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Categorization of Anomalies in Smart
Manufacturing Systems to Support the Selection of
Detection Mechanisms

Felipe Lopez!, Miguel Saez!, Yuru Shao?, Efe Balta!, James Moyne!, Z. Morley Mao?, Kira Barton', and Dawn
Tilbury!

Abstract—An important issue in anomaly detection in smart
manufacturing systems is the lack of consistency in the formal
definitions of anomalies, faults, and attacks. The term anomaly
is used to cover a wide range of situations that are addressed by
different types of solutions. In this paper, we categorize anomalies
in machines, controllers, and networks along with their detection
mechanisms, and unify them under a common framework to aid
in the identification of potential solutions. The main contribution
of the proposed categorization is that it allows the identification
of gaps in anomaly detection in smart manufacturing systems.

Index Terms—Intelligent and Flexible Manufacturing, Factory
Automation

I. INTRODUCTION

new trend has emerged in the last decade under the
A names of Smart Manufacturing (SM) in the United States
and Industry 4.0 in Europe. The goal of SM is to optimize
manufacturing by connecting the different stages of the pro-
duction lifecycle, gathering data from every stage and using
it to dynamically adapt the system to variations in production
demands and operating conditions [1]. SM systems are typ-
ically large. Various machines and material handling devices
are connected by large networks and supervised by several
controllers. The increased connectivity in SM is expected to
improve decision making, but it also enables undesired events
to propagate and affect multiple components. Although the
manufacturing community is optimistic that the overall impact
of SM will be positive [2], it is important to have a clear
understanding of its vulnerabilities [3], [4].

Different groups working with manufacturing anomalies
often focus and develop solutions that are tailored only for a
subset of system problem types. Mechanical engineers focus
on prognostics and health management of machines, while
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Fig. 1. Integrated landscape of smart manufacturing systems connecting
enterprise and control systems. Manufacturing data is made available to the
company’s Operational Technology (OT) and Information Technology (IT)
networks to provide visibility of the plant floor operation at higher levels of
the enterprise.

control engineers target controller faults, network specialists
work with network faults, and cybersecurity experts develop
strategies to protect production systems from attacks. A current
barrier for the unified study of anomalies in SM is the lack
of a common nomenclature to aid in the specification of the
challenges and solutions.

In an effort to aid the study of anomalies in SM from a
cyber-physical perspective, we provide a review of anomalies
as studied in different disciplines and unify them under a
common framework. Although SM covers different aspects
of manufacturing operation (e.g., machine operation, sup-
ply chain, and finances), we limit our scope to studying
anomalies in machines, controllers, and communication net-
works, illustrated in the device and control layers of Fig.
1. Moreover, the discussion presented in this paper is fo-
cused on discrete manufacturing applications, in which parts
move across different stations where machines (e.g., CNC!
machines, robots) perform operations as coordinated by logic
controllers. Communication between the multiple machines,
sensors, and controllers is supported by industrial networks.

A previous taxonomy of vulnerabilities in SM systems fo-
cused on cyber attacks, neglecting other sources of anomalies
that could impact production in similar manners [5]. In this
paper, we analyze manufacturing anomalies regardless of their
origin and match them with suitable anomaly detection mech-
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anisms. The main contribution of the proposed categorization
is that it allows the identification of gaps in anomaly detection
in SM systems that should be addressed in future studies.
We identified that most existing anomaly detection approaches
were developed for manufacturing plants that are not as closely
integrated as current manufacturing enterprise systems. As a
result, these approaches are not suitable for the interconnected
systems currently used in SM, and an opportunity exists for
the development of new anomaly detection methods.

The rest of the paper is organized as follows. In Section II,
we propose definitions for anomalies, faults, and attacks in SM
systems. In Section III, we introduce five types of anomalies
based on how they first manifest in the manufacturing system.
In Section IV, we identify seven types of anomaly detection
mechanisms based on their predictive capabilities and knowl-
edge requirements. Section V maps the identified types of
anomalies to suitable types of anomaly detection methods.
Finally, we conclude this paper in Section VI.

II. DEFINITIONS

In this study, we specify the production system as the com-
plete set of hardware and software involved in the fabrication
of a specified part. This includes machines, robots, material
handling systems, controllers, and networks. Suppliers, human
operators and end-users of the manufactured goods are consid-
ered external to the system. Some of the terms used to describe
unexpected occurrences in these systems are anomaly, fault,
and attack. We propose the following definitions to distinguish
them.

Definition 1 (Anomaly): An anomaly is an occurrence that
is different from what is standard, normal, or expected.

Definition 2 (Fault): A fault is an anomaly that is related
to an unwanted situation and may be associated with failure,
malfunction, or quality degradation.

Definition 3 (Attack): An attack is a purposeful action by
an element external to the system that results in anomalous
operation.

Definition 4 (Anomaly detection): Anomaly detection is the
process of identifying anomalous behavior.

The following conclusions can be obtained from the afore-
mentioned definitions:

o Anomaly is the superclass of interest in our study. Faults

and attacks are subsets of anomalies.

o The study of anomalies requires knowledge of normal or
expected behavior.

e A fault is a type of anomaly. Therefore, all faults are
anomalies but not all anomalies are faults. For example,
overheating of an electric motor may be an anomaly,
but if the temperature stays within admissible bounds it
may not be a fault. On the other hand, if temperature
exceeds the upper permissible limit and interrupts the
motor operation, then it could be classified as a fault [6].

e The outcome of an anomaly or fault is not strictly
dependent on the initial intent. For example, an anomaly
or fault may be accidental or intentional, and yet the
impact on production could be the same.

o Attacks require intent to cause an action, but not nec-
essarily intent to cause harm; i.e., there are malicious

and non-malicious attacks. For example, a non-malicious
attack may occur when an operator, considered external
to the SM system but able to act upon it, uploads a
controller version that is incompatible with the current
system configuration.

o Due to the cyber-physical nature of SM systems, attacks
can originate from the cyber domain or the physical do-
main, and may impact both domains [7]. We can further
classify attacks into: cyber attacks (e.g., virus infection,
SQL injection) and physical attacks (e.g., breaking a
physical connection). Cyber attacks may also be of the
kinetic cyber type [5], [8], which are cyber attacks
that can cause physical damage or injury (e.g., Stuxnet
malware [9]).

Fig. 2 illustrates that the terms anomalies, faults, and attacks
are not equivalent in the scope of our study.
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Fig. 2. Venn diagram used to illustrate examples of anomalies, faults, and
attacks in SM.

III. CATEGORIZATION OF ANOMALIES IN SMART
MANUFACTURING

Studies of anomalies in SM have traditionally been re-
stricted to a specific domain (cyber or physical) and to a spe-
cific component (e.g., network, CNC machine). This domain-
specific approach creates unnatural divisions in an integrated
system. In this section, we organize anomalies in SM based
on how they first manifest in the manufacturing system. Some
of these anomalies, if allowed to evolve and propagate in the
system, may transform into or cause anomalies of other types.

A. Dimensions of Anomalies

A set of dimensions is used to identify characteristics that
can distinguish between different types of anomalies. Most of
the existing discussions in the literature are focused on the
temporality aspect. We identify two additional dimensions,
domain and multiplicity. The domain dimension is useful
for studying cross-domain interactions in SM systems. The
multiplicity dimension differentiates between anomalies that
are observed on a single component and those that manifest
in multiple components at once.

Temporality. Anomalies may be classified depending on
whether they occur in a snapshot in time or over a time
interval.



LOPEZ et al.: CATEGORIZATION OF ANOMALIES IN SMART MANUFACTURING SYSTEMS 3

(a) Snapshot: Anomalies that manifest in instantaneous ob-
servations, without the need to consider their temporal
behavior.

Dynamic: Anomalies that have a temporal attribute; i.e.,
they evolve over time as in a trend. Dynamic anomalies
may also manifest in snapshots in some instances, e.g.,
if a degradation trend is not addressed and the system
drifts into a region where a snapshot observation reveals
an anomaly.

(b)

Domain. As stated in Section I, anomalies may manifest in
either cyber or physical components.

(a) Physical: Physical assets that are usually controlled and
monitored by computer-based algorithms, supported by
cyber components.

(b) Cyber: Computing and network components that support
functions such as diagnostics, control and communication
in SM.

Multiplicity. We partition anomalies based on the size of the
subset of components where they first manifest.

(a) Single component: Anomalies that manifest only in single
component of the system (e.g., a sensor, actuator, con-
troller, robot), while the rest of the components continue
to work normally.

Multiple components: Anomalies that manifest in a subset
of components of the system. The anomaly may have
originated in one component, but the effect is not apparent
until a subset of components is affected (e.g., a faulty
sensor leading a controller into instability). Alternatively,
the anomalous behavior may originate from two or more
components acting normally as independent units, while
resulting in anomalous behavior due to the combined in-
teractions. For example, a CNC program may be modified
without the correct tool change, resulting in individually
correct behaviors that produce the wrong part.

(b)

B. Types of Anomalies

Anomalies can be described with respect to the aforemen-
tioned dimensions. Here we identify five types of anomalies,
shown in Table I, and indicate the attributes of these anomalies
with respect to the dimensions identified in section III-A. It
should be noted that an anomaly may belong to one or more
type at the same time, e.g., a sudden loss of communication
would be both an instantaneous anomaly and a communication
anomaly. While this is not an exhaustive list of anomalies
in SM, the anomalies used in this study demonstrate the
categorization process proposed in this manuscript.

Instantaneous anomalies: Anomalies that manifest in the
system without any prior indication. The anomaly could be
observed in one variable (e.g., a spike in a temperature
trace) or multiple variables (e.g., step changes in voltage
and current where individually both measurements are within
bounds, but from a multivariate perspective their collective
values suggest an anomaly). Observations may originate from
physical (e.g., power consumption) or cyber (e.g., unusually
large data packet) domains. The concept of time associated
with instantaneous anomalies does not necessarily mean that
they are detected in real time. For example, the average value
of pressure could be anomalous as reported at the end of a
stage.

Evolving anomalies: Anomalies that manifest in the evolution
of process observations. The anomaly could originate from
single (e.g., current consumption unexpectedly ramping up)
or multiple sources (e.g., changes in current and temperature
in a welding process where individually both signals show
normal trends, but their multivariate dynamics conflict with
expectations because one variable increases while the other
decreases). Observations may come from physical or cyber
domains.

Communication anomalies: Anomalies that appear in the
communication network. These could include lack of commu-
nication, arrival of faulty data packets, unexpected traffic, and
cyber attacks. They may be observed in a single component
of the network or in several components at the same time.
Anomalies may appear in a snapshot of time or be detectable
only through the evolution of observations (e.g., denial of
service).

Event-based controller anomalies: Anomalies that manifest
as the unexpected occurrence of an event or as the missing
of an expected event. Event-based anomalies may manifest
in single (e.g., an actuator missed a part) or multiple (e.g.,
deadlock blocking several resources) components. Although
these anomalies often appear in the cyber domain, they may
be the result of faults in logic controllers or problems with the
hardware connected to them (sensors, actuators, and wiring).
Event-based anomalies are detectable only through dynamic
observations (i.e., comparison of the environment before and
after a moment in time), which may be untimed (i.e., describ-
ing only what happened) or timed (i.e., describing both what
and when it happened).

Integration anomalies: Anomalies that manifest in a system
where components seem to function normally but the final
outcome is anomalous. Examples of this type of anomaly are
found in incompatible upgrades, when a component is changed
but the rest of the system is not adjusted accordingly (e.g.,

TABLE 1
CATEGORIZATION OF SM ANOMALIES FOLLOWING IDENTIFIED DIMENSIONS.
Component multiplicit Domain Temporalit,
Anomaly type Singlg Multigle ! Cyber | Physical Snapshotp Dyryllarnic
Instantaneous anomalies v v v v v

Evolving anomalies v v v v v
Communication anomalies v v v v v
Event-based controller anomalies v v v v
Integration anomalies v v v v v
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changing the program of a robot without updating the PLC);
and more recently, in kinetic cyber attacks, where instead
of targeting individual machines or a network, an attacker
may focus on the communication interfaces. Since integration
anomalies appear in systems, they often involve both cyber
and physical domains. If not addressed quickly, integration
anomalies may evolve and become detectable as other types
of anomalies.

IV. CATEGORIZATION OF ANOMALY DETECTION
MECHANISMS

Numerous methods have been proposed to detect anomalies
in manufacturing systems. Although originally proposed for
different types of components (e.g., machine, controller), sev-
eral similarities can be identified among the various anomaly
detection mechanisms.

A. Dimensions of Anomaly Detection Mechanisms

Dimensions were chosen to make distinctions in detection
mechanisms based on predictive capabilities and knowledge
requirements for the data and the system. Four dimensions
were chosen: incorporation of system dynamics, prediction
level, level of supervision, and incorporation of system knowl-
edge.

Incorporation of system dynamics. Approaches may differ
depending on whether the analysis looks only at instantaneous
observations or considers past observations:

(a) Static: This approach considers only instantaneous obser-
vations.

(b) Dynamic: Dynamic detection mechanisms use observa-
tions taken at different time instances (e.g., time-series
models) to monitor system dynamics. In simple cases,
system dynamics may be used to adjust attributes within
the static observation approach; e.g., adjusting limits based
on recent data. In elaborate cases, the use of system
dynamics may include a sequence of behavior; e.g., a
progression of states leading to a failure mode.

Prediction level. Anomaly detection methods may differ
depending on their ability to forecast the occurrence of anoma-
lies:

(a) Reactive: Reactive methods require an anomaly to occur
in order to be detected. This method does not utilize
prediction.

(b) Trend analysis: A trend analysis considers current and
previous observations to evaluate trends or patterns in data
that may lead to an anomaly.

(c) Predictive: Predictive methods use current and previous
observations to forecast when abnormal values of specific
variables are expected. Predictions are often reported as
estimates of time-to-failure (TTF) or remaining-useful-life
(RUL), and a prediction confidence or interval.

Level of supervision. Often, process, product or equipment
quality or health data is used to indicate the occurrence
of a fault. For example, metrology or yield data can indi-
cate a fault related to product scrap or quality degradation,
while maintenance event data can indicate a fault leading to

equipment failure. This information may be passed to the
anomaly detection method to enhance the identification of
certain classes of anomalies [10]. The level of information
that is used within a given detection method can be classified
as:

(a) Supervised anomaly detection: These methods use labeled
data sets that include known anomalous scenarios to aid
in the identification and classification of anomalies and
faults.

(b) Semi-supervised anomaly detection: Semi-supervised
methods use normal data sets to train models of normal
behavior, and label any observations that deviate signifi-
cantly from those models as anomalies.

(c) Unsupervised anomaly detection: Unsupervised methods
trade flexibility for reliability. This type of method does
not require labels for the anomalies, nor does it makes
distinctions between training and test data. Rather, unsu-
pervised methods often use norms and probability densities
of training data to estimate normal and anomalous regions.
These techniques generally result in a larger percentage of
false or missed alarms.

Incorporation of system knowledge. The tendency in
anomaly detection solutions is to rely on historical data to
develop purely statistical, empirically-based models. Unfortu-
nately, system knowledge or subject matter expertise (SME) is
often neglected in favor of “one-size-fits-all” statistical tech-
niques that result in higher levels of false and missed alarms.
Based on the level of incorporation of system knowledge,
detection mechanisms can be categorized in this dimension
as:

(a) Statistical: System knowledge is not used in the anomaly
detection mechanism if it is purely statistical or data
driven. There are a large number of purely statistical
techniques including Statistical Process Control (SPC)
for fault detection [11], Principal Components Analysis
(PCA), and Deep Learning in big data systems [12]. While
some of these techniques can find patterns that can be re-
lated to cyber and physical phenomena, system knowledge
is not incorporated into the detection mechanism at the
outset [13].

(b) Phenomenological: SME is combined with statistical
methods in the detection mechanisms. For example, model
forms may be used to capture basic system knowledge
and/or relationships between variables, and then statistical
data is used for tuning to account for intricacies not
covered in the basic model. An example might be a
physical equation for the torque of a motor delivering
power to a conveyor system, given the voltage, current
and temperature of the motor, with statistical tuning to
account for motor wear and inefficiencies not covered in
the basic equation for power delivery. Another example
can be found in cognitive computing, where a human
could aid in the selection and ranking of variables to be
monitored in an anomaly detection configuration. Model
tuning can occur only during the model training phase,
or be employed during operation to capture changes in
system dynamics.
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(c) Cyber-physical models: These anomaly detection methods
use models that are constructed with purely cyber-physical
information about the system. An example might be a
model based entirely on first principles physics. Statistical
data is not used to tune the model. Note that the model
does not have to be static, but any dynamics would be
captured by incorporating cyber-physical knowledge. An
example might be a model of a logic controller, where the
model and the anomaly detection solution would be based
solely on the control logic.

B. Types of anomaly detection mechanisms

Various anomaly detection mechanisms have been grouped
into the seven types shown in Table II and described below.
Anomaly detection mechanisms may be used in isolation
(e.g., limit checking) or in conjunction with other mechanisms
(e.g., clustering followed by limit checking with limits set
differently in each cluster), resulting in solutions that can be
mapped to one or more of the identified types at the same
time. The list we are presenting is not exhaustive and other
anomaly detection categories may be identified following the
dimensions introduced in Section I'V-A.

Feature extraction with limit checking: Limit checking is the
most basic and frequently-used method for anomaly detection.
This method consists of checking when numeric signal traces
or some features within those traces (e.g., spikes, ramps, step
changes) lie outside a user-defined region of normal operation
(e.g., average value of trace violating high or low limits, spike
height greater than a threshold) [14], [15]. Limit checking
methods may be performed with binary, fuzzy, or adaptive
thresholds [6]. This type of method works in reactive mode or
with trend analysis, where limits are set to capture a drift
value before it results in a fault. Limit checking may be
performed with limits that are explicitly defined, tuned from
training data of normal operations, or identified with data-
driven methods; making it supervised, semi-supervised, or
unsupervised, respectively. The definition of limits may be
driven only by data, be based on cyber-physical models, or
follow a phenomenological approach.

Signal models: This type of anomaly detection covers methods
of anomaly detection for measured process signals that show
oscillations that are harmonic or stochastic in nature, e.g.,
measurements from rotating machinery. Mathematical models
use dynamic observations to calculate features (e.g., ampli-
tudes, phases, and spectrum frequencies) that are then used

to identify changes from normal behavior (semi-supervised)
or specific faults (supervised) [6]. In the area of vibration
analysis of machines, time-domain, frequency-domain and
time-frequency domain analysis are used to detect faults
(reactive mode), to aid condition based maintenance (trend
analysis), and to predict remaining useful life (predictive
mode) [16], [17]. Anomaly detection mechanisms based on
signal models may be statistical, phenomenological or based
on cyber-physical models.

Knowledge-based methods: In knowledge-based methods,
static or dynamic measurements are checked against prede-
fined rules or fault patterns. Some examples of knowledge-
based methods are expert systems, rule-based, ontology-based,
logic-based, and state-transition analysis [18]. Anomaly de-
tection methods can be semi-supervised, when the state of
the system and the onset of anomalies are identified based
on a set of rules (e.g., check for protocol-dependent features
in data packet, verify occurrence of expected events) [19], or
supervised, when specific process faults or network attacks
are included in the model using expressive logic structure
(e.g., detecting network anomalies by identifying illegitimate
behavioral patterns with a sequence of states and transitions
that can model network protocols) [18], [20]. Knowledge-
based methods can be used in conjunction with other de-
tection mechanisms. For instance, a set of rules could be
used to provide context to the limits of a limit-based system.
Knowledge-based methods may be either phenomenological
or purely cyber-physical based with no reliance on data for
model formulation.

Regression: Regression is a type of anomaly detection in
which a relationship is identified between predictors and a
dependent variable [22]. Some common methods for regres-
sion are Generalized Linear Models (GLM), Partial Least
Squares (PLS), Support Vector Regression (SVR), Gaussian
Process Regression (GPR), Artificial Neural Networks (ANN),
decision trees, and ensemble methods [46]—[51]. Depending
on the temporal nature of the predictors, regression can work
either with static (e.g., linear regression) or dynamic (e.g.,
ARMA models) data. Regression models can be used to detect
anomalies after their occurrence (reactive), evaluate trends that
may lead to anomalies (trend analysis), or predict when they
are most likely to occur (predictive). Regression can be used
in conjunction with other types of anomaly detection to trigger
alarms when the dependent variable leaves user-defined limits,
for example. Regression may be used with data from cyber,

TABLE II
CATEGORIZATION OF ANOMALY DETECTION MECHANISMS FOLLOWING IDENTIFIED DIMENSIONS. SOME LABELS ARE ABBREVIATED: SUPERVISED
(SUP.), SEMI-SUPERVISED (SEMI-SUP), UNSUPERVISED (UNSUP.), STATISTICAL (STAT.), PHENOMENOLOGICAL (PHENOM.), AND PHYSICAL (PHYS.).

Detection mechanism System dynamics Prediction Supervision System knowledge
Static | Dynamic | Reactive | Trend | Predictive | Sup. | Semi-sup. | Unsup. | Stat. | Phenom. | Cyber-phys.

Limit checking v v v v v v v v v v

Signal models v v v v v v v v v

Knowledge-based method v v v v v v v v
Regression v v v v v v v v v v

State estimation v v v v v v v v v
Clustering v v v v v v v
Classification v v v v v
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physical, or both domains. The models used for regression
can be purely statistical or phenomenological (statistically
tuned). Regression models may be semi-supervised or super-
vised, when incorporating some sort of system knowledge,
or unsupervised, when relying only on statistical analysis.
Unsupervised solutions, while commonly used, may lead to
higher occurrences of false and missed alarms, are susceptible
to noise, and are unable to correlate anomalies to faults.

State estimation: State estimation includes methods of
semi-supervised or supervised anomaly detection for state-
determined dynamical systems, where the structure and model
parameters are known. In these methods, a set of state variables
are sequentially estimated based on their previous values and
available measurements of input and output variables. Similar
to regression, these methods can be used with other types
of anomaly detection to set warnings when estimates leave
a region of normal operation or detect specific faults based on
the estimates [6], [39]. State estimates may be used to warn
about anomalies based on their current values (reactive), to
avoid anomalies based on the current trend (trend analysis),
or to predict their onset (predictive, if health or quality
degradation is accounted for in the state vector). Estimation
is performed in cyber or physical domains, depending on the
model that is adopted. If the model includes the interaction
between cyber and physical components, it could also be
used with cyber-physical systems. The models used for state
estimation may be data-driven, phenomenological, or based on
cyber-physical knowledge of the system.

Clustering: Clustering is a type of anomaly detection where
process observations that are similar in some user-defined
metric are assigned to the same group (cluster). Clustering
works in reactive mode with snapshot data. Clustering often
works in unsupervised mode but it may also be used in
semi-supervised and supervised approaches, if the identified
clusters are mapped to a set of predefined classes. Multiple
forms of clustering are available based on distribution, density,
connectivity (hierarchical clustering), following centroids (k-
means algorithms), among other methods [10]. Clustering
methods may be purely statistical or phenomenological (if
system knowledge is used to organize the identified clusters).

Classification: Classification methods identify to which set of
predefined categories (classes) a new observation belongs on
the basis of training data. The categories may be predefined
utilizing phenomenological approaches (e.g., machine fault
modes) or statistical mechanisms (e.g., pattern recognition in
Deep Learning systems [12]). One of the major benefits of
using classification methods is that fault detection and diag-

nosis are performed at the same step [6]. Similar to clustering,
these methods work in reactive mode with snapshot data.
Classification can only be performed in supervised approaches.

V. MAPPING SMART MANUFACTURING ANOMALIES TO
DETECTION MECHANISMS

Most of the detection mechanisms identified in section IV
can be applied to various types of anomalies. Table III matches
the types of anomalies with suitable detection mechanisms
identified in the literature.

Instantaneous anomalies: This type of anomaly can be
identified with various techniques, such as feature extraction
with limit checking, rules from knowledge-based methods,
regression, estimation, clustering, and classification. This type
of anomaly is the most studied in the literature.

Evolving anomalies: The identification of anomalies in the
dynamics of the observations can be performed with limit
checking for dynamic features, signal models, knowledge-
based systems, regression, state estimation, clustering, and
classification.

Communication anomalies: Communication anomalies can
be detected with various methods, including limit checking
in the form of statistical testing, knowledge-based methods,
clustering, and classification.

Event-based anomalies: This type of anomaly has tradition-
ally been addressed with knowledge-based methods, and more
specifically, with logic-based methods. Formal models of the
logic controllers may be used for their formal verification of
liveness, safety, and reversibility at the discrete-event level;
and to assure correctness of the event-based behavior of the
control system.

Integration anomalies: The challenge for the identification
of integration anomalies is that it requires an integrated
view of the system as opposed to having dedicated anomaly
detection methods for the individual components. Integration
anomalies could potentially be identified by incorporating the
multiple components of the production system in a large
knowledge-base, which could take into account the discrete-
event behavior of the logic controller and the way it interacts
with the various machines and material handling devices; or
with state estimation, accounting for the state of the entire
system. The identification of integration anomalies requires
the use of elaborate models of the production system and has
been studied only in a handful of academic exercises [40],
[41]. Integrated approaches may also be used for rapid fault
diagnosis in interconnected systems [34], in order to reduce the
number of consecutive and redundant alarms, and to rapidly

TABLE III
MAPPING TYPES OF ANOMALIES TO CANDIDATE DETECTION MECHANISMS
Detection mechanism Instantaneous Evolving Communication Event-based Integration
Limit checking [6], [15], [21], [22] [6], [22], [23] [18], [24], [25]
Signal models [6], [21], [26] [27]
Knowledge-based [21], [28] [6], [28], [29] [18], [20], [25], [30], [31] [19], [32], [33] [9], [34]
Regression [6], [10], [12], [35] [6], [12], [26], [35]-[37] [35]
State estimation [6], [29], [38], [39] [6], [29], [38], [39] [40], [41]
Clustering [10], [35] [18], [25], [35], [42]-[44]
Classification [6], [10], [35] [29], [35] [18], [25], [31], [35], [45]
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isolate the root cause with Failure Mode and Effect Analysis
(FMEA) [52] and Fault Tree Analysis (FTA) [53], as well as
to assess cyber-physical vulnerabilities [54].

VI. CONCLUDING REMARKS

In this paper, we have explored the various anomalous
behaviors that may appear in SM. Definitions were provided
for the terms used to refer to anomalous scenarios in manu-
facturing. Various categories of anomalies were identified. In
our categorization, we have unified all cyber- and physical
anomalies in a common framework to respond to the ever-
increasing connectivity in SM systems.

Anomaly detection methods in the literature were evaluated
with respect to their capability to respond to the challenges
brought by the advent of SM. Although static solutions are
well developed and widely used in current manufacturing
facilities, solutions that incorporate or track system dynamics
are more accurate and should be considered as enhancements
in future studies. Using a similar argument, current snapshot
methods should evolve to methods that monitor system dynam-
ics and state progression, and reactive methods should evolve
to include trend analysis and predictive methods. Further im-
provements can be obtained with prescriptive methods, which
rely on process data to warn about potential risks and take
preventive actions. More importantly, due to the complexity of
SM systems, the incorporation of system knowledge and SME
in solution development should be considered (when available)
over purely statistical methods.

We identified the different methods of anomaly detection
that could be applied in SM and categorized them. The
categories of SM anomalies were matched with the categories
of detection methods that could potentially be used to identify
them. It should be kept in mind that, in practice, multiple
methods for anomaly detection are often used together to im-
prove capability. There are multiple methods to identify some
well-known categories of anomalies (instantaneous, evolving,
communications, and discrete events). However, since most
anomaly detection mechanisms were not tailored for closely-
integrated system, most methods do not support cross-domain,
multivariate, multi-component analysis of SM systems. Al-
though some anomaly detection mechanisms would be able
to work with an integrated model of the entire manufactur-
ing system, their application for the detection of integration
anomalies is currently uncommon.

The study and detection of integration anomalies will re-
quire the development of new methods, which are not expected
to substitute but to complement anomaly detection methods at
the component level. Future work in this area will focus on the
development of cyber-physical models of SM systems for use
in cross-domain, multi-component anomaly detection meth-
ods tailored for interconnected SM systems. Cyber-physical
models may be used to verify expected relationships between
the cyber and physical components of the SM system and
to provide knowledge of the system-level state to improve
anomaly detection at the component level.
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