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Abstract:

In fishes, Prl signaling underlies the homeostatic regulation of hydromineral
balance by controlling essential solute and water transporting functions performed by the
gill, gastrointestinal tract, kidney, urinary bladder, and integument. Comparative studies
spanning over 60 years have firmly established that Prl promotes physiological activities
that enable euryhaline and stenohaline teleosts to reside in freshwater environments;
nonetheless, the specific molecular and cellular targets of Prl in ion- and water-
transporting tissues are still being resolved. In this short review, we discuss how
particular targets of Prl (e.g., ion cotransporters, tight-junction proteins, and ion pumps)
confer adaptive functions to the esophagus and intestine. Additionally, in some
instances, Prl promotes histological and functional transformations within esophageal

and intestinal epithelia by regulating cell proliferation. Collectively, the demonstrated
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actions of Prl in the gastrointestinal tract of teleosts indicate that Prl operates to promote
phenotypes supportive of freshwater acclimation and to inhibit phenotypes associated
with seawater acclimation. We conclude our review by underscoring that future
investigations are warranted to determine how growth hormone/Prl-family signaling
evolved in basal fishes to support the gastrointestinal processes underlying hydromineral

balance.

Highlights: » Prl regulates gastrointestinal processes supportive of hydromineral
balance. » Prl receptors are expressed in esophagus and intestine of fishes. » Prl
directs the expression of intestinal solute transporters in euryhaline teleosts. »

Agnathans will provide insight into how Gh/Prl-family hormone function evolved.

Keywords: hydromineral balance; euryhaline; hormone; teleost; esophagus; intestine

1. Introduction

Pituitary hormones regulate many of the physiological systems that vertebrates
utilize to maintain homeostasis. In species spanning the vertebrate lineage, the peptide
hormone prolactin (Prl) coordinates critical aspects of hydromineral balance,
reproduction, lactation, growth, metabolism, and immunity (Bole-Feysot et al., 1998;
Freeman et al., 2000). Fishes are conventionally classified into three classes: Agnatha
(jawless fishes), Chondrichthyes (cartilaginous fishes), and Osteichthyes (bony fishes).
Among teleost fishes (class Osteichthyes; subclass Actinopterygii; infraclass
Neopterygii; division Teleostei), Prl was first recognized in mummichog (Fundulus
heteroclitus) as an essential “freshwater (FW)-adapting hormone” (Pickford and Phillips,
1959). Since then, decades of research have firmly established that Prl exerts highly
conserved actions on teleost osmoregulatory organs, namely the gill, kidney, intestine,
integument, and urinary bladder, to promote ion-conserving and water-secreting
processes. Here, our intent is to complement prior reviews (Bern, 1983; Breves et al.,
2014; Collie and Hirano, 1987; Hirano, 1986; Loretz and Bern, 1982; Manzon, 2002;
Power, 2005; Sakamoto and McCormick, 2006) by concentrating on the molecular and
cellular targets of Prl within the gastrointestinal tract of fishes.

Hydromineral balance is contingent upon the tight control of solute and water
movements at the molecular, cellular, and organismal levels. Perturbations in internal

osmotic conditions caused by drops in environmental salinity directly elicit the secretion
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of Prl from the rostral pars distalis (Ingleton et al., 1973; Kwong et al., 2009; Sage, 1968;
Seale et al., 2012). Accordingly, elevations in prl gene expression and plasma Prl levels
occur when euryhaline teleosts encounter marked reductions in environmental salinity
(Fuentes et al., 2010; Lee et al., 2006a; Seale et al., 2012; Shepherd et al., 1999; Yada
et al., 1994). In stenohaline FW-species (e.g., zebrafish (Danio rerio)), Prl signaling is
activated when animals are exposed to ‘ion-poor’ conditions (Hoshijima and Hirose,
2007; Liu et al., 2006). Through systemic circulation, Prl directs the expression,
localization, and/or function of macromolecular mediators of hydromineral balance in
target tissues (Breves et al., 2014; Manzon, 2002; Seale et al., 2012). Moreover, Prl may
simultaneously dampen ionoregulatory processes appropriate to seawater (SW)
acclimation that would otherwise be deleterious to euryhaline fish inhabiting FW
(Seidelin and Madsen, 1997).

Upon binding to Prl receptors (Prirs), Prl activates dimerization and cross-
phosphorylation events that activate Jak/Stat, MAPK, PI3K, and/or Src signaling
pathways (Bole-Feysot et al., 1998; Freeman et al., 2000; Horseman and Gregerson,
2013). Teleost Prirs share highly conserved functional domains with other vertebrate
Prirs, including an extracellular ligand-binding domain, a single-pass transmembrane
region, and a Box 1 region (Bole-Feysot et al., 1998; Fiol et al., 2009; Huang et al.,
2007; Pierce et al., 2007; Prunet and Auperin, 1994; Prunet et al., 2000; Sandra et al.,
1995). In fishes, Prl binding was initially characterized in the gill, kidney, liver, gonad,
and intestine of Mozambique tilapia (Oreochromis mossambicus) (Dauder et al., 1990;
Edery et al., 1984; Fryer, 1979). More recently, it was revealed that teleosts possess
multiple prir gene loci (Huang et al., 2007). The two distinct encoded Prirs, denoted Prlir1
and -2, control the expression of distinct target genes upon ligand binding (Chen et al.,
2011; Fiol et al., 2009; Huang et al., 2007). The plasticity of prir1 and -2 gene expression
in osmoregulatory organs during salinity acclimation seemingly provides a mechanism to
modulate tissue sensitivity to circulating Prl (Breves et al., 2011; Fiol et al., 2009; Flores
and Shrimpton, 2012; Pierce et al., 2007; Tomy et al., 2009).

Growth hormone (Gh) and cortisol, the traditional “SW-adapting hormones” in
teleosts, promote the survival of animals in hyperosmotic environments in part by
antagonizing the actions of Prl (McCormick, 2001; Seidelin and Madsen, 1997). The
widespread expression of the Gh receptor (Ghr) suggests that Gh is pleiotropic in its
support of SW acclimation; however, exactly how Gh regulates osmoregulatory systems

is largely unknown (Bjornsson, 1997; Reindl and Sheridan, 2012). Cortisol is widely
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accepted as a “SW-adapting hormone” because it directly stimulates the activities and/or
expression of Na*/K*-ATPase (NKA) and ion transporters linked with ion extrusion and
fluid uptake capacities in the gill and intestine, respectively (Cornell et al., 1994; Hirano
and Utida, 1968; Utida et al., 1972; Veillette et al., 1995). Cortisol also indirectly
promotes SW acclimation by synergizing with Gh/insulin-like growth factor signaling
(McCormick, 2001). In some instances, cortisol may promote FW acclimation by acting

alone, or in concert, with Prl (Jackson et al., 2005; McCormick, 2001).

2. Gastrointestinal functions and hydromineral balance: an overview

Because the majority of teleosts typically maintain internal conditions between
270-400 mOsm/kg, fish inhabiting FW environments are at constant risk of both
excessive hydration and the diffusive loss of ions across body surfaces (Evans and
Claiborne, 2008). In turn, FW-acclimated teleosts simultaneously excrete water via dilute
urine and actively absorb ions (Na*, CI-, Ca?*) from both the external environment and
their diet across branchial and gastrointestinal epithelia, respectively (Evans et al., 2005;
Guh et al., 2015; Kaneko et al., 2008). Teleosts in marine environments, on the other
hand, must excrete ions gained through passive diffusion and combat dehydration by
continuously drinking ambient SW. The drinking rates of euryhaline fishes are thus
markedly greater in marine versus FW-environments (Carrick and Balment, 1983;
Fuentes and Eddy, 1997; Hirano, 1974; Lin et al., 2002; Malvin et al., 1980; Perrott et al,
1992). As a necessary source of water, imbibed SW is processed by multiple segments
of the gastrointestinal tract that work in concert to sustain solute-linked water absorption.
Imbibed SW is first desalinated to ~500 mOsm/kg by the esophagus, a process which
produces a fluid closer to the osmolality of plasma (Grosell, 2014; Hirano and Mayer-
Gostan, 1976). Na* and CI- are moved from the luminal fluid into blood plasma by active
and passive transport and are subsequently extruded by branchial ionocytes (Hirano and
Mayer-Gostan, 1976; Kaneko et al., 2008; Takei et al., 2017). Desalinated SW from the
esophagus then passes through the stomach where some additional desalination may
occur prior to entering the anterior intestine at ~400 mOsm/kg (Grosell, 2014). The
stomach exhibits similar rates of Na* and CI- uptake in SW- and FW-acclimated fishes
(Hirano and Mayer-Gostan, 1976). Upon entering the intestine, monovalent ions and
water are absorbed from the luminal fluid through both transcellular and paracellular
routes (Madsen et al., 2015; Sundell and Sundh, 2012). In SW-acclimated/marine fishes,

HCOs is secreted by enterocytes into the lumen of the intestine to produce Ca?* and
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Mg?* carbonate aggregates. The formation of these aggregates enhances water
absorption by lowering the osmolality of the luminal fluid (Grosell, 2014). For a
comprehensive coverage of solute and water handling by the teleost gastrointestinal
tract we direct readers to previous reviews (Grosell, 2006; Loretz, 1995, Sundell and
Sundh, 2012; Whittamore, 2012).

Despite decades of sustained research on the osmoregulatory actions of Prl in
fishes, a detailed picture of the mechanisms underlying these actions has remained
largely undeveloped due to limitations in our understanding of how ions and water are
transported across osmoregulatory epithelia. The identification of Prl-regulated
mediators (e.g., ion transporters and channels, NKA subunits, Ca%*-ATPases,
aquaporins (Agps), and tight-junction proteins) of ion and water transport within
branchial epithelium (Breves et al., 2014, 2017; Flik et al., 1996) suggests that teleosts
will serve as tractable models from which to also determine how Prl operates
mechanistically in extrabranchial sites (e.g., kidney, urinary bladder, and gastrointestinal
tract). It is toward this objective that we highlight recent findings and specify emerging

themes for future study.

3. Prolactin action on gastrointestinal functions
3.1 Esophagus

Effective osmoregulatory strategies entail the controlled entry of external fluids
into the gastrointestinal tract. Hormonal regulation of drinking behavior in fishes is
conventionally attributed to “fast-acting” hormones (e.g., angiotensin Il and atrial
natriuretic peptides) as opposed to Gh/Prl-family peptides (Takei et al., 2014). While the
administration of Prl affected drinking rates in rats (Kaufman, 1981), to our knowledge,
Prl has not been directly linked with anti-dipsogenic responses that could guard against
excessive hydration in FW environments.

The esophageal epithelium undergoes functional and histological changes in
response to variations in environmental salinity (Meister et al., 1983). For instance, the
transfer of SW-acclimated Japanese eel (Anguilla japonica) to FW resulted in reduced
Na* and CI- permeability via the transformation of a simple columnar epithelium into a
stratified epithelium (Yamamoto and Hirano, 1978). Increased cell proliferation (PCNA-
positive nuclei) within the esophageal epithelium of Mozambique tilapia undergoing FW
acclimation coincided with increases in plasma Prl and esophageal prir gene expression

(Takahashi et al., 2007). Nile tilapia (Oreochromis niloticus), which cannot readily
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tolerate salinities >25%. (Watanabe et al., 1985), did not exhibit discernable differences
in the esophagus following salinity changes (Cataldi et. al., 1988). The coincident
activation of Prl signaling with esophageal remodeling in Mozambique tilapia provided
indirect evidence for a link between Prl and esophageal phenotypes associated with FW
acclimation (Takahashi et al., 2007). Supporting evidence for a link between Prl and
esophageal remodeling was provided when Prl stimulated cell proliferation within
explants of Japanese medaka (Oryzias latipes) esophagus (Takahashi et al., 2013).
Given their responses to salinity challenges, Prl, Gh, and/or cortisol may control
additional characteristics of the esophagus such as mucosal vascularization (Cataldi et
al., 1987; McCormick, 2001). In mammals, Prl (and Prl fragments termed vasoinhibins)
regulates angiogenesis depending on the physiological context (Clapp et al., 2006), but
to date, no links have been made between Gh/Prl-family peptides and vascularization of
teleost esophagus. Apoptosis underlies the stratification of esophageal epithelium during
SW acclimation, and accordingly, treatment with Gh or cortisol increased the presence
of TUNEL-positive nuclei in medaka esophagus (Takagi et al., 2011; Takahashi et al.,
2013). Together, Prl, Gh, and cortisol exert activities (as mitogenic or apoptotic factors)
in the esophagus consistent with their established roles in teleost osmoregulation.
Future studies are now required to better resolve comparative patterns of esophageal

Gh/Prl-family hormone receptor expression in euryhaline teleosts.

3.2 Intestine
3.2.1 Prolactin receptors

It was first reported that Prl administration affected intestinal Na*, CI-, and fluid
absorption in rainbow trout (Oncorhynchus mykiss) and Japanese eel (Morley et al.,
1981; Utida et al., 1972). Consistent with these functional observations, Prl binding and
Prir immunoreactivity were observed within the intestinal epithelium of rainbow trout and
gilthead sea bream (Sparus aurata), respectively (Morley et al., 1981; Santos et al.,
2001). prir genes are expressed in the intestine of Nile and Mozambique tilapia (Fiol et
al., 2009; Pierce et al., 2007; Sandra et al., 1995, 2000, 2001; Zhang et al., 2010),
Japanese pufferfish (Takifugu rubripes) (Lee et al., 2006a, 2006b), gilthead and black
sea bream (Spondyliosoma cantharus) (Huang et al., 2007; Santos et al., 2001), rainbow
trout (Rouzic et al., 2001), goldfish (Carassius auratus) (Tse et al., 2000), mangrove
killifish (Kryptolebias marmoratus) (Rhee et al., 2010), Japanese flounder (Paralichthys

olivaceus) (Higashimoto et al., 2001), blue discus (Symphysodon aequifasciata) (Khong
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et al., 2009), turbot (Scophthalmus maximus) (Liu et al., 2020), and zebrafish (Breves et
al., 2013). Recall that teleosts express two prir genes (prir1 and -2). In Nile tilapia, prir1
expression is higher in the posterior intestine versus the anterior intestine and prir1
expression in the anterior intestine was increased following a reduction in environmental
salinity (Sandra et al., 2000, 2001). In contrast, prir2 expression was higher in the
anterior intestine of Mozambique tilapia acclimated to SW versus FW (Seale et al.,
2014). This pattern paralleled the elevated prir2 expression in other tissues following the
transfer of FW-acclimated fish to SW (Fiol et al., 2009; Seale et al., 2012). It is important
to note that particular studies did not report dynamic prir expression in the intestine
following salinity changes (Fiol et al., 2009; Lee et al., 2006b). Going forward, the
intestine may serve as an appropriate organ from which to resolve how the multiple Prirs
mediate distinct and/or overlapping physiological responses to circulating Prl. While
zebrafish cannot tolerate a broad range of salinities, as a model they do offer conditional
gene mutagenesis as a means to analyze the functions of two prirs expressed in the
intestine (Burg et al., 2018). It must also be acknowledged that Prl plays pivotal roles in
immunity (Harris and Bird, 2000). Since the intestinal epithelium constitutes a barrier
between the organism and the environment, intestinal prir expression may also enable
immunomodulatory activities that are independent from aspects of ion and water balance
(Yada et al., 2002).

3.2.2 Cell proliferation

Salinity-induced changes in the morphology of the intestinal epithelium resemble
those of the esophageal epithelium; in FW-acclimated mudskipper (Periophthalmus
modestus), Nile tilapia, and Japanese eel the intestinal epithelium is typically stratified
with expanded folds, while in SW/brackish water (BW)-acclimated animals the epithelium
is thinner and columnar (Takahashi et al., 2006b; Tran-Ngoc et al., 2017; Yamamoto and
Hirano, 1978). As in the esophagus (Takagi et al., 2011; Takahashi et al., 2013),
enhanced cell proliferation (and decreased apoptosis) during FW acclimation underlies
the development of stratified intestinal epithelium with reduced permeability (Takahashi
et al., 2006b). In mudskipper, Prl stimulated cell proliferation, without affecting apoptosis,
in the intestinal epithelium of animals acclimated to BW (10%o) (Takahashi et al., 2006a).
From a comparative perspective, these findings align with the plethora of Prl actions
identified within fishes and other vertebrates that involve the promotion of cell

proliferation (Sakamoto and McCormick, 2006). In mammals, Prl stimulated cell
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proliferation within the gut (Bujanover et al., 2002; Mainoya, 1978) in addition to various
organs such as mammary glands, skin, vascular smooth muscle, pancreas, brain, and
lymph nodes (Bole-Feysot et al., 1998; Freeman et al., 2000; Hennighausen and
Robinson, 2005).

3.2.3 Na*/K*/2ClI- cotransporter 2 and Na*/K*-ATPase

In SW-acclimated/marine teleosts, the intestine mediates solute-linked water
uptake via a suite of ion transporters, channels, and pumps (Grosell, 2006; Sundell and
Sundh, 2012). For example, apically located Na*/K*/2ClI- cotransporter 2 (Nkcc2)
mediates the entry of Na* and Cl-into the interior of enterocytes prior to their subsequent
transport across the basolateral membrane (Whittamore, 2012). Accordingly, nkcc2
expression in the anterior intestine increased in several species following their exposure
to SW (Esbaugh and Cutler, 2016; Gregdrio et al., 2013; Li et al., 2014; Ruhr et al.,
2016; Watanabe et al., 2011; Zhang et al., 2019). Albeit based on a limited number of
studies, intestinal Nkcc2 appears to be under hormonal control. Arginine vasotocin (Avt)
inhibited the bumetanide-sensitive absorptive current of gilthead sea bream intestine
mounted in Ussing chambers (Martos-Sitcha et al., 2013). Accordingly, arginine
vasopressin (Avp), the mammalian homolog to Avt, diminished distal colonic ion
absorption in mice by inhibiting the insertion of Nkcc2 into the apical membrane (Xue et
al., 2014). Renoguanylin and guanylin also inhibited Nkcc2-mediated ion transport in gulf
toadfish (Opsanus beta) and Japanese eels, respectively (Ando et al., 2014; Ruhr et al.,
2016). Because Prl promotes phenotypes associated with FW acclimation and it was
reported that Prl administration reduced intestinal Na*, CI-, and fluid absorption in
Japanese eel and rainbow trout (Morley et al., 1981; Utida et al., 1972), one would
predict that Prl exerts similar inhibitory actions on Nkcc2. Paradoxically, Prl actually
stimulated nkcc2 expression in hypophysectomized Mozambique tilapia (Seale et al.,
2014). This pattern may reflect the fact that Mozambique tilapia exhibit greater solute
and water uptake in the anterior intestine when acclimated to FW (Mainoya, 1982),
making them an exception to the stereotypical pattern of enhanced intestinal solute and
water transport in SW-acclimated fishes. Future investigations should examine Prl
control of Nkcc2 in models shown to exhibit enhanced solute-linked water transport
under SW conditions (e.g., Atlantic salmon, mummichog, sea bream, and Japanese eel)
to further assess the relationship between Prl and Nkcc2.

The NKA enzyme is a ubiquitously expressed ion pump consisting of three



274

276

278

280

282

284

286

288

290

292

294

296

298

300

302

304

306

subunits (a, B, and y) responsible for energizing active transport by key osmoregulatory
organs as well as maintaining Na* and K* gradients across all cell membranes. Varied
effects of Prl on branchial and renal NKA activity have been reported in teleosts
(Manzon, 2002), and similarly, there is not a clear picture of how Prl regulates intestinal
NKA. For example, Prl stimulated NKA activity in the intestine of silver sea bream
(Sparus sarba) (Kelly et al., 1999) and climbing perch (Anabas testudineus) (Peter et al.,
2014), whereas other studies reported no effect of Prl on NKA activity or NKA a-subunit
gene expression in FW- or BW-acclimated fishes (Pickford et al., 1970; Seale et al.,
2014; Seidelin and Madsen, 1999). The functions of the regulatory y-subunit of the NKA
enzyme, or Fxyd, in teleosts are becoming better resolved (Saito et al., 2010; Tipsmark,
2008; Wang et al., 2008; Yang et al., 2013). Fxyd proteins modify the transport
properties of NKA by binding to the a-subunit; thus, given the dynamics of intestinal NKA
activity during salinity acclimation (Sundell and Sundh, 2012), it is highly plausible that
Prl will emerge as a regulator of intestinal Fxyd proteins. While Prl inhibited fxyd-
11/Fxyd-11 in salmon and tilapia gill (Tipsmark et al., 2010a, 2011), fxyd-11 is not highly
expressed in the intestine (Yang et al., 2013). Thus, fxyd isoforms more robustly
expressed in the intestine (e.g., medaka fxyd-5, -9, and -12) may offer better targets for

probing Prl-Fxyd links underlying intestinal function.

3.2.4 Na*/HCOj5 cotransporters and carbonic anhydrase

SW-acclimated/marine fishes secrete HCOj™ into the intestinal lumen to support
fluid absorption (Alves et al., 2019; Grosell, 2011). Intestinal HCO;" secretion is
regulated by multiple endocrine factors with contrasting activities. For example, HCO5
secretion is stimulated by stanniocalcin and guanylin, yet inhibited by parathyroid
hormone-related protein, renoguanylin, and Prl (Ferlazzo et al., 2012; Fuentes et al.,
2010; Ruhr et al., 2018; Takei et al., 2019). The transit of HCOj3 through enterocytes
involves basolateral entry of HCOj3; from the blood plasma by a Sic4-type Na*/HCO3
cotransporter (Nbce1) followed by apical exit into the intestinal lumen via a Slc26-type
CIH/HCOj3 exchanger (Kurita et al., 2008). Another source of HCOj for apical secretion
comes from the intracellular hydration of CO, by carbonic anhydrase (Grosell, 2006;
Grosell et al., 2009). Ferlazzo et al. (2012) showed that Prl inhibited in vitro secretion of
HCOs in explants of gilthead sea bream anterior intestine. Accordingly, chemical
inhibitors of transduction pathways linked with Prl signaling (Jak2, Mek, and PI3K)

disrupted Prl-stimulated HCOj3 secretion (Ferlazzo et al., 2012). A dose-dependent
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inhibitory effect of Prl occurred in the absence of basolateral HCOj3;- within 20 min; thus,
Prl seemingly targeted the intracellular generation and subsequent secretion of HCO;-.
There is currently no information on whether Prl affects the expression or activity of
carbonic anhydrase, but this enzyme should now be viewed as a putative target of Prl
given its role in intracellular HCOj3;™ generation. Interestingly, Prl also reduced the gene
expression of slc4a4 (Ferlazzo et al., 2012), potentially affecting the basolateral
acquisition of HCO3™ from blood plasma. Prl, therefore, emerges as a potential regulator

of HCOj3 secretion through multiple mechanisms.

3.2.5 Tight-junction proteins and aquaporins

Tight junction complexes, composed of claudins and occludins, govern
paracellular solute and water movements across teleost epithelia (Chasiotis et al., 2012;
Sundell and Sundh, 2012; Tipsmark et al., 2008a, 2008b). In support of solute-linked
water uptake, intestinal paracellular ionic permeability decreases during SW acclimation
(Grosell, 2006; Sundell et al., 2003; Sundell and Sundh, 2012). The elevated expression
of claudin-3, -15, and -25b in pufferfish (Tetraodon nigroviridis), European bass
(Dicentrarchus labrax), and Atlantic salmon (Salmo salar) intestine during SW
acclimation supports the involvement of their encoded proteins in regulating paracellular
permeability (Bagherie-Lachidan et al., 2008; Boutet et al., 2006; Clelland et al., 2010;
Tipsmark et al., 2010b; Tipsmark and Madsen, 2012). In general, there is limited
information on the role of Prl in regulating intestinal claudins in vertebrates. In mice, Prl
down regulated claudin-3 expression in crypt cells (Teerapornpuntakit et al., 2012). In
the only report that directly assessed Prl-claudin connections in fish intestine, Prl
inhibited claudin-15 and -25b gene expression in Atlantic salmon (Tipsmark et al.,
2010b). This was notable given that claudin-15 and -25b were enhanced during
smoltification and SW acclimation (Tipsmark et al., 2010b). In contrast to claudin-15 and
-25b, claudin-3a and -3b were enhanced in FW-acclimated pufferfish; however, a link to
Prl-signaling has not been assessed (Bagherie-Lachidan et al., 2008). While occludin
was localized to the intestine of stenohaline (FW) goldfish (Chasiotis and Kelly, 2008),
there is currently no information on intestinal occludin expression patterns in euryhaline
fishes undergoing salinity acclimation or following hormone treatment.

Agps are integral membrane proteins that facilitate passive movements of water
and small non-ionic compounds across cell membranes (Cerda and Finn, 2010).

Teleosts coordinate the expression of Agps in the intestine during SW acclimation as a

10
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means to enhance transcellular osmotic permeability (Madsen et al., 2015; Sundell and
Sundh, 2012). Accordingly, the expression of particular Agps/aqps isoforms (e.g., Agqp1,
-8, -10, -12) were enhanced in a series of teleosts during SW acclimation (Aoki et al.,
2003; Deane et al., 2011; Engelund et al., 2013; Giffard-Mena et al., 2007; Jung et al.,
2015; Kim et al., 2010; Lignot et al., 2002; Madsen et al., 2011, 2014; Martinez et al.,
2005; Raldua et al., 2008; Tipsmark et al., 2010c). To date, Prl-Aqp3 connections have
only been characterized in branchial epithelium (Breves et al., 2016; Ellis et al., 2019).
Future investigations should evaluate a role for Prl in inhibiting intestinal Agps during FW
acclimation; such an effect would complement the modulation of HCO5™ secretion

(Ferlazzo et al., 2012) that attenuates fluid absorption during FW acclimation.

3.2.6 Ca?* absorption

Teleosts inhabiting FW must actively absorb Ca?* across branchial and intestinal
epithelia to counter diffusive loss to the external environment (Flik, 1993; Pang, 1973;
Wongdee and Charoenphandhu, 2013). Greater than 90% of whole-body Ca?* uptake is
achieved via branchial (or epidermal) ionocytes (Flik et al., 1995; Lin and Hwang, 2016).
Nonetheless, given that rates of intestinal Ca?* uptake are greater when fish are
acclimated to FW versus SW, the gut also seemingly supports Ca?* homeostasis (Flik et
al., 1996). The transcellular uptake of Ca?* by ionocytes entails the entry of Ca?* through
an apical Ca?* channel (ECaC; Trpv5/6) followed by basolateral exit via Ca?*-ATPase
(PMCA) and Na*/Ca?* exchanger (NCX) (Flik et al., 1995; Lin and Hwang, 2016). Prl
operates as a hypercalcemic factor in multiple teleosts (Chakraborti and Mukherjee,
1995; Fargher and McKeown, 1989; Flik et al., 1989, 1994; Kaneko and Hirano, 1993;
Pang et al., 1978; Wongdee and Charoenphandhu, 2013), at least in part, by stimulating
branchial PMCA activity (Flik et al., 1996). In contrast to ionocytes, the basolateral
transport of Ca?* by enterocytes relies primarily on NCX rather than PMCA (Flik et al.,
1993); thus, a role for Prl in the control of intestinal NCX expression/localization warrants
investigation. Indeed, Prl enhanced intestinal Ca?* absorption in mammals by stimulating
the duodenal expression of trpv6, pmca,, and ncx1 (Charoenphandhu et al., 2009;
Wongdee et al., 2016). Given the conserved pathways for transcellular Ca?* transport by
mammals and teleosts (Lin and Hwang, 2016), and the hypercalcemic effects of Prl in
both groups, it will be interesting to learn the extent to which connections between Prl

and intestinal pathways for Ca?* absorption are conserved.
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4. Concluding remarks

When considering the collective actions of Prl within the gastrointestinal tract of
teleosts, it becomes apparent that Prl has the capacity to both promote phenotypes
supportive of FW acclimation and to inhibit phenotypes associated with SW acclimation
(Fig. 1). To this point, this review has focused entirely on the activities of Prl in teleosts
because to our knowledge no studies have identified distinct actions of Prl within the
gastrointestinal tracts of jawless or cartilaginous fishes. Gh/Prl-family hormones are
class-I helical cytokines (Huising et al., 2006). Ocampo Daza and Larhammar (2018)
proposed that distinct Prl- and Gh-encoding genes arose in a vertebrate ancestor that
preceded Agnathans. While only Gh has been identified in sea lamprey (Petromyzon
marinus) (Kawauchi et al., 2002), seemingly due to loss of the pr/ gene (Ocampo Daza
and Larhammar, 2018), sea lamprey were recently shown to express distinct prir and ghr
genes in the intestine (Gong et al., 2020). Thus, Prir-mediated signaling emerged earlier
in the vertebrate lineage than previously supposed and may participate in regulating
osmoregulatory processes within basal vertebrates (albeit with Gh acting as a possible
ligand). Barany et al. (2020) recently described regional specialization within sea
lamprey intestine for solute and fluid transport that parallels patterns in teleosts. The
next challenge is to link Gh/Prl-family hormone receptors in lamprey with specific
intestinal processes. Perhaps the emergence of distinct prir and ghr genes facilitated the
evolution of complex control over intestinal processes; this control enabled migration
between FW and marine habitats. Investigations of this nature will reveal how the
regulatory roles of Gh/Prl-family hormones evolved to support the gastrointestinal

processes that underlie hydromineral balance in fishes.
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Figure legend

Figure 1. Overview of the molecular, cellular, and organ level responses to prolactin
(Prl) signaling in the gastrointestinal tract of teleosts. Processes stimulated by Prl are
listed within green-shaded boxes with solid lines; processes inhibited by Prl are listed
within red-shaded boxes with dashed lines. The demonstrated effects of Prl are listed
alongside their associated study species (indicated within parentheses). Specific
references: 'Takahashi et al., 2007, “Takahashi et al., 2013, 3Utida et al., 1972, “Morley
et al., 1981, SFerlazzo et al., 2012, 6Tipsmark et al., 2010b, "Takahashi et al., 2006a,
8Seale et al., 2014, °Kelly et al., 1999, °Peter et al., 2014, ""Mainoya et al., 1982,
2Madsen et al., 1997.

Highlights: » Prl regulates gastrointestinal processes supportive of hydromineral
balance. » Prl receptors are expressed in esophagus and intestine of fishes. » Prl
directs the expression of intestinal solute transporters in euryhaline teleosts. »

Agnathans will provide insight into how Gh/Prl-family hormone function evolved.
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