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Astrometric weak gravitational lensing is a powerful probe of the distribution of matter on sub-Galactic
scales, which harbor important information about the fundamental nature of dark matter. We propose a
novel method that utilizes angular power spectra to search for the correlated pattern of apparent motions of
celestial objects induced from time-dependent lensing by a population of Galactic subhalos. Application
of this method to upcoming astrometric datasets will allow for the direct measurement of the properties of
Galactic substructure, with implications for the underlying particle physics. We show that, with near-future
astrometric observations, it may be possible to statistically detect populations of cold dark matter subhalos,
compact objects, as well as density fluctuations sourced by scalar field dark matter. Currently uncon-
strained parameter space will already be accessible using upcoming data from the ongoing Gaia mission.
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I. INTRODUCTION

The Standard Model of particle physics has been
remarkably successful in explaining every observed labo-
ratory phenomenon on Earth. Its failure to successfully
describe almost anything about the growth of cosmological
structure is therefore quite striking. Evidence has grown for
decades now that the addition of a simple pressureless
component of matter—dark matter (DM)—along with a
cosmological constant Λ can allow a complete description
of nearly all known cosmological data through the Λ cold
dark matter (ΛCDM) paradigm.
The evidence for cold dark matter is now quite robust:

precision studies of the cosmic microwave background and
large-scale structure provide strong evidence of the gravi-
tational influence of DM in the early Universe [1].
Gravitational lensing and the measurements of galactic
rotations have provided local evidence for dark matter and
its distribution. Consistently, on large scales, the ΛCDM
model has provided an excellent account of observations.
On smaller scales, the evidence for CDM is less clear. On

length scales below that of the MilkyWay, perturbations are
nonlinear, necessitating expensive numerical simulations
which require an understanding of the role of baryonic
matter in the process. Moreover, phenomena such as
reionization, galaxy quenching, and interaction with a host
galaxy lead to suppressed star formation in structures below
≲109 M⊙ [2–4], implying that they are unlikely to be

associated with any luminous matter. As a consequence, we
must rely on purely gravitational techniques to study them.
Observing and understanding DM fluctuations on these

smaller scales is critical, as it is the most likely place where
the simple pressureless fluid model will break down. A
whole host of phenomena can suppress or enhance power at
small (sub-Galactic) scales. These range from simple
changes in the phase space in warm dark matter scenarios
[5–9] to attractive self-interactions that enhance small-scale
structure in the early Universe [10], to dissipative processes
that allow compact structures to form [11–17], to kpc-sized
de Broglie wavelengths of ultralight scalar DM that prevent
small structures from forming at all [18–22]. This is
especially pressing in light of the absence of a robust
signal in direct, indirect, and collider searches for dark
matter to date [23–26].
As a consequence, there have been a wide range of recent

efforts to detect these smaller structures. Some of them rely
on understanding the effects that small dark matter halos
would have on visible structures. The phase space of stars
in the Milky Way may show signs of passing halos [27].
Perturbations of stellar streams are promising avenues
[28–30], with recent claims of both a detection of the
statistical imprint of dark matter substructure [31,32], and
of a collision with a single dense subhalo [33,34].
Complementary to these methods, Ref. [35] (hereby

V18) proposed using measurements of time-varying astro-
metric perturbations induced by Galactic subhalos on
distant sources as a way to probe substructure in our
Galaxy. In particular, correlated induced motions of a large
number of background sources due to Galactic subhalos
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with typical velocity dispersion were shown to be a
promising way to look for a population of extended
subhalos within our Galaxy, within reach of current and
future astrometric surveys. Broadly, the proposed searches
took two different forms: local template analyses, which
could point to a specific pattern of motions as signaling the
existence of a dark object, and techniques based on global
correlations, where no single source is clearly identified
but imprints of a population of dark objects could be
discerned. The first constraints on the abundance of
compact dark objects using template methods and data
from Gaia ’s second data release were recently presented in
Ref. [36]. Prospects for detecting the astrometric effects of
individual, dense dark matter objects were additionally
studied in Refs. [37–39].

In this paper, we propose a new technique to characterize
the population properties of Galactic substructure through
its collective lensing effect on distant sources. This method
extends the global correlation observables presented in V18
and recasts them in the language of angular power spectra,
ubiquitous in cosmology. We present a general framework
for calculating the power spectrum decomposition of
induced velocities and accelerations due to a population
of Galactic subhalo lenses characterized by arbitrary
population (e.g., mass spectrum) as well as internal (e.g.,
density profile) properties. We apply this formalism to a
few motivated scenarios—cold dark matter, compact object
populations, ultralight scalar dark matter, and enhanced
primordial fluctuations—to assess the sensitivity of future
astrometric surveys to these cases. We emphasize that

unconstrained parameter space can already be probed using
future data releases of the ongoing Gaia mission. We point
out several handles that can be used to distinguish a lensing
signal induced due to substructure from that of astrophysi-
cal or systematic origin. In particular, we shall show that
properties of the induced motions allow us to separate out a
pure noise channel, providing a cross-check of an orthogo-
nal channel containing both signal and noise. Additionally,
we describe how the preferred motion of the Sun in our
Galaxy would lead to a directionality in the substructure-
induced lensing signal which would imprint itself as an
asymmetry over the azimuthal correlation modes.
An example of the induced proper motion and proper

acceleration components for a realization of cold dark
matter subhalos (described in Sec. IVA) is shown in the top
and bottom rows of Fig. 1, respectively, in Galactic
coordinates. These are split into the motion component
in the longitudinal direction (left columns) and those in the
latitudinal direction (right columns). Searching for global
evidence of such a pattern of apparent motions and using
this to infer the properties of the underlying subhalo
distribution will be the main subject of this work.
This paper is organized as follows. In Sec. II, we

introduce the lens-induced proper motion and proper
acceleration power spectrum formalism, illustrating the
signal characteristics with toy examples. Section III
describes extragalactic as well as Galactic background
source populations that could be used to measure this
collective signal, and presents anticipated noise levels on
the astrometric properties of these sources that could be

FIG. 1. In Galactic coordinates, the expected proper motion (top row) and proper acceleration (bottom row) induced on a population of
background celestial sources due to a simulated realization of subhalos using the CDM-inspired fiducial configuration described in
Sec. IVA. Galactic longitude (left column) and Galactic latitude (right column) components are shown on a HEALPIX grid with
resolution nside ¼ 128 [40].
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deliverable by ongoing (e.g., Gaia) and future (e.g., SKA
and WFIRST) surveys. Section IV presents forecasts on a
few motivated benchmark scenarios achievable using future
measurements of correlated induced lensing effects. In
Sec. V, we discuss several handles that can be used to
distinguish a putative signal from unmodeled sources of
noise in a power spectrum measurement. In Sec. VI we
demonstrate the feasibility of the techniques introduced by
constructing a vector power spectrum estimator and apply-
ing it to the proper motions of quasars in Gaia ’s second
data release. We conclude in Sec. VII.
We use units with ℏ ¼ c ¼ 1 and the Planck 2018

cosmology [1] throughout this work. In the spirit of
reproducibility, the code used to obtain the results of this
study is available on GitHub [41] and a link below each
figure ([40,42–48]) provides the PYTHON code with which
it was generated.

II. FORMALISM

Our ultimate goal is to develop a technique to detect the
presence of lenses in front of a set of sources statistically,
without necessarily resolving the presence of any individ-
ual lens. There are a wide range of possible methods to do
this. One of the most developed techniques to deal with
such correlations involves understanding two-point func-
tions within a dataset. We aim to detect the presence of dark
matter substructure (i.e., a population of Galactic subhalos)
by measuring the two-point correlation function of lens-
induced velocities and accelerations. V18 proposed using a
“correlation” observable to this effect. Here we offer a
substantially improved framework for studying the two-
point function of lens-induced motions of background
sources, namely one based on a vector power spectrum
decomposition. As we shall see, this framework allows for
additional handles and discriminants that can reject sys-
tematics and other spurious effects, and allows for a more
detailed interpretation of any positive signal.
We provide a general overview of this formalism in

Sec. II A, leaving details of the derivations to Appendix A.
We will apply this formalism to a few simple subhalo lens
case studies in Sec. II B in order to build intuition for how
the signal characteristics are affected by the properties of
the underlying substructure population. The reader may
refer to Appendix B for details about the statistical tools
and scaling of the expected signal significance with various
parameters characterizing the signal and noise properties.

A. General framework

1. Lens-induced proper motions and accelerations

In the thin-lens regime, the angular deflection Δθ
of a source at angular diameter distance Ds due to a
lens at angular diameter distance Dl is given by (see, e.g.,
V18)

ΔθðbÞ ¼ −
�
1 −

Dl

Ds

�
4GNMðbÞ

b
b̂; ð1Þ

where b is the physical impact parameter between the source
and lens, and MðbÞ ¼ 2π

Rþ∞
−∞ dx

R
b
0 db0b0ρð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ b02

p
Þ is

the enclosed mass function of the spherically symmetric lens
within a cylinder of radius b. As discussed in V18, the
induced deflections are typically too small to be disentangled
from naturally occurring and systematic variations in the
angular number density of sources, either individually or
collectively.
Effects in the time domain offer more promise. Since

dark matter substructure has a characteristic velocity
dispersion, an effective lens velocity vl ≡ db=dt induces
an apparent velocity on the luminous sources. This angular
velocity correction μ≡ Δ_θ can be written as

μðbÞ ¼ 4GN

�
MðbÞ
b2

½2b̂ðb̂ · vlÞ − vl� −
M0ðbÞ
b

b̂ðb̂ · vlÞ
�
;

ð2Þ

where we denote the angular separation β≡ b=Dl ¼ θl −
θs between celestial positions of the lens and source, θl
and θs, respectively. In Eq. (2) above, we have ignored the
ð1 −Dl=DsÞ geometric factor in the limit of large source
distance Ds relative to the line-of-sight distance Dl to the
lens. Equation (2) represents a dipolelike pattern centered at
the lens position. This can also be seen in the top row of
Fig. 1, which shows a map of induced velocities across the
full sky induced by a realization of simulated CDM
subhalos (described in Sec. IVA).
The induced acceleration can be calculated similarly by

taking an additional derivative of Eq. (2) (see V18 for
details). This results in a quadrupolelike pattern centered on
the lens position, which can be seen in the bottom row of
Fig. 1 for the same lens population as in the top panel.
Induced accelerations are suppressed by characteristic
factors of ∼vl=b compared to induced velocities. A key
feature of induced accelerations compared to velocities can
be seen in Fig. 1—while the velocity signal is dominated by
the heaviest objects, the acceleration signal is democrati-
cally sensitive to structure at all scales, including popula-
tions of dense, low-mass subhalos contributing at smaller
angular scales. This will be explored in detail in Sec. II B
and Appendix B below.

2. Vector spherical harmonic decomposition

The power spectrum decomposition of vector fields on a
sphere, in our case the measured proper motions and proper
accelerations of celestial objects, relies on the vector
spherical harmonic (VSH) decomposition. This is an
extension of the scalar spherical harmonic decomposition
ubiquitous in astrophysics and cosmology, and within
astronomy has previously been applied to astrometric
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datasets for studying systematic biases in and calibration of
celestial reference frames [49–51]. We briefly outline
the basic formalism here; for further details see, e.g.,
Refs. [52,53].
Simply, the VSH decomposition amounts to decompos-

ing a vector field into a curl-free component (also known as
poloidal) and a divergence-free component (also known as
toroidal). More precisely, a given vector field μ ¼ μðθÞ on a
sphere admits a multipole expansion

μ ¼
X
lm

μð1ÞlmΨlm þ μð2ÞlmΦlm; ð3Þ

with poloidal (Ψ) and toroidal (Φ) amplitudes

μð1Þlm ¼
Z

dΩμ ·Ψ�
lm; μð2Þlm ¼

Z
dΩμ ·Φ�

lm; ð4Þ

where the vector spherical harmonics are defined in terms
of the spherical harmonics Ylm as

Ψlm ¼ ∇θYlmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp ; Φlm ¼ r̂ ×Ψlm ð5Þ

in spherical coordinates fr; θ;ϕg with θ and ϕ Galactic
colatitude and longitude, respectively (sometimes com-
bined in the 2D vector θ ¼ fθ;ϕg with corresponding
angular gradient ∇θ), and r the radial line-of-sight vector.
The above VSH are normalized such that they are ortho-
normal

R
dΩVlm · V�

l0m0 ¼ δV0Vδl0lδm0m with V ¼ fΨ;Φg,
and form a complete basis for a vector field on the celestial
sphere. The power per mode for each component can then
be obtained as usual by averaging over the azimuthal
modes:

Cμ
l ≡ 1

2lþ 1

Xl
m¼−l

jμlmj2: ð6Þ

As we stated above, Eq. (3) corresponds physically to
decomposing a vector field into a curl-free component
(poloidal), which can be written as the gradient of a
sourcing scalar potential, and a divergence-free component
(toroidal), which can be written as the curl of a sourcing
vector potential.
Application of the vector spherical harmonic decom-

position formalism to lens-induced observables is straight-
forward. Since the lensing deflection can be written as the
gradient of an effective projected (scalar) lensing potential
ψ , Δθ ∼ ∇θψ , it follows that the angular deflection field
and, in fact, all lensing observables, only have overlap with
poloidal power spectrummodes. This can be seen explicitly
for the lens-induced angular velocity correction of Eq. (2),
which can be written as

μ ¼ d
dt
∇θψ ¼ −

1

Dl
∇θðv · ∇θψÞ: ð7Þ

We therefore immediately have that μð2Þlm and the corre-

sponding power per mode Cμð2Þ
l are identically zero

after integrating by parts in Eq. (4) and noting that
∇θ ·Φlm ¼ 0.
The proper motion power per lens can be calculated once

the lens properties (effective transverse velocity, enclosed
mass function, and angular diameter distance) are specified
(see Appendix A for derivations and details). The per-lens
expected power is given by

Cμð1Þ
l ≡ 1

2lþ 1

Xl
m¼−l

jμð1Þlmj2

≃
X
l

�
4GNvl
D2

l

�
2 π

2
l2

�Z
∞

0

dβMðβDlÞJ1ðlβÞ
�
2

; ð8Þ

where the sum over l is a sum over different lenses,
appropriately weighed, which can in general have different
Dl, vl, and enclosed mass functions MðbÞ.
The proper acceleration power spectrum can be com-

puted similarly and is compactly expressed in terms of the
proper motion power spectrum (see Appendix A for
derivation):

Cαð1Þ
l ≡ 1

2lþ 1

Xl
m¼−l

jαð1Þlmj2 ¼
3

4

X
l

l2v2l
D2

l

Cμð1Þ
l;l ; ð9Þ

where Cμð1Þ
l;l is the proper motion power spectrum per lens,

given by the term within the l summation in Eq. (8).
Equation (9) represents the contribution from an isotropi-
cally distributed population of lenses. Just as for the proper
motion power spectrum, the total acceleration power
spectrum can be obtained as the sum over all the individual
lens contributions, appropriately weighted.
In practice, the astrometric vector field of interest will be

nonuniformly sampled with variable noise over a subset of
the celestial sphere, and a straightforward application of
Eq. (4) will introduce biases. An unbiased estimator is
required (see Refs. [53–55] for examples), and we describe
a simple quadratic maximum-likelihood estimator for
computing vector spherical harmonic coefficients in
Appendix C. In Sec. VI, we use this estimator to compute
the VSH decomposition of quasar proper motions from
Gaia’s second data release (DR2) [56,57] as a proof-of-
principle application.

B. Specific examples

Once the lens properties have been specified, the lens-
induced proper motion and proper acceleration signal
power spectra can readily be calculated from Eqs. (8)

MISHRA-SHARMA, VAN TILBURG, and WEINER PHYS. REV. D 102, 023026 (2020)

023026-4



and (9). We illustrate this for a few specific cases, starting
from simple scenarios and going on to progressively more
realistic ones in order to gain some intuition for what the
signal looks like in angular space. We defer a more detailed
discussion of how the signal and its significance depend on
properties of the subhalo population, as well as which
angular scales contribute to the signal in various cases, to
Appendix B. Unless otherwise specified, all spectra refer to

the respective poloidal components Cμ=αð1Þ
l , with the

toroidal signal components Cμ=αð2Þ
l identically vanishing

[cf. Eq. (7)].
In contrast to the signal power spectra Cμ=α

l , the noise

power spectra Nμ=α
l are approximately scale invariant and

are given by

Nμ=α
l ≃

σ2μ=α
Σq

; ð10Þ

where σμ=α is the typical measurement error on the proper
motions or accelerations and Σq ≡ Nq=4π is the angular
density of background celestial objects (Nq is the all-sky

equivalent number of sources), assumed here to be uni-
formly distributed over the sky.

1. Population of point lenses

We start by considering a population of point lenses of
massM0 located at a constant distance Dl from us, moving
with random transverse velocity with magnitude vl. In this
case, the azimuthally averaged power per l mode per lens
is given by [Eq. (8)]

Cμð1Þ
l ≃

�
4GNM0vl

D2
l

�
2 π

2
: ð11Þ

This scale-invariant spectrum is shown on the top left plot
of Fig. 2 as the dotted black line, for the lens population
properties specified in the inset.
For a population of point lenses uniformly distributed

between Dmin
l and Dmax

l and making up a fraction fDM of
the local dark matter density ρDM, we instead have

Cμð1Þ
l ≃

32π2G2
NM0v2l ρDMfDMðDmax

l −Dmin
l Þ

Dmax
l Dmin

l

: ð12Þ

FIG. 2. Expected lens-induced proper motion (top row) and proper acceleration (bottom row) power spectra per subhalo for a
homogeneous subhalo population. Shown for lenses with Gaussian and Plummer profiles (left column, red and blue lines, respectively)
of massM0 ¼ 108 M⊙, size R0 ¼ 1.6 kpc, and transverse velocity vl ¼ 10−3 at a distance Dl ¼ 10 kpc from us. Also shown for NFW,
two different truncated NFW (τ≡ rt=rs ¼ 10, 15), and Burkert profile lenses (right column, solid, dashed, dot-dashed red, and solid
blue lines, respectively) with virial mass M200 ¼ 108 M⊙, concentration c200 ¼ 15, and transverse velocity vl ¼ 10−3 at a distance
Dl ¼ 10 kpc from us. Asymptotic behavior at high l for the NFWand Burkert profiles is illustrated with the thin dotted lines in the right
column [42].
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For a point-lens population, the proper motion power per l
mode is scale invariant, with higher modes having greater
mode multiplicity.
The acceleration power spectrum can be calculated

similarly using Eq. (9) and shown in the bottom left plot
of Fig. 2 as the dotted black line for the lens properties in
the inset text. Unlike the velocity power spectrum, it is not
scale invariant and grows as Cα

l∝∼l
2.

2. Population of extended lenses

In order to motivate the study of spatially extended
subhalos, we consider a population of Gaussian lenses with
density profile

ρðrÞ ¼ M0

2
ffiffiffi
2

p
π3=2R3

0

e−r
2=2R2

0 ; ð13Þ

where M0 is the total lens mass and R0 its characteristic
size. The integral in Eq. (8) can be carried out analytically,
yielding

Cμð1Þ
l ≃

�
4GNM0vl

D2
l

�
2 π

2
e−l

2β2
0 ; ð14Þ

where Dl is the distance to the lens and β0 ≡ R0=Dl its
characteristic angular scale. The power spectrum per lens is
shown in the top left plot in Fig. 2 as the red line and has an
exponential suppression at characteristic scale l ∼Dl=R0.
This gives us some intuition for the more realistic case of

a population of such lenses distributed between Dmin
l and

Dmax
l . In this case, we have the azimuthally averaged power

per l mode

Cμð1Þ
l ≃ 16π5=2G2

NM0v2l ρDMfDM

×

"
erfðlR0

Dmin
l
Þ − erfð lR0

Dmax
l
Þ

lR0

#
: ð15Þ

We see that the power decreases as ∝ 1=l up to l ∼
Dmax

l =R0 and falls off steeply beyond that point. Combined
with the higher multiplicity of modes at high l, this implies
that each logarithmic bin in l (e.g., each e-fold or each
decade) up to l ∼Dmax

l =R0 contributes equally to the
overall signal significance, as we shall see in Appendix B.
A similar story holds for proper accelerations. The power

spectrum per lens can be calculated from Eq. (9) and is
shown as the red line in the bottom left of Fig. 2. As in the
case of point lenses, the per-lens signal grows with the
multipole as Cα

l∝∼l
2, but now with an exponential sup-

pression at l ∼Dl=R0. The total power mode in accel-
erations for a uniformly distributed population of lenses is
given by (setting Dmin

l ¼ 0 for simplicity)

Cαð1Þ
l ≃ 6π2G2

NM0v4l ρDMfDM
1

lR3
0

×

�
2lR0

Dmax
l

e−ðlR0=Dmax
l Þ2 þ ffiffiffi

π
p

erfc

�
lR0

Dmax
l

��
: ð16Þ

Just as for proper motions, the acceleration power spectrum
decreases as ∝ 1=l up to l ∼Dmax

l =R0, beyond which it is
exponentially suppressed. This again implies that each
logarithmic bin in l, or equivalently each logarithmic bin in
line-of-sight distance Dl, contributes equally to the signal
significance (cf. Appendix B).
For illustration, we also show in the left column of Fig. 2

the velocity and acceleration power spectra per lens for
lenses described as Plummer spheres [58] (blue lines),
commonly used in the literature as an analytically tractable
subhalo profile closer to realistic subhalo descriptions than
the Gaussian lens. Here, the density is given as ρðrÞ ¼
3M0=ð4πR3

0Þð1þ r2=R2
0Þ−5=2 and proper motion power per

l mode Cμð1Þ
l ≃ ð4GNM0vl=D2

l Þ2 π
2
l2β20k1ðlβ0Þ2, where k1

is the first-order modified Bessel function of the second
kind. Properties and overall scalings similar to those of
Gaussian lenses are observed in this case.

3. Realistic subhalo profiles

Realistic subhalo density profiles are modeled with input
from N-body simulations. We consider two different
profiles: a (truncated) Navarro-Frenk-White (NFW) profile
as expected for standard CDM halos [59,60], and a cored
Burkert profile favored, e.g., in the case of self-interacting
dark matter (SIDM) halos [61]. The truncated NFW profile
is parametrized as [62]

ρtNFWðrÞ ¼
Ms

4πrðrþ rsÞ2
�

r2t
r2 þ r2t

�
; ð17Þ

where Ms ¼ 4πs3ρs is the NFW scale mass and rt is the
truncation radius accounting for the stripping away of the
outer halo mass due to tidal forces towards the Galactic
center. The Burkert profile is parametrized as

ρBurkertðrÞ ¼
MB

4πðrþ rBÞðr2 þ r2BÞ
; ð18Þ

where MB ¼ 4πr3BρB is the Burkert scale mass and the
Burkert scale radius rB can be related to the NFW scale
radius as rB ≃ 0.7rs [63,64].
We show induced power spectra for (truncated) NFW

and Burkert profiles in the right column of Fig. 2, for proper
motions (top) and proper accelerations (bottom). The NFW
truncation radius is parametrized through τ≡ rt=rs and the
concentration is taken to be c200 ¼ 15. The cases τ ¼ 10
(dashed red line) and τ ¼ 15 (dot-dashed red line) are
shown for illustration as typical truncation scales. It can be
seen that truncation effects generally manifest at larger
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scales, as expected. On the other hand, the presence of a
core in the Burkert profile leads to a suppression of power
at smaller scales compared to NFW subhalos (blue line).
Asymptotic high-l behavior is indicated, with the induced
velocity power per l mode scaling as ∝ l−4 and ∝ l−8 for
the NFW and Burkert profiles, respectively, and as ∝ l−2

and ∝ l−6 in the case of induced acceleration power. Note
that these scalings are the same as those obtained in
Ref. [65] for the case of substructure convergence power
spectra in strong lensing systems.
Armed with the proper motion velocity and acceleration

power spectra for a homogeneous subhalo population, we
are in a position to calculate the expected signal due to a
Galactic substructure population. Since power adds sto-

chastically, the total power spectra Cμ=αð1=2Þ
l for a popula-

tion of lenses with properties drawn from some distribution
(e.g., those characterizing the mass function and spatial
distribution of lenses) can be obtained as appropriately
weighed sums. Hence, to obtain the expected aggregate
signal we can convolve the per-lens subhalo power spec-
trum, evaluated from the Earth’s location, with the subhalo
distribution in our Galaxy. In particular, for a Galactic
subhalo population with Earth-frame dark matter velocity
distribution f⊕ðvl; tÞ and number density nlðM; rÞ we have

Ctot
l ¼

Z
dvldrdMlf⊕ðvl; tÞnlðM; rÞClðMl; vl; DlðrÞÞ

ð19Þ

with line-of-sight distanceD2
l ¼jrj2þR2

⊙þ2jrjR⊙cosθGal,
where θGal is the angle between the subhalo and Galactic
plane from the Galactic center. In our case, nl ¼
d2N=ðdMldrÞ depends on the assumed spatial distribution
and mass function of subhalos.

III. SOURCE TARGETS AND NOISE LEVELS

So far, we have been agnostic about the population of
luminous background sources onto which correlations due
to Galactic subhalos may imprint themselves. We describe
here two such celestial populations for which precise
astrometry will be available in the near future and where
substructure lens-induced astrometric effects could be
observed over intrinsic noise. We summarize our assumed
noise configurations in Table I.

A. Extragalactic proper motions

Galaxies outside of our own are numerous, and their
motions are expected to be measured with unprecedented
precision with future surveys. Ideal candidates for our
purpose are quasistellar objects (QSOs), also known as
quasars which, owing to their large distances from us, are
expected to have small intrinsic proper motions. Known
systematic effects (e.g., correlation induced by the drift of

the Solar System’s barycenter toward the Galactic center
[66,67]) can be modeled and subtracted. It is expected that
future very long baseline interferometry surveys (VLBI), in
particular the square kilometer array (SKA) [68,69] will be
able to measure the motions of ∼108 quasars across the full
sky with proper motion precision of σμ ∼ 1 μas yr−1 (see
V18 for details). We assumed these characteristics for an
“SKA-like” survey for our sensitivity projections.
With this source density, multipoles up to lmax ∼ 104

should be accessible, with measurements on larger scales
dominated by shot noise. We assume the multipole range
l ∈ ½10; 5000�, discarding smaller multipoles due to sam-
ple variance and larger multipoles due to potential small-
scale systematic effects.

B. Galactic proper accelerations

Compared to quasars, the stellar population within the
Milky Way is characterized by a much higher source
density. The prospect of using proper motion correlations
for our purposes is limited by the large intrinsic velocity
dispersion of the stars. The use of acceleration correlations,
however, shows promise. Current (e.g., Gaia [56]) and
future (e.g., WFIRST [70]) optical surveys are expected to
map out the motions of a sizable fraction of all stars in the
Milky Way, corresponding to angular densities of sources
listed in Table I over a limited region of the sky fsky ¼ 0.05
described by the Galactic disk and bulge, with unprec-
edented precision. Averaged over the stellar population,
proper acceleration precision of σα ¼ 2ð0.1Þ μas yr−2
could be achievable over an observation time of 10 years
by Gaia (a WFIRST-like survey) (see V18 for further
details). Large-scale correlations due to the Galactic gravi-
tational potential can be modeled and subtracted. Peculiar
acceleration contamination from unresolved binaries is
below instrumental threshold for Gaia but of the same
order as our fiducial WFIRST acceleration sensitivity for
Galactic bulge stars, and yet smaller for more distant
sources (see Sec. 5.3 of V18).
With the assumed source densities, smaller scales up to

lmax ∼ 106 should be accessible to a WFIRST-like survey,
and scales up to lmax ∼ 105 to Gaia by its end of mission.
In our fiducial setup, we consider the multipole range l ∈
½50; 5 × 105� for a WFIRST-like survey and l ∈ ½50; 5 ×
104� for Gaia. To account for the fact that only stars behind

TABLE I. Assumed specifications—multipole range, sky frac-
tion, full-sky equivalent source number, and effective astrometric
precision—for future experiments providing measurements of
extragalactic (quasar) proper motions, denoted μ, and Galactic
(stellar) proper accelerations, denoted α.

Observation l range fsky Σq [sr−1] σeff

SKA-like μ [10, 5000] 1.0 107 1 μas yr−1

WFIRST-like α ½50; 5 × 105� 0.05 1011 0.1 μas yr−2

Gaia α ½50; 5 × 104� 0.05 5 × 109 2 μas yr−2
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the Galactic lenses can be considered, we consider the
subhalo population only within 1 kpc of the Solar position,
assuming that stars beyond this radius can be considered as
background sources. It can be shown that acceleration
observables are preferentially sensitive to the most nearby
lenses compared to velocity power spectra [cf. the addi-
tional D−2

l factor for acceleration power spectra in Eq. (9)],
this is expected to capture a dominant portion of the signal
while being conservative. Increasing this cut to 2 kpc has a
negligible impact on our results.

IV. SENSITIVITY FORECASTS

We assess the sensitivity of global astrometric correla-
tions in the context of several illustrative benchmark
scenarios. In addition to the standard cold dark matter
paradigm which predicts a broad mass spectrum of sub-
halos evolved from a nearly scale-invariant primordial
spectrum of fluctuations, we also consider a scenario
representative of enhanced power on small scales para-
metrized by a kink in the primordial power spectrum.
Enhancement to the power spectrum over a limited range of
scales may cause dense dark matter clumps of a character-
istic mass and size to constitute a significant fraction
of the overall dark matter abundance [71], which we
explore in the context of compact dark objects. Finally,
we consider the detectability of dynamical fluctuations due
to interference effects in the case of ultralight scalar field
dark matter. We note that these scenarios are motivated
examples but do not exhaust the applicability of methods
presented here.

A. Cold dark matter

The cold dark matter paradigm has been extremely
successful in explaining the distribution of structure at large
scales, with theory and simulations additionally predicting a
broad spectrum of subhalo masses down to sub-Galactic
scales [72,73]. We study the sensitivity of our methods to a
population of CDM subhalos, and start by describing the
main ingredients in our CDM-inspired models.
Subhalo mass function:Numerical simulations show that

the (sub)halo mass function in ΛCDM can be well
described by a power-law distribution of the form
dN=dM ∝ M−γ with γ ≈ 1.9–2 [74] over a large range of
masses. We set γ ¼ 1.9 in our fiducial configuration,
consistent with simulations of Milky Way–sized halos
[72,73]. We also investigate a steeper mass function with
γ ¼ 2, leading to a larger relative abundance of lower-mass
subhalos. To calibrate the amplitude of the subhalo mass
function, we require 150 subhalos in expectation between
108 and 1010 M⊙ [75], consistent with results from recent
hydrodynamical simulations [76,77]. The threshold mini-
mum and maximum allowed subhalo masses are fixed at
10−6 M⊙ and 0.05 MMW [78], respectively. This configu-
ration leads to ∼20% of the total Milky Way mass bound in

substructure. We also investigate a more subhalo-rich
configuration, with 300 subhalos in the 108–1010 M⊙ mass
range, consistent with the results of DM-only simulations
[79]. Note that in all cases, we do not take into account
subsubstructure (i.e., subsubhalos within subhalos).
Spatial distribution of subhalos: While the unevolved

(infall) subhalo spatial distribution is expected to follow the
smooth Milky Way halo profile, tidal disruption due to the
gradient of the Galactic potential toward the Galactic center
is expected to deplete the fraction of mass bound in
substructures in this region. We account for this by
describing the spatial distribution of subhalos using an
Einasto profile with a fit to the results of the Aquarius
simulation [75,79],

ρðrÞ ¼ exp

�
−

2

γE

��
r
rE

�
γE
− 1

��
ð20Þ

with rE ¼ 199 kpc and γE ¼ 0.678.
There are indications that some portion of the subhalo

tidal disruption effects observed in simulations could be
numerical in origin [80,81]. We account for this possibility
by investigating an alternative scenario where the evolved
distribution of subhalos traces the smooth Galactic dark
matter profile.
Subhalo profile: We model the subhalos with an

NFW profile, using the Galactocentric distance-dependent
concentration-mass relation from Ref. [74] in our fiducial
set-up which takes into account the larger concentration of
subhalos as compared to field halos closer to the Galactic
center due to tidal disruption effects. We explore the
dependence of the power spectrum signal on the concen-
tration-mass parameterization by using the alternate
model from Ref. [82], which does not take into account
Galactocentric distance-dependent tidal effects.
Dark matter velocity distribution: In the Galactic frame

and asymptotically far away from the Sun’s gravitational
potential, we take the velocity distribution of dark matter
f∞ðvÞ to be given by the standard halo model (SHM),

f∞ðvÞ ¼
(
N
	

1
πv2

0



3=2

e−v
2=v2

0 jvj < vesc;

0 otherwise;
ð21Þ

whereN is anormalizationfactor, andwe takev0¼220 kms−1

[83] and the escape velocity vesc¼550 kms−1 [84].
To a first approximation, the velocity distribution at the

Earth’s location may be found simply by applying a
Galilean transformation to f∞ðvÞ from the Galactic frame
to the lab frame, so that

f⊕ðvÞ ≈ f∞ðv þ v⊙Þ; ð22Þ

where v⊙ ¼ ð11; 232; 7Þ km s−1 [85] is the velocity of the
Sun in Galactic coordinates. Note that the Earth-frame

MISHRA-SHARMA, VAN TILBURG, and WEINER PHYS. REV. D 102, 023026 (2020)

023026-8



velocity acquires a time dependence f⊕ðv; tÞ due to the
motion of the Earth around the Sun and leads to a fractional
annual modulation in the signal. We conservatively ignore
this effect here and postpone its study to future work. We
use this velocity distribution in the rest of the scenarios
presented in this paper. Additionally, in practice we impose
a lower cutoff on the line-of-sight integration in Eq. (19)
corresponding to the distance within which a single subhalo
is expected, for a given setup, in order to mitigate the effect
of Poisson noise in the limit of a small number of lenses.
The total poloidal induced proper motion power spec-

trum signal expected for the fiducial configuration, as well
as the alternate modeled scenarios, is shown in Fig. 3. The
fiducial CDM model is shown as the red line. Not
accounting for tidal disruption [80,81] preferentially brings
subhalos closer to the Galactic center and boosts the signal
by about an order of magnitude at all scales (blue line). A
steeper subhalo mass function with γ ¼ 2 (purple line)
results in a larger number of low-mass subhalos, slightly
boosting the signal on small scales and depressing it on
larger scales. A more subhalo-rich configuration with twice
the number of lower-mass subhalos as compared to our
fiducial model (but still consistent with observations on
large scales) is shown as the orange line, with the signal

boosted by a factor of 2. Using the alternate concentration
model from Ref. [82] depresses the overall signal (green
line) as it does not account for the increased concentration
of subhalos closer to the solar position due to tidal stripping
effects.
It is instructive to ask which regions of the subhalo

mass and spatial distribution phase space contribute to the
total power spectrum signal. The differential spectra
d lnCl=d lnM200 and d lnCl=d lnR are shown in Fig. 4
for multipoles l ¼ 10, 30, 100. It can be seen that larger
scales receive preferential contribution from subhalos that
are massive and/or closer in Galactocentric radius, as
expected. It can also be seen that, at accessible scales, the
dominant contribution comes from the population of sub-
halos at intermediate Galactocentric radii (R ∼ 50–150 kpc).
This underscores the fact that the lensing signal is derived in
aggregate from a population of subhalos, and thus that the
power spectrum measurement is probing the substructure
population in the bulk Galactic halo rather than being
sensitive to individual, nearest subhalos.
We may finally obtain the forecasted sensitivity of a

given set of observations to a given signal configuration.
Figure 5 shows the discovery significance for the fiducial
CDM configuration (left panel) and the optimistic con-
figuration without tidal stripping (right panel), using quasar
proper motion power spectra, for different values of the
proper motion noise σμ and number of observed quasars
Nq. We see that the optimistic scenario may be within reach
of the next generation of interferometric telescopes, assum-
ing noise levels σμ ≈ 1 μas yr−1 and Nq ≈ 108. Prospects
assuming the fiducial scenario accounting for tidal dis-
ruption are less promising, and will require astrometric
precision beyond that expected from next-generation sur-
veys or methods beyond those based on two-point corre-
lations presented in this work.

B. Compact objects

While primordial black holes (PBHs) have been studied
as canonical examples of compact dark objects that would
form due to large primordial overdensities and may con-
stitute a fraction of the dark matter [86,87], dense compact
objects of a finite size such as ultracompact minihalos
(UCMHs) [88,89] or supermassive dark matter clumps
(SDMCs) [71] may form in regions of intermediate over-
densities [90,91] and are predicted in a wide range of
inflationary models (see, e.g., Refs. [88,92,93] and refer-
ences therein) and nonstandard early Universe evolution
[94,95]. Here, we study the sensitivity of global astrometric
correlations to a general population of compact objects
parametrized by a size R0 and mass M0. Their profile is
modeled as Gaussian following Eq. (13) and subhalos are
assumed to be uniformly distributed within theMilkyWay’s
smooth darkmatter halo, whose density distribution is taken
to be NFW with scale radius rs ¼ 18 kpc.

FIG. 3. The total signal power spectrum expected for various
CDM-inspired subhalo configurations described in Sec. IVA.
The fiducial configuration is shown in red. A signal without
accounting for effects of tidal disruption is shown in blue. The
effect of using an alternative concentration model from Ref. [82]
which does not account for Galactocentric distance-dependent
effects is shown in green. A steeper subhalos mass function (slope
γ ¼ 2 instead of 1.9) is shown in purple. A more subhalo-rich
configuration with twice the number of subhalos compared to the
fiducial configuration is shown in orange. The grey dashed, dot-
dashed, and dotted lines correspond to different noise spectra
with number of background sources Nq and effect astrometric
precision σμ, fNq; σμg ¼ f109; 1 μas yr−1g, f108; 0.1 μas yr−1g,
and f108; 1 μas yr−1g, respectively [43].
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The sensitivities achievable with measurements of extra-
galactic proper motions (assuming SKA-like specifications,
red line) and Galactic proper accelerations (assuming
WFIRST-like and end-of-mission Gaia specifications, blue
andgreen lines, respectively) are shown inFig. 6 in themass-
radius (left panel) and mass-density (right panel) parameter
planes, assuming the lenses make up the totality of the
Galactic dark matter. Currently unconstrained parameter
space can already be probed using near-futureGaia astrom-
etry. In Appendix B 3, we show projected sensitivities using
a simplified scenario of lenses uniformly distributed in an
Aristotelian ball, directly described by Eqs. (15) and (16),
showing excellent agreement with the results in Fig. 6.
Unlike traditional Galactic substructure searches based

on photometric microlensing where magnification effects

are strongly suppressed for lens radii larger than the
characteristic Einstein radius [96,97], globally correlated
astrometric effects are directly sensitive to a subhalo
population of much larger radii. On the other hand, we
note that the methods presented here are not ideally suited
to searches for pointlike or very compact objects such as
primordial black holes, where photometric lensing obser-
vations [97] and techniques based on detecting local
astrometric lensing effects and transients (see V18 for
examples and details) are more appropriate.

C. Enhanced primordial power

We investigate a scenario in which the spectrum of
primordial perturbations at small scales is enhanced

FIG. 4. (Left) The differential proper motion power spectrum for the fiducial CDM configuration as a function of virial subhalo mass at
multipoles l ¼ 10 (red line), l ¼ 30 (blue line), and l ¼ 100 (green line). Larger multipoles (smaller scales) are preferentially sensitive
to less massive subhalos; overall, the signal is still dominated by more massive CDM subhalos. (Right) The differential proper motion
power spectrum for the fiducial CDM configuration as a function of Galactocentric distance of the subhalo at multipoles l ¼ 10 (red
line), l ¼ 30 (blue line), and l ¼ 100 (green line). Fractionally, most of the sensitivity comes from subhalos in the bulk of the
Milky Way rather than from those close to the solar position [43].

FIG. 5. Discovery significance of the fiducial CDM configuration (left) and an optimistic CDM configuration without accounting for
tidal disruption effects (right) achievable using proper motion measurements, shown as a heat map for different values of the measured
proper motion noise σμ and number of observed background sources Nq. Also shown are the 1-, 2-, and 3-σ detection contours as dot-
dashed, dashed, and solid black lines [43].
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compared to the standard ΛCDM expectation. This leads to
a relative overabundance of low-mass halos which, having
collapsed at earlier times, would also be significantly
denser compared to those in the standard cosmological
evolution. We parametrize this enhancement phenomeno-
logically by introducing a kink in the dimensionless power
spectrum of Gaussian curvature perturbations Φ parame-
trized by a break at kB and high-k slope nB,

PΦðkÞ ¼
(
Asð kk�Þns−1 k < kB;

AsðkBk�Þ
ns−1ð k

kB
ÞnB−1 k ≥ kB;

ð23Þ

where we take As ¼ 2.105 × 10−9, ns ¼ 0.9665, and k� ≡
0.05 Mpc−1 [1].
The dimensionless matter power spectrum at a given

wave number and redshift can be obtained through the
matter transfer function Dðk; zÞ as

Pδðk; zÞ ¼ jDðk; zÞj2PΦðkÞ; ð24Þ

and we use CLASS [98] to compute the transfer function.
Given the present-day matter power spectrum, the mass
variance (encoding the amplitude of fluctuations within a
sphere of radius R) can be computed as

σ2ðRÞ ¼
Z

dðln kÞPΦðkÞjDðk; z ¼ 0Þj2jWðk; RÞj2; ð25Þ

where the window function Wðk; RÞ ¼ 3ðkRÞ−3½sinðkRÞ −
kR cosðkRÞ� is the Fourier transform of a top-hat smoothing
function with smoothing scale R ¼ ðM=ð4=3πρ̄mÞÞ1=3 with
ρ̄m the mean density of the Universe. With the mass
variance in hand, the modified mass spectrum of subhalos

in these scenarios is computed using the Tinker mass
function [99] implemented in the COLOSSUS [100] code and
given by

dn
dM

¼ fðσÞ ρ̄m
M

d ln σ−1

dM
; ð26Þ

where fðσÞ is parametrized as

fðσÞ ¼ A

��
σ

b

�
−a

þ 1

�
e−c=σ

2 ð27Þ

with the constants A, a, b, and c calibrated to (ΛCDM)
simulations (see Refs. [99,100] for further details). We
calibrate the overall number of subhalos such that an
unkinked power spectrum yields the same number of
subhalos as in the ΛCDM case we have considered in
Sec. IVA (150 between 108 and 1010 M⊙ [75]) with this
pipeline. The left panel of Fig. 7 shows representative
examples of kinked primordial power spectra, with the
derived present-day matter power spectra and mass func-
tions shown in the middle and right panels, respectively.
The present-day density (or equivalently, concentration)

of subhalos is calculated following the procedure outlined
in Ref. [101]. Specifically, we assume that the mean density
hρsi of subhalos (modeled as NFW) within the scale radius
rs is proportional to the critical density of the Universe at
collapse redshift zcoll,

hρsi
ρ0

¼ C
ρcðzcollÞ

ρ0
¼ C

�
HðzcollÞ
H0

�
2

; ð28Þ

where C is a constant to be determined. The collapse
redshift corresponds to the time at which the current

FIG. 6. (Left) Maximum subhalo size R0 that can be constrained at 95% confidence as a function of subhalo mass M0. (Right)
Maximum subhalo density ρ0 that can be constrained at 95% confidence as a function of subhalo mass M0, assuming dark matter
fraction fDM ¼ 1. In each case, achievable constraints using WFIRST-like Galactic stellar proper accelerations (blue line) and using
SKA-like (red line) extragalactic proper motions are shown. The dashed lines on the right plot represent the density (horizontal) and
masses (vertical) of unbound fluctuations in the case of scalar field dark matter with benchmark massesmϕ ¼ 10−22 and 10−21 eV [44].
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characteristic massM200 was contained in progenitors more
massive than a fraction f of this current mass.
Extended Press-Schechter theory can be invoked to

relate the current characteristic mass M200 to the scale
mass [102],

Ms

M200

≡ erfc

�
δscðzcollÞ − δscðz ¼ 0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðσ2ðfM200Þ − σ2ðM200ÞÞ

p �
; ð29Þ

where δscðzÞ ≈ δc=DðzÞ, with δc ¼ 1.686, is the density
threshold for the collapse of a spherical top-hat perturbation
andDðzÞ the linear growth factor. The left sides of Eqs. (28)
and (29) depend on the halo profiles through the concen-
tration c200 ≡ r200=rs. Given a present-day characteristic
mass M200, they can be simultaneously and iteratively
solved to yield consistent solutions for the concentration
c200 and collapse redshift zcoll. The constant C is calibrated
to yield concentrations for cluster-mass (M200 ∼ 1013 M⊙)
halos consistent with observations for f ¼ 0.01 [101]. We
choose to go down to a minimum subhalo mass of 10 M⊙
in this expository scenario to avoid extrapolating the
derived concentration-mass relations and mass functions
to even smaller values.
Sensitivity forecasts on the break kB and high-k slope nB

of an enhanced primordial power spectrum are displayed in
Fig. 8. Shown are constraints achievable at the 95% con-
fidence interval using quasar proper motion measurements
with an SKA-like survey, as well as observations of Galactic
stellar proper accelerations by a WFIRST-like survey.
We caution that our treatment is simplistic in several

ways—it is anchored to CDM simulations at higher masses,
while necessitating extrapolation of the modified power
spectrum down to small scales and of the subhalo mass
function and concentration-mass relation down to small
subhalo masses. Although a more accurate treatment
would necessarily involve N-body simulations consistent

with the modified primordial spectra, our simple semi-
analytic prescription captures the essential physics while
making the point that the enhancement of structure on small
scales can be effectively probed with near-future astro-
metric observations.

D. Scalar dark matter

Dark matter may constitute ultralight scalar fields,
sometimes denoted “fuzzy” dark matter, with masses

FIG. 7. Primordial power spectra with small-scale enhancement through a kink (left panel), derived present-day matter power spectra
(middle panel), and present-day mass functions (right panel) shown for the representative set of kink parameters kB ¼ 13 Mpc−1,
nB ¼ 2ð3Þ in blue (green). The standard ΛCDM prediction is shown as the red line in each case. A kink in the primordial power
spectrum results in an overabundance of dense, low-mass subhalos [45].

FIG. 8. The 95% confidence interval sensitivity forecasts
on scenarios with a kink in the power spectrum parametrized
by the break location kB and kink slope nB, and assuming a
minimum bound substructure mass of 10 M⊙. Shown are
sensitivities achievable using quasar proper motion measure-
ments with an SKA-like survey (red line) as well as observations
of Galactic stellar proper accelerations by a WFIRST-like survey
(blue line) [43].
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potentially as low as 10−22 eV [18,19]. Scalar field dark
matter automatically exhibits unbound substructure due to
interference effects, sourcing Oð1Þ fractional density fluc-
tuations that can cause a stochastic weak gravitational
lensing signal [19,22]. The contribution to the power
spectra described below (and calculated in Appendix A 3)
is irreducible because it originates from the unavoidable
density fluctuations of a free scalar field at the scale of the
typical de Broglie wavelength in a thermal ensemble.
Assuming the velocity spectrum and density distribution

of the halo is known, the velocity and acceleration power
has only one free parameter—the scalar field’s mass m.
The density fluctuations of real scalar dark matter can be
attributed to random interference fringes, which have a
typical mass M0 and radius R0 equal to

M0 ¼ Cρ0

�
π

σk

�
3

≈ 5 × 105 M⊙C

�
10−22 eV

m

�
3

; ð30Þ

R0 ¼
1

2σk
≈ 58 pc

�
10−22 eV

m

�
; ð31Þ

where C is an Oð1Þ constant, ρ0 is the local mean DM
energy density, and σk ¼ mσv is set by the scalar mass m
and the known velocity dispersion in the Milky Way.
These density fluctuations unavoidably constitute a

substructure fraction of 100%. We relegate the detailed
calculation of the velocity and acceleration power spectra to
Appendix A 3. The results of that calculation support the
interpretation of the scalar’s density fluctuations as a 100%
substructure fraction of dark matter, with mass and size
given by Eqs. (30) and (31). Indeed, with some simplifying
assumptions (spatially constant ρ0, infinite source distance,
and no velocity asymmetry v⊙ ¼ 0), the velocity and
acceleration power spectra for scalar dark matter are
identical to those of a population of Gaussian lenses with
massesM0 and radii R0 that make up all of the dark matter,
provided we take C ¼ 4=ð3π3=2Þ for velocities and C ¼
32=ð15π3=2Þ for accelerations in Eq. (30). Without those
simplifying assumptions, the formula for the velocity
power spectrum is given by Eq. (A18) with a completely
analogous formula for the acceleration power spectrum,
also using the formulas of Eqs. (A15) and (A16) for the
power spectra of the time derivatives of the density
fluctuations.
Because of the correspondence to the Gaussian-lens

power spectrum, we can indicate on the right panel of Fig. 6
the mass-independent halo density relation implied by
Eqs. (30) and (31) by the horizontal blue dashed line.
The effective “halo” mass of these density fluctuations is
indicated by the vertical solid lines for m ¼ 10−21 eV and
m ¼ 10−22 eV. Our future projections imply that fuzzy
dark matter at very low masses should be detectable with
the assumed survey parameters. The proper acceleration
power spectrum signal is approximately scale independent

and thus could be a potential probe at higher scalar field
masses, although the magnitude of the signal is still out of
reach of near-future surveys using the methods pre-
sented here.

V. SIGNAL DISCRIMINANTS

A. Toroidal modes as a control region

As described in Sec. II A, the astrometric lensing signal
is sourced from the gradient of the projected scalar lensing
potential ψ , so it is expected to exclusively populate the
poloidal (curl-free) component of the power spectrum
decomposition. The noise, on the other hand, is expected
to contribute to both the poloidal and the toroidal modes.
The toroidal (divergence-free) power spectrum can thus be
used as a control channel to calibrate the noise spectrum
and deal with unmodeled sources of noise of instrumental
and/or astrophysical origin.

B. Directional asymmetry

After inserting Eq. (7) into Eq. (4), integrating by parts,
and using ∇2

θYlm ¼ −lðlþ 1ÞYlm and Eq. (5), we find
that for a single lens

μð1Þlm ¼ −
lðlþ 1Þ

Dl

Z
dΩψðβÞvl ·Ψ�

lmðθÞ; ð32Þ

where ψðβÞ ¼ 4GN

R
dΩ0Σðθ0; θlÞ ln β is the projected sca-

lar lensing potential, Σðθ0; θlÞ the projected surface mass
density at θ0 from a lens at θl, β ¼ θ − θl the angular impact
parameter,

R
dΩ an integral over θ coordinates, and

R
dΩ0

an integral over θ0 coordinates.
Due to the Sun’s motion around the Galactic center,

the distribution f⊕ðvlÞ for the effective lens velocity is
asymmetric—see Eqs. (21) and (22)—with higher magni-
tudes expected for velocity components in the Galactic
longitude direction than in the Galactic latitude direction.
This will typically lead to an asymmetry in the expected
power at differentm values at fixed l, because the high-jmj
(low-jmj) modes of Ψlm are preferentially oriented along
the Galactic longitude (latitude) direction.
Explicitly, we can see this directional asymmetry in the

expected power by computing the expectation value of the

square amplitudes μð1Þlm for a totality of lenses with number
density distribution nlðθl; DlÞ:

hjμð1Þlmj2i ¼ l2ðlþ 1Þ2
Z

dfDM

Z
dDlnlðθl; DlÞ

Z
d2vl

× f⊕ðvl; θl; DlÞ
�
v2l;θ

����
Z

dΩΨlm;θðθÞψðβÞ
����2

þ v2l;φ

����
Z

dΩΨlm;φðθÞψðβÞ sin θ
����2
�
: ð33Þ

As stated above, the directional asymmetry in the rate of
change in impact parameter stems from the asymmetric
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f⊕ðvlÞ in Eq. (22), with higher expected proper compo-
nents in the Galactic longitude direction: hv2l;φ sin2 θli >
hv2l;θi.1 At high jmj=l, we also have that hjΨlm;φj2i >
hjΨlm;θj2i over the celestial sphere, with the opposite
inequality for low values of jmj=l. At low jmj=l, the
dominant contributions arise from the second line in
Eq. (33), while at high jmj=l, they arise from the third
line. We therefore deduce that for the astrometric lensing

signal, hjμð1Þlmj2i is an increasing function of jmj at fixed l,
which is calculable from the six-dimensional (6D) phase
space distribution of the DM subhalos. This jmj asymmetry
is further exacerbated by the fact that the DM lens
distribution nðθl; DlÞ is peaked toward the Galactic
Center and thus latitudes θl ≈ π=2, where the high- jmj=l
modes have more support than the low- jmj=l modes.

Asymmetries in jmj may also be caused by variations in
exposure and noise across the celestial sphere. For optical
astrometric surveys of quasars, for example, there is a lower
background source number density and higher astrometric
noise per source near the Galactic equator, causing μ to be
more poorly measured there. Because of the support of the
VSH functions, this would lead to somewhat similar

asymmetry in jmj=l for the noise, in both μð1Þl;m and μð2Þl;m

components. Indeed, we observe this asymmetry in the
quasar sample of the Gaia DR2 data in Sec. VI.
Nevertheless, because the lensing signal contributes only

to μð1Þl;m, one generally expects a difference in jmj asym-
metry for the poloidal and toroidal modes power. Any
excess power in the poloidal modes relative to the toroidal

modes—as expected from a lensing signal—can then be
tested to see if it conforms to the expected asymmetry
implied by Eq. (33). We expect a similar but quantitatively
even higher jmj=l asymmetry in the poloidal mode power
of the lens-induced proper accelerations, due to the higher
number of powers of vl—4 instead of 2—involved.
We illustrate the azimuthal asymmetry by plotting in

Fig. 9 the square magnitude of the poloidal power spectrum
amplitudes jμlmj2 for our fiducial CDM-like scenario (left
panel) and for a population of M0 ¼ 108 M⊙ subhalos of
extent R0 ¼ 100 pc making up all of the Galactic dark
matter (right panel). In the latter case, the compact objects
are distributed following the smooth dark matter profile of
the Milky Way, without tidal evolution effects, which
results in a larger concentration of subhalos toward the
Galactic plane and an even larger azimuthal asymmetry
compared to the CDM-like case, where subhalos appear
largely isotropic in the sky. Figure 10 further illustrates the
fractional azimuthal asymmetry, plotting the fractional
deviation of a given squared amplitude coefficient from
the mean value at a given l. This is shown for the CDM-
like model (top panels) and the compact objects population
(bottom panels), in each case plotting the proper motion
coefficients jμlmj2 (left panels) and proper acceleration
coefficients jαlmj2 (right panels). As anticipated above, a
larger asymmetry for the acceleration spectra is seen, as
well as a larger asymmetry for the compact objects con-
figuration where there is more support near the Galactic
plane.
To summarize, the preferential motion of the Sun with

respect to the stationary frame of Galactic subhalos would
lead to a detectable asymmetry in the lens-induced corre-
lation signal. Such a characteristic asymmetry is unlikely to
be replicated by instrumental and nonlensing effects, and

FIG. 9. (Left) The magnitude of poloidal proper motion power spectrum coefficients μð1Þlm for the CDM setup. (Right) The magnitude of

poloidal proper motion power spectrum coefficients μð1Þlm for a population of compact objects of mass M0 ¼ 108 M⊙ and size R0 ¼
100 pc making up all of the Galactic dark matter density and distributed following the smooth Milky Way DM halo. An azimuthal
asymmetry in each case can be seen—with larger coefficients at higher m for a fixed l—with greater asymmetry in the compact objects
scenario [40].

1Note that the
R
dΩ integral in Eq. (33) at high l is dominated

by the region θ ≃ θl, due to the higher gradients in ψðβÞ there.
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can be used as an additional handle to differentiate a
putative signal from unmodeled noise.

VI. POWER SPECTRUM DECOMPOSITION
OF GAIA DR2 QUASARS

In this section, we apply the technique proposed in
the previous sections on an actual astrometric dataset.
Appendix C derives in detail the optimal estimator for
vector power spectra on the celestial sphere, accounting
for nonuniform noise and incomplete coverage of the sky as
well as “spectral binning,” a coarse-graining technique that
groups nearby lmmodes to obtain well-conditioned results
out to high l and/or with incomplete sky coverage.
The dataset under consideration is the astrometric catalog

of the 555,934 quasars in Gaia’s second data release
(DR2) [56,57,103]. Each quasar comes with a position,
proper motion, and standard deviation fθq; μq; σμ;qg for

q ¼ 1;…; 555; 934.2 We bin the quasars into 12,288 equal-
area pixels according to the HEALPIX scheme (correspond-
ing to nside ¼ 32), as shown in the top panel of Fig. 11.
Each pixel i is assigned the noise-weighted averages σμ;i ¼
ðPq∈i 1=σ

2
μ;iÞ−1=2 and μi ¼ σ−2μ;i

P
q∈i μq=σ

2
μ;q. Empty pix-

els are assigned infinite noise. The second and third panels
of Fig. 11 illustrate maps of jμij and σμ;i, respectively,
showing smaller proper motion magnitudes in regions of
highGaia exposure, which also show higher quasar counts.
The fourth and fifth panels break down μi into its two
components; large-scale correlations (also seen in parallax)
are easily visible by eye.
The VSH amplitudes of the data μi ¼ si þ ni, namely

μð1Þlm ¼ sð1Þlm þ nð1Þlm and μð2Þlm ¼ sð2Þlm þ nð2Þlm, are presumed to

FIG. 10. The fractional azimuthal asymmetry in the poloidal power spectrum, compared to the mean power spectrum coefficient at a
given l, estimated from 500 simulated realizations. Shown for the fiducial CDM setup (top row) and for a population of compact objects
of mass M0 ¼ 108 M⊙ and extent R0 ¼ 100 pc making up all of the Galactic dark matter and following the Milky Way DM halo

spatially (bottom row). Shown for the proper motion power spectrum coefficients jμð1Þlmj2 (left column) and the proper acceleration power

spectrum coefficients jαð1Þlmj2 (right column). Greater asymmetry is expected for accelerations compared to velocities [40].

2For simplicity, we denote by σμ;q the average error in the ra
and dec directions ½ðσ2μ;q;α þ σ2μ;q;δÞ=2�1=2.
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be composed of both signal (s) and noise (n) contributions.

An astrometric lensing signal is expected to have sð2Þlm ¼ 0.
We expect no cross-correlations between signal and noise:

hsðvÞlmn
ðv0Þ
l0m0 i ¼ 0 ∀ v; v0;l;l0; m;m0. We assume the noise

is independent between pixels and faithfully reported by
Gaia: hni · nji ¼ 2σ2μ;iδij. As we will see, the pixel-to-pixel
independence assumption is incorrect on large angular
scales. Furthermore, the uncertainties in Gaia’s astrometric
fit appear to not fully account for the noise budget. On the
DR2 quasar dataset, hμ2q=σ2μ;qi ≈ 2.43, for example, in
excess of the expectation of 2 for a bivariate normal
random variable.
Wewill apply the techniques outlined in Appendix C 2 to

evaluate the optimal estimator for the (poloidal) coarse-
grained power spectrum:

jμ̂ð1ÞB j2 ¼
X
B0iαjβ

1

2
ðF−1ÞBB0

μiαμjβ
σ2μ;iσ

2
μ;j

Pð1ÞB0
iαjβ : ð34Þ

Specifically, we use noise weights Ni ¼ σ2μ;i and data diα ¼
μiα but omitting the last term in square brackets in
Eq. (C14), as we expect the latter noise subtraction to
be an underestimate. We have also applied the spectral
binning technique of Appendix C 5 to coarse grain the

power spectrum with band matrices WBlm: jμ̂ð1ÞB j2 ¼P
lm WBlmjμ̂ð1Þlmj2. The precise form of the band matrices

is specified below Eq. (C18). The binned response matrices

Pð1ÞB
iαjβ are specified in Eqs. (C4) and (C21). The Fisher

matrix of Eq. (C15) is likewise binned as FBB0 ¼P
lml0m0 Flml0m0W†

lmBW
†
l0m0B0 . Finally, we can repeat the

same procedure for the toroidal power spectrum estimator

jμ̂ð2ÞB j2 in complete analogy with Eq. (34) but with the
replacement Pð1Þ ↔ Pð2Þ.
In the first two panels of Fig. 12, we plot the results of the

spectrally binned estimators jμ̂ð1ÞB j2 and jμ̂ð2ÞB j2, respectively.
Following the results of Appendix C, they are estimators of

SðvÞB ¼ P
lm WBlmjsðvÞlmj2 plus a noise contribution [from

FIG. 11. Maps in Galactic coordinates of the number distribution of Gaia DR2 quasars (top panel), their pixel-averaged proper motion
magnitude jμj (left middle panel), their proper motion error σμ (right middle panel), and their proper motion components fμl; μbg
(bottom two panels) [46].
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the second term in square brackets in Eq. (C14)] that can be
shown to be the same for v ¼ 1 and v ¼ 2. This noise
contribution is dominant in the individual power spectra,
but the difference of the estimators shown in the third panel
of Fig. 12 is an unbiased estimator of the (coarse-grained)

signal power spectrum under consideration Sð1ÞB − Sð2ÞB . We
can see that this “signal channel” is substantially sup-
pressed and averages down [especially in the band averages
B with more (lm) pairs] far below the mean power per
mode. Finally, we see evidence for systematic excess power
[above the expectation from Gaussian noise, i.e., Eq. (C6)]
for l≲ 15, systematic correlations previously reported by
theGaia Collaboration and also present in both the parallax
and the proper motion power spectra [50,103].
The signal channel features band-averaged power at the

level of 10−7 mas2 yr−2 consistent with Gaussian noise in
the two band averages between 64 ≤ l ≤ 93, and only
slightly more in the spectral bins of 32 ≤ l ≤ 63 simply
due to a lower number of (lm) pairs in those bins. This
level of noise is not yet sufficient to tease out the small
signals of those depicted in Fig. 9. The baseline noise
power scales as σ2μ=Nq, the numerator of which is projected
to improve with integration time as ∝ t−3int (see V18 for
details). Likewise, future Gaia quasar catalogs will likely
expand substantially (by at least a factor of 4), as quasar
identification methods mature.

VII. CONCLUSIONS

Astrometry—the precise measurement of the positions
and motions of celestial objects—offers a promising
avenue to probe the nature of dark matter through induced
lensing effects. In this paper, we have introduced a novel
method to systematically leverage the measured correla-
ted pattern of motions (transverse velocities and acceler-
ations) induced by a population of Galactic subhalos on
celestial bodies using the formalism of angular two-point
correlation functions. We have shown how to calculate the

lens-induced signal power spectrum for a population of
lenses characterized by arbitrary population properties and
internal characteristics through a vector spherical harmonic
decomposition. This technique admits a number of checks
and control channels: (i) the signal should appear domi-
nantly in the curl-free harmonic component, with the
divergence-free harmonic component being populated
exclusively by noise, and (ii) the preferred motion of the
Sun in the Milky Way should lead to a further characteristic
directional asymmetry in the signal channel.
Assuming putative noise properties based on current

design specifications, we have shown that astrometric
datasets deliverable by near-future surveys such as SKA
and WFIRST may harbor the imprint of a substructure
characteristic of a range of well-motivated new physics
scenarios such as cold dark matter, the existence of compact
dark objects, and scalar field dark matter. In particular, we
showed that correlated astrometry has sensitivity to com-
pact objects of much larger size and lower density than can
be probed by conventional microlensing searches based on
photometric measurements. Measurements by the ongoing
Gaia mission will already be able to access currently
unconstrained parameter space.
We have additionally demonstrated the feasibility of

performing this measurement by constructing a vector
spherical harmonics estimator and carrying out the har-
monic decomposition of the proper motions of quasars in
Gaia ’s DR2. Although the current instrumental noise
levels are not conducive to realistic searches for new
physics, our proof-of-principle analysis can be carried over
and applied to future astrometric datasets, including those
in upcoming Gaia data releases, in a straightforward
manner.
Finally, we note that two-point correlations efficiently

capture the statistical properties of a map only in the limit of
the underlying signal being statistically Gaussian. While
this is true to a very good degree for the cosmic microwave
background, for example [104], our signal of interest is

FIG. 12. Band-averaged estimates of the Gaia DR2 quasar proper motion power spectra in poloidal modes (left panel) and toroidal
modes (middle panel). A lensing signal would manifest itself as a small additive contribution solely to the poloidal power spectrum
(preferentially at high jmj=l; cf. Figs. 9 and 10), which can be revealed in the difference of the power spectra (right panel). This
difference is currently consistent with noise-only statistical fluctuations at l≳ 16 [46].
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highly non-Gaussian (as apparent from Fig. 1), and the
spherical harmonic decomposition discards potentially
large amounts of signal information. Methods accounting
for statistics beyond the linear order—e.g., bispectra [105]
and those based on convolutional filters [106,107]—may
leverage this additional information in the substructure
signal and significantly enhance sensitivity to dark matter
substructure compared to that demonstrated in this paper.
We leave the study and application of higher-order corre-
lation statistics to astrometric lensing to future work.
The code used to obtain the results in this paper is

available on GitHub [41].
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APPENDIX A: DERIVATION OF EQUATIONS

1. Velocity and acceleration power spectra

In this Appendix, we derive the formulas of Eqs. (8) and

(9). It is sufficient to calculate the induced μð1Þlm of a single

lens at some distance Dl and characterized by an enclosed
mass function MðbÞ at a conveniently chosen location and

transverse velocity direction v̂l, as the contributions to C
μð1Þ
l

are additive among the lenses, and independent of location/
direction by rotational invariance.
The first time derivative of the lensing deflection

potential from a single lens is

d
dt
ψ ¼ 4GNMðβDlÞ

βD2
l

ðβ̂ · vlÞ: ðA1Þ

Using ∇2
θYlm ¼ −lðlþ 1ÞYlm and integration by parts of

Eq. (4), we find

μð1Þlm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p Z
dΩ

�
d
dt
ψðθÞ

�
Y�
lmðθÞ: ðA2Þ

We can evaluate this expression for a lens on the celestial
north pole, which implies θ ¼ β, moving with a transverse
velocity vector specified by vl · θ̂ ¼ vl cosϕ. That allows
us to write Eq. (A2) as

μð1Þlm ¼ 4GNvl
D2

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
×
Z

π

0

dθ
Z

2π

0

dϕ cosϕ
sin θ
θ

MðθDlÞY�
lmðθ;ϕÞ

≃
GNvl
D2

l

l
ffiffiffiffiffiffiffiffi
8πl

p
½δm;−1 − δm;1�

Z
∞

0

dθMðθDlÞJ1ðlθÞ:

ðA3Þ

To get to the final line, we made use of the approximation
Pm
l ðcos θÞ ≃ ð−1ÞmlmJmðlθÞ valid for θ ≪ 1 (but poten-

tially large lθ), and kept only the leading term in the 1=l
expansion.
We can similarly find the acceleration power spectrum

by computing the amplitudes

αð1Þlm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p Z
dΩ

�
d2

dt2
ψðθÞ

�
Y�
lmðθÞ; ðA4Þ

using the fact that

d2

dt2
ψ ¼ 4GN

D3
l

�ðβ̂ · vlÞ2
β

∂βMðβDlÞ

þ v2l − 2ðβ̂ · vlÞ2
β2

MðβDlÞ
�
: ðA5Þ

Evaluating at the north pole as in Eq. (A3) yields
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αð1Þlm ¼GNv2l
D3

l

l2
ffiffiffiffiffiffiffiffi
8πl

p �
δm;0 −

δjmj;2
2

�Z
∞

0

dθMðθDlÞJ1ðlθÞ;

ðA6Þ

where we integrated by parts [and assumed MðbÞ → 0 as
b → 0] to cast the acceleration amplitude in a similar form
as the velocity amplitude. We note that the dependence on
the enclosed mass function in Eqs. (A3) and (A6) is
identical, giving the simple scaling relation between the
corresponding power spectra stated in Eq. (9).

2. Flat-sky velocity power spectrum

For deep surveys over small patches of sky, it is more
appropriate to construct flat-sky power spectra. We can
express the proper motion field

μðθÞ ¼
Z

d2keik·θμ̃ðkÞ ðA7Þ

in terms of its flat Fourier modes:

μ̃ðkÞ ¼
Z

d2θe−ik·θμðθÞ

¼ −
4GN

D2
l

2πðk · vlÞk̂
Z

∞

0

dθMðθDlÞJ1ðθkÞ: ðA8Þ

In the second line, we computed the Fourier amplitude for a
lens at the origin. One can compute this via direct
computation with Eq. (2) or from Eqs. (7) and (A1) using
integration by parts. Just as for the vector spherical
harmonic amplitude of Eq. (A3), the Fourier amplitude
is proportional to the integral of the enclosed mass func-
tion times a Bessel function. The analogous Fourier
amplitudes for the acceleration field αðθÞ are easily found
to be expressible in terms of the proper motion Fourier
amplitudes,

α̃ðkÞ ¼ −
ik · vl
Dl

μ̃ðkÞ; ðA9Þ

valid for any one lens with a sufficiently smooth density
profile. Equation (A9) is the flat-sky analog of the identity
in Eq. (9). Here we have phrased the effects in terms of
continuous Fourier transforms for simplicity, but in a data
analysis one would of course compute the appropriate
discrete Fourier transforms.
We further note that only the longitudinal components

μ̃ · k̂ of the Fourier modes are populated, and that the
transverse components are zero: μ̃ × k̂ ¼ 0. The same is
true for accelerations. This fact is the flat-sky equivalent of
the lensing signal not contributing to the toroidal ampli-

tudes μð2Þlm ¼ αð2Þlm ¼ 0.
The directional asymmetry discussed in Sec. V B is more

easily seen than in the case of vector spherical harmonics.

Each lens makes a contribution to the power in proper
motion as ∝ ðk · vlÞ2 and in acceleration as ∝ ðk · vlÞ4. The
expectation values hv2l;φi and hv4l;φi of the galactic longitude
velocity components are larger than their galactic latitude
equivalents of vl;θ, so more power is expected in modes
with k̂ pointed parallel to the Galactic equator.

3. Power spectrum for scalar dark matter perturbations

In this Appendix, we compute the power spectrum of the
velocity and acceleration distortion in a dark matter halo
made up of a real scalar field alluded to in Sec. IV D. We
will assume that the scalar field ensemble is in a mixed state
(such as a thermal state with “temperature” equal to the
virial temperature) in which

ha†kaqi ¼ n0fðkÞδð3Þðk − qÞ: ðA10Þ
The total particle number density is n0, and fðkÞ is defined
as the momentum distribution with

R
d3kfðkÞ ¼ 1. All

other contractions with the external state, e.g., those of the
form haai and ha†a†i, are assumed to be zero, as we expect
virialization to scramble all phase information. We will also
effectively take all commutators ½a†k; aq� ¼ 0, since it can
be shown that terms involving commutators are suppressed
by inverse powers of the occupation number n0=σ3k ≫ 1

where σk is a typical momentum; i.e., we are doing a
classical expansion. Expressing the field as a superposition
of momentum modes,

ϕðxÞ ¼
Z

d3kffiffiffiffiffiffiffi
2k0

p ðake−ik·x þ a†ke
þik·xÞ; ðA11Þ

with k0 ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
, we can compute expectation values

such as hϕi ¼ 0 and that of the density ρ ¼
½ _ϕ2 þ ð∇ϕÞ2 þm2ϕ2�=2:

hρi ¼ n0

Z
d3kfðkÞk0 ≃ n0m≡ ρ0: ðA12Þ

The approximate equality holds for a nonrelativistic
momentum distribution, which is the case of interest.
The aforementioned density fluctuations give rise to a

nontrivial density correlation function

hρðxÞρðx0Þi

¼ hρi2 þ n20
4

Z
d3k1
k01

d3k2
k02

fðk1Þfðk2Þ

× f½m2 − k01k
0
2 − k1 · k2�2 cos½ðk1 þ k2Þ · ðx − x0Þ�

þ ½m2 þ k01k
0
2 þ k1 · k2�2 cos½ðk1 − k2Þ · ðx − x0Þ�g

ðA13Þ
from which it can be read off that the fractional variance
of ρ, namely (hρ2i − hρi2Þ=hρi2, is order unity. There are
thus irreducible, unbound Oð1Þ density fluctuations in a
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virialized scalar dark matter halo, regardless of cosmologi-
cal history and the bound substructure of the halo, of which
there is generally less with ultralight scalar dark matter than
with CDM.3 In what follows, we will take

fðkÞ ¼ ð2πÞ3=2
σ3k

exp

�
−
ðk − k⊙Þ2

2σ2k

�
; ðA14Þ

where the momentum dispersion is σk ≡mσv with σv ≈
166 km s−1 and the average momentum in the Sun’s rest
frame is k⊙ ≡mv⊙. From Eq. (A13), we can estimate the
typical mass M0 and size R0 of these fluctuations to be
those of Eqs. (30) and (31). Since ϕ is a Gaussian random
field, not all overdensities contain the same mass, but as we
will see below, the constant C can be made more precise in
the context of the lens-induced power spectra.
We will now compute to what degree these density

fluctuations cause distortions in proper motions and accel-
erations of luminous sources. Defining the Fourier transform
of the observable O to be ÕðkÞ ¼ R

d3ke−ik·xOðxÞ and its
power spectrum hÕðkÞÕðk0Þ�i≡ POðkÞδð3Þðk − k0Þ, we
can compute from Eq. (A13) the power spectrum of _ρ:

P_ρðkÞ ≃
ρ20
8m2

Z
d3qfðqÞ½ðk2 − 2k · qÞ2fðk − qÞ

þ ðk2 þ 2k · qÞ2fð−k − qÞ�

¼ π3=2

4

ρ20ðk2 þ 8k2
⊙Þ

m2σk
½e−

ðkþ2k⊙Þ2
4σ2

k þ e
−ðk−2k⊙Þ2

4σ2
k �: ðA15Þ

In the second line, we evaluated the integral with the
momentum distribution of Eq. (A14). The above power
spectrum is computed from the equal-time correlation
function h_ρðt;xÞ_ρðt;x0Þi keeping only the “slow” term in
the third line of Eq. (A13) and dropping the “fast” term of the
second line.4 Along the same lines, we have the  ρ spectrum:

P  ρðkÞ ≃
ρ20

32m4

Z
d3qfðqÞ½ðk2 − 2k · qÞ2fðk − qÞ

þ ðk2 þ 2k · qÞ2fð−k − qÞ�

¼ 3π3=2

8

ρ20σkðk2 þ 8k2
⊙Þ2

m4

h
e
−ðkþ2k⊙Þ2

4σ2
k þ e

−ðk−2k⊙Þ2
4σ2

k

i
:

ðA16Þ
These spatiotemporal density fluctuations will give rise to
corresponding fluctuations in the gravitational potential Φ

through the gravitational Poisson equation: ∇2Φ ¼ 4πGNρ.
The power spectra of the gravitational potential fluctuations
can thus be written as P _ΦðkÞ ¼ ð4πGNÞ2P_ρðkÞ=k4 and
likewise for higher time derivatives. The reduced lensing def-
lection potential ψ of Eq. (7) is a line-of-sight integral of the
gravitational potential, ψðθÞ≡2

R zs
0 dzΦðxÞðzs−zÞ=ðzszÞ,

where it is now understood that x ¼ fzθ; zg, and zs is the
source distance. Finally, we can write the harmonic coef-

ficients of Eq. (4) as μð1Þlm ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp R

d2θ _ψðθÞY�
lmðθÞ

after integrating by parts, and analogously for αð1Þlm and  ψ .
We are now in a position to calculate the angular power

spectra of the proper motion and acceleration, after having
collected all the necessary ingredients above:

hjμð1Þlmj2i ¼ 4lðlþ 1Þ
Z

zs

0

dz
Z

zs

0

dz0
zs − z
zsz

zs − z0

zsz0

×
Z

d2θd2θ0Y�
lmðθÞYlmðθ0Þ

×
Z

d3qP _ΦðqÞeiq·ðx−x
0Þ; ðA17Þ

and likewise for hjαð1Þlmj2i but with P  ΦðqÞ. If we integrate
the fluctuations over a sphere with constant density ρ0,
dispersion σk, and radius D, take zs → ∞ and k⊙ ¼ 0, and
approximate

R
D
0 dzjlðqzÞ=z ≃ Θðq − l=DÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
π=2l3

p
, we

can evaluate all integrals and find

hjμð1Þlmj2i ¼ 32π4
G2

Nρ
2
0

m2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
1.3×10−8μas

2

y2
m−2

22

erfcð l
2σkD

Þ
l

;

hjαð1Þlmj2i ¼ 96π4G2
Nρ

2
0σ

4
v|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

8.4×10−20μas
2

y4

erfcð l
2σkD

Þ þ lffiffi
π

p
σkD

e
− l2

4σ2
k
D2

l
: ðA18Þ

It can be shown that one gets exactly the same angular power
spectrum (with the same assumptions on ρ0; σk, D, zs, and
v⊙) for an ensemble of Gaussian lenses [Eq. (13)] with
uniform number density ρ0=M0, and massM0 and radiusR0

from Eqs. (30) and (31), assumingC ¼ 4=3π3=2 for hjμð1Þlmj2i
andC ¼ 32=15π3=2 for hjαð1Þlmj2i. This means we can plot the
sensitivity to scalar dark matter in the parameter space for
compact objects explored in Sec. IV B. This is shown in the
right panel of Fig. 6 as the dashed horizontal and vertical
lines denoting the densities and masses, respectively, of
scalar field dark matter particles, for two benchmark points
m ¼ 10−21 eV and m ¼ 10−22 eV.

3Note that large-misalignment scalar dark matter models have
more bound substructure [10].

4The fast term is not only suppressed in magnitude but
averages down out severely when integrated over two lines of
sight. It is justified to compute the power on the equal-time
correlation function of the slow term because the coherence time
tcoh ∼m=σ2k is much longer than the light crossing time of a de
Broglie fluctuation tcross ∼ 1=σk.
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APPENDIX B: SIGNAL SIGNIFICANCE AND
SCALINGS

1. Fisher information formalism

We appeal to the Fisher information formalism (see, e.g.,
Ref. [121] for a review) to isolate and study the contribution
of different multipoles in a power spectrum measurement.
For a given all-sky equivalent signal Cl and noise con-
figurationNl, the Fisher information contained in a mode l
simplifies to [121]

Fl ¼ fskyðlþ 1=2Þ
�

Cl

Cl þ Nl

�
2

; ðB1Þ

where fsky ≡ Ωsky=ð4πÞ is the fraction of the sky over
which the measurement is made for sky coverage solid
angleΩsky. Formally, the Fisher information corresponds to
the inverse of the minimum possible variance with which a
measurement can be made, and quantifies the information
extractable from each mode. Note that for a partial-sky
measurement, both the signal and noise scale the same way
∝ fsky with sky coverage, and the information loss comes
from the mode multiplicity prefactor in Eq. (B1). Unless
explicitly specified, the power spectra Cl may refer to
either the expected (poloidal) proper motion or the proper
acceleration signal, with Nl referring to the corresponding
noise spectrum.
For a power spectrum measurement of multipoles in the

range ½lmin;lmax� the maximum significance of a given
signal is given by the square root of the inverse covariance,
and with each mode constituting an independent measure-
ment can be computed from the Fisher information as

σsig ≡ Cov−1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXlmax

l¼lmin

Fl

vuut : ðB2Þ

Thus, Fl quantifies the contribution of each mode to the
total signal significance.
From Eqs. (B1) and (B2), we can immediately under-

stand how the signal significance scales with various
measurement characteristics. In particular, we have the
scalings σsig ∝ Ω1=2

skyΣqσ
−2
μ=α where Σq is the number density

of observed sources and σμ=α their effective astrometric
measurement uncertainty.

2. Population of point lenses

Next, we illustrate how the significance is affected by
various signal properties for a few toy examples to gain
intuition for the various relevant scales in the problem. For
a population of point lenses, the Fisher information per l
mode of the velocity power spectrum approximately grows
as Fμ

l∝∼l due to the scale invariance of the signal and of the

noise. The total significance then also grows approximately

linearly with maximum multipole l probed, σμsig∝∼lmax, in

the noise-dominated (Nμ
l ≫ Cμð1Þ

l ) regime. For accelera-
tions, the significance with increasing maximum multipole
lmax grows approximately as σαsig ∝ l3

max. Thus, the accel-
eration power spectrum is even more sensitive to smaller
scales compared to the proper motion power spectrum. In
practice, the maximum possible multipole lmax is limited
by telescope resolution and finite source density.
Figure 13 illustrates the detection significance as a

function of maximum multipole lmax, as defined in
Eq. (B2), for a population of M0 ¼ 108 M⊙ point source
lenses uniformly distributed between Dmin

l ¼ 0.1 kpc and
Dmax

l ¼ 10 kpc making up all of the local dark matter
density ρDM ¼ 0.4 GeVcm−3. Nq ¼ 108ð1011Þ background
sources with measurement errors σμ ¼ 100 μas yr−1

(σα ¼ 10 μas yr−2) assumed for proper motion (accelera-
tion) measurements, for illustration. The proper acceleration
power spectrum (blue line) is preferentially sensitive to
smaller scales compared to the proper motion power
spectrum (red line), and thus to smaller impact parameters
(and therefore also more compact objects, as we will see
below). For a general lens distribution, the smaller the typical
angular scale that contributes to the total power, the greater
the relative importance of accelerations. Its relative impor-
tance also grows with integration time τ, since typically
σα=σμ ∼ 1=τ2 (see V18 for details). These arguments

FIG. 13. Signal significance per lens as a function of maximum
multipole lmax probed, shown for a population of M0 ¼ 108 M⊙
point source lenses uniformly distributed between Dmin

l ¼
0.1 kpc and Dmax

l ¼ 10 kpc and normalized to the local dark
matter density ρDM ¼ 0.4 GeV cm−3 with vl ¼ 10−3. Nq ¼
108ð1011Þ background sources with measurement errors σμ ¼
100 μas yr−1 (σα ¼ 10 μas yr−2) are assumed for proper motion
and acceleration measurement. Shown are the contributions from
the proper motion (red line) and proper acceleration (blue line)
power spectra. The acceleration power spectrum probes com-
paratively smaller scales and smaller distances [47].

POWER OF HALOMETRY PHYS. REV. D 102, 023026 (2020)

023026-21



naturally carry over to the case of extended lenses, which we
consider next.

3. Population of extended lenses

The Fisher information and significance for a population
of extended subhalos with Gaussian internal density
profiles (see Sec. II B 2) is illustrated on the left and right
of the top row of Fig. 14, respectively, shown as the per-lens
contribution at the fixed line of sight distance. The same
lens properties are assumed as for Fig. 13, with lens size
R0 ¼ 10 pc and lenses at Dl ¼ 1 kpc, assuming noise
properties σμ ¼ 50 μas yr−1 and Nq ¼ 108 for illustration.
Maximum Fisher information is contained at scales
l ≈Dl=2R0, with the significance growing linearly with
lmax until l ≈Dl=R0 when it plateaus and there is little
information in higher modes.

Next, the Fisher information and significance for
a population of Gaussian lenses distributed in an
Aristotelian ball between Dmin

l and Dmax
l , otherwise with

the same lens properties as in Fig. 13, are shown in
the middle panel of Fig. 14. These are normalized to the
local dark matter density ρDM ¼ 0.4 GeV cm−3. In the
noise-dominated regime, the Fisher information for this
population peaks at l ∼Dmin

l =R0, insensitive to other lens
properties. The growth in significance until this point is
again roughly linear. Multipoles l > Dmin

l =R0 contribute
logarithmically to the total significance, with a cutoff
around l ∼Dmax

l =R0 after which the significance plateaus.
For accelerations, we show the Fisher information per l
mode and the cumulative significance in the bottom row of
Fig. 14, assuming σα ¼ 5 μas yr−2 and all other quantities
the same as before. Note that for these parameters, the

FIG. 14. Fisher information (left column) and significance (right column), as defined in Eq. (B1) and Eq. (B2), respectively, for
Gaussian lenses at equal-distance Dl ¼ 1 kpc (top row, from velocity power spectra and shown per lens), a population between
Dmin

l ¼ 0.1 kpc andDmax
l ¼ 10 kpc (middle and bottom rows, from velocity and acceleration power spectra, respectively, normalized to

the local dark matter density ρDM ¼ 0.4 GeV cm−3). The same population parameters as in Fig. 13 are assumed, with spatial extension
R0 ¼ 10 pc. Dotted lines correspond to taking Dmin

l ¼ 0. Measurement errors σμ ¼ 50 μas yr−1 and σα ¼ 5 μas yr−2 are assumed [47].
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significance is very low for acceleration power spectra,
which is more sensitive to lenses with smaller R0.
Also unlike in the point lenses case, there is nothing

preventing us from considering the limit Dmin
l → 0, since

the singularity at the origin is regulated in the case of
fluffier lenses. In this case, there is additional contribution
from larger scales l≲Dmin

l =R0 compared to the case just
considered. This is illustrated with the dotted lines for
velocities (middle row) and accelerations (bottom row)
in Fig. 14.
It is instructive also to consider how the “peak” signifi-

cance, σsigðlmax ¼ Dmax
l =R0Þ, scales withDmax

l . This is clear
from the previous section—significance receives equal
contribution per decade in lmax until lmax ∼Dmax

l =R0.
Hence, the peak significance also receives equal contribu-
tions per logarithmic distance interval probed. Because each
decade in the line-of-sight distance below Dmax

l contributes
equally to the significance, there is substantial fractional
variation of the significance for different signal realizations.
Finally, we consider the impact of lens extension on

detection significance. The significance using velocity
spectra in the range l ∈ ½10; 104� as a function of lens
extension R0 is shown in Fig. 15 for uniformly distributed
lenses with masses M0 ¼ 108ð109Þ M⊙ in green (purple).
Two relevant scales can be seen. The significance plateaus
for R0 ≲Dmin

l =lmax (blue line) and falls off rapidly for
R0 ≳Dmax

l =lmin (red line) when minimum and maximum
distances are imposed. Note also from Fig. 15 [and
Eqs. (14) and (15)] that the various scales of interest do

not depend on the lens massM0, with the total significance
scaling linearly with M0 in the case of a uniformly
distributed population of lenses.
We can summarize the main takeaways of this Appendix

by approximate formulas of the signal significance for
proper motions and accelerations induced by Gaussian
lenses uniformly distributed in a sphere of radius Dmax

l .
Using Eqs. (15) and (16) for the signal power spectra,
Eq. (10) for the noise power spectra, and Eq. (B1) for the
Fisher information at signal-to-noise ratio C=N ≪ 1, we
can approximate the discrete sum in the significance
formula of Eq. (B2) as an integral from lmin to lmax.
We then find the parametric significance for velocity and
acceleration power spectra,

σμsig ≃
Σqf

1=2
sky

σ2μ
16π5=2G2

N
M0

R0

v2l ρDMfDMF; ðB3Þ

σαsig ≃
Σqf

1=2
sky

σ2α
6π5=2G2

N
M0

R3
0

v4l ρDMfDMF; ðB4Þ

where the factor F is approximately given by

F ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

�
min ðlmax; Dmax

l =R0Þ
lmin

�s
: ðB5Þ

These formulas are in concordance with the findings of this
Appendix as well as the signal-to-noise formulas of the

FIG. 15. Detection significance as a function of spatial exten-
sion R0 illustrated for Gaussian lenses uniformly distributed with
varying minimum and maximum lens distances, with proper
motion power spectra measurements between l ∈ ½10; 104�.
Same lens properties as Fig. 14 (middle row). The red and blue
lines show the effect of imposing a maximum or minimum
distance to the lenses at 2 and 1 kpc, respectively. Significance
without a distance cutoff is shown for M0 ¼ 108ð9Þ M⊙ lenses in
green (purple) [47].

FIG. 16. Projected limits at the 95% confidence level obtained
for a uniform population of Gaussian lenses distributed in an
Aristotelian ball, with signal power spectra given by Eqs. (15)
and (16). Shown for extragalactic proper motion measurements
from an SKA-like survey (red line), and Galactic proper accel-
eration measurements from a WFIRST-like survey and end-of-
mission Gaia (blue and green lines, respectively), assuming
survey characteristics in Table I. Lenses up toDmax

l ¼ 50 kpc and
1 kpc are considered for the velocity and acceleration measure-
ments, respectively [48].
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correlation observables proposed in V18: cf. their
Eqs. (6.8) and (6.11) (which only had different form factors
I1 and I2 due to the assumed NFW profile of the lenses).
In Sec. IV B, we derived projected sensitivities for a

population of compact objects of different masses and sizes
making up the dark matter in the Milky Way, integrating
over the assumed Galactic spatial and velocity phase space
distributions of the lenses. In Fig. 16 we show 95% con-
fidence level sensitivity projections for a simplified sce-
nario of lenses uniformly distributed in an Aristotelian ball
up to Dmax

l ¼ 1ð50Þ kpc for acceleration (velocity) mea-
surements and assuming transverse velocity vl ¼ 10−3.
Survey characteristics from Table I are used for SKA-like
extragalactic proper motions (shown as red line), and
WFIRST-like and end-of-mission Gaia Galactic proper
accelerations (shown in blue and green lines, respectively).
Equations (15) and (16) are directly used for these
simplified estimates. Excellent agreement with the sensi-
tivities derived using the full phase space in Fig. 6 is seen,
as well as with the approximate estimates of Eqs. (B3)
and (B4).

APPENDIX C: POWER SPECTRUM ESTIMATOR

In this Appendix, we describe a fast, practical way to
estimate the power spectrum of vector data on (a potential
subset of) the celestial sphere. This is done through the
construction of a quadratic maximum-likelihood VSH
estimator. As an illustration, we apply this method to the
proper motions of the quasar sample in Gaia ’s DR2
[56,57] in Sec. VI.

1. Setup

Suppose we are given vector data on the sphere djα ¼
sjα þ njα composed of a signal s and noise n. The Greek
index α ¼ 1, 2 runs over the two vector components in the
colatitude θ and longitude φ directions. The Roman index
j ¼ 1;…; J runs over a list of equal-area pixels tessellating
the celestial sphere. We assume the number of pixels J is
taken large enough to resolve the smallest angular scales
over which the signal power is to be estimated. If the data
come as a list of objects (as in the Gaia quasar sample of
Sec. VI), we first bin the objects in their corresponding
pixels; pixels with multiple constituents receive a value of
djα corresponding to their noise-weighted average.
Our goal is to estimate the power spectrum of the signal

contribution to the covariance matrix of the data,

Ciαjβ ¼ hdiαdjβi ¼ hsiαsjβi þ hniαnjβi≡ Siαjβ þ Niαjβ;

ðC1Þ
where in the second equality we have assumed the signal to
be uncorrelated from the noise. Using shorthand notation
Ψlm

jα ≡Ψlm;αðθj;φjÞ and Φlm
jα ≡Φlm;αðθj;φjÞ, we can

write any field on the tessellated sphere, e.g., the signal, as

sjα ¼ sð1ÞlmΨlm
jα þ sð2ÞlmΦlm

jα ; ðC2Þ

sð1Þlm ¼ 4π

J
sjαΨlm�

jα ; sð2Þlm ¼ 4π

J
sjαΦlm�

jα : ðC3Þ

Above and in the rest of this Appendix, repeated indices are
summed unless otherwise noted. We can express the signal

covariance matrix Siαjβ in terms of its power spectra Sð1;2Þlm

and response matrices Pð1;2Þlm
iαjβ :

Siαjβ ¼ Sð1ÞlmP
ð1Þlm
iαjβ þ Sð2ÞlmP

ð2Þlm
iαjβ ; ðC4Þ

hsð1Þlms
ð1Þ�
lm i≡ Sð1Þlmδll0δmm0 ; Pð1Þlm

iαjβ ≡ Ψlm
iα Ψlm�

jβ ; ðC5Þ

and analogous formulas for Sð2Þlm and Pð2Þlm
iαjβ . The noise

covariance matrix can be similarly expressed in terms of its

power spectra Nð1;2Þ
lm . We shall assume here that the noise

covariance matrix is known (or otherwise inferred). In what
follows, we take the noise to be uncorrelated between
pixels and isotropic in direction (but not isotropic in
location on the celestial sphere):

Niαjβ ¼ Niδijδαβ ðno sum over iÞ: ðC6Þ

For brevity in the analysis below, we will take

Sð2Þlm ¼ 0 ðC7Þ

(as in the case of a lensing signal) so that only Sð1Þlm is to be
estimated. All formulas can be generalized with straight-
forward modifications if the assumptions of Eqs. (C6) and
(C7) are relaxed.

2. General likelihood estimator

The Gaussian likelihood of the data is given by

L ¼ exp f− 1
2
diαðC−1Þiαjβdjβg

ð2πÞJ ffiffiffiffiffiffiffiffiffiffi
detC

p ; ðC8Þ

where C is the covariance matrix and the log likelihood is
defined as L≡ −2 lnL. We are interested in finding the

signal power spectra Sð1Þlm and thus the correct covariance
matrix C that minimizes the log likelihood. To that end we
compute the first derivative:

∂L
∂Sð1Þlm

¼ ðC−1ÞiαjβPð1Þlm
jβiα − daαðC−1ÞaαbβPð1Þlm

bβcγ ðC−1Þcγeϵdeϵ:

ðC9Þ

It can be shown that h∂L=∂Sð1Þlmi ¼ 0 for C ¼ hddi. After
calculating the Hessian ∂2L=∂Sð1Þlm∂Sð1Þl0m0 , one can devise an
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iterative procedure based on the Newton-Raphson method
that finds a local minimum of L, as in Ref. [55]. If the

global minimum S̄ð1Þlm is found, then the maximum-like-

lihood estimator Ŝð1Þlm ¼ S̄ð1Þlm is guaranteed to be the optimal
unbiased estimator:

Ŝð1Þlm ¼ diαZ
ð1Þlm
iαjβ djβ − NiαjβZ

ð1Þlm
jβiα ; ðC10Þ

Zð1Þlm
iαjβ ¼1

2
ðF−1

ð1ÞÞlml0m0 ðC−1Þiαi0α0Pð1Þl0m0

i0α0j0β0 ðC−1Þj0β0jβ; ðC11Þ

Fð1Þ
lml0m0 ¼ 1

2
ðC−1ÞaαbβPð1Þlm

bβcγ ðC−1ÞcγeϵPð1Þl0m0
eϵaα ; ðC12Þ

CovfŜð1ÞlmŜ
ð1Þ
l0m0 g ¼ ðF−1

ð1ÞÞlml0m0 : ðC13Þ

Note that the last equation is the covariance matrix of
the estimator, thus providing error estimates on the
measurement.

3. Simplifications at low signal to noise

In the above, Z and the Fisher matrix F are to be
evaluated at S̄ on the right-hand side of the Ŝ formula,
which is why an iterative procedure is needed. However, in
the limit where the signal power is small compared to the
noise power S ≪ N in any one (spatial or spectral) bin,
which is the regime of interest, we can make the approxi-
mationC ≃ N at the cost of slightly biasing the estimator by
a fractional amount of S=N. In this case, no iteration is
needed. If we further assume that N is diagonal as in
Eq. (C6), we find

Ŝð1Þlm ¼ 1

2
ðF−1

ð1ÞÞlml0m0

�
diαdjβ
NiNj

Pð1Þl0m0
iαjβ −

Pð1Þl0m0
iαiα

Ni

�
; ðC14Þ

Fð1Þ
lml0m0 ¼ 1

2

X
ijαβ

Pð1Þlm
iαjβ Pð1Þl0m0

jβiα

NiNj
: ðC15Þ

For the toroidal power spectrum estimator Ŝð2Þlm, the for-
mulas are the same except for the replacements
Pð1Þ ↔ Pð2Þ. One can actually show that Fð1Þ ¼ Fð2Þ ≡ F
in this case.
If the noise were the same in each pixel, Ni ¼ σ2 ∀ i,

then we would have a diagonal Fisher matrix Flml0m0 ¼
ðJ=2σ4Þδll0δmm0 and an even simpler estimator Ŝð1;2Þlm ¼
diαdjβP

ð1;2Þlm
iαjβ − σ2. Empty pixels di carry no informa-

tion; it can be seen from the likelihood or its estimator
that not summing over empty pixels di is equivalent to
taking their noise to be infinite Ni ¼ ∞. This allows
us to analyze vector data over a subset of the celestial
sphere.

In principle, with Eqs. (C14) and (C15) we have
assembled all the necessary ingredients to estimate the
signal power spectrum, but there are two practical hurdles:
computational complexity and invertibility of the Fisher
matrix. Suppose we want to estimate the power spectrum
up to l ¼ lmax, i.e., estimate the power for ðlmax þ 1Þ2
values of ðl; mÞ. That means we require at least as many
pixels J ≳ ðlmax þ 1Þ2. At first glance, it would appear
from Eq. (C15) that the computational complexity of the
Fisher matrix calculation scales as Oðl8

maxÞ, which would
preclude computations up to even medium-high lmax
values. In addition, there is no guarantee that the inverse
of the Fisher matrix in Eq. (C15) exists for maps with
nonuniform exposure, especially when l2

max approaches the
number of nonempty pixels. Even if the inverse exists, its
computation may be numerically unstable. Appendix C 4
details a parametrically faster method to compute the Fisher
matrix, and Appendix C 5 is a spectral binning method that
makes it invertible in most practically relevant cases;
combined, they circumvent the issues of complexity and
invertibility.

4. Fast Fisher matrix computation

We outline a method for computing Eq. (C15) in
Oðl4

max log2 lmaxÞ time. First, define the (lm) Fourier
amplitude of a scalar map fl

0m0
i to be fl

0m0
lm ≡ fl

0m0
i Ylm�

i .
Also observe that we can write the VSHs as

Ψlm
iα ¼ δα1½clm1 Yl−1;m

i þ clm2 Ylþ1;m
i � þ δα2clm3 Ylm

i

− sin θi
;

clm1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 1Þðl −mÞðlþmÞ

lð2l − 1Þð2lþ 1Þ

s
;

clm2 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðl −mþ 1Þðlþmþ 1Þ
ðlþ 1Þð2lþ 3Þð2lþ 1Þ

s
;

clm3 ¼ imffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp : ðC16Þ

The formula for Φlm
iα is similar, via Eq. (5).

The key observation is that one can write the Fisher
matrix as the element-wise product:

Flml0m0 ¼ Qlml0m0Ql0m0lm ðno sum over l; m;l0; m0Þ;
Qlml0m0 ≡ cl

0m0
1 Alm

l0−1;m0 þ cl
0m0

2 Alm
l0þ1;m0 − cl

0m0
3 Blm

l0m0 ;

Alm
i ¼ 1

Ni sin θi
ðclm1 Yl−1;m

i þ clm2 Ylþ1;m
i Þ;

Blm
i ¼ 1

Ni sin θi
clm3 Ylm

i : ðC17Þ

Brute-force computation of each Qlml0m0 amplitude indi-
vidually takes Oðl2

maxÞ, reducing the total complexity of
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Flml0m0 to Oðl6
maxÞ. However, fast spherical Fourier trans-

form algorithms [122–124] exist to computeQlml0m0 for all
fl0m0g at once in Oðl2

max log2 lmaxÞ steps, yielding a total
complexity of Oðl4

max log2 lmaxÞ for the ðlmax þ 1Þ4 com-
ponents of F, making computations up to lmax ∼ 103

feasible.

5. Spectral binning

The maximum likelihood estimator requires the inverse
of the Fisher matrix, which may not exist if the data are too
sparse or not sufficiently uniform, and/or if lmax is too
large. Since we are not interested in the power in any one
ðl; mÞ mode, but rather in the gross behavior, we can
collect the power spectrum into “spectral bins”: e.g.,
logarithmic bins in l, and two bins in jmj: a high-jmj=l
bin and a low-jmj=l bin. More precisely, we can compute
“band averages”:

Sð1ÞB ≡WBlmS
ð1Þ
lm; ðC18Þ

with band matrices WBlm that have many fewer rows than
columns and that satisfy

P
lm WBlm ¼ 1. The binning

suggested above could be spectral bins B ¼ 2n containing
all ðl; mÞ satisfying f2n ≤ l < 2nþ1; jmj ≤ floorðl=2Þg as
the low-jmj=l bins, and B ¼ 2nþ 1 with f2n ≤ l <
2nþ1; jmj > floorðl=2Þg as the high-jmj=l ones. The band

matrix WBlm would then be nonzero only for those
flmg ∈ B, and equal to the inverse number of elements
in B.
This spectral binning does not lose essential information

insofar that the power spectrum Sð1Þlm can be adequately

approximated by the coarse-grained power spectrum Sð1Þ†lm :

Sð1Þ†lm ¼ W†
lmBS

ð1Þ
B ; ðC19Þ

where W†
lmB is the pseudo-inverse

W†
lmB ≡WBlmðWB0l0m0WBl0m0 Þ−1: ðC20Þ

All formulas for SB, ZBB0 , and FBB0 are the same as in the
previous section with the replacements lm ↔ B and using
the spectrally binned response matrices:

Pð1ÞB
iαjβ ¼ Pð1Þlm

iαjβ W†
lmB: ðC21Þ

The exemplary logarithmic binning in l and high/low
binning in m compress a power spectrum of Oðl2

maxÞ
modes into a coarse-grained one with Oð2 log2 lmaxÞ band
averages. The more compact band-averaged Fisher matrix
FBB0 is more likely to be well-conditioned such that its
inverse exists and can be calculated quickly and reliably.
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