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Abstract

In this paper, we study a class of online op-
timization problems with long-term budget
constraints where the objective functions are
not necessarily concave (nor convex), but they
instead satisfy the Diminishing Returns (DR)
property. In this online setting, a sequence
of monotone DR-submodular objective func-
tions and linear budget functions arrive over
time and assuming a limited total budget, the
goal is to take actions at each time, before
observing the utility and budget function ar-
riving at that round, to achieve sub-linear
regret bound while the total budget violation
is sub-linear as well. Prior work has shown
that achieving sub-linear regret and total bud-
get violation simultaneously is impossible if
the utility and budget functions are chosen ad-
versarially. Therefore, we modify the notion
of regret by comparing the agent against the
best fixed decision in hindsight which satisfies
the budget constraint proportionally over any
window of length W . We propose the Online
Saddle Point Hybrid Gradient (OSPHG) al-
gorithm to solve this class of online problems.
For W = T , we recover the aforementioned
impossibility result. However, if W is sub-
linear in T , we show that it is possible to
obtain sub-linear bounds for both the regret
and the total budget violation.
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1 Introduction

1.1 Motivating Application: Online Ad
Placement

Consider the following online ad placement problem:
At round t ∈ [T ], an advertiser should choose an invest-
ment vector xt ∈ Rn

+ over n different websites where
i-th entry of xt denotes the amount that the advertiser
is willing to pay per each click on the ad on the i-th web-
site (i.e., cost per click). In other words, each website
has different tiers of ads and choosing xt corresponds
to ordering a certain type of ad. The aggregate cost
of investment would be determined when the number
of clicks the ad receives is revealed. In other words,
the cost of such an investment would be 〈pt, xt〉 where
the i-th entry of the vector pt is the number of clicks
the ad on the i-th website receives. Note that the
vector pt is not known ahead of time and could be
adversarial. For instance, competing advertisers may
click on the ads to deplete their rival’s budget. The
advertiser needs to balance her total investment against
an allotted long-term budget (daily, monthly, etc.), i.e.,
∑T

t=1〈pt, xt〉 ≤ BT where BT is the total targeted bud-
get. At round t ∈ [T ], the advertiser’s utility function
ft(xt) is a monotone DR-submodular function with
respect to the vector of investments and this function
quantifies the overall amount of impressions of the ads.
DR-submodularity of the utility function characterizes
the diminishing returns property of the impressions
(Diminishing Returns (DR) property and continuous
DR-submodular functions are defined in Section 2.2 at
page 4). In other words, making an ad more visible
will attract proportionally fewer extra viewers because
each website shares a portion of its visitors with other
websites. Liakopoulos et al. (2019) considered the on-
line portfolio management problem (with online ad
placement problem as their running example) and in
order to model diminishing returns, they assumed that
the utility functions are separable and concave. Note
that concavity is equivalent to DR-submodularity for
separable functions. However, for non-separable utility
functions, DR-submodularity is the property that cap-
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tures the diminishing returns of the objective functions
(rather than the concavity property) and therefore, in
this work, we focus on DR-submodular utility functions
that are not necessarily concave. Our results resolve
the open problem posed by Liakopoulos et al. (2019)
in the footnote of the third page of their paper. See
Appendix A for more applications.
In this paper, we propose an algorithm for this class
of online non-convex problems such that the algorithm
has no regret, i.e., a sub-linear regret bound with re-
spect to the horizon T , while the total budget violation
is sub-linear as well.

1.2 Related Work

Online convex optimization with constraints.
Consider an online problem where at step t ∈ [T ], the
player chooses xt ∈ X . Then, cost function ft : X → R

and constraint function gt : X → R are revealed and
the player incurs a loss of ft(xt) and her budget is
impacted by the amount gt(xt). X is assumed to be
convex and compact and the functions ft, gt are convex
for all t ∈ [T ]. The overall goal is to design an algo-
rithm whose output is asymptotically feasible, i.e., the
constraint residual

∑T
t=1 gt(xt) is sub-linear, and has

a sub-linear regret. Mahdavi et al. (2012) considered
the case where all constraint functions are equal and
are given offline, i.e., gt(x) = g(x) ∀t ∈ [T ], x ∈ X . For

this setting, they achieved O(
√
T ) regret and O(T

2

3 )

constraint residual (i.e.,
∑T

t=1 g(xt)) bounds. Jenat-
ton et al. (2016) studied the exact same framework
as Mahdavi et al. (2012) and generalized their result

by obtaining O(Tmax{β,1−β}) regret and O(T 1− β

2 ) con-
straint residual bounds where β ∈ (0, 1) is a tunable
parameter. More recently, Yuan and Lamperski (2018)
considered an alternative notion of constraint resid-
ual defined as the sum of squares of clipped residuals,
∑T

t=1(max{g(xt), 0})2, and achieved O(Tmax{β,1−β})
regret and O(T 1−β) constraint residual bounds for this
setting. Also, they obtained logarithmic regret bounds
for the case that cost functions are strongly convex.
The new constraint residual form considered in Yuan
and Lamperski (2018) heavily penalizes large constraint
violations and strictly feasible solutions of some rounds
cannot cancel out the effect of violated constraints at
other rounds.
For the setting with constraints arriving online1, Man-
nor et al. (2009) considered the notion of regret with
window length W = T and provided a simple coun-
terexample showing that the regret of any algorithm
with sub-linear constraint residual is lower bounded by
Ω(T ). Neely and Yu (2017) assumed that there exists

1In this setting, the regret metric with window length
W is defined as RT =

∑
T

t=1
ft(xt) −

∑
T

t=1
ft(x

∗
W ) where

x∗
W = argmin

x∈XW

∑
T

t=1
ft(x) and XW = {x ∈ X :

∑
t+W−1

τ=t
gτ (x) ≤ 0, 1 ≤ t ≤ T −W + 1}.

an action x∗ ∈ X such that gt(x
∗) < 0 ∀t ∈ [T ] (Slater

condition) and under this assumption, they obtained
O(

√
T ) bounds for both regret with window size W = 1

and constraint residual. However, the fixed decision
benchmark action considered in this paper is restricted
to be feasible for all constraint functions gt ∀t ∈ [T ]
which heavily restricts the performance of the bench-
mark action and thus, the obtained regret guarantees
could be loose. Sun et al. (2017) considered the same
notion of regret as Neely and Yu (2017) and using
online mirror descent as a subroutine (and without
assuming the Slater condition), they obtained a similar

O(
√
T ) regret bound and a looser O(T

3

4 ) constraint
residual bound. Liakopoulos et al. (2019) considered
the exact same framework and algorithm as Neely and
Yu (2017), however, they constrained the benchmark
action to be feasible in all windows of size W = T β

where β ∈ [0, 1) (as opposed to Neely and Yu, 2017
where W = 1). They obtained O(WT

V +
√
T ) regret

bound and O(
√
V T ) residual bound where V ∈ [W,T )

is a tunable parameter which captures the trade-off be-
tween the regret and constraint residual bounds. Note
that for W = 1, since the Slater condition is not as-
sumed by Liakopoulos et al. (2019), their bound does
not achieve the O(

√
T ) regret and constraint residual

bound of Neely and Yu (2017).
Note that in all these works, the objective functions
are assumed to be convex. In contrast, we consider
a more general class of non-convex/non-concave DR-
submodular objective functions to which the aforemen-
tioned results are not applicable.
Online submodular maximization. An orthogo-
nal research direction considers the following problem:
At step t ∈ [T ], the online algorithm chooses a fea-
sible point xt ∈ P. Once the algorithm commits to
this choice, a monotone continuous DR-submodular
function ft is revealed and the reward ft(xt) is re-
ceived. The goal is to minimize the regret defined as
the difference between the total reward obtained by
the algorithm and that of the (1− 1

e )-approximation
to the best fixed decision in hindsight with (1 − 1

e )
being the optimal polynomial time approximation ratio
for an offline monotone continuous DR-submodular
maximization problem (Bian et al., 2017a). Note that
although similar to our framework (the objective func-
tions are assumed to be continuous DR-submodular
in this setting), there are no time-varying constraints
arriving online and therefore, they do not deal with the
considerable complication of bounding the constraint
residual.
The meta-algorithm for online submodular maximiza-
tion problem is presented in Algorithm 1. The intuition
for using K online maximization subroutines to obtain
xt; t ∈ [T ] is the Frank-Wolfe variant proposed by Bian
et al. (2017a) to obtain the optimal approximation guar-
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antee of (1− 1
e ) for solving the offline DR-submodular

maximization problem. To be more precise, consider
the first iteration t = 1 of the online setting and the
corresponding DR-submodular utility function f1(·) ar-
riving at this step. Note that f1 is not revealed until
the algorithm commits to an action x1 ∈ P . If f1 were
available offline, the mentioned Frank-Wolfe variant of
Bian et al. (2017a) could have been used for K itera-

tions to maximize f1 over P. Starting from x
(1)
1 = 0,

for all k ∈ [K], a vector v
(k)
1 would have been found

that maximizes 〈x,∇f1(x
(k)
1 )〉 over x ∈ P and using

the update x
(k+1)
1 = x

(k)
1 + 1

K v
(k)
1 , x1 = x

(K+1)
1 would

have been derived as the output. However, in the
online setting, the utility function f1 is not available
before committing to the action x1. Therefore, for each
k ∈ [K], a separate instance of a no-regret online linear

maximization algorithm is used instead to obtain v
(k)
1 .

The same process is repeated for the subsequent utility
functions ft; t > 1 as well.
Golovin et al. (2014) considered the case that the con-
tinuous DR-submodular function ft is the multilinear
extension of a discrete submodular function and P is
the matroid polytope. Using the Perturbed Follow the
Leader (PFTL) as the online algorithm, they achieved
an O(

√
T ) bound for the (1 − 1

e )-regret. Chen et al.
(2018a) used Regularized Follow The Leader (RFTL)
online algorithm and achieved a similar regret bound
for general continuous DR-submodular functions. In
Chen et al. (2018b), they further generalized their result
and developed a projection-free algorithm which only
requires stochastic gradient estimates of ft ∀t ∈ [T ]
and achieves the same regret guarantees. See Krause
and Golovin (2014) for a detailed overview of online
maximization of submodular set functions.

1.3 Contributions

In this paper, we design an algorithm for online contin-
uous DR-submodular maximization problem with long-
term budget constraints to achieve sub-linear regret and
budget violation bounds simultaneously. Specifically,
we make the following contributions:

• We introduce the online continuous DR-
submodular maximization problem with long-term
budget constraints. The online ad placement
example mentioned in section 1.1 is an application
of this framework. We also provide a number of
other motivating applications for this framework
in Appendix A.

• We propose the Online Saddle Point Hybrid Gradi-
ent (OSPHG) algorithm to solve this class of online
problems. Our algorithm is inspired by that of Sun
et al. (2017) and Chen et al. (2018a). We consider

Algorithm 1 Online submodular maximization meta-
algorithm (Chen et al., 2018a)

Input: P is a convex set and T is the horizon.
Output: {xt : 1 ≤ t ≤ T}.
Choose an off-the-shelf online linear maximization
algorithm and initialize K instances Ek; k ∈ [K] of
it for online maximization of linear utility functions
over P.
for t = 1 to T do
Set x

(1)
t = 0.

for k = 1 to K do
Let v

(k)
t be the vector selected by Ek.

x
(k+1)
t = x

(k)
t + 1

K v
(k)
t .

end for
Play xt = x

(K+1)
t , observe the function ft and the

reward ft(xt).

For all k ∈ [K], feedback 〈v(k)t ,∇ft(x
(k)
t )〉 as the

payoff to be received by Ek.
end for

a refined notion of static regret where the agent’s
utility is compared against a (1− 1

e )-approximation
to the best fixed decision in hindsight which satis-
fies the budget constraint proportionally over any
window of length W . For W = T , we recover the
known impossibility result obtained by Mannor
et al. (2009). However, for W = o(T ), we ob-
tain sub-linear bounds for both the (1− 1

e )-regret
and the total budget violation. In particular, if
W = T 1−ε for 0 < ε ≤ 1, we obtain a (1 − 1

e )-
regret bound of O(T 1− ε

2 ) while the total budget
violation is O(T 1− ε

4 ).

Finally, we illustrate the performance of our algo-
rithm through numerical examples for a class of
non-convex/non-concave continuous DR-submodular
objective functions.

2 Preliminaries

2.1 Notation

We will use [T ] to denote the set {1, 2, . . . , T}. For
u ∈ R, we define [u]+ := max{u, 0}. The inner product
of two vectors x, y ∈ R

n is denoted by either 〈x, y〉 or
xT y. Also, for two vectors x, y ∈ R

n, x � y implies
that xi ≤ yi ∀i ∈ [n]. A function f : Rn → R is called
monotone if for all x, y such that x � y, f(x) ≤ f(y)
holds. For a vector x ∈ R

n, we use ‖x‖ to denote the
Euclidean norm of x. For a convex set X , we will use
PX (y) = argminx∈X ‖x− y‖ to denote the projection
of y onto set X . The Fenchel conjugate of a function
f : Rn → R is defined as f∗(y) = supx(x

T y − f(x)).
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2.2 Diminishing Returns (DR) property

Definition 2.1 A differentiable function f : X → R,
X ⊂ R

n
+, satisfies the Diminishing Returns (DR) prop-

erty if:
x � y ⇒ ∇f(x) � ∇f(y).

In other words, ∇f is an anti-tone mapping from R
n

to R
n.

If f is twice differentiable, DR property is equivalent
to the Hessian matrix being element-wise non-positive.
Note that for n = 1, the DR property is equivalent to
concavity. However, for n > 1, concavity corresponds
to negative semi-definiteness of the Hessian matrix
which is not equivalent to the Hessian matrix being
element-wise non-positive.

A similar property is introduced by Vondrák (2008) and
Bian et al. (2017a) as well and functions satisfying this
property are called “smooth submodular” and “DR-
submodular” there respectively. Additionally, Eghbali
and Fazel (2016) defined the DR property for concave
functions with respect to a partial ordering induced by
a cone and showed that by taking the cone to be R

n
+,

Definition 2.1 is recovered. Eghbali and Fazel (2016)
also showed that if the cone of positive semi-definite
matrices is considered, the DR property generalizes to
matrix ordering as well. Bian et al. (2017a) showed
that DR-submodular functions are concave along any
non-negative direction, and any non-positive direction.
In other words, for a DR-submodular function f , if
t ≥ 0 and v ∈ R

n satisfies v � 0 or v � 0, we have:

f(x+ tv) ≤ f(x) + t〈∇f(x), v〉.

2.3 Examples of continuous non-concave
DR-submodular functions

Multilinear extension of discrete submodular
functions. (Calinescu et al., 2007) A discrete func-
tion F : {0, 1}V → R is submodular if for all j ∈ V

and A ⊆ B ⊆ V \ {j}, the following holds:

F (A ∪ {j})− F (A) ≥ F (B ∪ {j})− F (B).

The multilinear extension f : [0, 1]V → R of F is
defined as:

f(x) =
∑

S⊂V

F (S)
∏

i∈S

xi

∏

j /∈S

(1− xj) = ES∼x[F (S)].

Multilinear extensions are extensively used for max-
imizing their corresponding submodular set function
and are known to be a special case of non-concave
DR-submodular functions. The Hessian matrix of this
class of functions has non-positive off-diagonal entries
and all its diagonal entries are zero. It has been shown
that for a large class of submodular set functions, their

multilinear extension could be efficiently computed.
Weighted matroid rank function, set cover function,
probabilistic coverage function, graph cut function and
concave over modular function are all examples of such
submodular functions (see Iyer et al., 2014; Bian et al.,
2019 for more examples and details).
Non-convex/non-concave quadratic functions.
Consider the quadratic function f(x) = 1

2x
THx+hTx+

c. If the matrix H is element-wise non-positive, f is
a DR-submodular function. We use this class of non-
concave DR-submodular functions for the numerical
examples.
See Bian et al. (2017a,b) for more examples of continu-
ous DR-submodular objective functions.

3 Problem Statement

The overall offline optimization problem is the follow-
ing:

maxxt∈X

∑T
t=1 ft(xt)

subject to
∑T

t=1〈pt, xt〉 ≤ BT

. (1)

The online framework is as follows: At step t ∈ [T ],
the player chooses xt ∈ X . Then, utility function
ft : X → R and pt are revealed, the player obtains
the reward ft(xt) and her budget is impacted by the
amount 〈pt, xt〉. It is assumed that X ⊂ R

n
+ is con-

vex and compact. For all t ∈ [T ], ft : X → R

is a differentiable normalized monotone continuous
DR-submodular function and the constraint function
gt : X → R, where gt(x) = 〈pt, x〉 − BT

T , is linear and
monotone, i.e., pt � 0.
As it was mentioned before, there are existing works on
online continuous submodular maximization without
online constraints (e.g., Chen et al., 2018a) and online
convex optimization with constraints (e.g., Sun et al.,
2017). However, our results are not a straightforward
combination of the mentioned works. First of all, since
pt � 0 ∀t ∈ [T ], the Lagrangian ft(x)− λtgt(x) is not
monotone non-decreasing and therefore, we cannot sim-
ply apply the algorithm of Chen et al. (2018a) to the
Lagrangian to obtain the desired results. In this work,
we exploit other properties such as the linearity and
non-negativity of the constraint functions to obtain
the results. Secondly, the techniques and algorithms
for online convex optimization are quite different from
online continuous DR-submodular maximization and
thus, the analysis in Sun et al. (2017) could not be
simply adapted to our framework.

3.1 Performance Metric

In order to quantify the performance of our proposed
algorithm, we first define our notion of regret and total
budget violation below:

Definition 3.1 (Regret Metric) The (1− 1
e )-regret
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is defined as:

RT = (1− 1

e
)

T
∑

t=1

ft(x
∗
W )−

T
∑

t=1

ft(xt),

where:

x∗
W = argmax

x∈XW

T
∑

t=1

ft(x),

XW = {x ∈ X :

t+W−1
∑

τ=t

gτ (x) ≤ 0, 1 ≤ t ≤ T −W + 1}.

Note that very recently, Liakopoulos et al. (2019) first
introduced the notion of a “K-benchmark”, i.e., a
comparator which meets the problem’s allotted budget
over any window of length K, and used this notion for
online convex problems with time-varying constraints.

Definition 3.2 (Total Budget Violation) The to-
tal budget violation is defined as follows:

CT =
T
∑

t=1

gt(xt) =
T
∑

t=1

〈pt, xt〉 −BT .

The regret metric RT measures the difference
between the output of the algorithm and the
(1 − 1

e )-approximation to the best fixed decision
in hindsight which satisfies the budget constraint
proportionally over any window of length W . The
(1 − 1

e )-approximation ratio in the definition is the
optimal polynomial time approximation ratio for
an offline monotone continuous DR-submodular
maximization problem (Bian et al., 2017a) and it is
commonly used in online submodular maximization
literature (e.g., Chen et al., 2018a). If we choose
W = T as the window size, we obtain the usual notion
of regret where the benchmark action is only required
to satisfy the long-term budget constraint and thus,
the benchmark action is more aggressive. However,
Mannor et al. (2009) provided a simple counterexample
showing that the regret of any algorithm with window
length W = T which has a sub-linear total budget
violation is lower bounded by Ω(T ). Hence, inspired by
Liakopoulos et al. (2019), we restricted the benchmark
action to satisfy the budget constraint proportionally
over any window of size W .
We design online algorithms which achieve sub-linear
bounds for both the (1 − 1

e )-regret RT and the total
budget violation CT . We obtain results showing that
although it is impossible to obtain sub-linear regret
and total budget violation bounds simultaneously for
W = T , such sub-linear bounds could be guaranteed
against a weaker benchmark with window length
W = o(T ).

3.2 Assumptions

We make the following assumptions:

• X ⊂ R
n
+ is a compact and convex set and it con-

tains the origin, i.e., 0 ∈ X .

• The bounded diameter of the compact set X is R,
i.e., we have:

R := max
x,y∈X

‖y − x‖.

• Both the utility functions ft, ∀t ∈ [T ] and con-
straint functions gt, ∀t ∈ [T ] are Lipschitz contin-
uous with parameters βf and βg respectively and
β = max{βf , βg}. In other words, for all x, y ∈ X
and t ∈ [T ], we have:

|ft(y)− ft(x)| ≤ βf‖y − x‖,
|gt(y)− gt(x)| ≤ βg‖y − x‖.

Note that since gt is linear for all t ∈ [T ], βg =
maxt∈[T ] ‖pt‖ holds.

• For all t ∈ [T ], the utility functions ft are L-
smooth, i.e., for all x ∈ X and u ∈ R

n where
u � 0 or u � 0, the following holds:

ft(x+ u)− ft(x) ≥ 〈u,∇ft(x)〉 −
L

2
‖u‖2.

Using the above assumptions, we have:

F := max
t∈[T ]

max
x,y∈X

|ft(x)− ft(y)| ≤ βfR,

G := max
t∈[T ]

max
x∈X

|gt(x)| ≤ βgR− BT

T
.

4 Online Saddle Point Hybrid
Gradient (OSPHG): Algorithm and
Analysis

We first introduce our proposed algorithm, the Online
Saddle Point Hybrid Gradient (OSPHG) algorithm, in
Section 4.1 and then, the analysis for obtaining the
regret and total budget violation bounds is provided
in Section 4.2.

4.1 Algorithm

Consider the Online Saddle Point Hybrid Gradient
(OSPHG) algorithm presented in Algorithm 2.
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Algorithm 2 Online Saddle Point Hybrid Gradient
(OSPHG) algorithm

Input: X is the constraint set, T is the horizon,
µ > 0, δ > 0 and K.
Output: {xt : 1 ≤ t ≤ T}.
Initialize K instances Ek; k ∈ [K] of Online Gradient
Ascent with step size µ for online maximization of
linear functions over X .
λ1 = 0.
for t = 1 to T do
x
(1)
t = 0.

for k = 1 to K do
Let v

(k)
t be the output of oracle Ek.

x
(k+1)
t = x

(k)
t + 1

K v
(k)
t .

end for
Play xt = x

(K+1)
t and observe the Lagrangian

function Lt(xt, λt) = ft(xt)− λtgt(xt) +
δµ
2 λ2

t .
for k = 1 to K do

Feedback 〈v(k)t ,∇xLt(x
(k)
t , λt)〉 as the payoff to

be received by Ek.
end for
λt+1 = [λt − µ∇λLt(xt, λt)]+.

end for

First, note that xt is the convex combination (average)
of vectors in the convex set X and hence, xt ∈ X as
well.
The OSPHG algorithm could be interpreted as running
two no-regret procedures:

1. K instances Ek of Online Gradient Ascent where
for each k ∈ [K], at online step t ∈ [T ], the al-

gorithm chooses the point v
(k)
t and after com-

mitting to this choice, it receives a reward of

〈v(k)t ,∇xLt(x
(k)
t , λt)〉. Note that each instance

Ek ∀k ∈ [K] corresponds to an online linear max-

imization problem. The update for v
(k)
t+1 is as

follows:

v
(k)
t+1 = PX

(

v
(k)
t + µ∇xLt(x

(k)
t , λt)

)

,

where PX is the projection onto set X . Note that
in our applications, the domain set X is usually
a box constraint or the simplex and therefore,
projection on X can be efficiently computed.

2. Online Gradient Descent for the sequence of losses
{Lt(xt, λ)}Tt=1 where at each online step t ∈ [T ],
the algorithm chooses λt ≥ 0 and then, observes
the loss −λtgt(xt) +

δµ
2 λ2

t . Note that this is an
online quadratic minimization problem.

Therefore, the OSPHG algorithm is in fact solving an
online saddle point problem at each step and hence
the name. It is noteworthy that although we used

Online Gradient Descent/Ascent as subroutines in the
OSPHG algorithm, any other off-the-shelf no-regret
online optimization algorithm (such as Online Mirror
Descent, Regularized Follow the Leader, etc.) could
have been used instead and similar bounds would have
been derived. Potential advantages of any such no-
regret algorithm over the other could indeed be an
interesting research direction.
Our choice of Lagrangian function is inspired by the
quadratic penalty method in constrained optimization
(Nocedal and Wright, 2006). The penalized formulation
of the overall optimization problem (1) with quadratic
penalty function could be written as follows:

max
xt

T
∑

t=1

ft(xt)−
1

2δµ

(

T
∑

t=1

〈pt, xt〉 −BT

)2

subject to xt ∈ X ∀t ∈ [T ].

Considering that the Fenchel conjugate of the function
h(·) = 1

2δµ (·)2 is h∗(·) = δµ
2 (·)2, we can write the above

problem in the following equivalent form:

max
xt

min
λ

T
∑

t=1

ft(xt)− λ
(

T
∑

t=1

〈pt, xt〉 −BT

)

+
δµ

2
λ2

subject to xt ∈ X ∀t ∈ [T ].

Therefore, the corresponding Lagrangian function at
round t ∈ [T ] is Lt(x, λ) = ft(x) − λ(〈pt, x〉 − BT

T ) +
δµ
2 λ2.

4.2 Analysis

In order to prove the regret and budget violation
bounds, we first provide Lemmas 4.1, 4.2 and 4.3.

Lemma 4.1 For all t ∈ [T ], the following holds:

µ

t
∑

s=1

γt−sgs(xs) ≤ λt+1 ≤ µ

t
∑

s=1

γt−s|gs(xs)|

where γ = 1− δµ2.

Proof See Appendix B for the proof.

Using Lemma 4.1 and the inequality 1− δµ2 ≤ 1, we
can conclude that for all t ∈ [T ], λt+1 ≤ µtG holds.
We will use this fact multiple times in the proofs.

Lemma 4.2 For a fixed t ∈ {1, . . . , T − W + 1}, if
δ and µ are chosen such that δµ2 ≤ 1

2 , the following
holds:

W−1
∑

τ=0

λt+τgt+τ (x
∗
W ) ≤ λt

W−1
∑

τ=0

gt+τ (x
∗
W )+G2µW (W−1).

Proof See Appendix C for the proof.
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