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Abstract

Increased interest in additive manufacturing (AM) of medical devices leads to a greater number of manufacturing choices, from processes to
product designs, with little research comparing these new techniques. This paper proposes a multi-objective optimization approach for choosing
the appropriate process, material and thickness that minimizes production cost and time, and maximizes device performance. We tested our
framework with a simulated case study to choose between traditional plaster casting and two AM techniques for an ankle-foot orthosis. This
evaluation tool provides early quantitative support for AM, and it can be expanded to fit various patient, clinic and insurance provider needs.
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1. Introduction

An ankle-foot orthosis (AFO) is a custom-made medical de-
vice used to correct a patient’s walking gait. AFOs are pre-
scribed to individuals with various lower-extremity disabilities,
ranging from patients with debilitating disorders like cerebral
palsy [1], to multiple sclerosis [2] and stroke recovery patients
[3], as well as injuries due to sports and recreation [4].

AFOs come in various shapes and sizes with different stiff-
ness values that correspond to varying levels of movement flex-
ibility to accommodate the diverse populations needing assis-
tance. Some designs involve hinged AFOs that allow/restrict
various ranges of ankle motion, others do not include a joint and
are referred to as non-articulated AFOs. Both articulated and
non-articulated designs may offer energy return either through
added elastic components or a leaf spring design [5,6]. The tra-
ditional and most-widely adopted method for AFO manufactur-
ing involves plaster casting [7], which is a highly-customized
patient-centered process. Plaster casting is also an imperfect
process producing non-repeatable results and is highly depen-
dent on skilled labor.

More recently, additive manufacturing (AM) methods have
been proposed as alternatives to the traditional approach. Sev-
eral published studies [5,8—10] outline novel AFO manufac-
turing methods utilizing foot scanning, computer-aided design
(CAD) and additive manufacturing. For example, Faustini et
al. [9] outline AFO production through selective laser sintering
(SLS), while Jin et al. [10] propose a fused deposition model-
ing (FDM) AM technique. Both AM approaches require scan-
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ning of the foot and utilizing AFO model simulations [5,8,11].
AM pioneers claim that these methods will improve production
times, lower waste, decrease costs, and improve AFO perfor-
mance. Additionally, an AM approach has the potential to lead
to greater customization, and enhanced repeatability. Despite
the multitude of potential benefits, adoption of AM fabrication
of AFOs has been very slow. One key reason for this stems
from the lack of quantitative and qualitative metrics comparing
AM to more standard manufacturing approaches. As AM tech-
nologies become more popular, a clinic’s ability to identify the
optimal manufacturing method for a specific custom device will
become increasingly important.

In this paper, we propose a multi-objective optimization ap-
proach to compare the different manufacturing methods and as-
sociated materials. We present a framework that identifies the
optimal combination of process, material and material thick-
ness that balances cost, production time and patient perfor-
mance for various AFO sizes. The framework is implemented
with a simulated clinic case study explained in section 2. The
objective of this work was to develop a methodology for aug-
menting the design process for a clinician. The framework is
meant to serve as a guideline and its parameters may be ad-
justed according to a clinic’s available technologies and indi-
vidual costs as well as to specific patients’ performance and
anthropometry. This optimization tool could provide a quanti-
tative approach for synthesizing the different design and perfor-
mance requirements to provide an optimal solution for design.
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Table 1. Manufacturing processes and associated materials and thickness options used in the case study implementation of the optimization framework.

Process Materials

Thicknesses (inch)

Plaster Casting  Polypropelyne (PP), Polyethelyne (PE) 3%, %, %, %
SLS Rilsan D80 (RD80), DuraForm PA (DFPA), DuraForm GF (DFGF), PP, PE  0.03 to 1 with resolution 0.01
FDM Carbon Fiber Reinforced Polymer (CFRP), PP, PE 0.03 to 1 with resolution 0.01

2. Current AFO Manufacturing Technique

The most-widely adopted AFO manufacturing method is
plaster casting [7]. After a referral from a physician, a pa-
tient will come into the clinic where an orthotist takes relevant
anthropometric measurements and fits the patient with a cast
mold by wrapping the affected leg in a plaster wrap. Plaster is
then poured into the resulting negative mold to produce a pos-
itive mold of the leg. The orthosis is then made by heating
and vacuum-forming sheets of thermoplastic onto the plaster
mold, which is left to cool and then cut to the correct ortho-
sis shape. Polypropelyne (PP) and polyehtylene (PE) are com-
monly used thermoplastics [7]. Alternatively, a carbon fiber
reinforced polymer-based (CFRP) orthosis might be made in
a meticulous, manual layering and lamination process. Ad-
ditional steps might be involved, depending on the patient’s
needs, where the plaster mold might be modified or additional
components added. Accessories and straps are added to final-
ize the orthosis production and the patient returns for a fitting
visit, where further adjustments might be needed. This is a
highly customized process and involves one-on-one interaction
between the orthotist and the patient, which allows the patient
to give verbal feedback regarding the comfort and support of
the orthosis. It also allows the orthotist to visually evaluate the
AFO’s functionality while in use. However, this process lacks
quantitative evaluation metrics. Moreover, the process could
take from one to several days, sometimes with weeks between
patient visits, and might require several return visits depend-
ing on the patient’s needs. The plaster casting method produces
a lot of wasted materials, which can be costly, and it requires
skilled labor to complete this highly manual build.

3. Simulated Case Study

The framework proposed in this paper solves an optimiza-
tion problem from a simulated case study of a clinic faced with
choosing between traditional plaster casting and additive man-
ufacturing for producing its AFOs. The clinic must decide on
the manufacturing method, material and thickness that would
minimize production cost and time and maximize performance
for an AFO of a specific size. Three sizes are simulated in this
implementation (section 4.1). For simplicity, our implementa-
tion considered only a non-articulated AFO with a leaf spring
design, however the algorithm is modular and can be expanded
to other designs as more data becomes available.

The clinic is assumed to have access to three manufacturing
processes: traditional plaster casting, and two additive manu-
facturing processes, SLS and FDM. Certain materials can be
used and certain thicknesses can be produced with each pro-
cess, as shown in table 1. For instance, the AM processes can

print a range of AFO thicknesses with a minimum resolution
of 0.01 inch, while the plaster casting process uses sheets of
material with discrete thicknesses. For SLS, process and mate-
rial information was obtained from [9] and production cost and
time from [12]. Information from [7,13] and [10] informed the
plaster casting and FDM process assumptions, as well as word-
of-mouth and internal documents at the University of Michigan
Orthotics and Prosthetics Center.

4. Optimization Framework Setup

The following subsections describe the mathematical setup
and implementation of this framework for the simulated case
study. Due to the custom nature of these devices and the vari-
ability of patient anthropometry, a wide range of AFO sizes
may be manufactured. Thus, the model takes the size of the
AFO as an input, and in this implementation, three AFO sizes
were investigated as explained in section 4.1. The weights and
geometries associated with each size were determined using
published weight [14] and anthropometry data [15]. The model
uses the AFO size input to determine size-dependent variables,
such as stiffness, through regression functions based on finite
element analysis (FEA) results (section 4.2). The design vari-
ables used in the mathematical representation of this framework
are described in section 4.3. Finally, section 4.4 details the op-
timization constraints in terms of the design variables.

4.1. Model Input Variable

The optimization algorithms take the size of the AFO as an
input. Our implementation allows the user three sizes to choose
from: small, medium and large. Each of the sizes is associated
with corresponding patient data: weight, foot length, calf cir-
cumference and calf height. The patient measurements for the
small, medium and large sizes were respectively chosen as the
values of the 10", 50, and 90" percentiles of population data
published in [14] and [15]. A CAD model of a non-articulated
AFO was produced and adjusted for each of the three sizes.
The foot and calf measurements determined the geometry of
the CAD model, on which finite element analysis (FEA) was
performed (section 4.2). The patient weight values determined
the ankle moment values simulated in the FEA analysis. The
FEA results then determined the safety factor constraint (sec-
tion 4.4) and performance metric (section 5.3).

Table 2. The anthropometric measurements (calf circumference, calf height,
and foot length) and patient weight values used for each AFO size taken from
the 10%, 50, and 90™ percentiles of published data from [14] and [15].

Anthropometry (cm)

Size Wt. (Kg) Calf Circ. CalfHt. Ft. Lgth.
Small 53.5 334 320 25.1
Medium 70.3 36.4 354 26.7
Large 101.8 40.1 389 28.4
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4.2. Finite Element Analysis

Part performance is affected by design factors (material,
thickness, and dimensions), and external factors (load from the
user). In order to analyze the effect of both design and external
factors, we performed FEA using Autodesk® Inventor™ soft-
ware. We simulated every combination of material, thickness,
AFO size and ankle moment, as mentioned in section 4.1.

The focus of this analysis was: 1) to evaluate yield through
the safety factor, and 2) to calculate AFO deflection from the
torque applied during ankle plantarflexion. The deflection is
used to calculate an effective ankle stiffness of a particular de-
sign, which is related to device performance (section 5.3).

In order to reduce computational time a simplified geometry
was created based on the geometry of a scanned 3D model of an
AFO. This reduced the number of nodes in the simulation. The
mesh in the model was adjusted to increase density in the criti-
cal areas. Also, a 10% convergence requirement was specified
to ensure correct results. Figure 1 shows the scanned, simplified
and meshed geometry. The load used in the simulation was de-
termined based on ankle torque for patients with disability [17]
and converted into N m Kg~'. This value was then multiplied
by the appropriate patient weight based on the AFO size (see
table 2), to determine the applied torque value for that size. The
anthropometric dimensions of calf circumference, foot length
and calf height for the 10th, 50th and 90th percentiles, were
similarly used to generate three CAD models of the AFO.

Each of the models was subjected to the appropriate torque
loading according to their size. The maximum stress and dis-
placement of the AFO at the calf were extracted from the FEA
simulations. The equivalent ankle stiffness was calculated from
the resulting displacement. The safety factor was calculated as
a ratio of the maximum stress and the material strength.

An FE analysis was run for each of the sizes with each ma-
terial and each of the four discrete thicknesses of the plaster
casting process shown in table 1. The safety factor and ankle
stiffness was determined from the FEA for each size, material
and thickness combination. Moreover, a regression model was
implemented to correlate safety factor and stiffness to the entire
range of thicknesses with an R? between 0.8 and 1.0.

4.3. Model Design Variables

The mathematical model representing this optimization
problem includes several design variables: the type of process,
p, the material, m, and the thickness of the material, k, used
to create the AFO. There are a processes available with b total
possible materials.

One vector, x, was created containing a + b + 1 variables:

€{0,1},fori=1,2,...,a+ b, and
Xaepe1 = k, where

ke{yl003<y<1l,y=00lnneZ}U{, § 2,

}

X1, X2, ..., X, are binary decision variables indicating the selected
Process; Xqi1, Xq+2, ---» X4+p are binary decision variables of the
material chosen; and x,454+; is the variable representing the
thickness of that material, which includes all the discrete thick-
nesses of the additive manufacturing processes (in increments
of the minimum resolution) and the four discrete thicknesses of
the plaster casting method. This implementation involved three
processes (a = 3) and six materials (b = 6).

FNE

Fig. 1. From left to right, a 3-dimensional scan of a plaster cast AFO, mesh of
a modeled AFO, and a contour map showing stresses from an FEA simulation.

4.4. Model Constraints

As mentioned in section 3, there are certain constraints asso-
ciated with which materials can be selected given the selection
of a process for example. The mathematical model representing
the optimization problem included several constraints:

1. Only one process can be selected: (Z?=1 xj)—1=0.

2. Only one material can be selected: (X% x;) — 1 = 0.

3. If casting is selected, then PP or PE must be selected:
X+ (Xex)—1=0.

4. If SLS is selected, then PP, PE, RD80, DFPA, or DFGF
must be selected: x, + x4 + x5+ x9 — 1 = 0.

5. If FDM is selected, then PP, PE, or CF must be selected:
x5+ (Xgx)—1=0.

6. If casting is selected, then the thickness must be 3/32",
1/8”,3/16"”, 0or1/4":

X1 l_[?:l(xm —k;) = 0, where k; = 33—2, %, %, %.

7. The safety factor must be greater than a specified value,
S Fpin, to prevent product yield and failure. The safety fac-
tor is a ratio of material strength to maximum stress, calcu-
lated as a function of the material chosen, m, the thickness,
k, and the AFO size, z: S F(m, k,z) > S F,;,. This function
was calculated using a combination of FEA and regression
analysis (section 4.2).

5. Multi-Objective Optimization

The AFO fabrication analysis is posed as a multi-objective
optimization, where a clinic would aim to minimize production
cost and time, while maximizing AFO performance.

fe(x), fi(x), = fp(x)

contraints (1) — (7)

The mathematical representation of this objective is a func-
tion of the cost, f,.(x), and time, f;(x), to produce a single AFO,
and the performance, f,(x), of the AFO based on the material,
size and thickness chosen. The derivation of each of these func-
tions is described below. The cost and time were determined
using data from various literature sources and following a cost
analysis method termed ’activity-based costing for manufactur-
ing’ outlined in [16]. The performance function was more com-
plex to determine; using published data [17], a performance
metric based on predicted patient energetic cost was used.

For our implementation, we resolved the multi-objective op-
timization into minimizing a single weighted-sum (equation
1). Since production costs are usually carried over to insur-
ance providers, a clinic might value performance and produc-
tion time more than the cost. The objective weightings chosen
followed this logic and were selected empirically after investi-

minimize
X

subject to
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Table 3. An example of a breakdown for calculating time taken for each process involved in manufacturing an AFO.

Plaster Casting
Total Time: 29 hours 11 minutes

(1) Impression (2) Plaster Mold  (3) Adjustment  (4) Shaping (5) Finishing
Value added time (hr): 1 0.5 1 0.58 0.5
Non-value added time (hr): 0.1 1 0 24.5 0
Number of operators: 1 (Orthotist) 1 (Technician) 1 (Orthotist) 1 (Technician) 1 (Orthotist)
Equipment: N/A Miscellaneous Miscellaneous  Kiln + Vacuum  Miscellaneous
Selective Laser Sintering (SLS)
Total Time: 32 hours 57 minutes
(1) Surface Model (2) Build CAD (3) Fabrication  (4) Cleaning
Value added time (hr): 0.2 0.45 26 0.3
Non-value added time (hr): 0 0 6 0
Number of operators: 1 (Orthotist) 1 (Technician) 1 (Technician) 1 (Technician)
Equipment: Laser Scanner PC + Software SLS Machine Miscellaneous
Fused Deposition Modeling (FDM)
Total Time: 26 hours 9 minutes
(1) Surface Model (2) Build CAD (3) Fabrication  (4) Finishing
Value added time (hr): 0.45 0.45 0.1 1.5
Non-value added time (hr): 0 0 24 0
Number of operators: 1 (Orthotist) 1 (Technician) 1 (Technician) 1 (Technician)
Equipment: Laser Scanner PC + Software 3-D Printer Miscellaneous

gating the solution space.
F =0.01f.(x) + fi(x) = 100f,(x) (1

5.1. Cost

Manufacturing cost is calculated as the sum of direct and in-
direct costs associated with the part [18]. Direct costs include
material and labor directly in contact with the part. Indirect
costs include machine cost. Overhead costs such as adminis-
trative and production overhead are not evaluated at this stage,
working under the assumption that all the manufacturing pro-
cesses are available in the same shop and processes share ad-
ministrative expenses. The cost model, f., with material, labor
and equipment cost terms, is shown in equation 2.

b fc=CM+CL+CEQ (2)
Cu =) cm [kx; + 123.34 /¢, )y

+ Pica(Vpuita(1 — @) + Vipeq)xixz + (Vpart + qup)xix?a]

32 3 n
CL= Z Z Clip iy Xi Cro = Z Z Cegiolegi Xi
e=1

i=1 h=1 i=1
p : material density cm - cost of material
« : material waste rate ¢; : cost of labor
Vpare : volume of part Ceq - cost of equipment
Viea : Vvolume of machine bed t; : labor time
Vsup : volume of support material ~ f,, : machine runtime
e : machine € {1,2, 3, ...,n}

h : operator class € {1, 2] 1: orthotist, 2: technician}

For the casting process, the material is available in specific

sheet dimensions and the price is a function of the material and
thickness chosen. Because of the discrete set of sizes available,
excess material might be wasted and is included in the cost. For
the SLS process, a powder block of material of a fixed volume
must be used for each production cycle. Only a portion of this
material can be recycled and this is reflected in the cost. Fi-
nally, for the FDM process, the excess material is in the form of
support material needed to support the shape of the AFO while
printing. This is a fixed volume of material, 9 inch?® in our case
study, with a cost dependent on the material chosen.

5.2. Time

Each manufacturing processes has a specific flow and steps
involved in making the part. A value stream mapping was de-
veloped for every process to identify time and equipment in-
volved. A simplified version of the map is shown in table 3,
where value-added time refers to labor time, while non-value
added time involves processes that do not require the presence
of an employee, for example cooling time or printing time.

The effect of size on the production time was assumed to
be negligible for our purposes. The justification of this choice
being that the change in size is small compared to the overall
product volume and would not greatly affect the additive man-
ufacturing time. As for the plaster casting process, the orthotist
and technician would need to spend the same amount of time
on a device regardless of its size.

5.3. Performance

Metabolic rate is a widely used metric for evaluating the per-
formance of wearable medical devices. For this particular de-
vice, the patient metabolic rate is most directly affected by the
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bending stiffness of the AFO [17,19]. A study varying the bend-
ing stiffness of an exoskeleton device, emulating an AFO, worn
by healthy subjects while they walked on a treadmill showed a
relationship to metabolic rate [17]. Leveraging their research,
averaged metabolic rate data they obtained from nine subjects
were fit to a quadratic function, resulting in equation 3, where
k is the stiffness at the ankle measured in N m rad~" and r is the
predicted metabolic rate at that stiffness with units of W Kg~'.
Since reduced metabolic rate indicates better performance, we
aimed to maximize performance, which we defined as the re-
ciprocal of metabolic rate.
r=5¢%k*-0.0019 + 2.9 3)
As explained in section 4.2, FEA was used to create func-
tions which took material, thickness and AFO size as an input
and returned the stiffness of the device. This stiffness was then
inputted into equation 3 to calculate metabolic rate and thus per-
formance. This allowed us to relate material choice, thickness
and AFO size to a performance metric for our objective func-
tion. FEA was performed for each of the four discrete thick-
nesses used by traditional plaster casting manufacturing tech-
nique (see table 1). A linear regression model, fit to the FEA
results, for each size category was used to calculate bending
stiffness for the entire range of thickness values.

5.4. Optimization Algorithms

An exhaustive search of the variable space, implemented us-
ing Matlab® software (Mathworks Inc., Natick, MA), was pos-
sible in our implementation because of the limited number of
variables. In addition to the exhaustive search, the optimiza-
tion was solved using a heuristic search method (Simulated An-
nealing) to demonstrate that alternative optimization strategies
could be employed for larger data sets. The results from these
two methods were compared to determine the impact of alter-
native optimization methods. Increased data sets could be the
result of additional processes, a larger variety of potential ma-
terials, or a larger range of allowable thickness, in addition to
other parameters. While exhaustive searchers return the most
accurate result, these methods are impractical for larger data
sets and scenarios in which a faster response is desired. This
would be particularly true for clinical use, in which the clin-
icians would employ this method to aid in the design of the
AFO. A faster optimization would allow for more design itera-
tions and a more user friendly design tool.

6. Results and Discussion

Using an exhaustive search, all of the design variable com-
binations were created and evaluated. The result was a total of
1818 points in the design space. After the model constraints
were applied, 686, 736, and 676 points remained as part of
the feasible set for small, medium, and large sizes respectively,
shown in figure 2. A fair range of performance values were
reachable by all processes, while cost and time values differed
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Fig. 2. The (A) cost and performance and (B) objective function value associ-
ated with each of the solutions in the feasible set for the three AFO sizes. SLS
has the highest cost.

between processes. PC and FDM were able to minimize the
objective function more than SLS could, and this is largely due
to the higher cost associated with the SLS process. The opti-
mal process, material, and thickness, resulting in a minimum
weighted objective function, were found for each size category
and are summarized in table 4.

In this case study, FDM was the optimal process. It is the
fastest process (see table 3), incurring only a small increase in
cost from the plaster casting method, while maintaining com-
parable performance. It is worth mentioning that machine cycle
time is low in SLS, however, SLS machines must warm up be-
fore initiation and SLS-manufactured parts require a long cool
down time before extraction. Casting is a less expensive pro-
cess, but it also requires a long cooling time after the plastic
has been heat-molded to the plaster. It is worth noting that SLS
and FDM both allow batch production. These technologies can
leverage economies of scale to produce multiple parts simulta-
neously, thus shortening setup and production time as well as
cost per part. This analysis did not take into account economies
of scale as it only considered production of one AFO per batch.

PE and PP were the chosen optimal materials. Upon further
investigation, the performance of the PE material was found
to be only slightly better (by 0.005 Kg W~!) than the PP mate-
rial. PP-PE composites are also sometimes used to manufacture
AFOs, however, for simplicity, this case study did not consider
this combination. Future work will consider alternative material
types. It was also observed that a larger thickness was chosen
for the small AFO compared to the medium one. This could be
due to the different materials chosen and the change in AFO ge-
ometry due to size-specific anthropometric measurements and
ankle moment. It seems that the relationship between AFO size
and optimal thickness is not a linear one. Further experimental
data is required to form a proper stiffness-performance model.

The simulated annealing method was able to find the global
optimal solution. However, due to the small number of vari-
ables in this problem, simulated annealing proved to be more
computationally intensive than the exhaustive search method as
shown in table 5. Heuristic methods like simulated annealing
are expected to have better performance as the number of vari-
ables and options increases. A future implementation that in-
cludes a larger variable set could benefit from such a heuristic
method. The model could be further expanded to include other

Table 4. The global optimal selections and corresponding optimization function values for each AFO size considered.

Process Material Thickness (in.) Cost ($) Time (hr.) Performance (KgW™') Obj. Func. Value
Small FDM PE 0.17 42591 26.5 0.35 -3.79
Medium FDM PP 0.11 42590  26.5 0.36 -5.13
Large FDM PP 0.19 42595  26.5 0.23 8.10
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Table 5. Comparison of the heuristic simulated annealing (SA) optimization
method with an exhaustive search (ES) for the three sizes: small (S), medium
(M), and large (L). The success rate was evaluated by running 10 trials of the
optimization. The runtime is an average of the runtimes of the 10 trials.

ES SA

Size S M L S M L
Optimal Found? | yes yes yes | yes yes yes
Success Rate (%) | 100 100 100 | 90 100 100
2.88 2.84 278|436 499 4.12

Runtime (sec.)

sizes, dimensions and AFO designs. It could be adapted to take
patient anthropometric measurements as an input instead of a
set size (small, medium, and large), build a geometry that fits
the patient, and then automatically adjust FEA results accord-
ingly. Such a model would add even more customizability, with
potential for creating non-traditional AFO designs. Machine
tool paths, AM process parameters and AFO geometries could
be optimized simultaneously and scalability could be incorpo-
rated, by producing multiple AFOs per batch, to reduce cost
and time. The limitation lies in the availability of experimental
data to validate FEA results and any resulting models.

This framework provides a quantitative tool for evaluating
the optimal choices for these custom devices. For example, it
relies on a quantitative model of metabolic rate and stiffness
to predict performance. Quantitative models are necessary for
insurance reimbursement justification. However, qualitative or-
thotist input is also necessary. The integration of qualitative
feedback can complement the quantitative choices and provide
a better full picture. The weights of the multi-objective function
could be altered according to the various interests of patient,
clinic and insurance provider. With the weights selected in this
paper, our quantitative model provides early support for the de-
velopment of additive manufacturing techniques for AFO man-
ufacturing. However, more complex FEA studies coupled with
experimental validation and a better understanding of the prop-
erties of additively-manufactured materials is needed. More-
over, a greater understanding of patient performance as various
AFO design variables are altered is necessary. With advance-
ments in sensing techniques, the proposed optimization frame-
work could be coupled with real-time sensing methods to more
accurately determine an AFO’s performance metric.

7. Conclusion

A framework was developed for finding quantitatively op-
timal manufacturing choices for producing AFO devices. The
framework was successfully tested with a simulated case study
to show feasibility. A manufacturing process, material and
thickness were chosen to optimize cost, time and patient per-
formance for three sizes of an AFO device. As additive man-
ufacturing techniques make their way further into custom-
manufactured devices, and as more and more choices become
available to patients and clinics, an optimization framework
could automate part of the decision process and find a quan-
titatively optimal solution. This versatile framework provides a
guideline for a clinic to evaluate and optimize its choices. How-
ever, the framework is limited to available experimental data to
inform both patient performance and FEA models.
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