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Global Synchronization of Clocks in Directed Rooted Acyclic Graphs:
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Abstract—In this paper, we study the problem of robust
global synchronization of resetting clocks in multi-agent net-
worked systems, where by robust global synchronization we
mean synchronization that can be achieved from all initial con-
ditions and is insensitive to small perturbations. In particular,
we address the following question: Given a set of homogeneous
agents with periodic clocks, what kind of information flow
topologies will guarantee that the resulting networked systems
can achieve robust global synchronization? To address the
question, we rely on the use of robust hybrid dynamical systems.
Using the hybrid-system approach, we provide a partial solution
to the question: Specifically, we show that one can achieve
robust global synchronization if the underlying information
flow topology is a rooted acyclic digraph. Such a result is
complementary to the existing results in [1] and [2] by Poveda
& Teel, in which strongly connected digraphs are considered
as the underlying information flow topologies of the networked
systems. We have further computed an upper bound on the
convergence time for a networked system to reach global
synchronization. In particular, the computation reveals the
relationship between convergence time and the structure of the
underlying digraph. We illustrate our theoretical findings via
numerical simulations toward the end of the paper.

I. INTRODUCTION

In recent years, the problem of coordination and control
of networked multi-agent systems (MAS) has been a major
research area in control theory. For instance, analytical tools
for MAS were studied in [3], [4], [5], [6], [7] in the context
of networked systems, event-triggered control, and synchro-
nization of clocks. Multi-agent networked systems have also
been analyzed using graph-theoretic methods in [8], and
geometric approaches in [9], [10]. In this work, we focus on
one particular control problem that emerges in MAS, namely
the global synchronization of a collection of homogeneous
agents (i.e., agents with identical structures and parameters)
with periodic behaviors. We assume that these agents can
only communicate with their local neighbors, for which we
will use a directed graph to describe the information flow
topology. Such a problem finds applications in many areas
where a globally synchronized periodic behavior is needed,
but only local interactions between agents are allowed. These
applications include power systems, biological systems, and
sampled-data systems where the synchronization problems
emerges in a natural way. This has motivated the develop-
ment of several deterministic and stochastic synchronization
algorithms in [7], [11], [12] and [13], to just name a few.
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In this paper, we focus on a particular phase synchro-
nization problem, where a group of agents with periodic
clocks aims to eventually aligned their phase position in a
distributed way. This problem is equivalent to the synchro-
nization of identical oscillators flowing on the unit circle S!,
a problem that is known for its infeasibility of achieving
global synchronization that is robust against perturbation by
using smooth feedback control laws [14], [15]. On the other
hand, under certain assumptions, robust global synchroniza-
tion can be achieved if one implements a hybrid controller in
a cyclic graph [16], or, alternatively, if there exists a global
cue in the network [17]. More recently, it was shown in
[1], [2] that a hybrid set-valued resetting algorithm (HSRA)
achieves robust global synchronization in any network whose
underlying information flow topology is characterized by a
directed strongly connected graph, provided that some mild
assumptions on tunable parameters of the agents are satisfied.

The goal of this paper is to extend existing results [1], [2]
and address digraphs that are beyond the class of strongly
connected ones. The general question we aim to address
is the following: Given a set of homogeneous agents with
periodic clocks sharing the same frequency, what kind of
information flow topologies will guarantee that the resulting
networked system can achieve robust global synchronization?

We provide in the paper a partial solution to the above
question by characterizing a new class of digraphs, namely
rooted acyclic digraphs, for which robust global synchro-
nization can be achieved using the framework of HSRA.
Moreover, we provide variations of existing algorithms in
[1] and [2] that can yield a better performance in terms
of convergence time in some specific cases. We summarize
below the contributions of the paper:

1) We provide a negative result which says that if the
underlying network topology is not a rooted digraph,
then the entire network system cannot achieve global
synchronization under the HSRA in any case.

2) We show that the HSRA can be used to achieve robust
global synchronization if the underlying digraph is
rooted acyclic. We also compute the convergence time
for the networked system to reach synchronization: It is
bounded above by the multiplication of the depth of the
rooted acyclic digraph (see Def. 2.2 in the next section)
and w™! (where w is the frequency of the clock).

3) We further show that in a special case where the
common parameter shared by all agents is set to be
certain extreme value, global synchronization can be
achieved if and only if the digraph is rooted acyclic.
Moreover, we show that in this special case, global
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synchronization can be achieved in at most w™! units
of time, which is the smallest upper bound on the
convergence time in any case.

The remainder of the paper is organized as follows: In
Section II, we present preliminaries and definitions related
to graph theory and hybrid dynamical systems. In Section
III, we first introduce the model for a network of resetting
clocks and then formulate the synchronization problem. We
also present the main result as well as a sketch of a proof in
the section. Numerical simulations are given in Section IV.
We provide conclusions at the end.

II. PRELIMINARIES
A. Notation

The set of (nonnegative) real numbers is denoted by (R>g)
R. The set of (nonnegative) integers is denoted by (Z>)
7. A set-valued mapping M : R™ X R” is outer semi-
continuous (OSC) at x € R™ if for all sequences x; — «x
and y; € M(x;) such that y; — y we have y € M(x). A set-
valued mapping M : R™ =X R™ is said to be locally bounded
(LB) at x € R™ if there exists a neighborhood K, of x such
that M(K,) C R"™ is bounded. Given a set X C R™, the
mapping M is OSC and LB relative to X if the set-valued
mapping from R™ to R" defined by M(z) for z € X,
and by () for z ¢ X, is OSC and LB at each z € X. The
outer semi-continuous (OSC) hull of M is the unique set-
valued mapping My : R™ == R" satisfying graph(Ms) =
cl(graph(M)), where graph(M) := {(z,y) € R™ x R™ :
y € M(x)}. Given a compact set A C R™ and a vector
x € R", we define |z|4 := minyec 4|z — y|, and we use
|.| to denote the standard Euclidean norm. Also, we denote
a vector of ones by 1,, € R™. A continuous function « :
R>0 — R is said to be of class K if it is strictly increasing
and satisfies a(0) = 0. A continuous function 5 : R>g —
R>¢ is said to be of class KL, if (i) for each t € R,
the mapping (., t) belongs to class /C; (ii) for each fixed
s € Ry, the function §(s,.) is decreasing to zero as its
argument increases. Further, the cardinality of a finite set is
denoted as card(.). We denote as S! the unit circle in R?

B. Graph Theory:

We characterize a directed graph G = (V, £) (or simply a
digraph) by a vertex set ¥ and an edge set £ C V x V. We
denote by v;v; an edge from v; to v; in G or equivalently,
(1,7) € &, and we say that v; is an in-neighbor of v; and v,
is an out-neighbor of v;.

Let v; and v; be two vertices of G. A walk from v; to v; ,
denoted by w;; , is a sequence v;,v;, - - - v;,, (With vy, = v;
and v;,, = v;) in which v;, v;, . is an edge of G for all
ke {0,1,---,m — 1}. A walk is said to be a path if all
the vertices in the walk are pairwise distinct. A walk is said
to be a cycle if there is no repetition of vertices in the walk
other than the repetition of the starting and ending vertex.
The length of a path/cycle/walk is defined to be the number
of edges in that path/cycle/walk.

We next introduce the following definition:

Definition 2.1: Let G be a digraph. A vertex v; of G is
said to be a root if for any other vertex v;, there exists a path
from v; to v;. If G contains a root, then it is called a rooted
digraph. If G is a rooted digraph that does not contain any
cycle, then we call G a rooted acyclic digraph. ]

We note here that if G is rooted acyclic, then there is a
unique root v*. We also need the following definition:

Definition 2.2: Let G = (V, &) be rooted and acyclic and
v* be the root. The depth of a vertex v;, denoted by dep(v; ),
is the minimum length of a path from v* to v;. The depth
of v* is by default 0. Further, we define the depth of G as
dep(G) := max,,cy dep(v;). O

With the above definition, we can decompose the vertex
set V of G as follows: V = Uldi’(’](G)Vl where V; is comprised
of all vertices of depth [.

C. Hybrid Dynamical Systems:

In this paper, we will model the clocks and the syn-
chronization algorithms as hybrid dynamical systems (HDS)
that combine continuous-time dynamics and discrete-time
dynamics [18]. A HDS with state € R™ can be described
by the following dynamics:

t=F(z), z€C
xt € G(z), €D,

(1a)
(1b)

where F' : R™ — R" is a continuous function describing
the continuous-time dynamics (or flows), G : R* = R"
is an outer-semicontinuous and locally bounded set-valued
mapping describing the discrete-time dynamics (or jumps),
C C dom(F) is a closed set describing the points in
the space where the system can flow, and D C dom(G)
is a closed set describing the points in the space where
the system can jump. Under this definition of the data
H := {C,F,D,G} the HDS is said to be well-posed.
Solutions x to (1) are defined on hybrid time domains', i.e.,
x depends on a continuous-time index ¢, and a discrete-time
index j. Solutions z with unbounded time domain are called
complete.

In this paper, we will use the following stability notion to
characterize the synchronization problem.

Definition 2.3: [18] Consider a hybrid system #H with
state x € R™. A compact set A C R" is said to be uniformly
globally asymptotically stable (UGAS) if there exists a CL
function S such that all solutions of system (1) satisfy the
bound

|z, 7)] < B(x(0,0)[,¢ +5), 2)
for all (¢,7) € dom(x). O

III. PROBLEM FORMULATION AND MAIN RESULT

In this section, we will first introduce our model of the
network of resetting clocks, and a class of hybrid synchro-
nization dynamics based on the framework of HSRA. After
this, we will formally state our problem setting, as well as
our main results for rooted acyclic digraphs in Theorem 3.4.

'We refer the reader to [18, Ch. 2] for a comprehensive introduction to
hybrid time domains and the notion of solutions to hybrid systems.
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A. System Model

Consider a network of N clocks or agents characterized
by a digraph G = (V, £). All agents have the same resetting
period T := 1/w, and individual continuous-time dynamics
given by:

7; € [0,1]. 3)

7",':0.},

Whenever the clock of each agent ¢ satisfies 7; = 1, agent ¢
resets its own clock according to the update

=0, (4)

and signals its out-neighbours j to update their clock as
follows:

0 7; € [0,7)
eq {0,1} =7 , (5)
1 7; € (r,1]

where » > 0 is a homogenous parameter of the network
that partitions the decision rule on the unit interval [0, 1].
Agents that are not out-neighbours of agent 7 keep their state
constant i.e. 7,7 = ;.

Since the dynamics of the clocks combine continuous-time
updates and discrete-time updates, the overall system is a
hybrid dynamical system of the form (1). However, finding
the data H := {C, F, D, G} such that the overall system is
well-posed is not trivial. Indeed, for a HDS (1) to be well-
posed in the sense of [18], we expect that the behavior of
a sequence of solutions x; with initial conditions (0, 0)
satisfying limg_, o, 2x(0,0) = x(0,0), should approach the
behavior of the limiting solution x from z(0,0), where
the limits should be understood in the graphical sense [18,
Ch. 5]. For the clock synchronization problem, this implies
that if {7}, is a sequence of solutions to the hybrid
system A with initial conditions 74(0,0) satisfying 0 <
71,6(0,0) < 72,(0,0) < ... < 78 £(0,0) < 1, for all k €
Zzo, and llmk_>oo Tl,k(0,0) = hmk_mo 7'27]@-(0,0) = ... =
limg_y00 7N,5(0,0) = 1, which generates solutions with
sequential jumps with smaller and smaller times between
jumps, then the limiting behavior of the solution 7 from
7(0,0) = [r1(0,0),72(0,0),...,7x5(0,0)]T = 1y should
generate also sequential jumps, in this case with no time
between jumps [1], [2]. This implies that whenever two or
more agents satisfy the condition 7; = 1, a well-posed model
of the hybrid synchronization mechanism should generate
non-unique solutions, since the system should capture all the
possible combinations of sequential jumps that could emerge
from this point.

Remark 3.1: The power of establishing desirable stability
and convergence properties for well-posed HDS resides in
the fact that well-posed HDS retain their stability proper-
ties (in a semi-global practical sense) under small additive
bounded disturbances acting on the states and dynamics
[18, Thm. 7.21]. Therefore, by designing stable clock syn-
chronization mechanisms modeled by well-posed HDS, we
are also inherently guaranteeing that the synchronization
will be robust with respect to small bounded disturbances
unavoidable in practical applications. (Il

In order to obtain a well-posed hybrid model for the
synchronization algorithm, for each r € [0,1) let G¥ : R* =
R"™ be a set-valued map that is nonempty only when 7 = 1 for
some i € {1,..., N} and j € [0,1) for j # i. This mapping
is defined as

G(7) == {g € RY 1 : =0, g; € R;(r), Vi # i},

where the set-valued map R;(7) is given by

0 7 €[0,r), (1) €€

| 0.1} m=r (1€l
R;(7) € 1 e (rl], (i,j)ef
Tj (ij) ¢5

Note that G¥ captures the updates described by equations
(4) and (5) which occur whenever agent ¢ satisfies 7; = 1.
To capture all the possible jumps that could emerge in
the network whenever more than one agent satisfies this
condition, we define the overall jump map G, : R® = R"
to be the outer semi-continuous hull of the mapping G2(7)
[19, pp. 154-155]. Using this definition and combining all
N clocks into the vector 7, we obtain a HDS with state
7 € [0,1]Y C R™ and hybrid dynamics

F=F(r)=wly, C,=1[0,1]",

e G.(7),

(6a)
D, = {7‘ eC;: max7; = 1} . (6b)

This HDS is well-posed and describes the HSRA [1], [2].
The robust global clock synchronization problem can then be
cast as studying the asymptotic stability properties of system
(6) with respect to the following compact set:

A= ([0,1] - 1x) U {0, 1}V, @)

In particular, we are interested in settings where the HDS (6)
renders the set A, UGAS, and does not generate purely or
eventually discrete solutions that never flow according to (3).
In such settings, the following Lemma will immediately pro-
vide robustness guarantees for the synchronization dynamics.

Lemma 3.1: Let r € [0,1) and suppose that the HDS (6)
renders the set A, UGAS. Then, for each § > 0 there exists
e* > 0 and T* > 0 such that for all measurable signals
e : Rso — RY satisfying sup,~ |e(t)| < &*, all solutions 7
of the perturbed system -

T=F(r+e)+e,
€ Gr(T+e) +e,

T4+eeC;
T+ee D,

(8a)
(8b)

satisfy 7(¢,7) € A, + B for all (¢,5) € dom(7) such that
t+3>T". ]

We note that the perturbation e acting on the states and
dynamics in (8) does not have to be the same, and it can
model noisy or corrupted measurements, as well as adver-
sarial signals bounded in norm by €*. The synchronization
algorithm realized from the HDS (6) is summarized as
Algorithm 1.
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Algorithm 1 Distributed Clock Synchronization

1: procedure SYNCHRONIZATION

2: Inputs: r and G = (V,€) , € < Edge Set

3: {7:(0,0)}., « Initial phase of N-Clocks

4 Each agent i € V receives information from all its
in-neighbours J and does the following:

5 while 7; € [0,1] do

6 if 7; =1 then 7" =0

7: if maxX;ejT; = 1 then

8 if0§7’i<rthen7'i+=O

9 if 7, > r then 7'1-+ =1.

10: if 7, = r then 7;" € {0,1}.

11: Ti = W

B. Problem Formulation

Given a homogeneous parameter r € [0,1) in (5), we
denote as G(r) the collection of digraphs for which the HDS
(6) satisfies the following two properties: 1) It renders UGAS
the compact set (7). 2) It does not generate solutions that are
purely or eventually discrete ([18], Def. 2.5), i.e., solutions
without intervals of flow. We aim to characterize such a set
G(r) for any r € [0,1). Since the HSRA guarantees that
whenever synchronization happens it occurs in finite time,
we also aim to compute the convergence time for any given
graph G € G(r), i.e., we compute an upper bound of the time
for the entire networked system to reach synchronization
starting with any initial condition. We denote such an upper
bound by T(G,r) (or simply T} if there is no ambiguity).

Before stating the main result of the paper (Theorem 3.4),
we first introduce a known positive result and a new negative
result. We start with the following fact established in [1]:

Lemma 3.2: If G is strongly connected then G C G(r)
for any r € (0,1/N), where N is the number of agents in
the network. ]

We next have the following result:

Lemma 3.3: If a digraph G is not rooted, then G ¢ G(r)
for any r € [0, 1). 0

Proof: We apply the strongly connected component
decomposition [9] to the digraph G (see [9, Sec. II-A] for
detail). Since G = (V, &) is not rooted, there exist at least
two (disjoint) strongly connected components of G, denoted
by G; = (V1,&1) and Go = (Vs, &), such that either G,
or G4 does not have any incoming neighbor. More precisely,
for a given ¢ = 1,2, if v is any vertex in V; and v’ is any
vertex in V\V;, then there does not exist a path from v’ to
v. Now, let the initial condition of any vertex in Gi (resp.
G2) be given by 7(0,0) := 0 (resp. 7(0,0) := 1/2). Because
the initial conditions of all vertices in G, for ¢« = 1,2, are
the same, and because each G; does not have any incoming
neighbor, the dynamics of any vertex in any G; flows as if
the vertex is isolated from the others. But then, vertices of
G1 will never be synchronized with the vertices of Go. B

We note that the converse of Lemma 3.3 is not true i.e.
a rooted digraph G does not necessarily belong to G(r) for
any r € [0,1). Here is an example:

o 1
v

(a) (®)

Fig. 1: Three resetting clocks with initial condition,
(11,72,73)(0,0) = ([r,1),[r,1),(0,7)) and 7 € (0,1).

Example 3.1: Consider the HDS in Figure 1, where the
dynamics of the agents are given by (6). Due to the periodic
nature of the problem, agents are characterized on a unit
circle S! rotating counterclockwise at a frequency w with 0
and 1 identified as the same point. First, note that if r = 0,
then as soon as 75 hits one there exists a solution that enters
the jump set and never leaves it, with 7 and 73 switching
between 0 and 1. Thus, in this case, the network cannot reach
synchronization. We next consider the case where r € (0, 1).
We let the initial positions of the three vertices be such that
71(0,0),72(0,0) € [r,1) and 73(0,0) € (0,7). Then, the
following events will occur subsequently:

1) 72 hits 1 and 75 € [0,7), so 72 and 73 jump to zero.

2) 71 hits 1 and 75 € [0,7), so 71 and 72 jump to zero.

3) The clocks flow for less than 7" seconds until 73 hits 1

and 7 € [r, 1), so 72 and 73 jump to one.
Since all the clocks have the same resetting frequencies, from
this point forward events 2) and 3) will repeat and 7o will
oscillate between the positions of 7; and 73. Hence, 7, ™
and 73 cannot achieve synchronization. |

A key feature that prevents the hybrid system (6) in the
above example to render UGAS the compact set (7) is that
vertices other than the root vertex form a strongly connected
component. The existence of the counter-example indicates
that the problem we posed at the beginning of the section
is nontrivial in a sense that one cannot simply reach the
conclusion that G(r) is the class of rooted digraphs as a
straightforward extension of Lemma 3.2.

C. Main result and sketch of proof

We now take in the paper the first step to characterize
G(r): We focus on a relatively simple class of rooted
digraphs, namely, the class of rooted acyclic digraphs. We
will now state the main result of the paper:

Theorem 3.4: The following statements hold:

1) If G is a rooted acyclic digraph, then G € G(r)
for any r € [0,1). Moreover, for any r € (0,1),
the synchronization time of G(r) is upper bounded by
T = (dep(G) + 1)T.

2) If » = 0, then G(0) is exactly the class of rooted acyclic
digraphs. Moreover, the convergence time of G(0) is
upper bounded by T, = T. |

Due to space limitations, the complete proof of Theo-
rem 3.4 is omitted and can be found in [20].
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We provide below an example to illustrate global synchro-
nization of resetting clocks over rooted acyclic digraphs.

Example 3.2: Consider Figure 2 where there are four
agents in the network and the depth of the underlying
rooted acyclic graph is two. The set of all agents is further
partitioned into three disjoint subsets based on their depths
as follows: V(),Vl,VQ. Note that V() = {Tl}, Vl = {7'2,7'3}
and V5 = {74}. Now following Algorithm 1, as V) hits 1,
it jumps to 0 and a subset of its out-neighbour agents V)
jumps to O while the other jumps to 1. Indeed, after this first
step, the agents 1, and )); are synchronized together and
they will remain synchronized since all agents flow with the
same frequency. Next, the agent Vs hits 1 and jumps to zero
without affecting any other agent in 1V or V. Finally, the
agents Vo |J V1, which are already synchronized, will hit 1
and eventually trigger the event that agent V5 jumps to either
0 or 1. Thus, all four agents flow and jump in a synchronized
manner. ]

An outline of the proof is given below:

Sketch of Proof of Theorem 3.4: As in [1], [2], we follow a
Lyapunov-based approach for hybrid systems, and we invoke
the Hybrid Invariance Principle [21]. The proof consists of
three main arguments:

1) We define the Lyapunov function V; : [0,1]V — R>g
such that V; is the infimum of the lengths of all arcs
touching all agents 7;, where the points 0 and 1 on the
interval [0, 1] are identified to be the same, to form a
circle St. Such Lyapunov function is positive definite
with respect to the set A.-.

2) We show that the Lyapunov function remains constant
during the flows and does not increase during the jumps.

3) We build our argument on the fact that the root agent is
not influenced by any other agent in the rooted acyclic
digraph. Then, we prove by induction the following fact:
When an agent of depth & in the graph reaches 7; = 1, a
condition that is guaranteed to happen in rooted acyclic
digraphs, it will force the agents on the next level, i.e.,
agents of depth (k+ 1), to be synchronized, this is also
illustrated in Example 3.2. These jumps will necessarily
decrease the Lyapunov function unless all the agents in
depths k and k+1 are already synchronized. By moving
forward on k£ we will eventually exhaust the depths of
the graph, implying that the Lyapunov function V(z)
converges to zero in finite time, by construction this
implies finite time synchronization.

We then appeal to the Hybrid Invariance Principle (see [21])
to establish that system (6) indeed renders UGAS the com-
pact set (7). For an arbitrary initial condition, the worst-case
synchronization time corresponds to the case when every
agent at each depth k jumps to zero. Hence, by repeatedly
applying the above arguments (starting with £ = 0), we will
show that the entire networked system will be synchronized
in at most (dep(G) + 1)T time, where T" was defined as the
natural resetting period of the agents.

w [~ S

(b)

Fig. 2: Example 3.2: Synchronization of resetting clocks over
rooted acyclic digraph

IV. SIMULATION RESULTS

Consider the HDS (6) for five resetting clocks. The tunable
parameter is chosen as r = 0.2 for all agents, and the
frequency of the clocks is selected as w = 1. We implement
this system with an underlying rooted acyclic graph. We
provide three examples of such graphs as shown in Figure 3.
For each example, we validate Theorem 3.4 by showing that:
(i) the hybrid system (6) synchronizes, (ii) the convergence
time is related to the depth of the graph, and (iii) no solution
remains in the jump set for ever, i.e., all solutions eventually
have to flow.

For digraphs (a) and (b) in Figure 3, we used the same
initial conditions to implement Algorithm 1. The simulation
results over these networks are then illustrated in Figure 4.
Observe that for the network topology (a), as soon as 7» hits
1, it synchronizes with its out-neighbors 73 and 75, after
which 73 forces 74 to synchronize. However, 7; remains
unaffected. Soon after that, 7 hits 1 and synchronizes
To, T3, T4, Ts With itself in ¢ = 1 second. From this point
forward, all the clocks remain synchronized and there is no
solution that stays in the jump set forever. Note that in this
case, the agents synchronize in 1 second which is less that
Ty = 3 seconds. Similarly, for the network topology (b),
as soon as To hits 1, it synchronizes 75 with itself. Soon
after that 73 hits 1 and 73,74 synchronize together. Finally,
as 7 hits 1, it synchronizes all the agents in the network.
Again, note that all the clocks still synchronize in 1 second
which is less that T = 3 seconds. Observe that even though
the network synchronization behavior of case (a) is different
from case (b), the overall network of clocks converges to
the set A in no more than 1 second. This is due to the fact
that in both graphs the number of edges are different but the
depths are the same.

Now, consider the network topology (c) as shown in
Figure 3. We set the initial conditions of each clock very
close to zero and we apply Algorithm 1 to obtain the plots
shown in Figure 5. For this case, observe that when 7
hits 1, it synchronizes 7, with itself. Then 71,75 both hit
1 and synchronize 73 with them and so on. When r = 0.2
the network converges in 3.6 seconds which is less than
the theoretical worst-case synchronization time of Ts = 5
seconds. Similarly, if we homogeneously set the value of
r = 0, the network will synchronize in 0.9 seconds which
is less than the theoretical worst-case convergence time of
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Fig. 3: Rooted Acyclic Graphs with depths a) two b) two c)
four. (Black indicates the root vertex)

Synchronization of T, over Rooted Acyclic Digraph (a)

/ 1/

/
/

time (s)
Synchronization of 7, over Rooted

/ / A / /

time (s)

Fig. 4: Resetting Clocks Synchronization over graphs (a)-(b)
in Figure 3.

T, = 1 second. Hence, the simulation results validate the
following aspects: (i) For rooted acyclic graphs, the hybrid
system (6) achieves synchronization, (ii) the convergence
time is related to the depth of the digraph by Theorem
3.4, and (iii) the hybrid dynamics generate no purely or
eventually discrete-time solutions, i.e., complete solutions
that remain in the jump set.

V. CONCLUSIONS

In this paper, we have introduced the set G(r), defined as
the collection of the information flow topologies that can ren-
der robust global synchronization of the resulting networks of
resetting clocks. While a complete characterization of the set
still remains open, we established in the paper the following
facts: (1) Rooted acyclic digraphs always belong to G(r) for
any r € [0,1), and (2) If » = 0, then G () is exactly the class
of rooted acyclic digraphs. We also computed an upper bound
on the synchronization time, which relates the convergence
time to the depth of the underlying rooted acyclic digraph.
Finally, we have provided numerical results that illustrate the
main points of this paper. Future extensions will explore the
role of random graphs in the synchronization properties of
the synchronization dynamics.
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