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ABSTRACT

Counterfactual Regret Minimization (CFR) has found success in
settings like poker which have both terminal states and perfect
recall. We seek to understand how to relax these requirements.
As a first step, we introduce a simple algorithm, local no-regret
learning (LONR), which uses a Q-learning-like update rule to al-
low learning without terminal states or perfect recall. We prove its
convergence for the basic case of MDPs (where Q-learning already
suffices), as well as limited extensions of them. With a straightfor-
ward modification, we extend the basic premise of LONR to work
in multi-agent settings and present empirical results showing that
it achieves last iterate convergence in a number of settings. Most
notably, we show this for NoSDE games, a class of Markov games
specifically designed to be impossible for Q-value-based methods
to learn and where no prior algorithm is known to achieve conver-
gence to a stationary equilibrium even on average. Furthermore,
by leveraging last iterate converging no-regret algorithms (one of
which we introduce), we show empirical last iterate convergence
in all domains tested with LONR.
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1 INTRODUCTION

Versions of counterfactual regret minimization (CFR) [55] have
found success in playing poker at human expert level [12, 42] as well
as fully solving non-trivial versions of it [9]. CFR more generally
can solve extensive form games of incomplete information. It works
by using a no-regret algorithm to select actions. In particular, one
copy of such an algorithm is used at each information set, which
corresponds to the full history of play observed by a single agent.
The resulting algorithm satisfies a global no-regret guarantee, so at
least in two-player zero-sum games is guaranteed to converge to
an optimal strategy through sufficient self-play.

However, CFR does have limitations. It makes two strong as-
sumptions which are natural for games such as poker, but limit
applicability to further settings. First, it assumes that the agent
has perfect recall, which in a more general context means that
the state representation captures the full history of states visited
(and so imposes a tree structure). Current RL domains may rarely
repeat states due to their large state spaces, but they certainly do
not encode the full history of states and actions. Second, it assumes
that a terminal state is eventually reached and performs updates
only after this occurs. Even in episodic RL settings, which do have
terminals, it may take thousands of steps to reach them. Neither of
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these assumptions is required for traditional planning algorithms
like value iteration or reinforcement learning algorithms like Q-
learning. Nevertheless, approaches inspired by CFR have shown
empirical promise in domains that do not necessarily satisfy these
requirements [31].

In this paper, we take a step toward relaxing these assumptions.
We develop a new algorithm, which we call local no-regret learning
(LONR). In the same spirit as CFR, LONR uses a copy of an arbitrary
no-regret algorithm in each state. (For technical reasons we require
a slightly stronger property we term no-absolute-regret.) The up-
dates for these algorithms are computed in the style of Q-values,
which eliminates the need for perfect recall or terminals. Our main
result is that LONR has the same asymptotic convergence guar-
antee as value iteration for discounted-reward Markov Decision
Processes (MDP). Our result also generalizes to settings where, from
a single agent’s perspective, the transition process is time invariant
but rewards are not. Such settings are traditionally interpreted as
“online MDPs” [18, 39, 40, 53], but also include normal form games.
We view this as a proof-of-concept for achieving CFR-style results
without requiring perfect recall or terminal states. Under stylized
assumptions, we can extend this to asynchronous value iteration
and (with a weaker convergence guarantee) a version of RL.

LONR is not an improvement over traditional RL algorithms for
solving MDPs. However, naively applying single-agent RL algo-
rithms in settings with multiple agents, such as Markov games, is
known to fail to achieve good performance in many cases [29, 54]. In
contrast, we believe the robustness provided by no-regret learning
will more naturally extend beyond MDPs.

To demonstrate this, in our experimental results we explore set-
tings beyond the exact reach of our theoretical results. Our main
results are on a particular class of Markov games known as NoSDE
Markov games, which are specifically designed to be challenging
for learning algorithms [54]. These are finite two agent Markov
games with no terminal states where No Stationary Deterministic
Equilibria exist: all stationary equilibria are randomized. Worse,
by construction Q-values do not suffice to determine the correct
equilibrium randomization. Thus, prior work has focused on de-
signing multiagent learning algorithms which can converge to non-
stationary equilibria [54]. The sorts of cyclic behavior that NoSDE
games induce has also been observed in more realistic settings of
competition between agents [48].

In contrast, we demonstrate that LONR converges to the station-
ary equilibrium for specific choices of regret minimizer. Furthmore,
for these choices of minimizer we achieve not just convergence
of the average policy but also of the current policy, or last iterate.
Thus our results are also interesting as they highlight a setting for
the study of last iterate convergence, an area of current interest,
in between simple normal form games [4, 41] and rich, complex
settings such as generative adverarial networks (GANs) [14].



Most work on CFR uses some version of regret matching as the
regret minimzer. However, all prior variants of regret matching
are known to not possess last iterate convergence in normal form
games such as matching pennies and rock-paper-scissors. As part of
our analysis we introduce a novel variant, prove that it is no-regret,
and show empirically that is provides last iterate convergence in
these normal form games as well as all other settings we have
tried. This may be of independent interest, as it is qualitatively
different from prior algorithms with last iterate covergence which
are optimistic versions of standard algorithms [14, 15].

2 RELATED WORK

CFR algorithms remain an active topic of research; recent work has
shown how to combine it with function approximation [10, 31, 37,
42, 50], improve the convergence rate in certain settings [20], and
apply it to more complex structures [21]. Most relevant to our work,
examples are known where CFR fails to converge to the correct
policy without perfect recall [35].

Both CFR and LONR are guaranteed to converge only in terms
of their average policy. This is part of a general phenomenon for
no-regret learning in games, where the “last iterate,” or current
policy, not only fails to converge but behaves in an extreme and
cyclic way [3, 4, 13, 41]. Recent work has explored cases where
it is nonetheless effective to use the last iterate. In some poker
settings a variant of CFR known as CFR+ [9, 46, 46] has good last
iterates, but it is known to cycle in normal-form games. Motivated
by training Generative Adversarial Networks (GANSs), recent results
have shown that certain no-regret algorithms converge in terms
of the last iterate to saddle-points in convex-concave min-max
optimization problems [14, 15]. The ability to use the last iterate is
particularly important in the context of function approximation [1,
28]. Our experimental results provide examples of LONR achieving
last iterate convergence when the underlying regret minimizer is
capable of it.

Prior work has developed algorithms which combine no-regret
and reinforcement learning, but in ways that are qualitatively dif-
ferent from LONR. A common approach in the literature on multi-
agent learning is to use no-regret learning as an outer loop to
optimize over the space of policies, with the assumption that the
inner loop of evaluating a policy is given to the algorithm. There
is a large literature on this approach in normal form games [26],
where policy evaluation is trivial, and a smaller one on “online
MDPs” [18, 39, 40, 53], where it is less so. Of particular note in this
literature, Even-Dar et al. [17] also use the idea of having a copy of a
no-regret algorithm for each state. An alternate approach to solving
multi-agent MDPs is to use Q-learning as an outer loop with some
other algorithm as an inner loop to determine the collective action
chosen in the next state [25, 29, 38]. Of particular note, Gondek
et al. [24] proposed the use of no-regret algorithms as an inner
loop with Q-learning as an outer loop while Even-Dar et al. [19]
use multi-armed bandit algorithms as the inner loop with Phased
Q-learning [33] as the outer loop. In contrast to these literatures,
we combine RL in each step of the learning process rather than
having one as an inner loop and the other as an outer loop.

Recent work has drawn new connections between no-regret
and RL. Srinivasan et al. [45] show that actor-critic methods can

be interpreted as a form of regret minimization, but only analyze
their performance in games with perfect recall and terminal states.
This is complementary to our approach, which focuses on value-
iteration-style algorithms, in that it suggests a way of extending
our results to other classes of algorithms. Neu et al. [43] study
entropy-regularized RL and interpret it as an approximate ver-
sion of Mirror Descent, from which no-regret algorithms can be
derived as particular instantiations. Kovafik and Lisy [34] study
algorithms that instantiate a regret minimizer at each state with-
out the counterfactual weightings from CFR, but explicitly exclude
settings without terminals and perfect recall from their analysis.
Jin et al. [30] showed that in finite-horizon MDPs, Q-learning with
UCB exploration achieves near-optimal regret bounds.

The closest technical approach to that used in our theoretical
results is that of Bellemare et al. [6] who introduce new variants of
the Q-learning operator. However, our algorithm is not an operator
as the policy used to select actions changes from round to round
in a history-dependent way, so we instead directly analyze the
sequences of Q-values.

3 PRELIMINARIES

Consider a Markov Decision Process M = (S, A, P,r,y), where S
is the state space, A is the (finite) action space, P : S X A — A(S)
is the transition probability kernel, r : S X A — R is the (expected)
reward function (assumed to be bounded), and 0 < y < 1 is the
discount rate. (Q-)value iteration is an operator 7~, whose domain
is bounded real-valued functions over S X A, defined as

7Q(s, ) =r(s,a) + yEp[ max Q(s’,a")] (1)

Due to the presence of y, this operator is a contraction map in
| - |loo, and so converges to a unique fixed point Q*, where Q*(s, a)
gives the expected value of the MDP starting from state s, tak-
ing action a, and thereafter following the optimal policy 7*(s) =
arg maxqe 7 0 (s, a) [8]

Our algorithm makes use of a no-regret learning algorithm.!
Consider the following (adversarial full-information) setting. There
are n actions ay, . ..ap. At each timestep k an online algorithm
chooses a probability distribution ;. over the n actions. Then an
adversary chooses a reward xj. ; for each action i from some closed
interval, e.g. [0, 1], which the algorithm then observes. The (exter-
nal) regret of the algorithm at time k is

k

1
—maxzxz,i — T Xy (2)
=0

An algorithm is no-regret if there exists a sequence of constants py
such that regardless of the adversary the regret at time k is at most
pr and limg e px = 0. A common bound is that py, is O(1/Vk).
For our results, we make use of a stronger property, that the
absolute value of the regret is bounded by py.. We call such an algo-
rithm a no-absolute-regret algorithm. Algorithms exist that satisfy
the even stronger property that the regret is at most p; and at least

It may seem strange to use an algorithm designed for non-stationary environments
in a stationary one. We do so with the goal of designing an algorithm that generalizes
to non-stationary settings such as “online” MDPs and Markov games.



0. Such non-negative-regret algorithms include all linear cost Regu-
larized Follow the Leader algorithms, which includes Randomized
Weighted Majority and linear cost Online Gradient Descent [23].

4 LOCAL NO-REGRET LEARNING (LONR)

The idea of LONR is to fuse the essence of value iteration / Q-
learning and CFR. A standard analysis of value iteration proceeds
by analyzing the sequence of matrices Q, 7Q, 72Q, 730Q, . . .. The
essence of CFR is to choose the policy for each state locally using
a no-regret algorithm. While doing so does not yield an operator,
as the policy changes each round in a history-dependent way, this
process still yields a sequence of Q matrices as follows.

Fix a matrix Qp. Initialize |S| copies of a no-absolute-regret
algorithm (one for each state) with n = |A| and find the initial
policy mo(s) for each state s. Then we iteratively reveal rewards to
the copy of the algorithm for state s as xlsC ;= Qk(s,a i),2 and update
the policy 7z, according to the no-absélute-regret algorithm and
Qk+l(37 (l) = r(57 {1) + }/EP, Tk [Qk(s/7 (l,)].

Call this process local no-regret learning (LONR). It can be
viewed as a synchronous version of Expected SARSA [49] where
instead of using an e-greedy policy with decaying e, a no-absolute-
regret policy is used instead. In the rest of this section we work up
to our main result, that LONR converges to Q*. Like many prior
results using no-regret learning (e.g. [55]), the convergence is of
the average of the Q. matrices.

We work up to this result through a series of lemmas. To begin,
we derive a bound on the average of Q values using the no-absolute-
regret property. We use two slightly different averages to be able
to relate them using the 7~ operator.

LEMMA 4.1. Let Q) = 1/k Z’;zl O andgk =1/k th:(} Q;. Then
~YPk-1 +TQ,(5.a) < Qk(s.a) < ypr1 +TQ, (s.0).  (3)

Proor. By the definitions of LONR and no-regret,

k
Ou.a) = 1> Qils.a)
t=1
=
Tk Z r(s,a) + yEp x, [Q:(s".a)]
t=0

k-1
= r(5,0) + YBpl Y B, 1015,
t=0

k-1
1
> r(s,a) + yEp[max % Z (s’ ai) = pr_1]
! =0
|k
~¥pkot +r(s.@) + yEplmax ¢ > Qu(s" )]
! =0

~YPk-1+7(s,a) + yEp[maxQ, (s", ai)]

= ~Ypr-1+TQ, (s,0)

?Note that we are revealing the rewards of all actions, so we are in the planning
setting rather than the standard RL one. We address settings with limited feedback in
Section 5.2.

The key step is the inequality in the fourth line, where we use
the fact that the policy for state s is being determined by a no-
regret algorithm, so we can use Equation (2) to bound the expected
value of the policy by the value of the hindsight-optimal action
and the regret bound of the algorithm. Similarly, by the stronger
no-absolute-regret property, we can reverse the inequality to get
0(s,a) < ypr_y + Tgk(s, a). This proves Equation (3). O

Next, we show that the range that the Q values take on is
bounded. This lemma is similar in spirit to Lemma 2 of Bellemare
et al. [6]. The full proof is in Appendix B.

LEMMA 4.2. Let ||r|lc = maxs, g |r(s,a)|. Then ||Qr — Qolle <
1/ =plIrlleo +2[1Qolleo
Combining these two lemmas, we can show that Q . 1§ an approx-

imate fixed-point of 77, and that the approximation is converging
to0ask — co.

Lemma 43. [|Q, =T Q, llo < F+1/@ = p)lIrlleo + 2[1Q0ll0) +
YPk-1

It remains to show that a converging sequence of approximate
fixed points converges to Q*, the fixed point of 7.

LEMMA 4.4. LetQo, Q1, . . . be a sequence such thatlimy_,, ||Qx —
T Qklleo = 0. Then limy_,, Oy = Q™.

Combining Lemmas 4.3 and 4.4 shows the convergence of LONR
learning.

THEOREM 4.5. limy_,q, Qk =Q".

4.1 Beyond MDPs

While our results do not rely on perfect recall or terminal states
the way CFR does, so far they are limited to the case of MDPs
while CFR permits multiple agents and imperfect information. We
can straightforwardly extend our results to some settings beyond
MDPs. In Appendix A we show that a version of Lemma 4.1 holds
in MDP-like settings where the transition probability kernel does
not change from round to round but the rewards do. Examples
of such settings include “online MDPs” and normal-form games.
This last result is not particularly surprising as with a single state
LONR reduces to standard no-regret learning, whose convergence
guarantees in normal-form games are well understood. In Section 6
we present empirical results that, despite a lack of supporting the-
ory, demonstrate convergence in the richer multi-agent setting of
Markov games.

5 EXTENSIONS

In this section we consider two extensions to LONR, one allowing
it to be updated asynchronously (i.e. not updating every state in ev-
ery iteration) and the other allowing it to learn from asynchronous
updates with bandit feedback (i.e. the standard off-policy RL set-
ting). These are important as a step toward applying LONR beyond
settings small enough for tabular approaches. This introduces novel
technical issues around the performance of no-regret algorithms
when their performance is assessed on a random sample of their
rounds (rather than all of them). Therefore, we analyze convergence
only in the simplified case where the state to update at each itera-
tion is chosen uniformly at random. We emphasize that this is an



unreasonably strong assumption in practice, and view our results
in this section as providing intuition about why sufficiently “nice”
processes should converge. We demonstrate empirical convergence
in a more standard on-policy setting in Section 6 and leave a more
general theoretical analysis to future work.

5.1 Asynchronous updates

In Section 4 we analyzed an algorithm, LONR, which is similar to
value iteration in that each state is updated synchronously at each
iteration. However, an alternative is to update them asynchronously,
where an arbitrary single state is updated at each iteration. Subject
to suitable conditions on the frequency with which each state is
updated, asynchronous value iteration also converges [7].

A line of work has shown that CFR will also converge when
sampling trajectories [22, 32, 36].

In this section, we show that LONR also converges with such
asynchonous updates. However, this introduces a new complexity
to our analysis. In particular, with synchronous updates there is a
guarantee that Q. (s, @) sees exactly the first k values of each action
of each of its successor states. This allows us to immediately apply
the no-regret property (2). With asynchronous updates, even if we
update all actions in a state at the same time, @k (s, a)’s successors
may have been updated more or fewer than k times, and Q. (s, a)
may have missed some of these updates and observed others more
than once, meaning we cannot directly apply (2). We prove the
following Lemma to show that a particular sampling process con-
verges to a correct estimate of the average regret, but believe that
similar characterizations should hold for other “nice” processes. We
demonstrate empirical convergence of asynchronous LONR when
states are selected in an on-policy manner in Section 6.

LEMMA 5.1. Let t1,...,t be the first k iterations at which s is
updated, s’ be a successor of s, 71, . . ., Ty be the iterations before tj.
at which s’ was updated, and &5 (k) = 1/k Zf:l Ex, Oy, (s’ a) -
1/k’ Zle Epr,, Qr (s”, a). If the state to be updated at each iteration
is chosen uniformly at random then limy_, ., &s¢(k) = 0 with proba-
bility 1.

The proof has two main steps: (1) showing that as time grows
large the average of the number of times each update to s’ is sampled
by an update to s goes to 1 and (2) applying a prior result to conclude
that this means the average of the samples converges to the true
average.

ProoF. Let X; be the number of times s is updated using 7;. The
X; are i.i.d. random variables whose law is the geometric distribu-
tion with probability 0.5. Thus, E[X;] = 1 and by the strong law of
large numbers the sample average of the X; converges to 1 with
probability 1. Let ¢; = En,, Qr;(s’,a) and C; = Zf;l ¢i. Then by
[16, Theorem 3], Zil ¢iX;/C; also converges to 1 with probability

1. Equivalently, limg/_,q, Z;il ¢iX; —C; = 0 with probability 1. O

With this in hand, we can now prove a result similar to Lemma 4.1
for asynchronous updates. The primary difference is that now have
an additional error term in the bounds, but like the term from the
regret it goes to zero per Lemma 5.1. The full proof is in Appendix
B.

LEMMA 5.2. Let s be the state selected uniformly at random and
updated in iteration t + 1, for which this is the k-th update and
let Q4 q(s,a) = 1/k 2?:1 Q1,(s,a) and Q;,1(s",a) = Q.(s’, a) for
s" #s. Then

miny(=&ss (k) = pir) + TQy(s,a)

< Qpa(sia) < maxy(=Ess' (k) + pir) + TQ(s,@).  (4)

It immediately follows that Q, is an approximate fixed-point of
7, and that the approximation is converging to 0 as k — co.

LEMMA 5.3. Let k be the minimum number of times a state has
been chosen uniformly at random for update by time t. Then ||Q, —

TQ¢lloo < ypr—1 + IEK) o

Combining Lemmas 5.3 and 4.4 (the latter of which applies with-
out change) shows the convergence of asynchronous LONR learn-

ing.

THEOREM 5.4. If states are chosen for update uniformly at random
limy_,o, Q; = Q" with prob. 1.

5.2 Asynchronous updates with bandit
feedback

In RL, algorithms like Q-learning are usually assumed not to know
P and so only have access to feedback corresponding to the action
actually taken in the current iteration. In such settings, ordinary
no-regret algorithms are not applicable because they require the
counterfactual results from actions not chosen. However, multi-
armed bandit algorithms, such as Exp3 [2], are designed to achieve
no-regret guarantees in expectation despite only receiving feedback
about the outcomes chosen. It would be natural to adapt LONR
to the on-policy RL setting by replacing the no-regret algorithm
with a multi-armed bandit one. This type of result has previously
been obtained for normal-form games [5], where agents can learn
to play optimally even if they only learn their payoff at each stage
and not what action the other agents took.

To adapt LONR to make use of multi-armed bandit algorithms, we

can use the Q update rule Q;41(s, a) = 1/ (s, a)(r(s, a)+yEx, [Ox(s", a’)]

if a is the action chosen for state s and Q;41(s, a’) = 0 for a’ # a3
The no-absolute-regret algorithm for bandit feedback at s can then
be updated as x7 = r(s, a)+yE,[Qk(s’, a’)]. (We use the raw rather
than importance sampling estimate here because, e.g. Exp3 already
includes importance weighting.) Unlike in Q-learning, we do not
need to average over Q-values to account for the stochasticity in
choice of s” because our convergence results are already for the
averages of our Q-values.

With these definitions, Lemma 5.2 can be immediately adapted
to this setting with the caveat that now the guarantees only hold
in expectation over the choice of action at each iteration and the
resulting state. Furthermore, since we require the state be chosen
uniformly at random, the resulting algorithm is on-policy in the

3The use of importance sampling here is to maintain the structure that successor
states are evaluated as E,;, [Q(s’, @’)]. Alternatively we could use the SARSA-style
update Q;+1(s, a) = r(s, a)+ y Q:(s’, a’) where a’ is the action that was chosen the
last time s” was updated and leave all other Q-values unchanged (this also requires
appropriately adjusting the way the average is computed).



sense that the algorithm is choosing which action to receive feed-
back about, but does not control the sequence of states in which it
acts.

LEMMA 5.5. Let s be the state selected uniformly at random and
updated in iteration t + 1, for which this is the k-th update and
let Qpy4(s.a) = 1/k Zf:l Qr;(s,a) and Q;14(s",a) = Q,;(s", a) for
s” #s. Then

min y(~Ess (k) = pir) + TQy (5, @) ()
< ElQr+1(s, )] < maxy (Lo (k) + p) T Q4 (s, @).

The same analysis from the asynchronous full information case
then yields the following theorem.

THEOREM 5.6. If states are chosen for update uniformly at random,
then limy_, o, E[Q;] = Q".

This convergence of expectation implies that the Q, converge in
probability to Q*, a weaker guarantee than the almost sure conver-
gence of algorithms like Q-learning. We leave deriving a stronger
convergence guarantee with more natural assumptions about state
selection to future work.

6 EXPERIMENTS

Our theoretical results in Sections 4 and 5 are restricted to (online)
MDPs and normal form games and require a number of technical
assumptions. The primary goal of this section is to provide evidence
that relaxation of these restrictions may be possible.

Another goal of these results is that while the theory behind
LONR calls for a regret minimizer with the no-absolute regret prop-
erty, we seek to understand the performance of various well-known
regret minimizers within the LONR framework, which may or may
not be no-absolute regret. One popular class of no-regret algorithms
is Follow-the-Regularized Leader (FoReL) algorithms, of which Mul-
tiplicative Weights Update (MWU) is perhaps the best known. MWU
works by determining a probability distribution over actions by
normalizing weights assigned to each action, with the weights
equal to the exponential sum of past rewards and a learning rate. It
satisfies the stronger non-negative regret property and therefore
the no-absolute regret property. Another algorithm we consider is
Optimistic Multiplicative Weights Update (OMWU), which extends
MWU with optimism by making the slight adjustment of counting
the last value twice each iteration, a change which guarantees not
just that the average policy is no-regret, but that the last one (the
last iterate) is as well [15]. We also consider Regret Matching [27]
(RM) algorithms, which are the most widely used regret minimizers
in CFR-based algorithms due to their simplicity and, unlike FoReL,
lack of parameters. With RM, the policy distribution for iteration
t+1 is selected for actions proportional to the accumulated positive
regrets over iterations 0 to t. Regret Matching+ (RM+) is a variation
that resets negative accumulated regret sums after each iteration
to zero, and applies a linear weighing term to the contributions to
the average strategy [46]. The current state of the art algorithm,
Discounted CFR (DCFR), is a parameterized algorithm generaliz-
ing RM+ where the accumulated positive and negative regrets are
weighed separately as well the weight assigned to the contribution
to the average strategy [11]. The parameters used are & = 3/2, =0

and y = 2, which are the values recommended by the authors. All of
these variants of RM are known to not have last iterate convergence
in general and to not satisfy the non-negative regret property. (We
do not know whether they satisfy the no-absolute-regret property.)

In addition to these standard no-regret algorithms, we introduce
a new variant of RM called Regret Matching++ (RM++), which
updates in a similar fashion to Regret Matching but clips the in-
stantaneous regrets at 0. That is, if R?(a) is the regret of action a in
round t RM tracks 3, R?(a) while RM++ tracks the upper bound
>, max(R!(a), 0).4 In the appendix we prove that RM++ is in fact
a no-regret algorithm. The proof is a minor variation of the proof
for RM+ [47]. We also demonstrate that RM++ empirically has last
iterate convergence in a number of settings. This may be of inde-
pendent interest as unlike OMWU it is not obviously describable
as an optimistic version of another regret minimizer.

Lastly, we present results for the first two versions of LONR we
analyzed theoretically: value-iteration style (LONR-V) and with
asynchronous updates (LONR-A). For LONR-A, while the theory re-
quires states be chosen for update uniformly at random, we instead
run it on policy. (We add a small probability of a random action, 0.1,
to ensure adequate exploration.) Our results show that empirically
this does not prevent convergence.

The settings we use for our results are chosen to demonstrate
LONR in settings where neither CFR nor standard RL algorithms are
applicable. For CFR, this means we choose settings with repeated
states and possibly a lack of terminals. For RL, this means consid-
ering settings with multiple agents. Since our exposition of LONR
is for a single agent setting, we now explain how we apply it in
multi-agent settings. We use centralized training, so each agent has
access to the current policy of the other agent. This allows the agent
to update with the expected rewards and transition probabilities
induced by the current policy of the other agent.

6.1 NoSDE Markov Game

Our primary setting is a stateful one with multiple agents. Such
settings are naturally modelled as Markov games, a generalization
of MDPs to multi-agent settings. A Markov Game T' is a tuple
(S,N,A,T,R,y) where S is the set of states, N = {1,...,n} is the
set of players, the set of all state-action pairs A = [Jses({s} X
[1nen Ans), a transition kernel T : A +— A(S), and a discount
factor y.

Because Markov Games can model a wide variety of games,
algorithms designed for the entirety of this class must be robust
to particularly troublesome subclasses. One early negative result
found that there exist general-sum Markov Games in which no
stationary deterministic equilibria exist, which Zinkevich et al. [54]
term NoSDE games. These games have the property that there exists
a unique stationary equilibrium with (randomized) policies where
the Q-values for each agent are identical in equilibrium but their
equilibrium strategies are not. Furthermore, additional complexity
exists as the rewards of each player in this NoSDE game can be
adjusted within a certain closed interval, where the resulting Q-
values remain the same, but the stationary policy changes, thus
making Q-value learning even more problematic.

4The same idea of clipping instantaneous regrets at 0 has recently been used by
actor-critic approaches [45].
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Figure 1: NoSDE Markov Game
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Figure 2: Average Policy for player1. The two lowest lines are
the first demonstration of convergence to stationary equilib-
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Figure 3: Last iterate for playerl. With RM++ or OMWU,
LONR converges with the last iterate, not just on average.

The reward structure for the particular NoSDE game we use is
shown in Figure 1a for Player 1 and Figure 1b for Player 2. Con-
ceptually, a NoSDE game is a deterministic Markov Game with 2
players, 2 states, and each state has a single player with more than
one action. The dynamics of a NoSDE game become cyclic as each
player prefers to change actions when the other player does as well,
which causes the non-stationarity. In this instance, when player 1
sends, player 2 then prefers to send. This causes player 1 to prefer
to keep, which in turn causes player 2 to prefer to keep. Player 1
then prefers to send and the cycle repeats. Due to these negative
results, Q-value learning algorithms cannot learn the stationary
equilibrium. The state of the art solution is still that of Zinkevich

Ry(2,KEEP) = 1

et al. [54] who give a multi-agent value iteration procedure which
can approximate a cyclic (non-stationary) equilibrium.

No-regret algorithms are known to converge in self-play, but
not necessarily to desirable points, e.g. Nash Equilibrium. This
convergence guarantee is in the average policy. Our first results
look at the average policies in the NoSDE game with LONR-V.
Figure 2 show behavior of the average probability with which player
1 chooses to SEND. The unique stationary equilibrium probability
for this action is 2/3. Each algorithm shows convergence, but not
to the same value. Not shown but important is that each also is
converging to the equilibrium Q* in the average Q values.

RM and MWU converge to a similar average policy (top two
lines). These two algorithms choose based on tracking the sum of
regrets and rewards respectively. RM+ and DCFR follow a simi-
lar path (next two lines), which makes sense given that RM+ is a
special case of DCFR. RM++ and OMWU are the only two which
find the stationary equilibrium policy (bottom two lines). These
two are also the only two with last iterate convergence properties
(OMWU provably and RM++ empirically). Figure 3, which plots the
current iterate for each regret minimizer, shows that this holds in
our NoSDE game as well. RM++ and OMWU achieve last iterate
convergence while for the other four cyclic behavior can be seen.
This result highlights NoSDE games as a setting where it would
be interesting to theoretically study last iterate convergence in be-
tween simple normal form games [4, 41] and rich, complex settings
such as GANs [14].

While the theory behind OMWU states that the last value need
only be counted twice, our results highlight the difference in the
last iterate when more optimism is included (i.e. the last value is
counted more than twice.) Specifically, in Figure 4a , we plot the last
iterate for increasing counts of the last value. The figure indicates
the role increased optimism plays in not only convergence versus
divergence, but in how quickly convergence happens. In this case,
despite the theory, counting twice does not lead to convergence in
the last iterate, but 4 and above does. This simultaneously shows a
negative and positive result: increased optimism is not known to
work or be required in any other settings. Theoretically exploring
this phenomenon is an interesting direction for future work.

Lastly, we analyze LONR-A, the asynchronous version of LONR.
We restrict our results to the two which show last iterate conver-
gence, RM++ (Figure 4b) and OMWU (Figure 4c), plotting 100 runs
of each. They show that, despite a more natural process for choos-
ing which state to update than our theory permits, we still see
convergence.

6.2 Additional Experiments

Additional experiments which bridge the gap from MDPs to NoSDE
Markov Games are presented in the Appendix. For a “nicer” Markov
game than our deliberately challenging NoSDE game, we use the
standard simple 2-player, zero-sum soccer game [38]. With any
of our six regret minimizers both LONR-V and LONR-A achieve
approximate equilibrium payoffs on average. For a setting to probe
the assumptions of our theory in a setting closer to it, we run
LONR on the typical benchmark GridWorld environment, an MDP.

5The figure shows last iterate convergence of the policy. This also implies convergence
of the value estimates. See Appendix C.2.
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Figure 5: 2-player, zero sum soccer game [38]: All tested no-
regret algorithms combined with LONR reach equilibrium
between opposing players in self-play.

Specifically we use the standard cliff-walking task which requires
the agent to avoid a high-cost cliff to reach the exit terminal state.
Again, LONR-V and LONR-A learn the optimal policy (and optimal
Q-values) despite regret minimizers that may not satisfy the no-
absolute-regret property and, in the case of LONR-A, on policy
state selection.

7 CONCLUSION

We have proposed a new learning algorithm, local no-regret learn-
ing (LONR). We have shown its convergence for the basic case of
MDPs (and limited extensions of them) and presented empirical
results showing that it achieves convergence, and in some cases last
iterate convergence, in a number of settings, most notably NoSDE
games. We view this as a proof-of-concept for achieving CFR-style
results without requiring perfect recall or terminal states.

Our results point to a number of interesting directions for future
research. First, a natural goal given our empirical results would
be to extend our convergence results to Markov games. Second,
CFR also works in settings with partial observability by appro-
priately weighting the different states which correspond to the

same observed history. Third, we would like to relax the strong
assumptions our results about asynchronous updates require. All
three seem to rely on the same fundamental building block of better
understanding the behavior of no-regret learners whose rewards
are determined by (asynchronous) observations of other no-regret
learners. In particular, this leads to challenges due to the resulting
non-stationarity of the transition kernels, which leads to hardness
results that would need to be circumvented [44, 51, 52]. Some recent
progress along these lines has been made [21, 34], but more work
is needed.

Orthogonal directions are suggested by our empirical results
about last iterate convergence. Can we establish theoretical guar-
antees for NoSDEs or Markov games more broadly? Is RM++ guar-
anteed to achieve last iterate convergence? It empirically does in
standard games like matching pennies and rock-paper-scissors
which trip up most regret minimizers. If so does this represent a
new style of algorithm to achieve last iterate convergence or is
there a way to interpret its clipping of regrets as optimism?

A BEYOND MDPS

If we move beyond MDPs, P and r are no longer stationary and in
general we have a Py and Ry. This causes problems with the proof
of Lemma 4.1. Recall the initial part of that proof, updated to this
more general setting:

Ok(s.a) = Q:(s.a)

bl I
Nglg

LN
[l
LA

re(s,a) + YEp, x,[Q: (s, a")]

| =
~
Il
S)

In the original proof, we pulled the expectation over P outside the
sum, but now we cannot. In particular, writing the expectation
more explicitly gives

k-1

L ety Y B |50 [0 )] ©)
t=0 s’eS

We can still reverse the order of the sums, but the weighting terms

now depend on ¢ so they cannot be moved outside. More problemat-

ically, they also depend on s and a, so it is not immediately clear how



to generalize our results. For intuition, consider a state s’ where
there are two actions. At odd k, r(s’,a1) = 1 and ri.(s”, az) = 0 and
vice versa at even k. It is a valid no-regret strategy to randomize
uniformly over the actions, but if the Py are such that you only
arrive in s’ from s at odd k, then this gives an incorrect estimate.
In the remainder of this section, we analyze a special case where
we can prove a variant of Lemma 4.1.

A.1 Time-invariant P

If P does not change with k, but r does, we can still prove a ver-
sion of Lemma 4.1. With a single state, this captures learning in
normal-form games, where no-regret learning is indeed known to
work. This assumption is also common in the literature on “online
MDPs” [18, 39, 40, 53] In this setting, a version of Lemma 4.1 can
be proved, but now rather than having a constant operator 7~ it
now changes over time as

TkQ(s,a) = 1;.(s,a) + yEp [ml@\X Qs”, a)]- ()
LEMMA A.1.
~YPk-1 + TkQ, (5.0) < Qp(s,0) < ypr—y + TrQ, (s.@).  (8)
PROOF.
Q(s,a)

1 k-1 1 k-1
=% Z re(s,a) + yEp[+ Z Er [Qe(s", a")]]
=0 £=0

k-1 k-1
1 1 ,
> P ;Z:(:) re(s,a) + )/Ep[miax p ;) Q1(s",ai) = p-1]

= ~YPr-1 + (s, @) + yEp[max Q, (5", ai)]

= ~VPk-1 + Tk Q, (s, @)

As before, the key step is applying the no-regret property to ob-
tain the inequality and we apply the same argument with the no-
absolute-regret property to obtain the reverse inequality. O

B OMITTED PROOFS
LEMMA 4.2. Let ||r||loo = maxg, g |r(s,a)|. Then [|Qr — Qolleo <
1/(1 = plIrlleo + 2[|Qo]leo

PrOOF. By definition, Qi (s, a) = r(s,a) + yEp r, [Qk—_1(s", a")].
Thus by the subadditive property of norms, ||Qklle < |||l +
711Qk1leo- By induction, [|Qx |l < (Z52) ¥F)lIrlleo + ¥¥11Q0llco.

Thus [|Qk = Qolleo < [1Qklleo +11Qolleo < 1/(1 =y)lIFllo +2[IQ0] |co-
O

Lemma 43. [|Q, =T Q, lle < £/ = pllrlleo + 2/1Qolleo) +
YPk-1

ProOOF.

19, —7Q,llo

<119, = Oklleo +11Qk = TQ, Ileo

=119, ~ Qklleo + max Qk(s,0) = TQ, (s,a)|
<119, = Oklleo + ¥Pr-1

1
= EHQk = Qolloo +ypr—1

< %(1/(1 = PlIrlleo +2/1Qolle0) + ¥ Pi—1

The first step follows by the subadditive property of norms, the sec-
ond by definition, the third by Lemma 4.1, the fourth by definition,
and the fifth by Lemma 4.2. O

LEMMA 4.4. Let Qo, Q1, . . . be a sequence such thatlimy_,, ||Qx —
T Ok lleo = 0. Then limy_,o, Qg = O*.

Proor.

10k = Q" lleo < 110k = T Qklloo + 1T Ok — Q*llew
=10k = T Qklloo + 1T Ok = TO" o
< 1Qk = T Qklloo + ¥11Qk — Q%o

The first step follows by the subadditive property of norms, the
second by optimality of Q*, the third because 7 is a contraction
map. Rewriting yields

1
10k = Q%lleo < mlle =7 Qkll

Thus, by assumption, lim sup;._, ., ||Qx —Q*|l < 0. Since ||Q —

Q*lo 2 0, liminfy_,o [|Qx = Q*lleo 2 0. Thus limy e [|Qx —
Q*||eo = 0 and the result follows. o

LEMMA 5.2. Let s be the state selected uniformly at random and
updated in iteration t + 1, for which this is the k-th update and

let Q;.1(s,a) = 1/k Z;‘zl Qy,(s,a) and 0;41(s",a) = 0,(s',a) for
s’ #s. Then

miny(=&ss (k) = pgr) + TQy(s, a)

< Q1415 @) < maxy (=5 (k) + pir) + TQ4(s, @).



ProoF. By the definitions of LONR and no-regret algorithms,
§t+1 (S, a)

1 k
= 12,69
i=1

k
r(s,a) + yEp,x,, [Q1,(s". a")]

>r|>—‘

i=1

k
= r(5.0) + YEpLE Y B, 1045 )]
i=1

k/
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> r(s, @) + yBp[ &5y (k)+maX—Zer(S ) - pi]

i=1
> miny (= (k) = i) + (s, @) + yEp[max o Z Qr,(s". ")

= miny(=Ess (k) = pi) + (s, a) + yEp[max Q,(s",d")]

= miny(-{ss (k) - )T Qy(s,a")]

This argument is essentially the same as in the proof of Lemma 4.1,

except that in the fourth equality we apply the definition of ¢ to
yield a form to which we can then apply the no-regret property.
As before, the other half of the proof is symmetric and uses the
no-absolute-regret property. O

C REGRET MATCHING++

In this section, we prove that RM++ is a no-regret algorithm and
then demonstrate that it has empirical last iterate convergence.

Lemma C.1. Given a sequence of strategies o', ..., o, each defin-
ing a probability distribution over a set of actions A, consider any
definition for Q*(a) satisfying the following conditions:

(1) Q%(a) =0

(2) Q'(a) = Q" Y(a) + (r'(a))* where (x)* = max(0,x)

The regret-like value Q! (a) is then an upper bound on the regret
R'(a) = Xi_, ' (a)

Proor. The lemma and proof closely resemble those in [46],
[11].

For any t > 1, Q*!(a) — Q%(a) = Q%(a) + max(r‘(a),0) —
o' > Q.t(a) + rt_(a) - Q%) = R.Hl(a) - R*(a). This gives Q%(a) =
Yi Q'@ - Q7 (@) 2 £, R(a) - R (@) = R'(a). o

LEmMA C.2. Given a set of actions A and any sequence of rewards

v! such that [v'(a) — v*(b)| < A for all t and all a,b € A, after
playing a sequence of strategies determined by regret matching but

using the regret-like value Qf (a) in place of RT (a), Q% (a) < A\2|A|T
PRrooOF. Again, the lemma and proof closely follow [46], [11].
(max, Q%(a))? = max, Q% (a)? < Y, Q%(a)®
= 2a(Q" @) + (F(a)*)
= 2a(Q" " (a) + (v'(a) = Xp o' (b)0* (b)) *)?

—— RM++

Figure 6: LONR-V policy with RM++ for Rock-Paper-Scissors
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Q%a) = 0 for all a, so by induction (max, Q*(a))? < 2T|A|A?
which gives 0T (a) < A\2|A|T o

C.1 Empirical results for RM++

Figure 6 shows that the last iterate of RM++ converges to the equi-
librium of rock-paper scissors. Similar results, not shown, hold for
matching pennies. Prior work as shown that both RM and RM+
diverge in these games in terms of the last iterate (although they
converge on average). We also tested RM++ in Soccer, and as the
no-regret algorithm for CFR in Kuhn poker and for LONR in Grid
World. In all cases we achieved last iterate convergence.

C.2 Last Iterate Convergence of Value
Estimates

Our empirical convergence results show last iterate convergence
for policies. However, our theoretical results were about the con-
vergence of the Q-value estimates. At first glance this may appear
an oversight, but a simple argument shows that last iterate con-
vergence of the policies implies last iterate convergence of the
Q-value estimates. In particular, last iterate converenge means that
|7k -Qk(s) — maxg Qk(s, a)| < pg, with limy_,, pr = 0. By Theo-
rem 4.5, limg _, Qk = Q*. Combining these shows that the 7 are
converging to 7, which implies convergence of the Q-values.

D EXPERIMENTAL DETAILS
D.1 LONR pseudocode

In the following pseudocode, N is the total number of agents, n is
current agent, and S and s represent the total states and current state
respectively. A, (s) denotes the set of actions for player n in state



s. A_p(s) denotes the set of actions of all other agents excluding
agent n in state s. a refers to action of the current agent n when
unspecified. The policy update uses any no-regret algorithm. The
update for Regret Matching++ is shown here.

Algorithm 1 LONR and Updates

states, and receiving rewards/costs from non-terminals, CFR is not
immediately applicable. Figure 7b and Figure 7c shows the results
for both LONR-V and LONR-A in terms of the Q-value for the start
state’s optimal action of North. LONR-V is deterministic with a
single agent, so the plot represents a single run. For LONR-A we
plot the results of 100 runs and their average. In both cases, we see
convergence.

(a) GridWorld: the agent’s goal is to move from S to the 0 terminal.
Each move has a cost of 1 and the shaded states are terminals with a
-100 payoff. This particular grid world is the cliff walking task use by
Van Seijen et al. [49] to evaluate Expected SARSA.
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1: procedure LONR-V(T, N, S, A,) > Value iteration

2 VneN,s€S, an € Ay(s):

3 Qo(n,s,an) « 0, mo(n,s,an) < 0

4 RegretSums(n, s, an) < 0, PolicySums(n, s, an) < 0

5:

6 for ¢t from 0 to T do

7 VneN,seS:

8 Q-Update(n, s, t)

9:

10: VneN,seS:

11: Policy-Update(n, s, t)

12:

13: procedure Q-UPDATE(n, s, t) > Update Q-Values

14: for each action ap, € Ay(s) do

15: successors = getSuccessorStatesAndTransitionProbs(n, s, an,

16: ActionValue < 0

17: for s’, transProb, reward in successors do

18: nextStateValue < 3.or Qi(n,s’,ap) X m(n, s’ ay,)

19: ActionValue <«  ActionValue + transProb -
(reward + y - nextStateValue)

20: Qt+1(n, s, an) < ActionValue

21:

22: procedure Poricy-UPDATE(n, s, t) > Regret Matching++

23: ExpectedValue = 31, Qr+1(n, s, an) X m¢(n, s, an)

24:

25: for a, € A,(s) do > RM++ Update Rule

26 immediateRegret — max(0, Q¢+1(n, s, an) —
ExpectedV alue)

27: RegretSums(n,s,a,) <«  RegretSums(n,s,a,) +
immediateRegret

28:

29: totalRegretSum = ) ;RegretSums(n, s, i)

30:

31: for a, € Au(s) do > Update Policy

32: if totalRegretSum > 0 then

33 7Tt+1(n, s, an) _ RegretSums(n,s,a,)

totalRegretSum

34: else

35: 7r+1(n, 8, an) = |An1(s)|

36:

37: PolicySums(n, s, ay) — PolicySums(n, s, ay,)

+mr+1(n, s, an)

D.2 LONR on GridWorld

This task is a simple deterministic grid world MDP, in particular
the cliff walking task used by [49], illustrated in Figure 7a. As
moves have a living cost of 1, we use y = 1 (The optimal value
from S is therefore -13.) Because of the possibility of revisiting
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14000

(c) LONR-A on GridWorld

Figure 7: Tasks



12 —— LONR V RM
—— LONR V_RM+
10 LONR_V_DCFR
LONR_V_EM++
Ed 08 — LONR V_MWU
= 0. V!
£ LONR_V_OMWU
— i
5 06
E‘ o e
LR |
0z
0.0 T T T T
o 200 400 600 800 1000

Number of Games

Figure 8: Soccer Game

D.3 Soccer Game

Here we analyze a simplified version of soccer, originally introduced
in [38], and subsequently widely used as an early benchmark game
for multiagent Markov Games. Our implementation differs slightly
in size, but maintains the general rules of the original game.

The soccer game is a two player, grid-style version based on
real-life soccer. The size of the grid (field) is 2x4, where the first and
last columns are the areas where each player can score. The 2x2
grid between the goal zones are cells in which the players can move.
The game begins with each player set to a position on the grid,
where one player has control of the ball. At each step of the game,
the players each take an action, which are then executed jointly.
The defending player is capable of stealing the ball by landing in
the same cell as the player with the ball. If the player controlling the
ball enters either of the goal cells, they receive 100 points and the
other player receives -100 points, thus the game is zero-sum. For
additional complexity, the order in which the actions are processed
each iteration is randomized.

We run 2 agents against each other with LONR with each regret
minimizer for 1000 games (a game runs until a player scores). We
discount with y = 0.9 to induce agents to score quickly. Before
each new game, the position of the players (restricted to non-goal
areas) is randomized, as well as who has initial control of the ball.
The players then play 1000 games (with initial conditions again
randomized) against each other using their learned policies (in this
case, the average policy after training.) Figure 8 shows the results
of the trials. Each regret minimizer shows signs of convergence in
self-play, as indicated by neither player dominating the other (each
ends in the average as ties.)
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