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Abstract

The use of correlation densities is introduced to quantify and provide visual interpretation for intra-

regional functional connectivity in the brain. For each brain region, all pairwise correlations are

computed between voxels within the region, and the distribution of the ensemble of these correlation

values is represented as a probability density, the correlation density. The correlation density can

be estimated by kernel smoothing. It provides an intuitive and comprehensive representation of

subject-specific functional connectivity strength at the local level for each region. To address the

challenge of interpreting and utilizing this rich connectivity information when multiple regions are

considered, methods from functional data analysis are implemented, including a recently developed

method of dimensionality reduction specifically tailored to the analysis of probability distributions.

To illustrate the utility of these methods in neuroimaging, experiments were carried out to identify

associations between local functional connectivity and a battery of neurocognitive scores. These

experiments demonstrate that correlation densities facilitate the discovery and interpretation of

specific region-score associations.
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1 Introduction

The availability of neuroimaging data consisting of time-varying signals across spatial loca-

tions in the brain, as provided by functional magnetic resonance imaging (fMRI) or magneto-

and electro-encephalography (MEG and EEG), has made it possible to study functional con-

nectivity, or spatial patterns of time course similarity, in the resting human brain. These

patterns are interesting in their own right, and have been used for the discovery of so-called

network hubs (Buckner et al., 2009) and other structural properties of brain networks such

as small-worldness (Bassett and Bullmore, 2006). An important scientific goal is to relate

connectivity to other variables of interest such as age or cognitive status, which conveys

external validation that brain connectivity as derived from fMRI is associated with cogni-

tive performance. While various studies have shown the effect of aging on connectivity, a

relatively unexplored topic has been to relate, at the individual level, local connectivity pat-

terns with cognitive ability, as measured by cognitive scores. This leads to the challenge of

efficiently quantifying local, intra-regional connectivity as opposed to inter-regional connec-

tivity, where the latter is a standard topic in connectivity. In this paper we demonstrate a

promising approach to achieve such quantification.

Subject-specific connectivity patterns can be investigated on two scales. At the global

scale, connections are established by measuring temporal Pearson correlations between sum-

mary signals of pairs of brain regions that are spatially far apart and often analyzed using

graph-theoretic approaches, after applying a threshold to the Pearson correlations (Worsley

et al., 2005; Achard et al., 2006; Bassett and Bullmore, 2006; van den Heuvel et al., 2008;

Buckner et al., 2009; Tomasi and Volkow, 2011; Zalesky et al., 2012). At the local scale,

correlations between pairs of nearby voxels can be used to quantify the strength of local

connectivity of a voxel or local region. Two popular methods for summarizing the strength

of this local connectivity are functional connectivity density mapping (Tomasi and Volkow,

2010) and regional homogeneity (Zang et al., 2004). The relevance of local connectivity has

been established in a vast number of studies that linked local connectivity patterns to age,

gender and various diseases (Wu et al., 2009; Shukla et al., 2010; Lopez-Larson et al., 2011;

Tomasi and Volkow, 2012; Zalesky et al., 2012; Han et al., 2015; Qi et al., 2015).

While intuitive, these current measures of local connectivity sacrifice potentially valuable

information as they only represent scalar numeric summaries of a large number of corre-

lations. Another intuitive approach, demonstrated in Petersen and Müller (2016), is to
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assemble all correlations within a region to obtain a probability density function, the cor-

relation density, for which one can use kernel estimation (Rosenblatt, 1956; Parzen, 1962;

Wand and Jones, 1995) or smoothing of histograms (Silverman, 1986). Characteristics such

as the mode, spread, and shape of these correlation densities contain potentially valuable

information that cannot be quantified by any single numeric summary.

We demonstrate a method to efficiently incorporate information from multiple brain

regions to visualize and interpret intra-regional connectivity, as well as to investigate associ-

ations between local resting state connectivity and cognitive ability. The proposed approach

is based on statistical methodology from functional data analysis (FDA) (Ramsay and Silver-

man, 2005; Wang et al., 2016). The key tool is a recent method of dimensionality reduction

specifically tailored to probability density functions (Petersen and Müller, 2016), where it

was also shown in an exploratory fashion that subject-specific correlation densities for a

single region, corresponding to a functional network hub, are useful in predicting executive

function test scores. We illustrate the full utility of this approach in connectivity analysis by

considering associations between correlation densities from mutiple functional connectivity

hubs and a battery of four cognitive test scores, as well as methods of inference and visual-

ization to discover and interpret these associations (Chen and Lynch, 2017). An important

point not considered in Petersen and Müller (2016) is that the different correlation densities

of a single subject that are associated with different functional connectivity hubs are statisti-

cally dependent, so that it is necessary to consider them jointly as predictors in a regression

model, implementing appropriate model selection methods. While FDA methods have been

utilized previously in functional connectivity studies (Bassett et al., 2012; Hosseini et al.,

2012), another important aspect of the approach studied here is the use of subject-specific

connectivity information, rather than the usual group based approach, where one works with

averages across the subjects belonging to a group.

2 Materials and Methods

2.1 Participants, fMRI acquisition and preprocessing

The example data used here to demonstrate our methods are from a study of elderly partic-

ipants in a longitudinal study of cognitive impairment that has been described previously in

Hinton et al. (2010). Participants were evaluated within the research program of the Univer-

sity of California, Davis Alzheimer’s Disease Center as described in He et al. (2012), where
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also a description of the clinical evaluation of this cohort and the neuropsychological test

battery is provided. Included in our analyses are a group of 164 cognitively normal subjects

and a second group of 63 subjects diagnosed with Alzheimer’s disease.

As described previously (He et al., 2012), fMRI scans were performed at the UC Davis

Imaging Research Center on a 1.5 T GE Signa Horizon LX Echospeed system, along with an

8-minute axial echo-planar imaging (EPI) BOLD fMRI scan. Subjects were provided with

no specific instructions prior to the acquisition other than to keep their eyes open. The scan

parameters were: TR 2.0s, TE 40ms, FOV 22 cm, Flip angle 90, 24 5 mm thick contiguous

slices with bandwidth 62.5 KHz, and 64 x 64 matrix with R-L frequency encode direction.

This sequence provided 240 time points of data at each voxel.

The standard preprocessing steps of slice timing and head motion correction, followed

by coregistration to the subject’s 3DT1 MRI scan, were performed. Multiple linear re-

gression was applied to the signal at each voxel to remove global linear trends to account

for signal drift, as well as global cerebral spinal fluid and white matter signals. Finally, a

band-pass filter was applied, preserving frequency components between 0.01 and 0.08 Hz.

These steps were performed in MATLAB, using the Statistical Parametric Mapping (SPM8,

http://www.fil.ion.ucl.ac.uk/spm) and Resting-State fMRI Data Analysis Toolkit V1.8

(REST1.8, http://restfmri.net/forum/?q=rest). The first four time points were dis-

carded to eliminate non-equilibrium effects of magnetization. Time points with large head

motion, defined as translation greater than 1.5mm and/or rotation greater than 1.5◦ were

then identified, and participants with any such time points were excluded.

2.2 Functional Principal Component Analysis

The statistical analysis of a random sample X1, . . . , Xn, where Xi : [0, 1] → R are func-

tions with a common domain, is known as functional data analysis (Ramsay and Silverman,

2005; Wang et al., 2016), or simply FDA. Due to the infinite dimensionality of function

spaces, dimension reduction is a key FDA technique. Many FDA methodologies rely on the

Karhunen-Loève expansion

Xi(t) = µ(t) +
∞∑
k=1

ξikφk(t), (2.1)

where µ(t) = E(X(t)) is the mean function, φk are eigenfunctions associated with the co-

variance kernel G(s, t) = E [(Xi(s)− µ(s))Xi(t)] with corresponding eigenvalues λ1 ≥ λ2 ≥

5



Correlation Densities for Intra-regional Connectivity

· · · ≥ 0, and

ξik =

∫ 1

0

(Xi(t)− µ(t))φk(t) dt (2.2)

are the uncorrelated functional principal component scores with mean zero and variance

λk. Expansion (2.1) provides a linear representation of the data, the functional principal

component analysis (FPCA). These representations are the infinite-dimensional analog of

principal components analysis (PCA) for multivariate data.

Dimensionality reduction is then obtained by truncating the sum to a finite number of

components, as well as visualization of the average behavior of the process via the mean

function µ and the dominant modes of variation µ±αφk (Jones and Rice, 1992), which lend

interpretability to the scores ξik.

2.3 Functional Data Analysis for Density Functions

To perform dimension reduction for a sample of univariate probability distributions, which

are often best represented and visualized through their density functions f1, . . . , fn, direct

application of standard FDA methodology (Kneip and Utikal, 2001) has proven suboptimal

(Petersen and Müller, 2016). This is due to the nonlinearity of the space of densities implied

by the constraints that a density be positive and integrate to one. A more promising approach

is to transform the densities into a Hilbert space via a nonlinear functional transformation ψ,

yielding a sample Xi = ψ(fi), to which the standard FDA methodology can then be suitably

applied, as the transformed functions are not subject to any restrictions.

To illustrate the utility of such a nonlinear transformation, consider a basic setup in finite

dimensions. Here, one observes

Yi = (sin(Zi1 + Zi2), cos(Zi1 − Zi2)),

where Zi = (Zi1, Zi2) are a bivariate normal sample with Var(Zi1) = 1, Var(Zi2) = 0.2 and

correlation 0.95. The left panel of Figure 1 shows the data and first PCA direction (i.e., the

orthogonal least squares line) for a sample Y1, . . . , Y40, which is clearly unsatisfactory due to

the nonlinear nature of data. Alternatively, one can transform the data and obtain the first

PCA loading (orthogonal least squares line) of the Gaussian data Z1, . . . , Z40 (right panel of

Figure 1), which is appropriate due to the linear nature of these data, and then map it back

to the original space, obtaining the curved dashed line in the left panel, and thus a much

more informative analysis.
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Figure 1: (Left) Scatterplot of nonlinear data Yi, with linear PCA loading (orthogonal least squares line)
and nonlinear loading (dashed line) obtained by transforming the loading obtained for the data Xi (dashed
curve); (Right) Original data Xi with first PCA loading (orthogonal least squares; dashed line).

Of course, in the case of density functions, one cannot so easily transform the densities

so that the transformed versions have a known distribution, such as a Gaussian process.

However Petersen and Müller (2016) discussed several generic transformations that transform

density functions into unrestricted square integrable functions and thus improve upon the

naive FPCA directly applied to the density functions. The most promising transformation

utilizes the so-called quantile density function q(t) = Q′(t), where Q is the quantile function

corresponding to a density f . The log-quantile density (LQD) transformation of f is

X(t) = ψ(f)(t) = log(q(t)) = − log(f(Q(t))), t ∈ [0, 1]. (2.3)

If one starts with a sample f1, . . . , fn of density functions, this transformation then gives

rise to a sample of unrestricted square integrable functions X1, . . . Xn on the domain [0, 1], for

which all available FDA methods can be applied, including functional regression or FPCA.

By computing the elements of the decomposition in (2.1), the dominant modes of varia-

tion are most usefully visualized as densities by means of the inverse transformation. The

transformation modes are obtained across a range of values α as

ψ−1 (µ± αφj) . (2.4)

2.4 Quantifying Intra-regional Connectivity by Correlation Densities

Our experiments focused on the intra-regional connectivity properties of ten functional

hubs, which are listed together with their seed voxels in Buckner et al. (2009) (see Table

3 therein) and correspond to the following regions: left/right parietal lobules (LPL/RPL),
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left/right middle frontal (LMF/RMF), left/right middle temporal (LMT/RMT), medial su-

perior frontal (MSF), medial prefrontal (MP), posterior cingulate/precuneus (PCP) and right

supramarginal (RS). Since only the seed voxels, and not the region boundaries, were well-

defined, we took the following approach to contruct the correlation density for each region

at the subject level. First, for a given region, an 11 × 11 × 11 cube of voxels was isolated,

centered at the seed voxel, and a mask was then used to extract the signals of all gray matter

voxels within this cube. Second, letting m be the number of identified gray matter voxels

including the seed voxel, the preprocessed fMRI signals for each were used to obtain pairwise

Pearson correlations ρk, k = 1, . . . ,m− 1, between the seed voxel signal and the remaining

m−1 gray matter signals. Alternative similarity measures besides Pearson correlation could

also be used. As a final step, only gray matter voxels for which ρk is positive are considered

to be part of the corresponding region, so that negative correlations are effectively discarded.

The elimination of negative correlations is similar to other approaches in the analysis of

local functional connectivity (Tomasi and Volkow, 2010), and is also in line with ? THIS

REFERENCE IS MISSING which specified functional regions of interest as “spatially co-

herent regions of homogeneous functional connectivity.” Moreover, we found that negative

correlations were rare for voxels nearby the seed voxel and mostly concentrated on the

boundary of the cube.

The correlation density for a specific region and a specific individual is then defined as

the probability density function of the distribution of the correlations ρk that are positive.

The domain of the correlation densities is the interval [0, 1]. The estimated correlation

densities fij, i = 1, . . . , n, j = 1, . . . , 10, for each of n subjects are obtained from the sample

of correlations for the jth region by applying a density estimation method such as kernel

density estimation (Rosenblatt, 1956) or smoothing histograms (Petersen and Müller, 2016).

The correlation densities provide useful visualizations of intra-regional connectivity, for each

region considered and each individual in the sample; see Section 3.

Once the correlation densities fij have been obtained, we apply transformations (2.3) to

obtain corresponding unrestricted functions Xij and then FPCA for dimension reduction,

applying (2.1) and truncating the expansion at Kj expansion terms. Here we select Kj so

that 95% of the variation in the functions Xij across individuals is explained. This dimension

reduction step then results in a vector of dimension Kj of functional principal components

that represent the functions Xij for each individual and thus the correlation densities fij.

These vectors can then be used as components of various statistical models, e.g., as predictors
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in a regression model. We demonstrate this approach in Section 3.

2.5 Correlation Densities as Predictors in a Functional Linear Model

We aim here at regression models where the subject-specific vectors of FPCs of the trans-

formed density functions for the regions considered are the predictors and the responses are

the cognitive scores. This allows to quantify the relations between subject-specific intra-

regional connectivities and cognitive performance. Specifically, in Section 3 we utilize a

subject’s local connectivity characteristics, as quantified by the distributions of correlations

for several brain regions, to predict each of four scalar cognitive scores. If J distinct re-

gions are considered for n subjects in a sample, our regression model features predictors fij,

i = 1, . . . , n, j = 1, . . . , J , where each of these is a density representing the distribution of

correlations for the ith individual and the jth region, and Yi is the corresponding response of

the ith subject, a cognitive score. Rather than using the raw distributions as predictors, we

employ the corresponding log-quantile density functions Xij(t) = ψ(fij)(t), given in (2.3).

In the analysis one must account for the fact that age is highly associated with both

connectivity (Ferreira and Busatto, 2013; Betzel et al., 2014) and cognitive functioning.

We address this by adjusting the response variable Yi, for a given cognitive score, to be

the residual from the regression of the respective cognitive score on age. We then apply

the functional linear regression model (Cai and Hall, 2006; Hall and Horowitz, 2007) for

predicting Yi from the Xij, while accounting for age, which is

Yi = β0 +
J∑

j=1

∫ 1

0

Xij(t)βj(t)dt+ εi, (2.5)

where β0 is a scalar parameter, the εi are independent and identically distributed errors with

zero mean, and the βj, j ≥ 1, are square-integrable functional parameters to be estimated.

A well-known issue with (2.5) is that regularization is needed due to the functional nature

of predictors, akin to ordinary multiple linear regression when the number of predictors

exceeds the number of observations. One common tool (Hall and Horowitz, 2007) is to

implement so-called spectral truncation regression by reducing each functional predictor Xij

to its first Kj functional principal component scores ξijk, k = 1, . . . , Kj (see (2.2)). If the φjk

are the eigenfunctions corresponding to the sample X1j, . . . , Xnj of log-quantile transformed

intra-regional correlation densities, one can also represent the functional parameters βj in
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Figure 2: Local connectivity densities for 10 randomly chosen normal subjects for (a) medial superior
frontal, (b) left middle frontal, (c) left parietal lobe, and (d) right supramarginal regions. These regions
correspond to the the most relevant active predictors chosen in the regression analyses.

this basis, using the coefficients

Bjk =

∫ 1

0

βj(t)φjk(t)dt, k = 1, . . . , Kj.

This results in a simplified linear multiple regression model,

Yi = β0 +
J∑

j=1

Kj∑
k=1

Bjkξijk + εi. (2.6)

As mentioned above, we will choose the truncation parameters Kj as the minimum number

of components needed to explain at least 95% of the total variance, analogous to a cumulative

scree plot approach in multivariate PCA.

To identify regions that are most useful in predicting each cognitive score, we must choose

a subset of active predictors from (2.6) or, equivalently, identify the coefficients Bjk that

are nonzero. The coefficients corresponding to the same functional predictor are naturally

grouped, so it makes sense to set all or none of Bj1, . . . , BjKj
to zero simultaneously. Hence,

a group forward selection procedure was implemented using AIC as a selection criterion. At

each step, the group of FPC scores that resulted in the lowest AIC was added to the model,

and the selection procedure was halted once AIC increased in two successive iterations.
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Figure 3: Local connectivity densities for 20 randomly chosen Alzheimer’s subjects for (a) medial superior
frontal, (b) medial prefrontal, and (c) right middle temporal regions. These regions correspond to the the
most relevant active predictors chosen in the regression analyses.

3 Results

3.1 Patterns of Intra-regional Connectivity

We begin by examining the local functional connectivity distributions, as defined in Sec-

tion 2.2. The intra-regional connectivity densities for normal subjects are visualized in Fig-

ure 2 for the medial superior frontal (MSF), left middle frontal (LMF), left parietal (LPL),

and right supramarginal (RS) regions and for Alzheimer’s subjects in Figure 3 for the medial

superior frontal (MSF), medial prefrontal (MP), and right middle temporal (RMT) regions.

These regions were the most relevant predictors in the optimal models discovered in the re-

gression analyses below; densities for the other regions showed similar patterns. To facilitate

visualization, these densities are plotted for a randomly chosen subset of 20 subjects in each

group. The local connectivity distributions fall into one of three classes: (1) unimodal with

peak near zero, (2) unimodal with peak at moderate to high correlation values and (3) flat

over a wide range of correlations.

For both groups, application of the transformation methodology in (2.3) followed by

FPCA resulted in the selection of three functional principal component scores (ξij1, ξij2, ξij3)

to represent the densities fij. The most common patterns of variability in these collections

of density curves are represented by the transformation modes of variation in (2.4), which

are illustrated in Figures 4 and 5. It emerges that the first mode of variation embodies the
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shift from highly peaked connectivity densites near zero (red extreme, high FPC score) to

relatively flatter densities with substantial fractions of correlations above 0.5 (blue extreme,

low FPC scores). The second mode of variation indicates the level of concentration of the

distribution, that is, the extent to which the correlations concentrate near 0.25, while the

third mode of variation quantifies concentration around 0.15. However, this last mode only

accounts for a small fraction of the overall variability.
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Figure 4: Mode of variation plots for the first three FPC scores of the MSF, LMF, LPL, and RS regions in
the cognitively normal group. Blue (red) corresponds to low (high) values of the corresponding FPC scores,
used as predictors in the regression models. For all regions, the first mode of variation indicates how much
connectivity densities concentrate around 0, as well as how large it is around 0.6, while the second mode
emphasizes the size of a mode around 0.25, and the third mode the size of a mode around 0.15.
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3.2 Identifying Connectivity-Cognition Associations

The response variables in our analysis are the following standardized measures of cognitive

function: episodic memory, executive function, spatial memory, and semantic memory. Fig-

ure 6 shows the distribution of these values for the two samples of cognitively normal and

Alzheimer’s subjects. As expected, scores are generally higher for normal subjects.
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Figure 5: Mode of variation plots for the first three FPC scores of the MSF, MP, and RMT regions in the
Alzheimer’s group. Blue (red) corresponds to low (high) values of the corresponding FPC score used in the
regression models, where the interpretation of the three modes of variation is similar to that for the three
modes of variation for the regions of the normal group.
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Figure 6: Boxplots for the distributions of cognitive scores within each subject group. ‘AD’ refers to the
Alzheimer’s disease group and ‘CN’ to the cognitively normal group.
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Table 1: Post-Selection p-values for all 4 age-corrected cognitive scores using a 2-step stopping criterion
based on AIC, for cognitively normal subjects. Rows indicate the order in which the regions are added to
the model, with corresponding region-specific p-values in parentheses. Each p-value corresponds to the null
hypothesis that the region can be removed from the model, assuming previously added regions are included.

Episodic Executive Spatial Semantic

N = 152 N = 153 N = 139 N = 149

1 MSF(0.328) LPL(0.830) MSF(0.352) LPL(0.394)

2 RMF(0.968) LMF(0.071) LMF(0.848) LMF(0.089)

3 LPL(0.021) LMT(0.706) RPL(0.813) -

4 LMT(0.373) MSF(0.065) RS(0.085) -

5 RMT(0.549) - - -

Table 2: Post-Selection p-values for all 4 age-corrected cognitive scores using a 2-step stopping criterion
based on AIC, for Alzheimer’s subjects. Rows indicate the order in which the regions are added to the model,
with corresponding region-specific p-values in parentheses. Each p-value corresponds to the null hypothesis
that the region can be removed from the model, assuming previously added regions are included.

Episodic Executive Spatial Semantic

N = 60 N = 61 N = 40 N = 59

1 MSF(0.073) RPL(0.937) PCP(0.215) RMF(0.248)

2 MP(0.086) MSF(0.205) MP(0.278) RMT(0.064)

3 - - RMF(0.973) MSF(0.010)

4 - - - LMF(0.795)

For the regression fits obtained from model (2.6), we report the sequentially selected

regions for the different subject groups and each of the four cognitive scores in Table 1 for

cognitively normal and in Table 2 for Alzheimer’s subjects. As some subjects had missing

test scores, the total number of subjects used in each model is also indicated. Each group of

included predictors was tested for significance using the post-selection inferential technique

described in Loftus and Taylor (2015), and p-values less than 0.1 are shown in bold.

3.3 Interpretation

To further elucidate the association of the connectivity densities with cognitive scores, we

indicate in Tables 3 and 4 the direction of the association between each cognitive score and

the first and second FPC scores for the regions with small p-values in Tables 1 and 2. These

are based on the sign of the coefficient estimate in the fitted model after forward selection.
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Table 3: Directional associations between first FPC score and cognitive score - ↑: The higher the density
peak near zero, the higher the test scores; ↓: the higher the density peak near zero, the lower the test scores.

Group

Normal Alzheimer’s

Episodic LPL(↓) MSF(↓), MP(↑)

Executive LMF(↑), MSF(↓) -

Spatial RS(↓) -

Semantic LMF(↑) RMT(↓), MSF(↓)

Table 4: Directional associations between second FPC score and cognitive score - ↑: The higher the peak
near 0.25, the higher the test scores; ↓: the higher the density peak near 0.25, the lower the test scores.

Group

Normal Alzheimer’s

Episodic LPL(↑) MSF(↑), MP(↓)

Executive LMF(↑), MSF(↑) -

Spatial RS(↑) -

Semantic LMF(↓) RMT(↓), MSF(↓)

For normal subjects, we find that densities with high peaks near zero in the LPL region,

i.e., more concentrated lower connectivity levels, which are the densities in red in Figures 4

(g)-(i), are associated with lower episodic performance, and the same pattern holds between

MSF densities and executive scores, as well as RS densities and spatial scores. However,

higher density peaks near zero in the LMF region are found to be positively associated

with both executive and semantic scores. For the Alzheimer’s group, having lower density

peaks near zero in the MSF region is positively associated with both episodic and semantic

memory, and the same relationship holds between RMT connectivity and semantic scores.

The reverse is true for the MP region and episodic score.

Regarding the second FPC scores in Table 4 for normal subjects, we find that episodic,

executive, and spatial scores are negatively associated with densities that have distinctive

modes around 0.25. That is, a high concentration of moderate local functional connectivity

values is related to performance decline. This is reversed for semantic score, where higher

semantic performance is associated with concentrated correlations around 0.25 in the LMF

region for normal subjects and in the RMT and MSF regions for the Alzheimer’s group.
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Figure 7: Smoothed contour plots of cognitive score/intraregional density relationships. (a) LMF region
and executive score (normal group), (b) MSF region and executive score (normal group), and (c) RMT
region and semantic score (Alzheimer’s group).

Further visual interpretations of these findings are provided by contour plots based on

the observed connectivity density/score pairs (fij, Yi). Here, the x and y axes correspond to

the cognitive score and correlation level, respectively, and value of the connectivity density

is indicated by the color. These plots are shown in Figure 7 for three density/score combina-

tions, two for the normal subjects and one for the Alzheimer’s group. To more clearly discern

the patterns in these plots, a smoothing step was applied along the cognitive score axis to

reduce the noise in the data. The main relationship seen between LMF intra-regional con-

nectivity densities and executive score is that subjects with high executive performance tend
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to have higher density modes near zeros, while for MSF connectivity densities, densities with

modes near 0.2 are associated with higher executive scores. In the Alzheimer’s group, higher

density peaks at low connectivity values for intra-regional connectivity densities in the RMT

region are associated with lower semantic performance. These simple visual interpretations

are confirmed by the numeric findings in Tables 3 and 4.

4 Discussion and Conclusions

We introduce connectivity densities to quantify intra-regional connectivity, using functional

data analysis methodology adapted to density functions and demonstrate that this quan-

tification of intra-regional connectivity can lead to specific findings that complement inter-

regional connectivity studies and traditional inter-regional network analysis. As we demon-

strate, quantification of connectivity density functions can be complemented by group for-

ward selection and accompanying post-selection inference to discover relationships with other

relevant covariates at the level of individual subjects.

In particular, our results demonstrate the value of utilizing entire distributions as pre-

dictors, where we use a nonlinear transformation method followed by functional principal

component analysis to summarize each density in a vector of principal component scores.

While these functional predictors contain a wealth of information, FPCA combined with the

mode of variation plots simultaneously provides dimension reduction and interpretability.

We conclude that intra-regional connectivity contains valuable information to assess brain

function. Our methodology allows to efficiently quantify, visualize and interpret key aspects

of intra-regional connectivity. Application of these novel methods revealed that intra-regional

connectivity is associated with cognitive scores in specific ways. These findings are validated

by related previous findings in the literature.

Our observation of a positive association between lower intra-regional connectivity with

connectivity densities more concentrated around 0 and executive function for the left middle

frontal cortex is supported by previous studies. Lower activation of LMF has been found to

be correlated with executive function (Kirova et al., 2015; Possin et al., 2014) and with better

attention performance (Murphy et al., 2014). A negative correlation between grey matter

volume in LMF and executive function has also been previously discussed (Breukelaar et al.,

2017). Our methodology thus highlights the specific role played by intra-regional connectivity

in LMF.
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It also has been previously observed that during episodic memory retrieval, several pari-

etal regions are active, including inferior and superior parietal cortex (Wagner et al., 2005;

Sajonz et al., 2010; Hutchinson et al., 2015) as well as the left inferior and superior parietal

gyrus plays a role (Sajonz et al., 2010; Hutchinson et al., 2015), suggesting that activation

of these regions is positively correlated with memory retrieval.

Frontal lobe deficit or dysfunction has been previously related to executive malfunction.

Subjects with lesions on the frontal lobes, including in the medial superior frontal cortex,

show lower executive function test performance (Roca et al., 2009). Especially subjects with

damage in medial superior frontal regions are reported to perform particularly poorly in

tests related to speed response in Stuss (2011), who hypothesize that the slower executive

function is due to the failure of initiating or sustaining activity in MSF. This hypothesis

suggests a positive correlation between executive function and activity in MSF.

Arnold et al. (2014) describe a connection between spatial function scores and activity

in the right supramarginal, right precentral cortex and left hippocampus. Similarly, Bähner

et al. (2015) report that the magnitude of the interaction between bilateral dorsolateral, right

supramaginal cortex and hippocampus may predict spatial working memory performance.

Group analysis in Wierenga et al. (2011) has shown that thinning of the right middle

temporal cortex in Alzheimer’s disease patients is correlated with semantic test performance,

where also activation of the right middle temporal cortex is reported when Alzheimer’s

disease subjects were performing certain semantic tasks. Lastly, Seidenberg et al. (2009)

observe that compared to a normal control group, subjects at high risk for Alzheimer’s

disease show greater activity in the right middle temporal cortex.

While the emphasis of this paper is a novel quantification of intra-regional connectivity,

the resulting analysis indicates that certain intra-regional correlations are associated to some

degree with the cognitive status of a subject. The direction of these associations varies across

regions and also differs according to disease status.
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Hahn, T., Meyer, P., Flor, H., Durstewitz, D. et al. (2015), “Hippocampal–dorsolateral

prefrontal coupling as a species-conserved cognitive mechanism: a human translational

imaging study,” Neuropsychopharmacology, 40(7), 1674–1681.

Bassett, D. S., and Bullmore, E. (2006), “Small-world brain networks,” The Neuroscientist,

12(6), 512–523.

Bassett, D. S., Nelson, B. G., Mueller, B. A., Camchong, J., and Lim, K. O. (2012), “Altered

resting state complexity in schizophrenia,” Neuroimage, 59(3), 2196–2207.
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