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Stabilizing Formation Systems With
Nonholonomic Agents

Thomas L. Dearing ™, Xudong Chen

Abstract—This letter investigates the effects of adapting
decentralized gradient-based control laws to nonholonomic
agents in networked formation systems. Using the unicycle
agent model and a standard cascade control structure, it is
shown that the stability margins of the cascaded systems
deteriorate as the numbers of agents increase. This trend
indicates problems with both convergence and scalabil-
ity. It is then shown that the asymptotic behaviors of the
nominal gradient-based control laws can be recovered by
introducing a bump function that allows forward motion
only when the agents are oriented in appropriate directions.
The proposed solution ensures almost global convergence
and can be applied to formation systems of all sizes. Finally,
comprehensive simulation results show that the usage of a
bump function also reduces the total energy consumption
required to reach a target formation.

Index Terms—Cooperative nonholonomic

systems, Lyapunov methods.

control,

[. INTRODUCTION

ULTI Agent Systems (MAS) have been gaining an
increasing amount of traction over a wide range of
applications where the coordination of multiple inexpensive
systems is preferable to a complex centralized solution [1]. A
primary factor to consider when designing a multi-agent con-
trol strategy is whether the agent dynamics are holonomic or
nonholonomic. A system is called holonomic when it adheres
to constraints of the form f(q1, ..., gu, ) = 0, i.e., its number
of generalized coordinates g; is equivalent to its controllable
degrees of freedom [2]. Other constraints are called nonholo-
nomic and introduce non-integrable path-dependencies to the
system, allowing it to reach different configurations while
achieving the same states ¢;. For example, a wheel can be
rotated by any angle by rolling it around and back in a closed
path to the same position g;.
In some cases, MAS’s formally composed of nonholonomic
agents are treated as holonomic under reasonable assump-
tions. Aircraft for example, can be approximated as holonomic
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systems during vertical take-off and landing under the assump-
tion that the attitude dynamics are much faster than the
position dynamics [3]. This has led to a variety of coordina-
tion strategies for aerial robotic swarms that assume holonomic
behavior [4]. We direct the reader to [5] and the refer-
ences therein for a survey of formation control that covers
nonholonomic agents as special cases.

In this letter, we consider a new approach to the formation
control of unicycle agents. This problem is not new, and many
recent works on the subject (e.g., [6]-[8]) have presented excit-
ing results in both flocking and tracking capabilities. However,
these works require fixed target agent positions or displace-
ments from a virtual center. In contrast, we consider the target
distances between agents, a modification which (1) removes
the need for a global coordinate system and (2) fundamentally
changes the dynamics, associated stability issues, and the solu-
tions addressing those issues. One work which has developed
a distance-based control law is [9]. However, this law provides
only local stability guarantees. In contrast, our result guaran-
tees almost global convergence to the target formation if an
appropriate graph is chosen.

This letter investigates how the reliance on time-scale sepa-
ration can be problematic when a nominal multi-agent control
strategy is adapted to a formation system with nonholonomic
agents. By analyzing a MAS composed of unicycles, it is
shown that certain gradient-based control laws become unsta-
ble in the presence of non-instantaneous attitude dynamics.
Moreover, it is shown that this approach is not scalable as the
time-scale separation needed to recover stability is a monoton-
ically increasing function of the number of agents. To resolve
this issue, we propose the use of bump functions as a means of
adapting the nominal gradient-based control laws to nonholo-
nomic (unicycle) agents. This solution is found to guarantee
the same stability properties as the nominal gradient dynam-
ics independent of the size of the MAS. It is also shown
through extensive numerical simulations that the introduction
of a bump function greatly improves control efficiency with
respect to the unmodified coordination strategies.

Bump functions have been used extensively in the litera-
ture to smoothly stitch together potential functions, particularly
when incorporating range-dependent behaviors such as colli-
sion avoidance [10]-[12]. To the author’s best knowledge, the
use of bump functions to bridge the gap between decentral-
ized feedback control laws and nonholonomic agent dynamics
is original to this letter. The main interest in this approach is
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that it provides a simple, robust, and adaptable way to imple-
ment many existing networked control strategies such as [13]
on nonholonomic agents.

This letter is organized as follows: Section II describes the
intuitive approach used to implement holonomic coordination
strategies on nonholonomic systems. Section III identifies the
limitations of this approach and proposes a suitable modi-
fication that is guaranteed to ensure stability regardless of
the number of agents. Section IV provides extensive simu-
lation results which showcase the effectiveness and relative
performance of the proposed solution. Finally, Section V
summarizes this letter with concluding remarks.

II. PROBLEM FORMULATION
A. Distance-Based Formation Control

In this letter, we address the control problem of stabilizing n
mobile, autonomous agents to prescribed distances from each
other. The information flow topology of a formation system
is represented by a connected, undirected graph G = (V, &)
where V is the set of nodes (agents), £ is the set of edges, and
(i,j) € € indicates that agents i and j can communicate with
each other. Given the position z; = [x;, y;]T € R?, let dij(t) =
llzj(#) — zi(2) ||, be the distance between agents i and j at time 7.
Then, a formation (z1, ..., z,) is said to be a target formation
if the relative distances dj; match certain desired inter-agent
distances d;; € R for each (i, ) € €. If G is infinitesimally
rigid, there are only finitely many target formations (modulo
rotations and translations). We say that a formation system has
reached a target formation when ||z;(f) — zj()|| = Ezij for all
(i,j) € £. For bearing and angle-based formation control, the
reader is referred to [14], [15] and references therein.

Given a networked system of n agents subject to the
simplified dynamic model

Xi(1) = uxi(@),  Yi(0) = uyi(0), (D

consider the following nominal feedback law based on earlier
works [16]-[18],

Bﬁﬂ:=ﬁu=kv§:auw¢wxq—zm @
Vi ‘
JeN;

where k, € R is the unicycle’s forward velocity control gain,
N;=1{j| (., i) € &} is the set of neighbors for agent i, and the
interaction law a(-,d;) : R>9 — R is a strictly increasing
C!-function for each fixed c_i,-j, and satisfies a(El,-j, El,-j) =0.In
future, we use the notation a;;(s) = a(s,c_l,-j) for each edge
(i,j) € £. As detailed in [18], the controlled system (1)-(2)
follows the gradient descent of the potential function

@) =k Y

dij D
/El a;j(|s])sds, g = —F;. 3)
G.i)e€ ¥ % !

As with any multi-agent gradient-descent formulation, (3) is
guaranteed to converge to a local minimum from almost all
Initial Conditions (ICs).

To express this precisely, we let A:={z | d®/dz = 0} be
the set of critical formations of ® (that is, both stable and
unstable equilibria). If the potential function ® is an equivari-
ant Morse function with respect to the group SE(2) of rigid

motions [19], [20], then the set A is finite modulo rotations
and translations. For example, this is the case when the under-
lying graph G is a triangulated Laman graph and some other
mild assumptions on a are satisfied (see [18]). Let A € A
be the set of local minima of & (stable equilibria). Then,
the stable manifolds of A; are open and dense in the entire
state space of the formation system. As such, we say that the
dynamics (2) are almost globally convergent to formations in
A or equivelantly that A, is almost globally stable. Moreover,
if G is a triangulated Laman graph, then it is shown in [18]
that A; contains only desired target formations, and (2) renders
A almost globally asymptotically stable. For issues concern-
ing the strict global stability of such systems, we refer the
reader to [21].

B. Formation Control With Unicycles

In many applications, the individual agent dynamics are
nonholonomic. For example, consider the unicycle dynamics

Xj = Uy jcosb;,
Vi = Uy, sin 9,',
Oi = Uz, 4)

where 6; € R is the angle between the x-axis and the
agent’s forward direction, and u, ;, u; ; are the control inputs
for forward movement and rotation. These dynamics are
nonholonomic due to the zero lateral velocity constraint

X; sin(6;) — y; cos(6;) = 0.

For convenience, the agent’s position and orientation vectors
are concatenated as z := [z1;--- ;Z,] and @ = [61;--- ; 6,].
Note that results obtained using this simple kinematic model
can be adapted to force-controlled models using appropriate
velocity-tracking controllers (see [6]).

For this model to converge to a target formation under
the same information flow assumptions as (1), an intuitive
approach is to adapt the nominal feedback law (2) to the
unicycle dynamics (4). Specifically, given the real-time tar-
get orientation resulting from the nominal feedback control
law 6; = atan2(F;), consider the inner-outer loop controller

uy,i = ||Fill2, Ur;i = —kobi, )

where kg € R is the orientation control gain, and 0; == ((6;—
;) + 7 mod 27) — 7 is the agent’s orientation error (shown
in Figure 1) rounded to (—m, 7] via the modulus function.
Note that this definition of 6; can switch rapidly at the £
boundary, but this can be corrected by the hysteresis extension
éi € (—(@(mr +¢€), 7+ €) for some € > 0.

As is shown in Figure 2, the position dynamics z are driven
by the outer-loop, which are based on the nominal control
law (2), whereas the orientation dynamics 6 are controlled
separately via an inner-loop feedback. Combining (4) and (5),
the closed loop dynamics are

2 = R(O)F;,
cos 6;

6=~k R@) = [ .
sin 6;

—sin 91-:|7 )

cos 6;
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> T

Fig. 1. Unicycle Formations in R2. The current physical positions and
orientations of the agents are indicated in blue, while a target formation
and the nominal gradient-descent direction F; from (2) are shown in red.

< u
i = pO)IIFill . 61lz01 1z
0 T sin 0; Ky
i I, Inner_Loop___ ..
< 0 Tlo
; u, :
i 0 | uri = —kob; 0 = u; 5 §‘ ;

Fig. 2. Unicycle Cascade Feedback Diagram.

where the rotation matrix R(éi) captures the misalignment of
the unicycle’s orientation from (2).

To ensure stability, this approach fundamentally assumes
that the inner-loop (orientation) dynamics are much faster than
the outer loop (position) dynamics [22]. This requirement is
captured by the gain ratio k. := kg/k,. One would expect
that, as k, — oo, the behavior of the new system (6) will be
comparable to the nominal system (2). As is detailed in the
next section however, this is not sufficient to ensure stability
for an arbitrary number of agents.

I1l. STABILITY ISSUES AND A SCALABLE SOLUTION

In this section, we examine the stability of (6) in the pres-
ence of unbounded and bounded interaction laws. We then
present a slight modification which guarantees almost global
convergence to the target formation.

A. Unbounded Interaction Laws

Consider the case where the interaction law a;i(s) is
unbounded so that |la;|l,, = oo and |F;|| is not globally
Lipschitz. Intuitively, the stability of (6) is dependent on the
gain ratio k, := kg /k,. Indeed, if the orientation errors are suf-
ficiently large (i.e., |0;| > 7/2), the agents will initially move
away from their target positions. Given a sufficiently large ini-
tial separation, the agents are then at risk of accelerating in
an outward spiral if k, is not large enough to quickly re-orient
them inwards. The simulations in Figure 4 support this hypoth-
esis for the unbounded interaction law a;;(d;j) = d;j — d;j. The
results were obtained by constructing Laman graphs of size
n = 2 to n = 12 using the method illustrated in Figure 3.
Given the target distances c_lij =2, V(,j) € £, we ran 100

Fig. 3. Rigid Laman graphs by iterative Henneberg construction. This
construction is used for simulations in both unbounded and bounded

cases.
* k, Margin Estimate
Fit k7 (n) ~ 108n"4 — 124

200

a
o

Gain Ratio k,
g 3

0 n L L L L
2 4 6 8 10 12

Number of Agents n

Fig. 4. Numerical approximation of the stability boundary k;(n) for the
unbounded interaction law a = dj — dj. ki(n) was estimated for each
n using bisection for 100 random deployments. A least-square fit of the
pointwise maximum of these results is also provided.

randomized ICs z(0) and 6(0) and estimated the stability mar-
gin k, via the bisection method. The range of these estimates
and their maximum k' (n) for each n are shown in Figure 4.

As shown in the simulation results, one requires large gain
ratios k, to prevent the formation system (6) from diverging
even when n is relatively small (e.g., for n = 6, we have
k*(6) ~ 100). Additionally, the monotonically increasing fit
for k7 (n) also suggests that the approach has poor scalability.
In fact, the following proposition shows that system (6) cannot
be globally convergent for any bounded k.

Proposition 1: Let a be an unbounded interaction law.
Then, for any gain ratio k. and network size n, there exists
a rigid graph G, a target formation, and an initial condition
(z(0), 6(0)) such that the formation diverges to infinity.

Proof: For the case n = 2, let 5_112 be the target distance, let
d > d1> be given, and take the symmetric ICs

14
6:(0)] = %[d 0 = (7)

[%(0) (0

From the symmetry of the ICs, the center of the formation is
fixed at the origin V¢ > 0. At 1 = 0, v = ||F;|| is the tangential
velocity along the circle and 6 = 6 is the angular rotation
rate. The sufficient condition v > 6r for the agents to move
radially outward at # = O is then

kr < 4lara(d)|/m. ®)

Since ajp is positive, monotonically increasing, and
unbounded for d > dj,, this inequality can be satisfied
by sufficiently large d for any k. > 0. Let such d be given
which also satisfies aj2(d) > 1. We then have that dlz(O) >0
and~%|§i|t=0 > (0. Moreover, c'ilz cannot be negative as long
as 6; > 0. To achieve convergence, it follows by symmetry
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Fig. 5. Numerical approximation of the stability boundary k;(n) for
the unbounded interaction law a. Experimental design is identical to
Figure 4.

that the system would necessarily have to pass through a
similar configuration (i.e., 16;] = w/2) with dip(f) > d.
However, since (8) would also hold for any such d>(¢) > d,
the system cannot converge to the target formation. Moreover,
since ||F;|| grows faster than dj> for any aj2(dj2) > 1, this
initial condition and network topology will also diverge.

For n > 2, we construct a similar circular deployment using
a spoke graph. Let n — 1 of the agents be spaced equally
around a circle with angular spacing ¢ = 27/(n — 1) and
chord distance d between adjacent agents. Placing agent n at
the origin with arbitrary orientation, the ICs for the remaining
n — 1 agents are given by

o | cos (i = D¢) _ d
%0 = r|:sin (O 1)¢):|7 = 2sin (%b)’

6i(0) = (i = Do + (71/2). 9

We specify the target distance d between adjacent agents
on the circle and the radial distances 7 to the center agent
following the definition in (9). Noting that this deployment
is symmetrically constrained in the same way as (7), the
sufficient condition for outward radial motion is

kr < 43 —2cos(¢))ajj(d)|/7,

which can also be satisfied for all (i,j) € £ and any k, > 0
by sufficiently large d for any n > 2. |

B. Bounded Interaction Laws

Noting from Prop. 1 that an unbounded interaction law can
cause the system to diverge, we now turn our attention to
the case when the interaction law is bounded: i.e., ||a;lloc <
00, which ensures that the inter-agent forces F; are globally
Lipschitz. To investigate the stability of this case, we perform
simulations similar to those in the previous subsection, with
a;i(dy) = %tan'1 (dij — c_iij). Comparing the results shown in
Figure 5 with those from the unbounded case, we first note
that the stabilizing £ (n) are much smaller. However, k' (n) is
still increasing with n, indicating that the system is poorly-
scalable. Based on these observations, we have the following
conjecture:

Conjecture 1: For each n, there exists a minimum value
l_c(n) such that, if the gain ratio k, > I_c(n), then any system (6)
of size n with finite ||a;|lo is almost globally convergent.
However, k,(n) is unbounded as n — oo.

Summarizing, we have the following stability issues for

system (6) with bounded or unbounded interaction laws:

1) When the interaction laws are unbounded, the system is
divergent for some ICs (Prop. 1). Our simulations also
suggest that this set of divergent ICs is in fact open,
as points in the neighborhood of the known divergent
manifold also exhibit divergent behavior.

2) For both cases, simulations indicate that the gain ratio
k¥(n) grows with the network size n. Moreover, fit
projections show that &7 (n) is unbounded as n — 0.

3) For solutions that remain bounded, we cannot guarantee
their convergence to static formations; indeed, there are
cases where the system presents limit cycles. Even if
solutions converge, there is no guarantee that they will
converge to the set of local minima 4; of ®.

C. Solution With Bump Functions

To resolve the stability issues presented above, we now
propose a simple modification that, for any interaction law,
ensures the same asymptotic behaviors of the nominal forma-
tion dynamics (2). To motivate this solution, recall the poten-
tial function ® (z(¢)) defined for the nominal gradient dynamics
given in (3). Considering the unicycle system (6), the dynam-
ics of ®(z(¢)) are then given by b)) =— Z?:l cos (5,-)||F,~||2.
Note that if the agent orientation errors remain small
(max;|6;(r)] < m/2) for all + > 0, then ®(z(r)) < 0 and
the system will converge to some local minimum of & from
almost all ICs. In contrast, a large error can cause the system
to diverge as shown in Prop. 1. To address this issue, we aug-
ment the velocity dynamics of (6) with a plateaued, C*° bump
function p(éi) of the form:

1 if |x] < ¢
() = | exp (1 - +> if [l € (1.2 (10)
l_<02*01)
0 if |x| > e,

where ¢| = /4 and ¢, = /2 are selected for this application.
We then modify the control law as follows:

wyi = pO)IIFill,,

so that the resulting system dynamics are

ur; = —kob,

zi = p(6)R(O)F;, i = —kobi, (11)
By design, this bump function disables forward motion when
an agent is poorly oriented 16;(0)| = = /2), thus nullifying the
divergent behaviors discussed previously.

We will now state the convergence result for the modified
system (11). Recall that the set A contains the critical for-
mations (stable and unstable equilibria) of ®, while A; C A
contains the local minima (stable equilibria) of ®. Note that,
if z(tg) belongs to A at certain time f#g, then z(zp) = 0 and,
hence, z(#) = z(#p) for all t > #y regardless of the value of 6 (7).
Finally, recall that for the nominal gradient dynamics (2), the
formation system will converge to a local minimum in 4; from
almost all ICs [18]. We will now establish the same stability
guarantee for (11).
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Theorem 1: Let ® be the function defined in (3), let A
and A; be the set of critical formations and the set of local
minima of ® respectively, and let the bump function p be
defined in (10). Then, ® is a Lyapunov function for (11).
Specifically, for any (z(¢), #(¢)), we have that d@z(r) < 0.
Moreover, ®(z(r)) = 0 if and only if z(r) € A. As such,
system (11) renders the set A; almost globally stable.

Proof: We first obtain by computation that

n
b = Z b;, ®; = —p(6;) cos (6) | Fill,.
i=1

It should be clear by the choice of p that ®; < 0 for all
i=1,...,n and, hence, <i>(z(t)) < 0. It now remains to show
that if ®(z(r)) = 0, then z(¥) € A.

We proceed by contradiction: assume that there exists a
z(t) ¢ A such that Cb(z(t)) = 0. Since <i>,- < 0 by construction,
this holds only if every ®; = 0. Considering now a particular
i and noting that cos @) = 0 = p(H) = 0, we have that
d; =0 only if p(éi)||F,~|| = 0. Since this product governs
agent i’s forward velocity, we then necessarily have that every
agent remains stationary (in x, y). Thus, we have dij = 0 for
all (i, j) € € so that the system remains in critical formations.
Additionally, each ||F;| also remains constant (as ||F;|| is only
a function of dj).

Consider now the bipartition of the agent index set:

I‘::{i| 16i(0)] < %} andz+:={i| 16i(0)] > %}

For each i e‘I’, we must have |F;|| = 0 so as to satisfy the
assumption ®(z(r)) = 0. However, since z(f) ¢ A, there exists
at least one j € Z7 such that |F il # 0. Recall that

and  6;(1) = —k (0;(1) — 0;(D)).

so that 6_?]-(t) must also remain constant. As a result, the
dynamics for éj(t) must obey the linear differential equation
0;() = —ko0;(1), so that |6;(¢)| will be less than /2 after some
finite time #*. Choosing * such that max;cz+|0;(t*)| = 7/2,
we then have by continuity that there exists € > 0,§ > 0
such that ||F;(t* +¢€)|| > 0 and |§j(t* +¢€)| <m/2—3. It then
follows that

0; = atan2(F)),

bz(* + €)) < D;2(t* + €)) < —cos (% - 5)||F,|| <0,

which contradicts our assumption that d(z(1) = 0. |

By Theorem 1, the new system (11) is almost globally con-
vergent to the set A; (barring the finite unstable ICs in A\ A}).
Thus, Theorem 1 shows that (11) have the same stability guar-
antees as the nominal gradient dynamics (2). Notably, if the
underlying graph G is a triangulated Laman graph, then A,
contains only the target formations [18], so that (11) converges
to a target formation from almost all ICs.

IV. CONVERGENCE TIME AND ENERGY CONSUMPTION

Having established the almost global convergence proper-
ties of dynamics (11) (see Figure 6 for example simulations),
we now examine the performance impact of the bump func-
tion on the bounded interaction law. We also compare this

y [m]
y [m]

z [m]

Fig. 6. Example simulations of various triangulated Laman graph forma-
tions with djy = 5 m. Results (a-c) use Henneberg graphs with n = 3, 5,
and 6 agents, and (d) uses a spoke graph with n = 6.
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Fig. 7. Comparative performance of the nominal and bounded non-
holonomic unicycle dynamics with and without the bump function. Error
bars show a +o range for a Gaussian fit of each metric for each n.

system’s performance against that of the nominal dynam-
ics (2). System performance is evaluated for Henneberg graph
constructions with c_lij = 2m using the following metrics: the
formation convergence time 7 and total velocity control effort
U,. Following the result of Theorem 1, formation convergence
is measured using the normalized potential function gradient
C(z) = kv_1 |®| where C(z(t)) < 103 for all # > T indicates
convergence at time 7. The total normalized control effort U,
is then computed as

T
Uy=k'y / | Fi(t) | dt.
. 0
1

These metrics were determined numerically for each network
size n via a Gaussian fit of the simulation results for 500
randomized ICs. Following the results in Figure 5, we select
a sufficiently large k. = 8 to ensure the convergence of the
bounded law for the range n = 2 to n = 9. Note that, for
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n > 10, convergence would no longer be guaranteed in the
absence of a bump function.

Examining the mean convergence times shown in panel
(a) of Figure 7, we first note that there is no signifi-
cant statistical difference between the convergence times of
any of the methods with respect to the nominal dynam-
ics. In contrast, the results in panel (b) display a signif-
icant difference in the applied velocity control for each
method. Naturally, the nominal dynamics are the most effi-
cient, as the control actuation ||F;| is always ideally directed.
The bounded unicycle construction then exceeds this nom-
inal cost by 78% on average and the inclusion of the
bump function reduces this excess to 22%. From these
results and Theorem 1, we conclude that the bump func-
tion augmentation improves the system in both stability and
performance.

V. CONCLUSION

We investigated stability properties of a formation of uni-
cycles by adapting a gradient control law. It was found that
a direct inner-outer loop cascade formulation of the unicycle
controller introduces stability issues dependent upon the time-
scale separation of the inner and outer loops by means of the
gain ratio k,. Sufficiently large stabilizing k., were found to
increase without bound if the formation size n grows, indi-
cating issues in scalability. It was also found that no single
k, could guarantee almost global convergence to the target
formation for arbitrary formation size. In response, we intro-
duced bump functions to ensure almost global convergence to
stable critical formations of any size. The performance of this
solution was validated numerically and found to have a con-
vergence rate similar to the nominal gradient dynamics and
less energy consumption compared to the direct inner-outer
loop approach.
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