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Abstract—It is well known that the datacenters hosting today’'s cloud services waste

a significant number of cycles on front-end stalls. However, prior work has provided little
insights about the source of these front-end stalls and how to address them. This work
analyzes the cause of instruction cache misses at a fleet-wide scale and proposes a new
compiler-driven software code prefetching strategy to reduce instruction caches misses

by 90%.

B Due To THE continued growth of cloud-based
digital services, warehouse-scale computers
(WSC) are now serving billions of devices across
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the world. This massive growth necessitates
improving the cost and efficiency of WSCs
through microarchitectural and system software
based optimizations.

W5C workloads are characterized by deep
software stacks in which individual requests can
traverse many layvers of data retrieval, data
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processing, communication, logging, and moni-
loring. As a result, the instruction working set
sizes of WSC workloads today are often 100x
larger than server-class L1 instruction caches (i
Lrache)' and are currently expanding at rates of
over 20% per year.” As cache sizes have not
improved significantly over the last many years,
WSC workloads are becoming increasingly front-
end bound. Thus, processors are no longer able
to sustain a high instruction fetch rate, manifest-
ing itself in large unrealized performance gains
due to front-end stalls, which are dominated by
increased i-<cache misses., While prior work has
identified the growing impor-

code fragmentation and the perils of micro-optimi-
zation; and iii) a novel soltware-based code pre-
fetch algorithm for reducing icache misses at
fleet-wide scales.

AsmDB: AWSC ASSEMBLY
DATABASE

To enable the necessary horizontal analysis
and optimization across the server fleet, we built
a continuously updated assembly database
(AsmDB) to collect instruction- and basic-block-
level information for most observed CPU cycles

across the thousands of real produc-

tance of this problem, to date, To enable the tion services executing across the
there has been little analysis of necessary horizontal Google fleet. AsmDB aggregates
the sources of these misses analysis and instruction and control-flow data col-
and of available opportunities optimization across the lected from hundreds of thousands of
to address them. server fbﬂ. we built a machines each (jay and grows by mul-
We corroborate this chal continuously updated tiple TiB each week. We have been
lenge for our WSCs on Google assembly database continuously populating AsmDB over
web search leaf servers, in (AsmDB)to collect several years with the goal of provid-
which 13.8% of the total per- b;r::ﬁ:gkn-lanc: ing easy-to-query assembly-level infor-
formance “130“3““3] s Wa*"te‘i information for most mation for nearly every unique
due to “frontend latency, observed CPU cycles instruction executed in our WSCs. We
principally caused by i-cache across the thousands demonstrate several cases where
isses. We also measured L1 :
!T‘ . L of real production AsmDB proves invaluable for front-
'{aCh:_]m'.ss rates_o” ""jses services executing end optimization, including spotting
:l)er ! O'Lnﬁru'“tm'_" an ) A across the opportunities for manual optimiza-
ot steadystate Instruction Google fleet. tions, finding areas for improvement

working set of approximately

4 MiB. This is significantly

larger than the sizes of the L1 and L2 caches on
today's server CPUs, but small and hot enough
to easily fit and remain in the shared L3 cache
(typically 10 s of MiB)."

To understand and improve the icache
behavior of WSC applications, we focus on tools
and techniques for “broad” acceleration” of thou-
sands of WSC workloads. At the scale of a typical
WSC server fleet, performance improvements
of a few percentage points (and even sub-1%
improvements) lead to millions of dollars in
cost and energy savings, as long as they are
widely applicable across workloads. To that end,
our work provides three primary contributions:
i) A methodology for analyzing instruction profiles
at a fleet-wide scale; ii) detailed insights about

."De-ep' acceleration would involve focusing on a handful of workloads and
trying to recover most of the = 155 perlormance opportunity.
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in existing compiler passes, as well as

for serving as a data source for a
novel compiler<driven technique to improve i-
cache hit rates,

AsmDB is an always-on, massivescale fleet-
wide performance monitoring system. It uses
hardware support to collect bursty execution
traces, performs fleet-wide temporal and spatial
sampling, and leverages sophisticated offline post-
processing to construct fullprogram dynamic
controldlow graphs. Collecting and processing
profiling data from hundreds of thousands of
machines is a daunting task by itself. However, we
have carefully designed the system architecture
such that it can capture and process profiling data
in a cost-efficient way while still processing tera-
bytes of dataeach week.

A [lleet-wide assembly database, such as
AsmDB, provides a scalable solution to search
for performance antipatterns and opens up new
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Figure 1. Flect-wide distribution of executed
instructions, and L1- and L2-instruction misses over
unigue cache lines. Like instructions, misses also
follow a long tail.

opportunities for performance and total-cost-of-
ownership optimizations. WSC servers typically
execute thousands of unique applications, so
the kernels that matter most across the fleet
(the “datacenter tax™*) may not be significant for
a single workload and are easy to overlook
in application-by-application  investigations.
We leverage AsmDB's fleet-wide data in several
case studies to understand and improve the
i-<cache utilization and IPC of WSC applications.
We further correlate AsmDB with hardware
performance counter profiles collected by a
datacenter-wide profiling system—Google-wide
profiling ((‘.WP)‘—m reason about specific pat-
terns that affect front-end performance.

WSC APPLICATION ANALYSIS WITH
AsmDB

WSC applications are well-known for their long
instruction tails and flat execution pro['iles;.2
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Figure 2. Normalized execution frequency versus function size
for the top 100 hottest fleet-wide functions. memcmp is a clear

outlier.
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Figure 1 shows that icache misses in W3SCs have a
similar long tail. It plots the cumulative distribu-
tion of dynamic instructions, and L1 and L2
misses over unique icache lines over a week of
execution, fleet wide. The zoomed-in view of the
graph shows that the miss cumulative distribution
function (CDF) initially has a more significant
slope than the Instruction CDF, suggesting that
there exist some pointwise manual optimizations
with high potential performance gains. However,
the distribution of misses quickly tapers off. In
particular, addressing just two-thirds of dynamic
misses requires optimizations in = 1M code loca-
tions, which is only conceivable leveraging auto-
mation. This points us toward exploring scalable,
automated solutions—with compiler and/or hard-
ware support and no developer intervention—to
exploit these behaviors.

EFFECTS OF CODE FRAGMENTATION
ON CACHES

Code bloat and unnecessary instruction com-
plexity, especially in frequently-executed code,
can lead to excessive i-<cache pressure. We ana-
lyze code bloat in Figure 2, leveraging AsmDB-
data—it plots the normalized function hotness
(how often a particular function is called over a
fixed period) versus the function’s size in bytes
for the 100 hottest functions in our WSCs. Per-
haps unsurprisingly, it shows a loose negative
correlation: Smaller functions are called more fre-
quently. It also corroborates prior findings that
low-level library functions (“datacenter tax™),
and specifically memcpy and memcmp, are
among the hottest in our examined workloads.,

However, despite smaller functions being sig-
nificantly more frequent, they are not the major
source of i-cache misses. Overlaying miss pro-
files from GWP onto Figure 2 (shading), we
notice that most observed cache misses lie in
functions larger than 1 KiB in code size, with
over hall in functions larger than 5 KiB. Most
functions of 5 KIB or larger exhibit inlined call
stacks of ten or more layers in depth.

While deep inlining is crucial for performance
in workloads with flat callgraphs, it exponen-
tially increases the amount of code loaded into
the i-cache at each inline level, of which often
only a small fraction is hot. Cold code brought
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Figure 3. Fraction of hot code within a function among the 100 hottest fleet-wide functions. From the left-hand
side toright-hand side, "hot code™ defined as covering 90%, 99%, and 99 9% of execution.

into the cache, in addition to the necessary hot
instructions leading to hot/cold fragmentation
and thus suboptimal utilization of the limited
cache resources.

We more formally define fragmentation to be
the fraction of code (in bytes) that is necessary
to cover the last 10%, 1%, or (L.1% of executions
of a function. Because functions are sequentially
laid out in memory, these cold bytes are very
likely to be brought into the cache by nextline
prefetchers. Intuitively, this definition measures
the fraction of i-cache capacity potentially
wasted by loading cold cache lines.

We find that intrafunction fragmentation is
especially prevalent. Even after compiling with
feedback-directed optimization, 50% of the
codes in all functions are cold, frequently
interleaved with hot code sections, and thus
practically never executed despite being likely
to be in the cache. This is true even among the
hottest and most well-optimized functions in
our server fleet.

Using AsmDB data, we calculate the measure
of fragmentation for the top 100 functions by
execution count in our server fleet. Figure 3 plots
it against the containing function size. lf we con-
sider code covering the last 1% of execution as
“cold,” 66 functions out of the 100 are comprised
of more than 50% cold code. Even with a stricter
definition of cold (<0.1%), 46 functions have
more than 50% cold code. Perhaps not surpris-
ingly, there is a loose correlation with function
size—larger (more complex) functions tend to
have a larger [fraction of cold code.

We attribute the intrafunction fragmentation
to the deep inlining that the compiler needs

May/June 2020

to perform when optimizing typical WSC flat
execution profiles. Hence, this suggests that
combining inlining with more aggressive hot/
cold code splitting can achieve better i-cache uti-
lization, freeing up the scarce capacity.

On a finer granularity, we find that the indi-
vidual cache lines are also often fragmented
and waste cache capacity, especially for small
functions. Unlike cold cache lines within a
function, cold bytes in a cache line are always
brought in along with the hot ones, introduc-
ing an even more significant performance
issue. This suggests that there exist opportuni-
ties to improve the basic-block layout, at link
or postlink time, when compiler profile infor-
mation is precise enough to reason about spe-
cific cache lines.

We provide a concrete example of optimizing
code bloat and fragmentation by focusing on
memcmp, one of the hottest functions contribut-
ing to cache misses. memcmp clearly stands
out of the correlation between call frequency
and function size in Figure 2. It is both extremely
frequent, and at almost 6 KiB of code, 10x larger
than memcpy, which is conceptually of similar
complexity, Examining its layout and execution
patterns (see Figure 4) suggests that it does
suffer from a high amount of fragmentation, as
we observed [leet wide in the previous section.
While covering 90% of executed instructions in
memcmp only requires two cache lines, getting
up to 99% coverage requiring 41 lines or 2.6 KiB of
cache capacity. Not only is more than 50% of the
code cold, it is also interspersed with hot regions,
increasing the likelihood to be brought in by next-
line prefetchers. Such code bloat is costly—
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performance counter data collected by GWP indi-
cate that 8.2% of all i-cache misses among the 100
hottest functions are from memcmp alone.

While conceptually simple, our version of
memcmp was highly optimized for microbench-
marks and contained many code paths for specific
input variations. We show that in WSC environ-
ments where cache capacity is especially con-
strained, it is actually better to provide a reduced
version of memcmp containing only a few paths
and that doing so improves fleet-wide performance
by up to 1%.

SOFTWARE PREFETCHING
FOR CODE

Looking into the instructions that lead to i-
cache misses, we find that, while not particularly
concentrated in specific code regions, most i-
cache misses still share common characteristics.
Specifically, missing instructions are often the
target of control-flow-changing instructions with
large jump distances.® We find that distant
branches and calls that are not amenable to tra-
ditional cache locality or next-line prefetching
strategies account for a large fraction of cache
misses among WSC applications.

For misses at the target of a distant jump, we
propose and evaluate a profile-driven optimiza-
tion technique that intelligently injects software
prefetch instructions for code into the binary
during compilation. We outline the design of the
necessary “code prefetch” instruction, which is
similar in nature to existing data prefetch instruc-
tions, except that it fetches into the L1 i-cache

250

200

150

Unigue instruction paths

50 40 30 0 10 o
Distance behind each miss instruction
Figure 5. Fan-in for some misses can grow very fast
with distance, especially for library functions.

and utilizes the IFTLB instead of the D-TLB. The
implementation of such an instruction has negli-
gible hardware cost and complexity compared to
pure hardware methods and is commercially via-
ble today. While it can be implemented on top of
a wide variety of hardware front-ends, we demon-
strate its viability on a system that employs only
anext-line instruction prefetcher.

Prefetching represents a prediction problem
with a limited window of opportunity. Effective
prefetches are both accurate and timely—they
only bring in useful miss targets and do so
neither too early nor too late in order to mini-
mize early evictions and cache pollution. As a
result, an effective prefetcher would have high
overall miss coverage. Our prefetch insertion
algorithm uses profile feedback information
from AsmDB and performance counterprofiles
to ensure timely prefetches with minimal
overhead.

Some of the challenges that arise among soft-
ware prefetching techniques include—fan-in, the
number of potential paths leading to a miss
increases as the prefetch injection site is moved
backward from a missed target. Figure 5 shows
the fan-in for the top 20 i-cache misses from a web
search profile. In several cases, the number of
paths leading in to a single miss exceeds 100 even
with a lookback of only ten instructions. Our
approach leverages profiling information to only
insert helpful prefetches, increasing coverage and
minimizing fan-in. Fan-out poses another challenge
in finding the prefetch injection site as not all exe-
cution paths are likely to lead to the miss. We
address this by pruning paths that exceed a maxi-
mum fan-out threshold. Furthermore, instruction
prefetches themselves increase the code footprint
and hence need to be inserted carefully.
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Figure 6. Miss coverage and performance
improvement for the best-performing configuration
for each workload.

At its core, our prefetch injection strategy
leverages the observation that the injection site
of a prefetch instruction can be freely moved
within the window of opportunity to minimize
fan-in and fan-out. We call this approach dynamic
window injection. At a high level, our prefetch
procedure first constructs the execution history
for each miss and then traverses the control
flow graph in the reverse direction until it
reaches the end of the instruction window, cal-
culated based on the application-level IPC. Next,
prefetch injection sites are searched for each
miss among each of its execution paths, which
have minimal fan-in and fanout. Prefetch
instructions are then automatically inserted in
the selected injection sites for the correspond-
ing misses as part of the final linking steps.

We prototype the effects of our proposed
software prefetching technique on memory
traces from several WSC workloads. We evaluate
on a modified version of the zsim simulator, by
using the system parameters modeled against an
Intel Haswell datacenter-scale server processor.
We focus primarily on three WSC applications—
a web search leaf node, an ads matching service,
and a knowledge graph back-end. For each work-
load, we collect traces during a representative
single-machine load test, which sends realistic
loads to the server under test.

Figure 6 shows that our prefetching tech-
nique is able to eliminate 91%-96% of all icache
misses, with a performance improvement pro-
portional to the front-end boundedness of the
application and the gap left from NLP. In all
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cases, fewer than 2.5% of additional dynamic
instructions are added for code prefetches,

LONG-TERM IMPLICATIONS

With increased technological growth, WSCs
now serve billions of devices and applications
across the planet. Due to their success, we expect
an ever-greater reliance on WSCs in the near
future, providing faster, more reliable, and more
secure services to society. These increasing dem-
ands necessitate achieving higher performance for
WSCs in order to be cost- and energy-efficient for
WSC companies and their customers while simul-
taneously reducing the environmental impact on
our world.

In combination with the slowdown of Moore's
law, improving the efficiency of existing hardware
in WSCs becomes even more critical. We analyzed
a web search binary, showing that 68% of the CPU
performance potential is lost due to pipeline stalls,
of which 13.8% are due to the front-end not being
able to deliver instructions fast enough.

This article addresses the front-end bottle-
neck on following fronts.

« First, we have built a tool that is capable of
collecting data from live datacenter applica-
tions at the granularity of instructions and at
the scale of a WSC. We have described the
architecture design decisions in detail,
enabling other WSC operators to reproduce
our system.

+  Second, this article is the first work that
shows detailed characterization studies of
the processor front-end at the scale of a WSC
describing previously unreleased perfor-
mance characteristics of WSC workloads.

+  Third, we have proposed and evaluated a
novel soltware-based code prefetch strategy
to automatically and effectively reduce I-
cache misses across large WSC workloads.

This work provides a powerful methodology to
perform further atscale research to obtain a
detailed understanding of the microarchitectural
characteristics and the interplay between current
software and hardware. In addition, its reproduc-
ibility enables other WSC companies to perform
similar research. Overall, such research would
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enable hardware vendors to work closely with
software developers to better design future
processors.

Our [ront-end characterization studies benefit
the compiler and architecture communities both
in academic and industrial set-

designing domain-specific accelerators becomes
feasible and cost-efficient. However, while this
approach has proven successful for domains
such as deep learning, most of the fleet cycles are
still executed on general-purpose processors as
many applications are too complex
and rapidly changing to render

tings. Our results on micro-optimi- We developed AsmDB,

zations, [ragmentation, and code- a database for custom-designed hardware feasi-
bloat can help in finetuning com- instruction and basic- ble. Nevertheless, as this arlicle
piler passes, optimizing inlining block information showed, the performance charac-
strategies, and basic block lay- across thousands of teristics of WSC applications are
outs. Similarly, our studies pro- WSC production fundamentally different from tradi-
vide wvaluable information to binaries, to characterize tional applications such as the
architecture researchers exposing I-cache miss-working SPEC benchmark suite. WSC pro-
existing software loop holes that setsand "Ii:f:”;i:: cessors may differ with capabilities

can be addressed with next-gener-
ation hardware designs.

Our work on software code prefetching
proves as a strong case study for hardware ven-
dors to provide support for a software code pre-
fetch instruction and to implement such an
instruction in the instruction set architecture
(ISA). With this, compiler writers and software
developers can leverage code prefetching and
its resulting performance improvements in an
automatic and scalable way.

More broadly, this article provides two
insights, which we believe will have a significant
and longlasting impact on future research in the
performance optimization and computer architec-
ture domain. The first insight teaches the impor-
tance of enabling fleet-wide performance
optimizations, which we also refer to as the
Amdahl’s law of WSC performance. Traditionally,
performance optimizations have been focused on
individual applications. In this approach, applica-
tions are profiled to determine the most compute-
intensive regions, resulting in the largest perfor-
mance gains when optimized. However, this
approach no longer applies to WSCs as datacen-
ters run thousands of different applications
simultaneously. As a result, compute-intensive
application-specific kernels are no longer worth
optimizing. Instead, performance engineers need
to focus on code that is shared among many appli-
cations in the fleet, representing the largest aggre-
gated percentage of compute cycles.

The second insight teaches the importance of
designing domain-specific general-purpose pro-
cessors. WSCs have grown to a size at which

such as our proposed instruction
prefetching mechanism, which may
be of little use to SPEC applications, but which
delivers significant performance gains for data-
center applications.

In summary, the evidence is strong that this
article will promote the research and develop-
ment of new compiler techniques, new proces-
sor designs, and new ways of collecting and
analyzing behaviors at the warehouse scale.

CONCLUSION

This work focused on understanding and
improving i-cache behavior, which is a critical per-
formance constraint for WSC  applications.
We developed AsmDB, a database for instruction
and basic-block information across thousands of
WSC production binaries, to characterize icache
miss-working sets and miss-causing instructions.
We used these insights to motivate finegrain lay-
out optimizations to split hot and cold codes and
hetter utilize limited i<cache capacity. We also pro-
posed a new feedbackdriven optimization that
inserts software instructions for code prefetching
based on the control-flow information and miss
profiles in AsmDB. This prefetching optimization
can cover up to 96% of i-cache misses without sig-
nificant changes to the processor and while requir-
ing only very simple front-end fetch mechanisms.
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