43].  

Even though testbeds exist that are similar to SMART, its multidisciplinary nature allows it to 
occupy a unique niche in the manufacturing system research community. In fact, some of SMART’s 
unique physical and simulation capabilities serve as technological enablers for the ongoing work 
described in Sect. 6. 

6.  Ongoing Research with SMART 

In this section, current research activities that incorporate SMART are outlined. 

6.1  Cloud Manufacturing Performance Monitoring and Analysis 
In a large production environment, information collected from the wide array of sensors can be 

used to model different key performance indicators. In discrete manufacturing, monitoring processing 
time at a component, machine, and system level will support early detection of under-performance. The 
monitoring of continuous signals (vibration, pressure, temperature, energy) from different machines aids 
root cause analysis. The collected data could be stored in a cloud environment for analysis purposes. 
This data-intensive monitoring approach has the potential to improve maintenance scheduling and 
reduce downtime. SMART and its cloud architecture provide a platform in which the utilization of these 
services has been implemented and analyzed [24]. The sensors in SMART can provide real-time data for 
analysis. Quality inspection using the cameras in the testbed, energy usage for the conveyor line, robots, 
and CNCs, and data obtained from the robot and CNC controllers can be used to detect and diagnose 
anomalies in the system. 

6.2  Centralized Control of Manufacturing 
Due to the large amount of data collected on the manufacturing shop floor, there is a lot of 

information about the system in both the physical (robots, machines, etc.) and cyber (RFID, Ethernet 
Network, etc.) domains. This information, when utilized properly, can be used to analyze and improve 
the performance and productivity of the manufacturing system. By utilizing a global view of the entire 
manufacturing system and high fidelity system models, a central controller should have the ability to 
detect, classify, and respond to abnormal behavior in a manufacturing system. Abnormal behavior can 
consist of a machine wear or failure, network loss, or even a cyber-attack [44]. SMART and its 
simulations are being used to test a novel central decision maker that can integrate model and system 
information to asses and improve the system performance. 

6.3  Decentralized Control of Manufacturing Systems 
One case of decentralization in the manufacturing system domain is at the supply chain level. As 

mass customization becomes a trend in global manufacturing [45], companies must adjust their 
production capabilities to appease customers desiring variable batches of customized products. One 
solution that can benefit both the manufacturing companies and the customers with specific requests is 
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the use of a Production as a Service (PaaS) framework described in [46]. The PaaS framework consists 
of a front-end query interface for consumers and suppliers and a back-end analysis component for 
matching the consumer needs for supplier resources. By using the web based platform of the PaaS 
framework, companies may use some of their under-utilized resources to fulfill customized requests. 
This can lead to an increase in supplier’s profits and the fulfillment of customized customer 
manufacturing orders [46]. SMART and its simulations are being used to test and analyze the PaaS 
framework. 

 

 
Fig. 8: Agent-based control simulation of SMART 

 
Another use of decentralization is at the manufacturing system level. One type of decentralized 

architecture, multi-agent control, has been proposed to provide better flexibility and responsiveness to 
traditional hierarchical control methods [47]. A number of challenges need to be addressed before multi- 
agent systems can be used in an industrial environment. Some of these challenges include: development 
of a multi-agent control framework for manufacturing systems that provides guaranteed performance and 
robustness, integration of the multi-agent architecture with existing system components [48], 
demonstration of stable and effective performance when compared to current practices [49], and 
investigation of the advantages of learning to improve performance over time. Different scenarios can be 
tested using the agent-based framework and results can be compared to standard control methods using 
SMART. Previously, the NetLogo software [50] was used to create an agent-based simulation of 
SMART. This simulation, shown in Fig. 8, can evaluate agent-based schemes for controlling the testbed. 
In the simulation, the individual elements (four CNCs, two robots, three pallets, workpieces) are treated 
as separate agents. Communication and coordination between each agent is handled using a set of 
programmed rules. 

7.  Conclusion 

This paper presents five categories that can be used to classify manufacturing system testbeds. 
Requirements for four of these categories were obtained from existing testbed surveys. Based on a 
literature review and the experience of the authors, the requirements for cloud manufacturing testbeds 
were introduced. Using these classifications, a number of testbeds around the world, including the 
System-level Manufacturing and Automation Testbed at the University of Michigan, were studied and 
categorized. 

SMART is a unique testbed equipped with state-of-the-art technology. It consists of a physical 
serial-parallel line with robots, a conveyor system, machine tools, a network of data acquisition 
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equipment, and hardware and software technology to process, analyze, and present the data. Moreover, 
virtual models of the testbed have been developed with different simulation environments. To align with 
current manufacturing trends, the testbed includes a wide array of sensors (cameras, power monitors, 
VFD, etc.) and control technologies (PLCs, safety equipment, etc.). These technologies are integrated 
into an Ethernet/IP network and a compatible central controller to make real-time decisions. To study the 
opportunities of IoT and cloud services in manufacturing, a data path has been linked to the cloud 
environment with capabilities of real-time and historical data analysis. Simulation models have been 
used with SMART to test algorithms for evaluating and improving system performance. The main 
limitation of the testbed, its small size, can be mitigated by extending SMART through high fidelity 
simulations. Solutions to challenges mentioned in Sec. 1, such as integrating and implementing new 
technologies, addressing security concerns, dealing with system malfunctions, and accounting for 
varying customer demands, can be addressed by utilizing both the physical and virtual environments of 
SMART. Its unique multidisciplinary nature allows it to address problems in a wide array of areas. It can 
be adapted for reconfigurable manufacturing, ICS, IoT, and cloud manufacturing research. 
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