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ABSTRACT
We propose and investigate additive density regression, a novel additive functional regression model for
situations where the responses are random distributions that can be viewed as random densities and the
predictors are vectors. Data in the formof samples of densities or distributions are increasingly encountered
in statistical analysis and there is a need for flexible regressionmodels that accommodate randomdensities
as responses. Suchmodels are of special interest for multivariate continuous predictors, where unrestricted
nonparametric regression approaches are subject to the curse of dimensionality. Additive models can
be expected to maintain one-dimensional rates of convergence while permitting a substantial degree of
flexibility. This motivates the development of additive regression models for situations where multivariate
continuous predictors are coupled with densities as responses. To overcome the problem that distributions
do not form a vector space, we utilize a class of transformations that map densities to unrestricted square
integrable functions and then deploy an additive functional regression model to fit the responses in the
unrestricted space, finally transforming back to density space. We implement the proposed additive model
with an extended version of smooth backfitting and establish the consistency of this approach, including
rates of convergence. The proposed method is illustrated with an application to the distributions of baby
names in the United States.
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1. Introduction

We consider regression models where d-vectors of continuous
predictors Xi = (Xi,1, . . . ,Xi,d) are coupled with responses that
can be viewed as random densities fi for i = 1, . . . , n subjects,
and one is interested to infer the regression relation E(f |X) =
g(X). This situation arises in many situations, however, there
are only very few methods available at this time to deal with
such data. For example in neuroimaging, intra-hub connectivity
can be quantified as a density of correlations (Petersen and
Müller 2016; Petersen, Chen, and Müller 2018) and it is then
of interest how this connectivity density changes with the age
of the subject. Similarly, predicting distributions is of interest in
finance (Sen and Ma 2015). We will present a specific example
for a regression problemwith vector predictors and distribution
response in Section 5,wherewe study how the proposed additive
density regression can be applied to investigate the dependency
of the temporal distribution of the popularity of baby names in
the United States over calendar years on the initial popularity of
a name.

Systematic studies of densities as random objects in regres-
sion models have used simplicial models within the Aitchison
geometry (Talská et al. 2018), with applications to the modeling
of distributions of particle sizes in relation to predictors in soil
science (Menafoglio, Guadagnini, and Secchi 2014; Menafoglio,
Secchi, and Guadagnini 2016). General metric approaches,
including Fréchet regression with the Wasserstein metric were
studied recently (Petersen and Müller 2018). Various tools
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for the analysis of samples of densities as data objects have
been proposed over the last decade (Egozcue, Diaz-Barrero,
and Pawlowsky-Glahn 2006; Delicado 2007, 2011; Zhang and
Müller 2011; Panaretos and Zemel 2016; Petersen and Müller
2016; Bigot et al. 2017), extending the pioneering work of Kneip
andUtikal (2001).Many of thesemethods drawon concepts that
were developed in functional data analysis, such as functional
principal component analysis (Ramsay and Silverman 2005;
Wang, Chiou, and Müller 2016).

Specifically, the data we consider are of the type (Xi, fi), i =
1, . . . , n, where Xi are predictor vectors and the responses fi
are density functions. While the regression problem to infer
E(f |X = x) is relevant for many applications, it has not yet
been much investigated, and this provides the motivation to
introduce an additive approach in this paper. The problem we
consider here stands in contrast to a different and well-studied
problem, where one has data (Xi,Yi), i = 1, . . . , n, with scalars
Yi, and is interested in inferring the conditional density of Y
givenX, fY|X , which is derived from the conditional distribution
P(Y ≤ y|X = x), which is not parametrically specified. This
latter problem is usually considered in the general framework
of nonparametric regression and has a rich literature (see, e.g.,
Roussas 1969; Bhattacharya and Gangopadhyay 1990; Koenker,
Ng, and Portnoy 1994; Hall, Wolff, and Yao 1999; Hall and
Müller 2003; Dunson, Pillai, and Park 2007; Li, Lin, and Racine
2013). This problemhas also been sometimes referred to as den-
sity regression, but it is best characterized as conditional density
estimation within the framework of nonparametric regression.

© 2019 American Statistical Association
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Apart from the complication that the responses we consider
are density functions, which do not form a linear space, any
unrestricted nonparametric approach would be subject to the
curse of dimensionality for larger dimensions d of the predictor
vectors, especially if d > 3. Additive modeling is attractive for
such situations as it provides a structured regression approach
that avoids the curse of dimensionality, while maintaining a
large degree of flexibility of the fitted regression functions. For
this reason, our goal in this paper is to develop additive den-
sity regression, which is a version of additive modeling that is
suitable for density responses. In order to deal with the restric-
tions that are inherent to density functions, and which are not
convenient for additive modeling, we adopt a transformation
approach as in Petersen and Müller (2016), whereby density
functions are transformed by one-to-one maps to unrestricted
square integrable functions.

The models we consider feature a random density f as
response, coupled with predictors Xi that are d-vectors. We
mainly use the log-quantile transformation

�1 : F �→ L2, �1(f ) = log(F−1)′ (1.1)

for a collection of density or distribution functions F , but
other transformations that satisfy certain structural constraints
and map a density or distribution into an unrestricted square
integrable random function could also be used. Such alternative
transformations satisfying the required criteria are discussed
in Petersen and Müller (2016), where specifically the log haz-
ard transformation is investigated. This provides an alternative
transformation, mapping densities to L2 by

�2 : F �→ L2, �2(f ) = log(f /F̄), F̄ = 1 − F. (1.2)

Given a transformation that satisfies the requirements, the goal
is to estimate E

(
�(f )|X)

.
A challenge is that the responses fi in the random copies

(X1, f1), . . . , (Xn, fn) of (X, f ) are not actually observed, but
must be estimated from random samples that are generated by
these densities, Yi,1, . . . ,Yi,Ni

iid∼ fi. A natural approach is to
substitute estimates f̂i for the unknown response densities fi,
obtaining these estimates from these random samples, whichwe
may view as noisy observations of the true responses fi. Petersen
andMüller (2016) employed special boundary-corrected kernel
estimators f̂i that converge to f uniformly,

sup
fi∈F

‖f̂i − fi‖∞ → 0

as Ni → ∞; conventional kernel density estimators do not
have this property due to boundary effects. When fitting the
model E(�(f )|X = x), we take the estimated densities f̂i as the
observations of the response f . Thus, there are two sources of
errors in the estimation that need to be taken care of. The first
is the typical error in the response as in the standard regression
problem,�i,1 = fi − �−1(E(�(f )|Xi)). The second is the error
resulting from the estimation of the fi, �i,2 = f̂i − fi. We then
write

f̂i = μ(·|Xi) + �i,1 + �i,2,

where μ(·|x) := �−1(E(�(f )|X = x)).

The article is organized as follows. We introduce the pro-
posed additive density regression model and corresponding
estimates in Section 2 and present asymptotic theory in Sec-
tion 3. Simulation results are reported in Section 4 and we
provide a data illustration on the popularity of baby names in the
United States in Section 5.Detailed derivations of the theoretical
results and proofs are in the online supplement.

2. Model and Estimation

2.1. Additive Density RegressionModel

Our starting point is the conditional Fréchet mean of the den-
sity response given the predictor vector, which defines Fréchet
regression (Petersen and Müller 2018). Let F denote the space
of density functions defined on a common support, say Y . We
take Y = [0, 1] for simplicity. Given a 1:1 transformation
� : F → L2, where L2 is equipped with the usual metric
d(r1, r2) = ‖r1 − r2‖2 = (

∫ 1
0 (r1(u) − r2(u))2 du)1/2, we use

the metric df (f1, f2) = d(�(f1),�(f2)) for f1, f2 ∈ F . Then for
a given x ∈ R

d, the conditional Fréchet mean of the random
density f is defined by

μ(·|x) = argmin
φ∈F

E
(‖�(f ) − �(φ)‖22 |X = x

)
,

where the expectation ‘E’ refers to the joint distribution of (X, f ).
Thus,

�(μ(·|x))(u) = E(�(f )(u) |X = x), u ∈ [0, 1],
so that the proposed additive density regression model leads to
the following model for the conditional densities at predictor
levels X = x, corresponding to the mean regression,

μ(v|x) = �−1 (
E(�(f ) |X = x)

)
(v), v ∈ [0, 1]. (2.1)

We consider the random densities fi that serve as responses
in the proposed additive density regression model to be realiza-
tions of L2-processes on [0, 1] that take values in F , with f as a
generic element. Let ε denote an error process that is an element
of L2, with iid realizations εi that are independent from all other
random elements in the regression model

�(fi) = g0 +
d∑

j=1
gj(·,Xi,j) + εi, (2.2)

where g0 is an unknown univariate satisfying g0(u) = E�(f )(u)
and gj, for 1 ≤ j ≤ d, are unknown bivariate component
functions. We assume that (Xi, εi) are independent copies of
(X, ε) satisfying E(εi|Xi) = 0. Then

E
(
�(f )(u)|X) = g0(u) +

d∑
j=1

gj(u,Xj), u ∈ [0, 1]. (2.3)

Without loss of generality, assume that the bivariate functions gj
satisfy ∫ 1

0
gj(u, xj)pj(xj) dxj = 0, 1 ≤ j ≤ d, (2.4)

and g0 is determined according to the constraints (2.4); note that
this is a standard approach in additivemodeling.We assume that
each predictor Xj is supported on a compact set Ij, and without
loss of generality take Ij = [0, 1] for all 1 ≤ j ≤ d.
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2.2. Estimation

Based on the representation in (2.3), we estimate the component
functions gj for 0 ≤ j ≤ d. Given estimates ĝj for the gj, our
estimator of the conditional Fréchet mean μ(·|x) is

μ̂(v|x) = �−1

⎛
⎝ĝ0 +

d∑
j=1

ĝj(·, xj)
⎞
⎠ (v), (2.5)

which is a density functionwith argument v.We employ a kernel
smoothing technique to estimate the unknown functions gj in
model (2.3). For a symmetric probability density defined on
[−1, 1] that serves as kernel function K, define a normalized
kernel

Kh(x, z) = ch(z)
1
h
K

(
x − z
h

)
, (2.6)

where ch(z) is defined by ch(z)−1 = ∫ 1
0 h−1K(h−1(x− z)) dx so

that
∫ 1
0 Kh(x, z) dx = 1 for all z ∈ [0, 1].

The latter normalization property is important for the the-
oretical development of our kernel method for the additive
model. For example, if we estimate the joint density p of X by

p̂(x) = n−1
n∑

i=1
Kh1(x1,Xi,1) × · · · × Khd(xd,Xi,d),

all marginal densities pS of XS ≡ (Xj : j ∈ S), for any index set
S ⊂ {1, 2, . . . , d}, are obtained by simply integrating p̂ over the
variables with indices not in S. The typical kernel estimators of
themarginal densities pj ofXj and pjk of (Xj,Xk) are obtained by

p̂j(xj) := n−1
n∑

i=1
Khj(xj,Xi,j) =

∫
[0,1]d−1

p̂(x) dx−j,

p̂jk(xj, xk) := n−1
n∑

i=1
Khj(xj,Xi,j)Khk(xk,Xi,k)

=
∫

[0,1]d−2
p̂(x) dx−j,k, (2.7)

where here and below x−j = (xl : 1 ≤ l ≤ d, l �= j) and x−j,k =
(xl : 1 ≤ l ≤ d, l �= j, k) for a d-vector x.

We now consider the realistic case with regard to imple-
mentation of our method, where one observes random copies
Xi of X, but does not directly observe the associated response
densities fi. Instead, the information available about each fi is the
sample Yi,1, . . . ,Yi,Ni , which is iid generated from the unknown
density fi, coupled with Xi. Our method of estimating gj is then
based on the observations (Xi,Yi,1, . . . ,Yi,Ni), 1 ≤ i ≤ n. With
h = (h1, . . . , hd) we write Kh(x, z) = Kh1(x1, z1) × · · · ×
Khd(xd, zd).

If the density responses fi were available, we would minimize

∫
[0,1]d+1

n−1
n∑

i=1

(
�(fi)(u) − η0(u) −

d∑
j=1

ηj(u, xj)
)2

×Kh(x,Xi) dx du (2.8)

over the space of tuples of square integrable functions ηj, 0 ≤
j ≤ d. The objective functional at (2.8) can indeed be interpreted
as an estimator of

E
∫ 1

0

(
�(f )(u) − η0(u) −

d∑
j=1

ηj(u,Xj)
)2
du

=
∫

[0,1]d+1
E

⎡
⎣(

�(f )(u) − η0(u) −
d∑

j=1
ηj(u, xj)

)2 ∣∣∣X = x

⎤
⎦

× p(x) dx du.

Since the density responses fi are not observed, we replace
them with their estimators f̂i in (2.8). Ideally, estimates f̂i are
obtained with a modified kernel estimator (Petersen andMüller
2016), where for a symmetric probability density that serves as
kernel κ and is supported on [−1, 1] and a bandwidth bwewrite
κb(u) = b−1κ(b−1u) and take

f̂i(v) = N−1
i

∑Ni
�=1 wb(v)κb(v − Yi,�)∫ 1

0 N−1
i

∑Ni
�=1 wb(v)κb(v − Yi,�) dv

, (2.9)

where wb(v) is defined by wb(v)−1 = ∫ 1
0 κb(v − y) dy, and κ , b

are possibly different from K and hj, respectively.
Note that

∫ 1
0 f̂i(v) dv = 1 and that the normalization factor

wb serves to remove boundary bias. Petersen and Müller (2016)
showed that f̂i as defined at (2.9) is uniformly consistent. For a
related discussion in the case of locally linear smooth backfitting
estimation, see Mammen and Park (2006)

The minimization of the resulting objective functional with
f̂i inserted in place of fi in (2.8) is equivalent to minimizing
∫

[0,1]d
n−1

n∑
i=1

(
�(f̂i)(u) − η0(u) −

d∑
j=1

ηj(u, xj)
)2
Kh(x,Xi) dx

(2.10)
pointwise for each u ∈ [0, 1]. The resulting pointwise estimators
of gj in practicemight not be smooth, depending on the smooth-
ness of density response estimators f̂i. This may be undesirable
in case it is believed that the true component functions gj are
smooth and can be easily remedied by inserting an additional
local smoothing step in the direction of u. Namely, for each
u ∈ [0, 1], minimize

∫ 1

0

∫
[0,1]d

n−1
n∑

i=1

⎡
⎣�(f̂i)(v) − η0(u) −

d∑
j=1

ηj(u, xj)

⎤
⎦
2

×Kh(x,Xi) dx · ωh0(u − v) dv (2.11)

with respect to η0(u) and (η1(u, ·), . . . , ηd(u, ·)), where ω and
h0 are a kernel and a bandwidth that may differ from K and hj,
respectively, and ωh0(u) = h−1

0 ω(h−1
0 u). In the minimization

we impose the constraints
∫ 1

0
ĝj(u, xj)p̂j(xj) dxj = 0, 1 ≤ j ≤ d, (2.12)

where (2.12) is an empirical version of Egj(u,Xj) = 0 as at (2.4).
Our theory to be presented in the next section also includes the
special case (2.10) of (2.11).
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Define λ0(u) = ∫ 1
0 ωh0(u − v) dv, and let

ĝ0(u) = λ0(u)−1n−1
n∑

i=1

∫ 1

0
ωh0(u − v)�(f̂i)(v) dv,

g̃j(u, xj) = λ0(u)−1p̂j(xj)−1n−1
n∑

i=1
Khj(xj,Xi,j)

×
∫ 1

0
ωh0(u − v)�(f̂i)(v) dv.

(2.13)

By considering the Frèchet differentials of the objective func-
tional at (2.11), we find that the minimizer of (2.11) satisfies the
following system of integral equations:

ĝj(u, xj)
= g̃j(u, xj) − ĝ0(u)

−
d∑

k�=j

∫ 1

0
ĝk(u, xk)

p̂jk(xj, xk)
p̂j(xj)

dxk, 1 ≤ j ≤ d. (2.14)

The system of the equations at (2.14) may be understood to
solve for the tuples of the univariate ĝ0 and bivariate gj with
the constraints (2.12), although it is derived from the pointwise
minimization of (2.11) for each u ∈ [0, 1]. This is a consequence
of the fact that the kernels p̂jk(xj,xk)

p̂j(xj)
of the integral operators

involved in (2.14) are independent of u ∈ [0, 1]. Specifically, the
integral operators πj are given by

πj(η)(u, xj) =
∫ 1

0
η(u, x)

p̂(x)
p̂j(xj)

dx−j. (2.15)

With the convention that ĝ0(u, x) = ĝ0(u) and
ĝj(u, x) = ĝj(u, xj) for 1 ≤ j ≤ d, we may write (2.14) as

ĝj = g̃j − ĝ0 −
∑
k�=j

πj(ĝk), 1 ≤ j ≤ d.

This is in contrast to the backfitting equations studied in Zhang,
Park, andWang (2013), where the corresponding integral oper-
ators depend on u.

In practice, we obtain the solution of (2.14) by an iterative
algorithm. Let (ĝ[0]

j : 1 ≤ j ≤ d) be an initial tuple of estimators
satisfying the constraints (2.12). The updated solution in the rth
cycle of the backfitting iteration is given by

ĝ[r]
j (u, xj)

= g̃j(u, xj)

− ĝ0(u) −
j−1∑
k=1

∫ 1

0
ĝ[r]
k (u, xk)

p̂jk(xj, xk)
p̂j(xj)

dxk

−
d∑

k=j+1

∫ 1

0
ĝ[r−1]
k (u, xk)

p̂jk(xj, xk)
p̂j(xj)

dxk, 1 ≤ j ≤ d.

(2.16)

Since
∫ 1
0 g̃j(u, xj)p̂j(xj) dxj = ĝ0(u) for all 1 ≤ j ≤ d and

the initial estimators ĝ[0]
j satisfy the constraints (2.12), it holds

that all subsequent updates ĝ[r]
j also satisfy (2.12). We stop the

backfitting iteration if the difference between two successive
updates is less than a threshold value. Our theory in the next
section reveals that the iterative algorithm converges in the sup-
L2 metric d(·, ·) defined by

d(ĝ[r+1], ĝ[r])2 = sup
u∈[0,1]

max
1≤j≤d

∫ 1

0

(
ĝ[r+1]
j (u, xj) − ĝ[r]

j (u, xj)
)2

× pj(xj) dxj.

The uniform convergence of the iteration for u is a consequence
of the fact that the kernels of the integral operators defined at
(2.15) are independent of u ∈ [0, 1].

3. Theoretical Results

The following asymptotic results are derived within the frame-
work of the additive density regression model (2.2). As men-
tioned before, the random densities fi that serve as responses are
viewed as realizations of L2-processes on [0, 1], taking values in
F , with f as a generic element, and the (Xi, εi) are independent
copies of (X, ε) satisfying E(εi|Xi) = 0. We need several
assumptions. Let G(r) denote the space of differentiable density
functions qwith ‖q′‖∞ < ∞ such thatmax

(‖q‖∞, ‖1/q‖∞
) ≤

r.

(N) The number of observations Ni from which the ith density
is estimated is such that (Ni : 1 ≤ i ≤ n) is independent of
((Xi, fi) : 1 ≤ i ≤ n) and (Yi,� : 1 ≤ i ≤ n, � ≥ 1), with

P(m(n) ≤ Ni ≤ M(n) for all 1 ≤ i ≤ n) → 1 (3.1)

for some sequencesm ≡ m(n) < M ≡ M(n) that converge
to ∞ as n → ∞.

(T) The random densities fi and their derivatives satisfy

max
1≤i≤n

‖fi‖∞ ≤ r0, max
1≤i≤n

‖1/fi‖∞ ≤ r0,

max
1≤i≤n

‖f ′i ‖∞ ≤ r0, max
1≤i≤n

‖�(fi)‖∞ ≤ r0

for some constant 0 < r0 < ∞. For each 0 < r < ∞, there
exists a constant 0 < D(r) < ∞ that depends solely on r
such that, for all u1, u2 ∈ G(r),

‖�(u1) − �(u2)‖∞ ≤ D(r)‖u1 − u2‖∞.

(K) The kernelsK andω are symmetric, bounded, nonnegative,
supported on a compact set, say [−1, 1], have bounded
derivatives and satisfy

∫
K = ∫

ω = 1.
(B) The bandwidths hj, 1 ≤ j ≤ d, h0 and b satisfy hj �

n−1/5, h0 � n−α0 for some α0 > 0, b → 0, mb/ logM →
∞ withm � nα1 for some 0 < α1 < ∞.

(J) The two-dimensional joint densities pjk(xj, xk), 1 ≤ j �=
k ≤ d, are bounded away from zero and infinity on [0, 1]2
and are partially continuously differentiable.

(C) The component functions gj(u, xj) are twice partially con-
tinuously differentiable, 1 ≤ j ≤ d.

(M) The error process ε satisfies supu,xj∈[0,1] E(ε(u)2|Xj =
xj) < ∞ for 1 ≤ j ≤ d, and E‖ε‖k∞ < ∞ for some
k > 5/2.
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Under Assumption (N), wemay treatNi as bounded below bym
and bounded above by M in the following, while (T) is needed
for the transformation approach (Petersen and Müller 2016).
Assumptions (K) and (C) are standard in kernel smoothing. The
bandwidth sequences hj in Assumption (B) are postulated to
have rates that are known to be optimal for univariate kernel
smoothing. We do not fix the sizes of other bandwidths h0 and
b and only require the boundedness for the two-dimensional
densities pjk, rather than that of the d-dimensional joint density
p ofX, which does not need to be fully supported on [0, 1]d. This
leads to enhanced generality in the applicability of the proposed
method. Because of the additional local smoothing step across
u in the estimation of gj, we also do not need ε(u) to be smooth
as a function, and it is sufficient to require the two conditions on
the (conditional) moments in (M).

Our first main result is on the uniqueness of the solution
of the system of integral equations (2.14) and the uniform
convergence of the iterative algorithm (2.16).

Theorem 1. Assume (N), (K), (B), (J), and (C). Then, with prob-
ability tending to one, there exists a unique solution (ĝj(u, ·) :
1 ≤ j ≤ d) of (2.14), for each u ∈ [0, 1], subject to the
constraints (2.12). Furthermore, there exist absolute constants
γ ∈ (0, 1) and C > 0 such that, with probability tending to one,
it holds that∫ 1

0

(
ĝ[r]
j (u, xj) − ĝj(u, xj)

)2
pj(xj) dxj

≤ C · γ r ·
(
1 +

d∑
k=1

∫ 1

0
ĝ[0]
k (u, xk)2pk(xk) dxk

)
(3.2)

for all u ∈ [0, 1].
We note that this result implies that the convergence of the

algorithm (2.16) is uniform for u ∈ [0, 1] if the initial estimators
ĝ[0]
j are bounded. This is mainly due to the fact that the kernel of
the integral operators πj defined at (2.15) are independent of u.
The uniqueness of the solution of (2.14) and the convergence of
the algorithm are consequences of the fact that the operatorT =
(I−πd)◦ · · · ◦ (I−π1) is a contraction with probability tending
to one. A crucial element of the proof of P(‖T‖op ≤ γ ) → 1 as
n → ∞ for some constant 0 < γ < 1 is the bound

∫
[0,1]2

( p̂jk(xj, xk)
p̂j(xj)pk(xk)

− pjk(xj, xk)
pj(xj)pk(xk)

)2
pj(xj)pk(xk) dxj dxk

= op(1);

see Mammen, Linton, and Nielsen (1999), Yu, Park, and Mam-
men (2008), Lee, Mammen, and Park (2010), and Lee, Mam-
men, and Park (2012) for technical details.

Our second result provides stochastic expansions of ĝj. One
might think that one can ignore ĝ0 as defined at (2.13) in
the theoretical developments since it involves one-dimensional
smoothing, while the other components ĝj for 1 ≤ j ≤ d
involve two-dimensional smoothing, so that ĝ0 has a faster rate
of convergence than ĝj. However, we find that this is not the case.
As we will see below and in the technical details in the appendix,
the main error of ĝ0 as an estimator of g0 = E�(f ) is rooted
in the error of f̂i and thus is not always smaller than the error

of ĝj, where f̂i are the kernel estimators of the random densities
fi. In the following Theorem 2, we include the error ĝ0 − g0 to
demonstrate how the estimation errors �(f̂i) − �(fi) affect the
estimation of gj.

To simplify notations, we use in the following:

g(r,s)
j (u, xj) = ∂r+s

∂ur∂xsj
gj(u, xj), r + s = 1, 2

and denote the partial derivatives of pjk(xj, xk) by p(r,s)
jk (xj, xk)

for (r, s) = (0, 1) or (1, 0). Define

λj(u) ≡ λn,j(u) =
∫ 1

0
h−j
0 (v − u)jωh0(u − v) dv, j ≥ 0,

where ωh0(t) = h−1
0 ω(h−1

0 t), and

g̃A,1j (u, xj) = p̂j(xj)−1n−1
n∑

i=1
Khj(xj,Xi,j)

×
∫ 1

0
λ0(u)−1ωh0(u − v)εi(v) dv. (3.3)

Writing

δni(u) = λ0(u)−1
∫ 1

0
ωh0(u − v)

(
�(f̂i)(v) − �(fi)(v)

)
dv,

(3.4)

an = b + m−1/2b−1/2√logM, (3.5)

μ�,j(xj) =
∫ 1

0
h−�
j (z − xj)�Khj(xj, z) dz, � ≥ 0, (3.6)

we note that the μ�,j(xj) equal the complete �th moments of K,
μ� = ∫

v�K(v) dv, when xj ∈ [2hj, 1 − 2hj], a fact that will be
repeatedly used in the technical derivations.

For an arbitrary constant 0 < C < ∞ and a positive
sequence an, define

�̃A
j (u, xj,C) = μ0,j(xj)−1pj(xj)−1

× E
[
Khj(xj,Xj)δn(u)I(‖δn‖∞ ≤ Can)

]
− E [δn(u)I(‖δn‖∞ ≤ Can)]

and observe that the �̃A
j (u, xj,C) satisfy

sup
u,xj∈[0,1]

|�̃A
j (u, xj,C)| = O(an),

∫ 1

0
�̃A

j (u, xj,C)μ0,j(xj)pj(xj) dxj ≡ 0 (3.7)

for all C, where we use the fact that
∫ 1
0 Khj(xj, v) dxj = 1 for all

v ∈ [0, 1].
Define

�̃B
j (u, xj) = μ2

∑
k�=j

h2kE
(
g(0,1)
k (u,Xk) ·

p(0,1)
jk (Xj,Xk)

pjk(Xj,Xk)

∣∣∣Xj = xj
)

+ h2j ·
[
μ2,j(xj)
μ0,j(xj)

−
(

μ1,j(xj)
μ0,j(xj)

)2 ]
· g(0,1)

j (u, xj)

· p
′
j(xj)
pj(xj)

.

(3.8)
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We note that �̃A
j and �̃B

j are nonstochastic, and writing h2+ =∑d
j=1 h2j , that the �̃B

j (u, xj) are of magnitude h2+, uniformly for
u, xj ∈ [0, 1]. Let (�A

j (·,C) : 1 ≤ j ≤ d) be the solution of the
system of equations

�A
j (u, xj,C) = �̃A

j (u, xj,C)

−
∑
k�=j

∫ 1

0
�A

k (u, xk,C)
pjk(xj, xk)
pj(xj)

dxk,

1 ≤ j ≤ d, (3.9)

and likewise define (�B
j : 1 ≤ j ≤ d)with �̃B

j replacing �̃A
j (·,C)

in the system of equations (3.9). The two systems of equations
determine only the sum functions

∑d
j=1 �A

j (·,C) and
∑d

j=1 �B
j ,

and we invoke the additional constraints∫ 1

0
�A

j (u, xj,C)pj(xj) dxj = 0, 1 ≤ j ≤ d,
∫ 1

0
�B

j (u, xj)pj(xj) dxj = μ2h2j
∫ 1

0
g(0,1)(u, xj)p′

j(xj)

dxj, 1 ≤ j ≤ d.

(3.10)

Finally, let

γj(u, xj) = h0 · λ1(u)
λ0(u)

· g(1,0)
j (u, xj) + hj · μ1,j(xj)

μ0,j(xj)
· g(0,1)

j (u, xj)

+ 1
2
h20 · λ2(u)

λ0(u)
· g(2,0)

j (u, xj) + h0hj · λ1(u)
λ0(u)

· μ1,j(xj)
μ0,j(xj)

· g(1,1)
j (u, xj)

+ 1
2
h2j · μ2,j(xj)

μ0,j(xj)
· g(0,2)

j (u, xj).

Theorem 2. Assume (N), (T), (K), (B), (J), (C), and (M). Then,
there exists a constant 0 < C0 < ∞ such that for all C ≥ C0 it
holds that

ĝj(u, xj) = gj(u, xj) + g̃A,1j (u, xj) + �A
j (u, xj,C)

+ �B
j (u, xj) + γj(u, xj)

+ rnj(u, xj) + op(h20) + Op
(
n−1/2√log n

)
,

uniformly for u, xj ∈ [0, 1], where rnj(u, xj) satisfy
sup

u,xj∈[0,1]
|rnj(u, xj)| = Op(an + h2+),

sup
u∈[0,1],xj∈[2hj,1−2hj]

|rnj(u, xj)| = op(an + h2+).

Here, h+ is defined after (3.8). The lower bound m on the
number of observations per density affects the rates of the
remainder terms in Theorem 2, as revealed by the definition
of an, in Equation (3.5). In addition to m, an also depends on
the bandwidth b that is used for constructing the kernel den-
sity estimators and reflects a trade-off between presmoothing
and smooth backfitting. Theorem 2 further demonstrates that
�A

j (·,C) are the only leading effects of the errors �(f̂i) − �(fi)
that affect the estimation of gj. These effects do not appear in

any other leading terms, and neither in the constraints on �B
j

(3.10). Note that changing�A
j (u, xj,C) to�A

j (u, xj,C′) for some
C′ �= C does not alter the stochastic expansion as long as
C, C′ ≥ C0 since the difference in the corresponding expansions
is of order op(an), as emerges from the proof of Theorem 2.

We now present the asymptotic distributions of the compo-
nent function estimators ĝj(u, xj). For this, we let n1/5hj → cj
for some constants 0 < cj < ∞, 1 ≤ j ≤ d, while allowing the
magnitude of the bandwidth h0 to be smaller than or equal to
that of hj, setting n1/5h0 → c0 for some constant 0 ≤ c0 < ∞
including c0 = 0. We consider points u and xj in (0, 1). For
such interior points, there is some simplification in the bias
expansion since u and xj, respectively, belong to [h0, 1 − h0]
and [2hj, 1 − 2hj] eventually as n tends to infinity. Specifically,
those terms in γj that involve λ1(u) and μ1,j(xj) vanish and
we can replace λ0(u) and λ2(u) by the corresponding complete
moments, 1 and λ2 ≡ ∫

u2ω(u) du, respectively. Likewise, we
may replace μ0,j(xj) and μj,2(xj) by 1 and μ2, respectively.

To state the next main result, we choose bandwidths b so that
n2/5an → 0 as n → ∞, whence the �A

j are negligible. With

β̃j(u, xj) = μ2
∑
k�=j

c2kE
(
g(0,1)
k (u,Xk) ·

p(0,1)
jk (Xj,Xk)

pjk(Xj,Xk)

∣∣∣Xj = xj
)

+ μ2 · c2j · g(0,1)
j (u, xj) · p

′
j(xj)
pj(xj)

,

we can write �B
j = n−2/5βj, where (βj : 1 ≤ j ≤ d) is the

solution of the system of equations

βj(u, xj) = β̃j(u, xj)

−
∑
k�=j

∫ 1

0
βk(u, xk)

pjk(xj, xk)
pj(xj)

dxk, 1 ≤ j ≤ d,

subject to the constraints
∫ 1

0
βj(u, xj)pj(xj) dxj

= μ2c2j
∫ 1

0
g(0,1)(u, xj)p′

j(xj) dxj, 1 ≤ j ≤ d.

The asymptotic variances of ĝj(u, xj) are obtained from the
stochastic term g̃A,1j (u, xj). The asymptotic covariances of
g̃A,1j (u, xj) and g̃A,1k (u, xk) for j �= k are of smaller order
than n−2/5 from the standard theory of kernel smoothing.
This means that ĝj(u, xj) and ĝk(u, xk) are asymptotically
independent since they are jointly asymptotically normal.
To obtain the leading variance terms requires an additional
condition on the error process, where in addition to (M) we
assume

(M′) For each 1 ≤ j ≤ d, the conditional covariance
E(ε(u)ε(v)|Xj = xj), as a function of (u, v, xj) is
continuous on {(u, v) ∈ [0, 1]2 : v = u} × [0, 1].

Theorem 3. Let u and xj be fixed points in (0, 1), 1 ≤ j ≤
d. Assume that an converges to zero faster than n−2/5. Then,
under the assumptions of Theorem 2 and (M′), it holds that
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n2/5(ĝj(u, xj) − gj(u, xj)) for different j are asymptotically inde-
pendent, and that

n2/5(ĝj(u, xj) − gj(u, xj))
d→ N

(
c20λ2g

(2,0)
j (u, xj)/2 + c2j μ2g(0,2)

j (u, xj)/2 + βj(u, xj),

pj(xj)−1E
(
ε(u)2|Xj = xj

) ∫
K2

)
.

4. Numerical Illustrations

4.1. Simulation study

We demonstrate numerical applications of the proposed addi-
tive density regression model (2.2) for density responses when
choosing the transformation � as the log-quantile transforma-
tion �1 (1.1) and the additive surface in (2.3) as g(u, x) =
g1(u, x1) + g2(u, x2), with

g1(u, x1) = sin(2πu)(2x1 − 1) and
g2(u, x2) = sin(2πu) sin(2πx2) (4.1)

for u, x1, x2 ∈ [0, 1] and g0 = 0. For a given covariate vector
X = x ∈ R

2, the fitted model is defined by the conditional
Fréchetmeanμ(v|x) = �−1

1 (g(·, x))(v) of the random response
densities f , as described in Section 2.1 and model (2.1). More
specifically, �−1

1 (g(·, x)) = θ0(x) exp
{−g (F(·|x), x)}, where

θ0(x) = ∫ 1
0 exp

{
g(v, x)

}
dv and the conditional distribution

function F(·|x) and conditional quantile function Q(·|x) satisfy

Q (u|x) = F−1 (u|x) = θ0(x)−1
∫ u

0
exp

{
g(v, x)

}
dv. (4.2)

Here, θ0(x) is a normalization factor such that μ(·|x) is sup-
ported on the interval [0, 1] for all x ∈ [0, 1]2 (Petersen and
Müller 2016).

Using (4.2), we implemented random sampling based on
error-contaminated random quantile functions Q(u|X) =
θε(X)−1 ∫ u

0 exp
{
g(v,X) + ε(v)

}
dv, where θε(x)

= ∫ 1
0 exp

{
g(v, x) + ε(v)

}
dv and ε(u) = ε1 sin(πu) +

ε2 sin(2πu) represents the error process of the model (2.2) as
a random L2-element, where ε1 and ε2 were chosen as mean
zero independent normal random variables with var(ε1) = 0.12
and var(ε2) = 0.052. For the random covariate vector Xi =
(Xi,1,Xi,2)�, we generated Xi = (�(Vi,1),�(Vi,2))�, where �

is the standard normal CDF and Vi = (Vi,1,Vi,2)� ∼ N2(0,�)

are bivariate normal random vectors with mean zero and a
covariance matrix

� =
(

1 0.5
0.5 1

)
.

We note that both Xi,1 and Xi,2 have marginal distribu-
tions on [0, 1] and are correlated with each other. Then, for
Ui,1, . . . ,Ui,Ni

iid∼ Uniform(0, 1) independent of Xi, we obtained
random samples Yi = {Yi,j = Q(Ui,j|Xi) : 1 ≤ j ≤ Ni} for each
1 ≤ i ≤ n, so that Yi,1, . . . ,Yi,Ni

iid∼ fi ≡ �−1
1 (g(·,Xi) + εi),

where the fi are random response densities and εi are random
copies of ε. Ideally, we would have available random copies
(X1, f1), . . . , (Xn, fn) of (X, f ) satisfying E(�1(f )(u)|X) =

�1(μ(·|X))(u) for all u ∈ [0, 1], from which we would aim
to infer the additive component functions g1, g2 and the fitted
model (2.1). However, in almost all applications, the response
densities fi need to be inferred from data that they generated.
Accordingly, we assume Ni = N iid observations are available
for each response distribution and consider scenarios with
N = 200, 400, and 800 in order to assess how this number
affects the estimation performance of the proposed method.
For the sample size n of available data points (predictors and
response density pairs) to fit the additive density regression, we
choose n = 100, 400, and 1000.

In Figure 1, we depict randomdensity responses generated in
the simulation setting described above. The conditional Fréchet
mean μ(v|X) = �−1

1 (g(·,X))(v) is illustrated by some fixed
covariate vectors X = (x1, x2)� together with random realiza-
tions of the density response f = �−1

1 (g(·,X)+ε) at each given
X = (x1, x2), respectively. This demonstrates how covariates
affect the shape of density realizations through the additive
model (4.1) and the nonlinear quantile transformation �1 and
how the random densities vary with the additional error in the
transformed space.

We write Xn = {(Xi,Yi) : 1 ≤ i ≤ n} for the generated sam-
ple, ĝj(·, ·) ≡ ĝj(·, ·;Xn, h) for the smooth backfitting estimators
(2.14) of the additive component surfaces gj(·, ·), j = 1, 2, based
on the sample Xn and h = (h0, h1, h2) for the bandwidth vector
used in (2.13), where h0, h1 and h2 are chosen to adapt to the
smoothness of the component function estimators in u, x1 and
x2, respectively. Throughout we suppress the dependency on N
for simplicity of notation. For data-adaptive bandwidth selec-
tion, we implemented a shrinkage bandwidth selector (Han,
Müller, and Park 2018), based on K-fold cross validation (CV).
A more detailed description of implementation and bandwidth
selection can be found in the online supplement.

We examined the performance of the component estimation
for the additive surface estimates ĝj(u, xj) in terms of mean
integrated squared error (MISE), approximated by

MISE(ĝj) ≈ B−1
B∑

b=1

∫ 1

0

∫ 1

0

(
ĝ(b)
j (u, xj) − gj(u, xj)

)2
du dxj,

(4.3)

where ĝ(b)
j (u, xj) are the component estimators of gj(u, xj) from

the bth Monte Carlo (MC) sample X (b)
n = {(X(b)

i ,Y(b)
i ) :

1 ≤ i ≤ n} and the shrinkage bandwidth selection pro-
cedure was applied separately at each Monte Carlo run. The
integrated squared bias (ISB) and integrated variance (IV) were
also reported, where

ISB(ĝj) ≈
∫ 1

0

∫ 1

0

( ¯̂gj(u, xj; h) − gj(u, xj)
)2

du dxj,

IV(ĝj) ≈ B−1
B∑

b=1

∫ 1

0

∫ 1

0

(
ĝ(b)
j (u, xj) − ¯̂gj(u, xj)

)2
du dxj,

with ¯̂gj(u, xj) = B−1 ∑B
b=1 ĝ

(b)
j (u, xj). From the results in

Table 1, it can be seen that MISE becomes smaller as n and
N increase. It turns out that the sample size n mainly affects
IV, while ISB depends primarily on N, which is expected, since
N determines the precision with which the response densities



8 K. HAN, H.-G. MÜLLER, AND B. U. PARK

Figure 1. Examples of random densities within the simulation setting. For a selection of 12 fixed covariate vectors x = (x1, x2)� , the solid black line is the density
function that corresponds to the conditional Fréchet mean, which depends on the covariates through μ(·|x) = �−1

1 (g(·, x)). Also depicted are 30 random copies of
f = �−1

1 (g(·, x) + ε), demonstrating the extent to which the additional noise process ε affects the densities through the back transformation�−1
1 .
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Table 1. Mean integrated squared error (MISE), integrated squared bias (ISB) and integrated variance (IV) of the smooth backfitting estimation for additive surface
components for j = 1, 2, for B = 500 Monte Carlo samples with sample sizes n = 100, 400, 1000, and N = 200, 400, and 800. Here, the sample size n denotes the
number of observed density responses and N stands for the number of observations generated from each density.

N = 200 N = 400 N = 800

Sample size Criterion j = 1 j = 2 j = 1 j = 2 j = 1 j = 2

MISE 0.0195 0.0304 0.0159 0.0255 0.0131 0.0214
n = 100 ISB 0.0150 0.0251 0.0119 0.0208 0.0094 0.0170

IV 0.0045 0.0053 0.0040 0.0047 0.0037 0.0044

MISE 0.0169 0.0230 0.0131 0.0178 0.0103 0.0139
n = 400 ISB 0.0154 0.0211 0.0118 0.0162 0.0091 0.0125

IV 0.0015 0.0019 0.0013 0.0016 0.0012 0.0014

MISE 0.0151 0.0200 0.0121 0.0164 0.0101 0.0134
n = 1000 ISB 0.0144 0.0190 0.0114 0.0165 0.0094 0.0125

IV 0.0007 0.0010 0.0007 0.0009 0.0007 0.0009

can be assessed. Figure 2 provides graphical illustrations for
the average performance of the proposed estimator in terms of
bias ¯̂gj(u, xj) − gj(u, xj) and variance B−1 ∑B

b=1
(
ĝ(b)
j (u, xj) −

¯̂gj(u, xj)
)2, obtained from B-Monte Carlo runs for j = 1, 2.

The proposed additive density regression model can also be
used to predict response densities for a given predictor level,
where the estimated mean density regression is used to predict
a new response. To evaluate this predictionmethod and to com-
pare it with an alternative approach, we assume for the purposes
of our simulation that for each of the sample elements {(Xi, fi) :
1 ≤ i ≤ n} we have a second observation with a new error,
leading to a second sample {(Xi, f ∗i ) : 1 ≤ i ≤ n}. We note that
fi and f ∗i share the same predictor levels Xi and are iid copies.
Given the actually observed data {(Xi,Yi) : 1 ≤ i ≤ n}, where
Yij ∼iid fi, possible predictors for f ∗i in this scenario include: (1)
The fitted additive density regression model μ̂(·|Xi) as in (2.5),
evaluated at predictor level Xi and denoted as predictor f̂ ∗i1; and
(2) Using theN observed data points inYi to nonparametrically
estimate the density fi, and thus a second predictor for f ∗i is the
kernel density estimate f̂i (2.9), denoted as predictor f̂ ∗i2.

Since in practice, the correct transformation � is unknown
and as amisspecified transformation leads to an incorrectmodel
and increased errors, we developed a data-based transformation
selection method for the proposed additive density regression
model (2.2), selecting the best transformation by minimizing
cross-validation (CV) prediction error, where squared predic-
tion error is the squaredWasserstein distance between predicted
and observed densities. To implement this method, we first con-
sider a set of transformations that satisfy the basic requirements,
fit themodel for each one and then select the transformation that
minimizes the CV prediction error. In our numerical illustra-
tions, we included the log-quantile density transformation �1
(1.1) and the log-hazard transformation �2 (1.2), then selected
the transformation associated with the smallest CV prediction
error; further details are in the online supplement.

For the implementation of additive density regression
with transformation selection and the above described kernel
method as comparison method, we evaluated the performance
of response density prediction for estimates f̂i1 (additive
density regression with transformation selection) and f̂i2 (kernel
method) by the average-squared prediction error (ASPE)

ASPE� = B−1n−1
B∑

b=1

n∑
i=1

dW(f ∗,bi , f̂ ∗,bi� )2, � = 1, 2, (4.4)

based on BMonte Carlo runs. Here dW(f , g)2 = ∫ 1
0

(
F−1(u) −

G−1(u)
)2du is the Wasserstein L2-distance between two dis-

tribution functions (Villani 2003), f̂ ∗,bi1 = μ̂(b)(·|X(b)
i ; ĥ(b)) is

the conditional Fréchet mean estimator of μ(·|Xi) based on the
bth Monte Carlo training sample X (b)

n and using data-driven
shrinkage bandwidths ĥ(b), {(X(b)

i , f ∗,(b)i ) : 1 ≤ i ≤ n} is the
bth Monte Carlo test sample, and f̂ ∗,bi2 is the kernel estimator for
the bth Monte Carlo sample.

We note that the alternative kernel estimator can only be
reasonably used when one already has observed one response
at a given predictor level and aims to predict a second response
at the same level. Therefore, we restrict the comparison to
this situation, which does not commonly occur in practice, so
that the kernel density estimator in general cannot be used for
prediction purposes. The prediction error for this alternative
kernel estimator stems from two sources, the discrepancy of a
kernel estimator based on a sample of N observations from the
true density fi; and the deviation of a second response at the
same predictor level from a first response due to the error in the
densities fi themselves, as the response densities are assumed to
include a random error in addition to being generated by the
additive model, in analogy to regular regression models.

Comparing predictors f̂ ∗i1 using the proposed additive density
regression with transformation selection and f̂ ∗i2 using kernel
estimators, we find that in almost all cases the additive density
regression estimator outperforms the kernel estimator, with
simulation results reported in Table 2. The kernel method tends
to achieve somewhat smaller prediction errors than the additive
model when N is large and n is small, as then the kernel density
estimator is closer to the actual density fi, so that this part of
the prediction error becomes smaller, while for smaller n the
additive model may suffer from higher variance. However, since
the kernel estimator cannot use the covariate information, it
does not lead to improved prediction for increasing sample sizes
n, in contrast to the additive density regression method, which
rapidly improves with increasing sample size, through improved
estimation of the additive component functions gj.

4.2. Popularity of Baby Names in the United States

We apply the proposed additive density regression to the
United States (US) baby names data, which are available
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Figure 2. Top panels: True additive component surfaces g1 and g2. The average performance of the proposed method is illustrated in terms of bias (middle panels) and
variance (bottom panels) of the additive component estimates, obtained from 500 Monte Carlo runs with sample sizes n = 100 and N = 200, respectively. Here, n refers
to the number of data points (Xi , fi) and N to the number of observations generated by each response density fi .
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Table 2. Average-squared prediction errors (ASPE) of fitted response densities for
the proposed additive density regression with transformation selection and the
kernel density estimator (KDE) based on data from a first responsewhen the second
response to be predicted is sampled at the same predictor levels. The average
prediction errors are based on B = 500 Monte Carlo repetitions with sample sizes
n = 100, 400, 1000 andN = 200, 400, and800,where the sample sizendenotes the
number of observeddensity responses andN stands for thenumber of observations
generated from each density. The ASPEs are given up to a factor of 10−2 and the
corresponding standard deviations are in parenthesis.

Sample size Average squared prediction error (×10−2)
N n Additive modeling KDE

200
100 0.0701 (0.0263) 0.1186 (0.0135)
400 0.0421 (0.0060) 0.1181 (0.0064)
1000 0.0383 (0.0028) 0.1179 (0.0043)

400
100 0.0601 (0.0234) 0.0744 (0.0083)
400 0.0346 (0.0039) 0.0744 (0.0041)
1000 0.0318 (0.0020) 0.0746 (0.0026)

800
100 0.0521 (0.0195) 0.0511 (0.0056)
400 0.0292 (0.0030) 0.0510 (0.0028)
1000 0.0269 (0.0014) 0.0511 (0.0017)

from the US Social Security Administration for births after
1879. Frequencies with which a name is given are recorded
by calendar year, for details see https://www.ssa.gov/oact/
babynames/background.html. The raw data are available at
https://catalog.data.gov/organization/ssa-gov. We focus here on
male baby names that have newly appeared and thus been
given for the first time between 1935 and 1985, and view the
distribution of a given name as a function of the time after it
appeared for the first time, which will be designated as time 0
across all names.

The distribution of a name over time after it appeared for the
first time quantifies its popularity trend. The relative time scale
where the first appearance of the name occurs at time 0 allows us
to directly compare different names. To obtain the distribution
of a name over calendar time after its first appearance, we
truncate the data at 30 years after appearance of the name and
then construct relative frequencies for the first 30 years during
which the name is being given. Since the most recent name, we
include in this study appeared in 1985, and the data ended in
2016, the distribution of the frequency of the name for the first
30 years after it appears is equally available for all names. We
included only names with more than 30 instances over their
first 30 years after appearance and names that newly appeared
between 1935 and 1985. To satisfy the basic requirements of
the proposed approach as in Section 3, we selected names for
which the marginal distribution of the covariates of interest
was compactly supported and bounded away from zero on
a domain, where the lower and upper limits of this domain
were empirically defined by the minimum andmaximum of the
observed covariates, respectively. These preprocessing steps led
to a sample of n = 2118 baby names.

We considered two scenarios of additive density modeling
for the baby name densities as responses, employing the log-
quantile transformation � = �1 which resulted from the CV
selection of the best transformation when compared against the
log-hazard transformation �2. In a first scenario (Model 1), we
utilized two predictors, the calendar year when the name first
appeared and the total frequency of the name over its first 30
years, motivated by the idea that trends in name popularity may

Figure 3. A subsample of 200 densities for male baby name distributions over an
interval of 30 years, where each name started to appear at time 0. The total sample
size of included baby names is n = 2118.

have changed over the years, and that the shape of the popularity
trend curve is related to the total popularity of a name. In a
second scenario (Model 2), we considered the same predictors
but additionally added the frequency of the name in the first year
it appeared, and also the cumulative frequencies observed for
the name over the first 5, 10, and 20 years. Model 1 played the
role of a most parsimonious approach andModel 2 that of a full
model. As Model 2 captures more features than Model 1, it is of
interest how many features are actually needed for reasonably
good predictions of the name popularity trends.

We mention here that alternatively, one could also take the
entire initial phase of the popularity curve of a name on a
specified interval during the initial phase and view it as a func-
tional predictor. In scenarios with functional predictors, our
procedures can be implemented with vectorized versions of the
predictor function, such as functional principal components,
extending the additive model for the case where both predictors
and responses are functional (see, e.g., Müller and Yao 2008) to
the case where responses are density functions.

Initial inspection showed that most of the baby name densi-
ties or popularity trend curves have well-defined modes. Exam-
ples are in Figure 3. Note that the raw data are relative frequen-
cies over yearly bins, which then can be smoothed to construct
densities. For this we used local linear kernel smoothers (Müller,
Wang, and Capra 1997), for which we employed Gaussian ker-
nels with bandwidths chosen by 5-fold cross-validation (CV).
The resulting smooth curves are constrained to be nonnegative
and standardized to integrate to 1, so that they are bona fide
density functions (Gajek 1986). We view these reconstructed
densities as our responses fi, i = 1, . . . , n.

For additive surface estimation, we apply the implementation
strategy of smooth backfitting, as introduced in the previous
subsection 4.1, including the data-adaptive selection of band-
widths for the mean part and additive components followed by
the shrinkage bandwidth selector with 5-fold CV. To achieve

https://www.ssa.gov/oact/babynames/background.html
https://www.ssa.gov/oact/babynames/background.html
https://catalog.data.gov/organization/ssa-gov
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Figure 4. Fitted additive density regression model (2.1) for male baby names for a model with four predictors, applying estimates (2.5). The predictors are calendar year
of the first appearance of the name (top left, FVE = 0.71%), 5-year frequency of the name (top right, FVE = 7.69%), 10-year frequency (bottom left, FVE = 6.49%) and
30-year frequency (bottom right, FVE = 15.78%). In our analysis, we eliminated two predictors, frequency of the name in the first year after its appearance and 20-years
frequencies through backward elimination.

parsimonious modeling we consider a backward elimination
procedure for Model 2, where the contribution of individual
additive components is quantified by an empirical version of
the fraction of variance explained (FVE) criterion. Here, the
empirical FVE of the jth component Xj is defined by Vj/V∞,
where Vj = ∑n

i=1 dW(fi, μ̂i,0)2 − ∑n
i=1 dW(fi, μ̂i,j)2 and V∞ =∑n

i=1 dW(fi, μ̂i,0)2 with μ̂i,0 = �−1(ĝ0) and μ̂i,j = �−1(ĝ0 +
ĝj(·,Xi,j)). We note that Vj corresponds to the notion of extra
sum of squared errors in multiple linear regression, which mea-
sures the reduction in the sum of squared errors due to the
addition of a predictor; see also Petersen and Müller (2016).

We then find the best model by backward elimination, where
predictors are successively removed, considering at each step
to remove the predictor that has the smallest FVE among the
included predictors. Here, FVE is sequentially computed after
every elimination step. We stop the backward elimination pro-
cedure if the mean-squared error (MSE) increases over the pre-
vious step, where the MSE is defined by n−1 ∑n

i=1 dW(fi, μ̂(r)
i )2

and μ̂
(r)
i is the fitted density of fi in the rth elimination step,

where μ̂
(0)
i = μ̂i ≡ �−1(ĝ0 + ∑d

j=1 ĝj(·,Xi,j)). In our analysis,
d = 6 for Model 2, which provides the starting model for the
elimination procedure. We then ran the backward elimination
procedure, whereby two of the 6 predictors where removed, the
frequency of the name in the year it first appeared, and its 20-
year frequency. This left four predictors for the final additive
density regression model, namely the calendar year when the
name appeared first, and its cumulative 5-, 10- and 30-year
frequencies.

Figure 4 demonstrates the effects of the additive components
on the fitted densities by heat maps, which are better inter-
pretable than the plots of the additive component functions gj, of
which an example is shown in Figure 2 for the simulation setting,
while here we illustrate the effects of individual predictors on
the estimates (2.5) in model (2.1). We find that names that first
appeared between 1935 and 1945 have slightly delayed modes
in their densities compared to names that appeared after 1945.
Moreover, overall more popular names have a slower increase in
their densities and their mode occurs after more than 20 years
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Figure 5. Examples of density prediction, comparing Model 1 (with blue dotted lines as predicted densities) and Model 2 (red dashed lines), where the black solid lines
correspond to observed (estimated) baby name density responses.

from the time the name first appears, while overall less popular
names have faster increasing densities with earlier modes.

Five- and ten-year frequencies that remained included as
predictors after the backwards elimination procedure also have
notable effects as shown in the upper right and lower left panel
of Figure 4. The heat map corresponding to the 5-year fre-
quency illustrates that less popular names during the first 5
years tend to have later and more expressed modes than those
which are more popular during the first five years. The 10-year
frequency of the name as predictor is associated with a mono-
tone decreasing trend in the peak locations, such that lower
10-year frequencies are associated with later mode locations
and higher frequencies with earlier locations. It is also worth
mentioning that the calendar year when the name appeared still

constitutes an important predictor for the baby name dynamics
even though the corresponding FVE was small with 0.71%,
since the reduced model excluding this calendar year predictor
had significantly larger MSE than the model with this pre-
dictor included. The effect of the overall 30-year frequency
on the densities was similar as in Model 1, if not even more
pronounced.

We also studied the prediction performance of the proposed
additive density regression model, with examples of density
prediction illustrated in Figure 5. We compared the prediction
performance between two additive models by the square root
of mean prediction error (×10−2), obtained from 5-fold cross-
validation, which forModel 1 andModel 2 after backward elimi-
nationwere found to be 2.468 and 1.881, respectively. Therefore,
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we find that Model 2 with backward elimination outperforms
Model 1 for prediction.

Supplementary Material

The online supplementary materials contain the detailed bandwidth selec-
tion procedure and the proof of Theorem 2.
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