

Journal Pre-proofs

Minireview


Osmoregulatory actions of prolactin in the gastrointestinal tract of fishes

Jason P. Breves, Emily E. Popp, Eva F. Rothenberg, Clarence W. Rosenstein,
Kaitlyn M. Maffett, Rebecca R. Guertin

PII: S0016-6480(20)30342-7

DOI: <https://doi.org/10.1016/j.ygcen.2020.113589>

Reference: YGCEN 113589

To appear in: *General and Comparative Endocrinology*

Received Date: 5 May 2020

Revised Date: 17 July 2020

Accepted Date: 14 August 2020

Please cite this article as: Breves, J.P., Popp, E.E., Rothenberg, E.F., Rosenstein, C.W., Maffett, K.M., Guertin, R.R., Osmoregulatory actions of prolactin in the gastrointestinal tract of fishes, *General and Comparative Endocrinology* (2020), doi: <https://doi.org/10.1016/j.ygcen.2020.113589>

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Elsevier Inc. All rights reserved.

Mini-Review

2

Osmoregulatory actions of prolactin in the gastrointestinal tract of fishes

4

5 Jason P. Breves*, Emily E. Popp, Eva F. Rothenberg, Clarence W. Rosenstein, Kaitlyn
6 M. Maffett and Rebecca R. Guertin

8 *Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY
12866, USA*

10

***Corresponding author:**

12

12 Jason P. Breves, Ph.D.

14 Department of Biology

14

14 Skidmore College

16 815 N. Broadway

16

16 Saratoga Springs, NY 12866 USA

18 Phone: +1 518 580-5079

18

18 Fax: +1 518 580-5071

20 Email: jbreves@skidmore.edu

20

20 ORCID: 0000-0003-1193-4389

22

Abstract:

24

24 In fishes, Prl signaling underlies the homeostatic regulation of hydromineral
26 balance by controlling essential solute and water transporting functions performed by the
26 gill, gastrointestinal tract, kidney, urinary bladder, and integument. Comparative studies
28 spanning over 60 years have firmly established that Prl promotes physiological activities
28 that enable euryhaline and stenohaline teleosts to reside in freshwater environments;
30 nonetheless, the specific molecular and cellular targets of Prl in ion- and water-
30 transporting tissues are still being resolved. In this short review, we discuss how
32 particular targets of Prl (e.g., ion cotransporters, tight-junction proteins, and ion pumps)
32 confer adaptive functions to the esophagus and intestine. Additionally, in some
34 instances, Prl promotes histological and functional transformations within esophageal
34 and intestinal epithelia by regulating cell proliferation. Collectively, the demonstrated

actions of Prl in the gastrointestinal tract of teleosts indicate that Prl operates to promote phenotypes supportive of freshwater acclimation and to inhibit phenotypes associated with seawater acclimation. We conclude our review by underscoring that future investigations are warranted to determine how growth hormone/Prl-family signaling evolved in basal fishes to support the gastrointestinal processes underlying hydromineral balance.

Highlights: ► Prl regulates gastrointestinal processes supportive of hydromineral balance. ► Prl receptors are expressed in esophagus and intestine of fishes. ► Prl directs the expression of intestinal solute transporters in euryhaline teleosts. ► Agnathans will provide insight into how Gh/Prl-family hormone function evolved.

Keywords: hydromineral balance; euryhaline; hormone; teleost; esophagus; intestine

1. Introduction

Pituitary hormones regulate many of the physiological systems that vertebrates utilize to maintain homeostasis. In species spanning the vertebrate lineage, the peptide hormone prolactin (Prl) coordinates critical aspects of hydromineral balance, reproduction, lactation, growth, metabolism, and immunity (Bole-Feysot et al., 1998; Freeman et al., 2000). Fishes are conventionally classified into three classes: Agnatha (jawless fishes), Chondrichthyes (cartilaginous fishes), and Osteichthyes (bony fishes). Among teleost fishes (class Osteichthyes; subclass Actinopterygii; infraclass Neopterygii; division Teleostei), Prl was first recognized in mummichog (*Fundulus heteroclitus*) as an essential “freshwater (FW)-adapting hormone” (Pickford and Phillips, 1959). Since then, decades of research have firmly established that Prl exerts highly conserved actions on teleost osmoregulatory organs, namely the gill, kidney, intestine, integument, and urinary bladder, to promote ion-conserving and water-secreting processes. Here, our intent is to complement prior reviews (Bern, 1983; Breves et al., 2014; Collie and Hirano, 1987; Hirano, 1986; Loretz and Bern, 1982; Manzon, 2002; Power, 2005; Sakamoto and McCormick, 2006) by concentrating on the molecular and cellular targets of Prl within the gastrointestinal tract of fishes.

Hydromineral balance is contingent upon the tight control of solute and water movements at the molecular, cellular, and organismal levels. Perturbations in internal osmotic conditions caused by drops in environmental salinity directly elicit the secretion

of Prl from the rostral pars distalis (Ingleton et al., 1973; Kwong et al., 2009; Sage, 1968; 70 Seale et al., 2012). Accordingly, elevations in *prl* gene expression and plasma Prl levels occur when euryhaline teleosts encounter marked reductions in environmental salinity 72 (Fuentes et al., 2010; Lee et al., 2006a; Seale et al., 2012; Shepherd et al., 1999; Yada et al., 1994). In stenohaline FW-species (e.g., zebrafish (*Danio rerio*)), Prl signaling is 74 activated when animals are exposed to 'ion-poor' conditions (Hoshijima and Hirose, 2007; Liu et al., 2006). Through systemic circulation, Prl directs the expression, 76 localization, and/or function of macromolecular mediators of hydromineral balance in target tissues (Breves et al., 2014; Manzon, 2002; Seale et al., 2012). Moreover, Prl may 78 simultaneously dampen ionoregulatory processes appropriate to seawater (SW) acclimation that would otherwise be deleterious to euryhaline fish inhabiting FW 80 (Seidelin and Madsen, 1997).

Upon binding to Prl receptors (Prlrs), Prl activates dimerization and cross-phosphorylation events that activate Jak/Stat, MAPK, PI3K, and/or Src signaling pathways (Bole-Feysot et al., 1998; Freeman et al., 2000; Horseman and Gregerson, 82 2013). Teleost Prlrs share highly conserved functional domains with other vertebrate Prlrs, including an extracellular ligand-binding domain, a single-pass transmembrane 84 region, and a Box 1 region (Bole-Feysot et al., 1998; Fiol et al., 2009; Huang et al., 2007; Pierce et al., 2007; Prunet and Auperin, 1994; Prunet et al., 2000; Sandra et al., 86 1995). In fishes, Prl binding was initially characterized in the gill, kidney, liver, gonad, and intestine of Mozambique tilapia (*Oreochromis mossambicus*) (Dauder et al., 1990; 88 Edery et al., 1984; Fryer, 1979). More recently, it was revealed that teleosts possess multiple *prlr* gene loci (Huang et al., 2007). The two distinct encoded Prlrs, denoted Prlr1 90 and -2, control the expression of distinct target genes upon ligand binding (Chen et al., 2011; Fiol et al., 2009; Huang et al., 2007). The plasticity of *prlr1* and -2 gene expression 92 in osmoregulatory organs during salinity acclimation seemingly provides a mechanism to modulate tissue sensitivity to circulating Prl (Breves et al., 2011; Fiol et al., 2009; Flores 94 and Shrimpton, 2012; Pierce et al., 2007; Tomy et al., 2009).

Growth hormone (Gh) and cortisol, the traditional "SW-adapting hormones" in 98 teleosts, promote the survival of animals in hyperosmotic environments in part by 100 antagonizing the actions of Prl (McCormick, 2001; Seidelin and Madsen, 1997). The widespread expression of the Gh receptor (Ghr) suggests that Gh is pleiotropic in its 102 support of SW acclimation; however, exactly how Gh regulates osmoregulatory systems is largely unknown (Björnsson, 1997; Reindl and Sheridan, 2012). Cortisol is widely

accepted as a “SW-adapting hormone” because it directly stimulates the activities and/or
 104 expression of Na^+/K^+ -ATPase (NKA) and ion transporters linked with ion extrusion and
 106 fluid uptake capacities in the gill and intestine, respectively (Cornell et al., 1994; Hirano
 and Utida, 1968; Utida et al., 1972; Veillette et al., 1995). Cortisol also indirectly
 108 promotes SW acclimation by synergizing with Gh/insulin-like growth factor signaling
 110 (McCormick, 2001). In some instances, cortisol may promote FW acclimation by acting
 alone, or in concert, with Prl (Jackson et al., 2005; McCormick, 2001).

2. Gastrointestinal functions and hydromineral balance: an overview

Because the majority of teleosts typically maintain internal conditions between
 112 270-400 mOsm/kg, fish inhabiting FW environments are at constant risk of both
 114 excessive hydration and the diffusive loss of ions across body surfaces (Evans and
 116 Claiborne, 2008). In turn, FW-acclimated teleosts simultaneously excrete water via dilute
 118 urine and actively absorb ions (Na^+ , Cl^- , Ca^{2+}) from both the external environment and
 120 their diet across branchial and gastrointestinal epithelia, respectively (Evans et al., 2005;
 122 Guh et al., 2015; Kaneko et al., 2008). Teleosts in marine environments, on the other
 124 hand, must excrete ions gained through passive diffusion and combat dehydration by
 126 continuously drinking ambient SW. The drinking rates of euryhaline fishes are thus
 markedly greater in marine versus FW-environments (Carrick and Balment, 1983;
 128 Fuentes and Eddy, 1997; Hirano, 1974; Lin et al., 2002; Malvin et al., 1980; Perrott et al.,
 130 1992). As a necessary source of water, imbibed SW is processed by multiple segments
 132 of the gastrointestinal tract that work in concert to sustain solute-linked water absorption.
 Imbibed SW is first desalinated to ~500 mOsm/kg by the esophagus, a process which
 134 produces a fluid closer to the osmolality of plasma (Grosell, 2014; Hirano and Mayer-
 136 Gostan, 1976). Na^+ and Cl^- are moved from the luminal fluid into blood plasma by active
 and passive transport and are subsequently extruded by branchial ionocytes (Hirano and
 Mayer-Gostan, 1976; Kaneko et al., 2008; Takei et al., 2017). Desalinated SW from the
 esophagus then passes through the stomach where some additional desalination may
 occur prior to entering the anterior intestine at ~400 mOsm/kg (Grosell, 2014). The
 stomach exhibits similar rates of Na^+ and Cl^- uptake in SW- and FW-acclimated fishes
 (Hirano and Mayer-Gostan, 1976). Upon entering the intestine, monovalent ions and
 water are absorbed from the luminal fluid through both transcellular and paracellular
 routes (Madsen et al., 2015; Sundell and Sundh, 2012). In SW-acclimated/marine fishes,
 HCO_3^- is secreted by enterocytes into the lumen of the intestine to produce Ca^{2+} and

138 Mg^{2+} carbonate aggregates. The formation of these aggregates enhances water
 absorption by lowering the osmolality of the luminal fluid (Grosell, 2014). For a
 comprehensive coverage of solute and water handling by the teleost gastrointestinal
 140 tract we direct readers to previous reviews (Grosell, 2006; Loretz, 1995, Sundell and
 Sundh, 2012; Whittamore, 2012).

142 Despite decades of sustained research on the osmoregulatory actions of Prl in
 fishes, a detailed picture of the mechanisms underlying these actions has remained
 144 largely undeveloped due to limitations in our understanding of how ions and water are
 transported across osmoregulatory epithelia. The identification of Prl-regulated
 146 mediators (e.g., ion transporters and channels, NKA subunits, Ca^{2+} -ATPases,
 aquaporins (Aqps), and tight-junction proteins) of ion and water transport within
 148 branchial epithelium (Breves et al., 2014, 2017; Flik et al., 1996) suggests that teleosts
 will serve as tractable models from which to also determine how Prl operates
 150 mechanistically in extrabranchial sites (e.g., kidney, urinary bladder, and gastrointestinal
 tract). It is toward this objective that we highlight recent findings and specify emerging
 152 themes for future study.

154 **3. Prolactin action on gastrointestinal functions**

3.1 *Esophagus*

156 Effective osmoregulatory strategies entail the controlled entry of external fluids
 into the gastrointestinal tract. Hormonal regulation of drinking behavior in fishes is
 158 conventionally attributed to “fast-acting” hormones (e.g., angiotensin II and atrial
 natriuretic peptides) as opposed to Gh/Prl-family peptides (Takei et al., 2014). While the
 160 administration of Prl affected drinking rates in rats (Kaufman, 1981), to our knowledge,
 Prl has not been directly linked with anti-dipsogenic responses that could guard against
 162 excessive hydration in FW environments.

164 The esophageal epithelium undergoes functional and histological changes in
 response to variations in environmental salinity (Meister et al., 1983). For instance, the
 166 transfer of SW-acclimated Japanese eel (*Anguilla japonica*) to FW resulted in reduced
 Na^+ and Cl^- permeability via the transformation of a simple columnar epithelium into a
 stratified epithelium (Yamamoto and Hirano, 1978). Increased cell proliferation (PCNA-
 168 positive nuclei) within the esophageal epithelium of Mozambique tilapia undergoing FW
 acclimation coincided with increases in plasma Prl and esophageal *prl/r* gene expression
 170 (Takahashi et al., 2007). Nile tilapia (*Oreochromis niloticus*), which cannot readily

tolerate salinities >25‰ (Watanabe et al., 1985), did not exhibit discernable differences
 172 in the esophagus following salinity changes (Cataldi et. al., 1988). The coincident
 activation of Prl signaling with esophageal remodeling in Mozambique tilapia provided
 174 indirect evidence for a link between Prl and esophageal phenotypes associated with FW
 acclimation (Takahashi et al., 2007). Supporting evidence for a link between Prl and
 176 esophageal remodeling was provided when Prl stimulated cell proliferation within
 explants of Japanese medaka (*Oryzias latipes*) esophagus (Takahashi et al., 2013).
 178 Given their responses to salinity challenges, Prl, Gh, and/or cortisol may control
 additional characteristics of the esophagus such as mucosal vascularization (Cataldi et
 180 al., 1987; McCormick, 2001). In mammals, Prl (and Prl fragments termed vasoinhibins)
 regulates angiogenesis depending on the physiological context (Clapp et al., 2006), but
 182 to date, no links have been made between Gh/Prl-family peptides and vascularization of
 teleost esophagus. Apoptosis underlies the stratification of esophageal epithelium during
 184 SW acclimation, and accordingly, treatment with Gh or cortisol increased the presence
 of TUNEL-positive nuclei in medaka esophagus (Takagi et al., 2011; Takahashi et al.,
 186 2013). Together, Prl, Gh, and cortisol exert activities (as mitogenic or apoptotic factors)
 in the esophagus consistent with their established roles in teleost osmoregulation.
 188 Future studies are now required to better resolve comparative patterns of esophageal
 Gh/Prl-family hormone receptor expression in euryhaline teleosts.

190

3.2 Intestine

192 3.2.1 Prolactin receptors

It was first reported that Prl administration affected intestinal Na^+ , Cl^- , and fluid
 194 absorption in rainbow trout (*Oncorhynchus mykiss*) and Japanese eel (Morley et al.,
 1981; Utida et al., 1972). Consistent with these functional observations, Prl binding and
 196 Prlr immunoreactivity were observed within the intestinal epithelium of rainbow trout and
 gilthead sea bream (*Sparus aurata*), respectively (Morley et al., 1981; Santos et al.,
 198 2001). *prlr* genes are expressed in the intestine of Nile and Mozambique tilapia (Fiol et
 al., 2009; Pierce et al., 2007; Sandra et al., 1995, 2000, 2001; Zhang et al., 2010),
 200 Japanese pufferfish (*Takifugu rubripes*) (Lee et al., 2006a, 2006b), gilthead and black
 sea bream (*Spondyliosoma cantharus*) (Huang et al., 2007; Santos et al., 2001), rainbow
 202 trout (Rouzic et al., 2001), goldfish (*Carassius auratus*) (Tse et al., 2000), mangrove
 killifish (*Kryptolebias marmoratus*) (Rhee et al., 2010), Japanese flounder (*Paralichthys
 204 olivaceus*) (Higashimoto et al., 2001), blue discus (*Sympodus aequifasciata*) (Khong

et al., 2009), turbot (*Scophthalmus maximus*) (Liu et al., 2020), and zebrafish (Breves et al., 2013). Recall that teleosts express two *prlr* genes (*prlr1* and -2). In Nile tilapia, *prlr1* expression is higher in the posterior intestine versus the anterior intestine and *prlr1* expression in the anterior intestine was increased following a reduction in environmental salinity (Sandra et al., 2000, 2001). In contrast, *prlr2* expression was higher in the anterior intestine of Mozambique tilapia acclimated to SW versus FW (Seale et al., 2014). This pattern paralleled the elevated *prlr2* expression in other tissues following the transfer of FW-acclimated fish to SW (Fiol et al., 2009; Seale et al., 2012). It is important to note that particular studies did not report dynamic *prlr* expression in the intestine following salinity changes (Fiol et al., 2009; Lee et al., 2006b). Going forward, the intestine may serve as an appropriate organ from which to resolve how the multiple Prlrs mediate distinct and/or overlapping physiological responses to circulating Prl. While zebrafish cannot tolerate a broad range of salinities, as a model they do offer conditional gene mutagenesis as a means to analyze the functions of two *prlr*s expressed in the intestine (Burg et al., 2018). It must also be acknowledged that Prl plays pivotal roles in immunity (Harris and Bird, 2000). Since the intestinal epithelium constitutes a barrier between the organism and the environment, intestinal *prlr* expression may also enable immunomodulatory activities that are independent from aspects of ion and water balance (Yada et al., 2002).

224

3.2.2 Cell proliferation

226 Salinity-induced changes in the morphology of the intestinal epithelium resemble those of the esophageal epithelium; in FW-acclimated mudskipper (*Periophthalmus modestus*), Nile tilapia, and Japanese eel the intestinal epithelium is typically stratified with expanded folds, while in SW/brackish water (BW)-acclimated animals the epithelium 228 is thinner and columnar (Takahashi et al., 2006b; Tran-Ngoc et al., 2017; Yamamoto and Hirano, 1978). As in the esophagus (Takagi et al., 2011; Takahashi et al., 2013), enhanced cell proliferation (and decreased apoptosis) during FW acclimation underlies 230 the development of stratified intestinal epithelium with reduced permeability (Takahashi et al., 2006b). In mudskipper, Prl stimulated cell proliferation, without affecting apoptosis, 232 in the intestinal epithelium of animals acclimated to BW (10‰) (Takahashi et al., 2006a). 234 From a comparative perspective, these findings align with the plethora of Prl actions identified within fishes and other vertebrates that involve the promotion of cell 236 proliferation (Sakamoto and McCormick, 2006). In mammals, Prl stimulated cell 238 proliferation (Sakamoto and McCormick, 2006).

proliferation within the gut (Bujanover et al., 2002; Mainoya, 1978) in addition to various
 240 organs such as mammary glands, skin, vascular smooth muscle, pancreas, brain, and
 241 lymph nodes (Bole-Feysot et al., 1998; Freeman et al., 2000; Hennighausen and
 242 Robinson, 2005).

244 **3.2.3 $\text{Na}^+/\text{K}^+/\text{2Cl}^-$ cotransporter 2 and Na^+/K^+ -ATPase**

246 In SW-acclimated/marine teleosts, the intestine mediates solute-linked water
 247 uptake via a suite of ion transporters, channels, and pumps (Grosell, 2006; Sundell and
 248 Sundh, 2012). For example, apically located $\text{Na}^+/\text{K}^+/\text{2Cl}^-$ cotransporter 2 (Nkcc2)
 249 mediates the entry of Na^+ and Cl^- into the interior of enterocytes prior to their subsequent
 250 transport across the basolateral membrane (Whittamore, 2012). Accordingly, *nkcc2*
 251 expression in the anterior intestine increased in several species following their exposure
 252 to SW (Esbaugh and Cutler, 2016; Gregório et al., 2013; Li et al., 2014; Ruhr et al.,
 253 2016; Watanabe et al., 2011; Zhang et al., 2019). Albeit based on a limited number of
 254 studies, intestinal Nkcc2 appears to be under hormonal control. Arginine vasotocin (Avt)
 255 inhibited the bumetanide-sensitive absorptive current of gilthead sea bream intestine
 256 mounted in Ussing chambers (Martos-Sitcha et al., 2013). Accordingly, arginine
 257 vasopressin (Avp), the mammalian homolog to Avt, diminished distal colonic ion
 258 absorption in mice by inhibiting the insertion of Nkcc2 into the apical membrane (Xue et
 259 al., 2014). Renoguanylin and guanylin also inhibited Nkcc2-mediated ion transport in gulf
 260 toadfish (*Opsanus beta*) and Japanese eels, respectively (Ando et al., 2014; Ruhr et al.,
 261 2016). Because Prl promotes phenotypes associated with FW acclimation and it was
 262 reported that Prl administration reduced intestinal Na^+ , Cl^- , and fluid absorption in
 263 Japanese eel and rainbow trout (Morley et al., 1981; Utida et al., 1972), one would
 264 predict that Prl exerts similar inhibitory actions on Nkcc2. Paradoxically, Prl actually
 265 stimulated *nkcc2* expression in hypophysectomized Mozambique tilapia (Seale et al.,
 266 2014). This pattern may reflect the fact that Mozambique tilapia exhibit greater solute
 267 and water uptake in the anterior intestine when acclimated to FW (Mainoya, 1982),
 268 making them an exception to the stereotypical pattern of enhanced intestinal solute and
 269 water transport in SW-acclimated fishes. Future investigations should examine Prl
 270 control of Nkcc2 in models shown to exhibit enhanced solute-linked water transport
 271 under SW conditions (e.g., Atlantic salmon, mummichog, sea bream, and Japanese eel)
 272 to further assess the relationship between Prl and Nkcc2.

273 The NKA enzyme is a ubiquitously expressed ion pump consisting of three

subunits (α , β , and γ) responsible for energizing active transport by key osmoregulatory organs as well as maintaining Na^+ and K^+ gradients across all cell membranes. Varied effects of Prl on branchial and renal NKA activity have been reported in teleosts (Manzon, 2002), and similarly, there is not a clear picture of how Prl regulates intestinal NKA. For example, Prl stimulated NKA activity in the intestine of silver sea bream (*Sparus sarba*) (Kelly et al., 1999) and climbing perch (*Anabas testudineus*) (Peter et al., 2014), whereas other studies reported no effect of Prl on NKA activity or *NKA α -subunit* gene expression in FW- or BW-acclimated fishes (Pickford et al., 1970; Seale et al., 2014; Seidelin and Madsen, 1999). The functions of the regulatory γ -subunit of the NKA enzyme, or Fxyd, in teleosts are becoming better resolved (Saito et al., 2010; Tipsmark, 2008; Wang et al., 2008; Yang et al., 2013). Fxyd proteins modify the transport properties of NKA by binding to the α -subunit; thus, given the dynamics of intestinal NKA activity during salinity acclimation (Sundell and Sundh, 2012), it is highly plausible that Prl will emerge as a regulator of intestinal Fxyd proteins. While Prl inhibited *fxyd-11*/Fxyd-11 in salmon and tilapia gill (Tipsmark et al., 2010a, 2011), *fxyd-11* is not highly expressed in the intestine (Yang et al., 2013). Thus, *fxyd* isoforms more robustly expressed in the intestine (e.g., medaka *fxyd-5*, *-9*, and *-12*) may offer better targets for probing Prl-Fxyd links underlying intestinal function.

292 3.2.4 $\text{Na}^+/\text{HCO}_3^-$ cotransporters and carbonic anhydrase

293 SW-acclimated/marine fishes secrete HCO_3^- into the intestinal lumen to support
 294 fluid absorption (Alves et al., 2019; Grosell, 2011). Intestinal HCO_3^- secretion is
 295 regulated by multiple endocrine factors with contrasting activities. For example, HCO_3^-
 296 secretion is stimulated by stanniocalcin and guanylin, yet inhibited by parathyroid
 297 hormone-related protein, renoguanylin, and Prl (Ferlazzo et al., 2012; Fuentes et al.,
 298 2010; Ruhr et al., 2018; Takei et al., 2019). The transit of HCO_3^- through enterocytes
 299 involves basolateral entry of HCO_3^- from the blood plasma by a Slc4-type $\text{Na}^+/\text{HCO}_3^-$
 300 cotransporter (Nbce1) followed by apical exit into the intestinal lumen via a Slc26-type
 301 $\text{Cl}^-/\text{HCO}_3^-$ exchanger (Kurita et al., 2008). Another source of HCO_3^- for apical secretion
 302 comes from the intracellular hydration of CO_2 by carbonic anhydrase (Grosell, 2006;
 303 Grosell et al., 2009). Ferlazzo et al. (2012) showed that Prl inhibited *in vitro* secretion of
 304 HCO_3^- in explants of gilthead sea bream anterior intestine. Accordingly, chemical
 305 inhibitors of transduction pathways linked with Prl signaling (Jak2, Mek, and PI3K)
 306 disrupted Prl-stimulated HCO_3^- secretion (Ferlazzo et al., 2012). A dose-dependent

inhibitory effect of Prl occurred in the absence of basolateral HCO_3^- within 20 min; thus,
 308 Prl seemingly targeted the intracellular generation and subsequent secretion of HCO_3^- .
 There is currently no information on whether Prl affects the expression or activity of
 310 carbonic anhydrase, but this enzyme should now be viewed as a putative target of Prl
 given its role in intracellular HCO_3^- generation. Interestingly, Prl also reduced the gene
 312 expression of *s/c4a4* (Ferlazzo et al., 2012), potentially affecting the basolateral
 acquisition of HCO_3^- from blood plasma. Prl, therefore, emerges as a potential regulator
 314 of HCO_3^- secretion through multiple mechanisms.

316 **3.2.5 Tight-junction proteins and aquaporins**

Tight junction complexes, composed of claudins and occludins, govern
 318 paracellular solute and water movements across teleost epithelia (Chasiotis et al., 2012;
 Sundell and Sundh, 2012; Tipsmark et al., 2008a, 2008b). In support of solute-linked
 320 water uptake, intestinal paracellular ionic permeability decreases during SW acclimation
 (Grosell, 2006; Sundell et al., 2003; Sundell and Sundh, 2012). The elevated expression
 322 of *claudin-3*, *-15*, and *-25b* in pufferfish (*Tetraodon nigroviridis*), European bass
 (*Dicentrarchus labrax*), and Atlantic salmon (*Salmo salar*) intestine during SW
 324 acclimation supports the involvement of their encoded proteins in regulating paracellular
 permeability (Bagherie-Lachidan et al., 2008; Boutet et al., 2006; Clelland et al., 2010;
 326 Tipsmark et al., 2010b; Tipsmark and Madsen, 2012). In general, there is limited
 information on the role of Prl in regulating intestinal claudins in vertebrates. In mice, Prl
 328 down regulated *claudin-3* expression in crypt cells (Teerapornpuntakit et al., 2012). In
 the only report that directly assessed Prl-claudin connections in fish intestine, Prl
 330 inhibited *claudin-15* and *-25b* gene expression in Atlantic salmon (Tipsmark et al.,
 2010b). This was notable given that *claudin-15* and *-25b* were enhanced during
 332 smoltification and SW acclimation (Tipsmark et al., 2010b). In contrast to *claudin-15* and
-25b, *claudin-3a* and *-3b* were enhanced in FW-acclimated pufferfish; however, a link to
 334 Prl-signaling has not been assessed (Bagherie-Lachidan et al., 2008). While occludin
 was localized to the intestine of stenohaline (FW) goldfish (Chasiotis and Kelly, 2008),
 336 there is currently no information on intestinal occludin expression patterns in euryhaline
 fishes undergoing salinity acclimation or following hormone treatment.

338 Aqps are integral membrane proteins that facilitate passive movements of water
 and small non-ionic compounds across cell membranes (Cerdà and Finn, 2010).
 340 Teleosts coordinate the expression of Aqps in the intestine during SW acclimation as a

means to enhance transcellular osmotic permeability (Madsen et al., 2015; Sundell and Sundh, 2012). Accordingly, the expression of particular Aqps/aqps isoforms (e.g., Aqp1, -8, -10, -12) were enhanced in a series of teleosts during SW acclimation (Aoki et al., 2003; Deane et al., 2011; Engelund et al., 2013; Giffard-Mena et al., 2007; Jung et al., 2015; Kim et al., 2010; Lignot et al., 2002; Madsen et al., 2011, 2014; Martinez et al., 2005; Raldúa et al., 2008; Tipsmark et al., 2010c). To date, Prl-Aqp3 connections have only been characterized in branchial epithelium (Breves et al., 2016; Ellis et al., 2019). Future investigations should evaluate a role for Prl in inhibiting intestinal Aqps during FW acclimation; such an effect would complement the modulation of HCO_3^- secretion (Ferlazzo et al., 2012) that attenuates fluid absorption during FW acclimation.

352 3.2.6 Ca^{2+} absorption

Teleosts inhabiting FW must actively absorb Ca^{2+} across branchial and intestinal epithelia to counter diffusive loss to the external environment (Flik, 1993; Pang, 1973; Wongdee and Charoenphandhu, 2013). Greater than 90% of whole-body Ca^{2+} uptake is achieved via branchial (or epidermal) ionocytes (Flik et al., 1995; Lin and Hwang, 2016). Nonetheless, given that rates of intestinal Ca^{2+} uptake are greater when fish are acclimated to FW versus SW, the gut also seemingly supports Ca^{2+} homeostasis (Flik et al., 1996). The transcellular uptake of Ca^{2+} by ionocytes entails the entry of Ca^{2+} through an apical Ca^{2+} channel (ECaC; Trpv5/6) followed by basolateral exit via Ca^{2+} -ATPase (PMCA) and $\text{Na}^+/\text{Ca}^{2+}$ exchanger (NCX) (Flik et al., 1995; Lin and Hwang, 2016). Prl operates as a hypercalcemic factor in multiple teleosts (Chakraborti and Mukherjee, 1995; Fargher and McKeown, 1989; Flik et al., 1989, 1994; Kaneko and Hirano, 1993; Pang et al., 1978; Wongdee and Charoenphandhu, 2013), at least in part, by stimulating branchial PMCA activity (Flik et al., 1996). In contrast to ionocytes, the basolateral transport of Ca^{2+} by enterocytes relies primarily on NCX rather than PMCA (Flik et al., 1993); thus, a role for Prl in the control of intestinal NCX expression/localization warrants investigation. Indeed, Prl enhanced intestinal Ca^{2+} absorption in mammals by stimulating the duodenal expression of *trpv6*, *pmca_{1b}*, and *ncx1* (Charoenphandhu et al., 2009; Wongdee et al., 2016). Given the conserved pathways for transcellular Ca^{2+} transport by mammals and teleosts (Lin and Hwang, 2016), and the hypercalcemic effects of Prl in both groups, it will be interesting to learn the extent to which connections between Prl and intestinal pathways for Ca^{2+} absorption are conserved.

4. Concluding remarks

376 When considering the collective actions of Prl within the gastrointestinal tract of
 teleosts, it becomes apparent that Prl has the capacity to both promote phenotypes
 378 supportive of FW acclimation and to inhibit phenotypes associated with SW acclimation
 (Fig. 1). To this point, this review has focused entirely on the activities of Prl in teleosts
 380 because to our knowledge no studies have identified distinct actions of Prl within the
 gastrointestinal tracts of jawless or cartilaginous fishes. Gh/Prl-family hormones are
 382 class-I helical cytokines (Huisings et al., 2006). Ocampo Daza and Larhammar (2018)
 proposed that distinct Prl- and Gh-encoding genes arose in a vertebrate ancestor that
 384 preceded Agnathans. While only Gh has been identified in sea lamprey (*Petromyzon*
marinus) (Kawauchi et al., 2002), seemingly due to loss of the *prl* gene (Ocampo Daza
 386 and Larhammar, 2018), sea lamprey were recently shown to express distinct *prl/r* and *ghr*
 genes in the intestine (Gong et al., 2020). Thus, Prlr-mediated signaling emerged earlier
 388 in the vertebrate lineage than previously supposed and may participate in regulating
 osmoregulatory processes within basal vertebrates (albeit with Gh acting as a possible
 390 ligand). Barany et al. (2020) recently described regional specialization within sea
 lamprey intestine for solute and fluid transport that parallels patterns in teleosts. The
 392 next challenge is to link Gh/Prl-family hormone receptors in lamprey with specific
 intestinal processes. Perhaps the emergence of distinct *prl/r* and *ghr* genes facilitated the
 394 evolution of complex control over intestinal processes; this control enabled migration
 between FW and marine habitats. Investigations of this nature will reveal how the
 396 regulatory roles of Gh/Prl-family hormones evolved to support the gastrointestinal
 processes that underlie hydromineral balance in fishes.

398

Funding

400 This work was supported by the National Science Foundation [IOS-1755131 to
 J.P.B.].

402

Acknowledgements

404 The detailed comments and suggestions of two anonymous reviewers improved
 the manuscript.

406

Declaration of competing interests

408 The authors declare there are no competing interests that could be perceived as

prejudicing the impartiality of this article.

410

CRediT authorship contribution statement

412

Jason Breves: Conceptualization, Writing - Original Draft, Writing - Review & Editing, Supervision, Funding acquisition. **Emily Popp:** Conceptualization, Writing - Original Draft, Writing - Review & Editing. **Eva Rothenberg:** Conceptualization, Writing - Original Draft, Writing - Review & Editing. **Clarence Rosenstein:** Conceptualization, Writing - Original Draft, Writing – Review & Editing, Visualization. **Kaitlyn Maffett:** Conceptualization, Writing - Original Draft, Writing - Review & Editing. **Rebecca Guertin:** Conceptualization, Writing - Original Draft, Writing - Review & Editing.

420

References

422

Alves, A., Gregório, S.F., Egger, R.C., Fuentes, J., 2019. Molecular and functional regionalization of bicarbonate secretion cascade in the intestine of the European sea bass (*Dicentrarchus labrax*). *Comp. Biochem. Physiol. A* 233, 53-64. <https://doi.org/10.1016/j.cbpa.2019.03.017>.

424

Ando, M., Wong, M.K.S., Takei, Y., 2014. Mechanisms of guanylin action on water and ion absorption at different regions of seawater eel intestine. *Am. J. Physiol. Regul. Integr. Comp. Physiol.* 307, R653–R663. <https://doi.org/10.1152/ajpregu.00543.2013>.

428

Aoki, M., Kaneko, T., Katoh, F., Hasegawa, S., Tsutsui, N., Aida, K., 2003. Intestinal water absorption through aquaporin 1 expressed in the apical membrane of mucosal epithelial cells in seawater-adapted Japanese eel. *J. Exp. Biol.* 206(19), 3495-3505. <https://doi.org/10.1242/jeb.00579>.

434

Bagherie-Lachidan, M., Wright, S.I., Kelly, S.P., 2008. Claudin-3 tight junction proteins in *Tetraodon nigroviridis*: cloning, tissue-specific expression, and a role in hydromineral balance. *Am. J. Physiol. Regul. Integr. Comp. Physiol.* 294(5), R1638-R1647. <https://doi.org/10.1152/ajpregu.00039.2008>.

438

Barany, A., Shaughnessy, C.A., Fuentes, J., Mancera, J.M., McCormick, S.D., 2020. Osmoregulatory role of the intestine in the sea lamprey (*Petromyzon marinus*). *Am. J. Physiol. Regul. Integr. Comp. Physiol.* 318(2), R410-R417. <https://doi.org/10.1152/ajpregu.00033.2019>.

444

Bern, H.A., 1983. Functional evolution of prolactin and growth hormone in lower vertebrates. *Amer. Zool.* 23, 663-671. <https://doi.org/10.1093/icb/23.3.663>.

446

Björnsson, B.T., 1997. The biology of salmon growth hormone: from daylight to dominance. *Fish Physiol. Biochem.* 17, 9-24. <https://doi.org/10.1023/A:1007712413908>.

450

Bole-Feysot, C., Goffin, V., Edery, M., Binart, N., Kelly, P.A., 1998. Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. *Endocr. Rev.* 19, 225-268. <https://doi.org/10.1210/edrv.19.3.0334>.

454

Boutet, I., Long Ky, C.L., Bonhomme, F., 2006. A transcriptomic approach of salinity response in the euryhaline teleost, *Dicentrarchus labrax*. *Gene* 379, 40-50. <https://doi.org/10.1016/j.gene.2006.04.011>.

458 Breves, J.P., Inokuchi, M., Yamaguchi, Y., Seale, A.P., Hunt, B.L., Watanabe, S., Lerner, D.T.,
 459 Kaneko, T., Grau, E.G., 2016. Hormonal regulation of aquaporin 3: opposing actions of
 460 prolactin and cortisol in tilapia gill. *J. Endocrinol.* 230(3), 325-337. <https://doi.org/10.1530/joe-16-0162>.

462 Breves, J.P., Keith, P., Hunt, B.L., Pavlosky, K.K., Inokuchi, M., Yamaguchi, Y., Lerner, D.T.,
 464 Seale, A.P., Grau, E.G., 2017. *clc-2c* is regulated by salinity, prolactin and extracellular
 466 osmolality in tilapia gill. *J. Mol. Endocrinol.* 59(4), 391-402. <https://doi.org/10.1530/JME-17-0144>.

468 Breves, J.P., McCormick, S.D., Karlstrom, R.O., 2014. Prolactin and teleost ionocytes: new
 470 insights into cellular and molecular targets of prolactin in vertebrate epithelia. *Gen. Comp.
 471 Endocrinol.* 203, 21-28. <https://doi.org/10.1016/j.ygcn.2013.12.014>.

472 Breves, J.P., Seale, A.P., Helms, R.E., Tipsmark, C.K., Hirano, T., Grau, E.G., 2011. Dynamic
 474 gene expression of GH/PRL-family hormone receptors in gill and kidney during freshwater-
 476 acclimation of Mozambique tilapia. *Comp. Biochem. Physiol. A* 158, 194-200.
<https://doi.org/10.1016/j.cbpa.2010.10.030>.

478 Breves, J.P., Serizier, S.B., Goffin, V., McCormick, S.D., Karlstrom, R.O., 2013. Prolactin
 479 regulates transcription of the ion uptake Na^+/Cl^- cotransporter (*ncc*) gene in zebrafish gill. *Mol.
 480 Cell. Endo.* 369, 98-106. <https://doi.org/10.1016/j.mce.2013.01.021>.

482 Bujanover, Y., Wollman, Y., Reif, S., Golander, A., 2002. A possible role of prolactin on growth
 483 and maturation of the gut during development in the rat. *J. Pediatr. Endocrinol. Metab.* 15,
 484 789-794. <https://doi.org/10.1515/JPEM.2002.15.6.789>.

486 Burg, L., Palmer, N., Kikhi, K., Miroshnik, E.S., Rueckert, H., Gaddy, E., MacPherson
 487 Cunningham, C., Mattonet, K., Lai, S.L., Marín-Juez, R., Waring, R.B., Stainier, D.Y.R.,
 488 Balciunas, D., 2018. Conditional mutagenesis by oligonucleotide-mediated integration of loxP
 489 sites in zebrafish. *PLoS Genet.* 14(11):e1007754.
<https://doi.org/10.1371/journal.pgen.1007754>.

491 Carrick, S., Balment, R.J., 1983. The renin-angiotensin system and drinking in the euryhaline
 492 flounder, *Platichthys flesus*. *Gen. Comp. Endocrinol.* 51, 423-433.
[https://doi.org/10.1016/0016-6480\(83\)90059-x](https://doi.org/10.1016/0016-6480(83)90059-x).

494 Cataldi, E., Crosetti, D., Conte, G., D'Ovidio, D., Cataudella, S., 1987. Morphological changes in
 496 the oesophageal epithelium during adaptation to salinities in *Oreochromis mossambicus*, *O.
 497 niloticus* and their hybrid. *J. Fish Biol.* 32, 191-196. <https://doi.org/10.1111/j.1095-8649.1988.tb05352.x>.

500 Cataldi, E., Crosetti, D., Leoni, C., Cataudella, S., 1988. Oesophagus structure during adaptation
 502 to salinity in *Oreochromis niloticus* (Perciformes, pisces) juveniles. *Ital. J. Zool.* 55, 59-62.
<https://doi.org/10.1080/11250008809386600>.

504 Cerdà, J., Finn, R.N., 2010. Piscine aquaporins: an overview of recent advances. *J. Exp. Zool. A*
 506 313, 623-650. <https://doi.org/10.1002/jez.634>.

508 Chakraborti, P., Mukherjee, D., 1995. Effects of prolactin and fish pituitary extract on plasma
 510 calcium levels in common carp, *Cyprinus carpio*. *Gen. Comp. Endocrinol.* 97, 320-326.
<https://doi.org/10.1006/gcen.1995.1032>.

512 Charoenphandhu, N., Nakkrasae, L., Kraidith, K., Teerapornpuntakit, J., Thongchote, K.,
 514 Thongon, N., Krishnamra, N., 2009. Two-step stimulation of intestinal Ca^{2+} absorption during

514 lactation by long-term prolactin exposure and suckling-induced prolactin surge. Am. J. Physiol. Endocrinol. Metab. 297(3), E609-E619. <https://doi.org/10.1152/ajpendo.00347.2009>.

516 Chasiotis, H., Kelly, S.P., 2008. Occludin immunolocalization and protein expression in goldfish. J. Exp. Biol. 211, 1524-1534. <https://doi.org/10.1242/jeb.014894>.

518 Chasiotis, H., Kolosov, D., Bui, P., Kelly, S.P., 2012. Tight junctions, tight junction proteins and 520 paracellular permeability across the gill epithelium of fishes: a review. Respir. Physiol. Neurobiol. 184, 269-281. <https://doi.org/10.1016/j.resp.2012.05.020>.

522 Chen, M., Huang, X., Yuen, D.S.H., Cheng, C.H.K., 2011. A study on the functional interaction 524 between the GH/PRL family of polypeptides with their receptors in zebrafish: Evidence against GHR1 being the receptor for somatolactin. Mol. Cell. Endocrinol. 337, 114-121. <https://doi.org/10.1016/j.mce.2011.02.006>.

528 Clapp, C., González, C., Macotela, Y., Aranda, J., Rivera, J.C., García, C., Guzmán, J., 530 Zamorano, M., Vega, C., Martín, C., Jeziorski, M.C., de la Escalera, G.M., 2006. Vasoinhibins: a family of N-terminal prolactin fragments that inhibit angiogenesis and 532 vascular function. Front. Horm. Res. 35, 64-73. <https://doi.org/10.1159/000094309>.

534 Clelland, E.S., Bui, P., Bagherie-Lachidan, M., Kelly, S.P., 2010. Spatial and salinity-induced 536 alterations in claudin-3 isoform mRNA along the gastrointestinal tract of the pufferfish *Tetraodon nigroviridis*. Comp. Biochem. Physiol. A 155(2), 154-163. <https://doi.org/10.1016/j.cbpa.2009.10.038>.

538 Collie, N.L., Hirano, T., 1987. Mechanisms of hormone actions on intestinal transport, in: Pang, 540 K.T.P., Schreibman, M.P. (Eds.), Vertebrate Endocrinology: Fundamentals and Biomedical Implications, vol. 2. Academic Press, San Diego, pp. 239-270.

542 Cornell, S.C., Portesi, D.M., Veillette, P.A., Sundell, K., Specker, J.L., 1994. Cortisol stimulates 544 intestinal fluid uptake in Atlantic salmon (*Salmo salar*) in the post-smolt stage. Fish Physiol. Biochem. 13, 183-190. <https://doi.org/10.1007/bf00004356>.

546 Dauder, S., Young, G., Hass, L., Bern, H.A., 1990. Prolactin receptors in liver, kidney, and gill of 548 the tilapia (*Oreochromis mossambicus*): characterization and effect of salinity on specific binding of iodinated ovine prolactin. Gen. Comp. Endocrinol. 77, 368-377. [https://doi.org/10.1016/0016-6480\(90\)90226-c](https://doi.org/10.1016/0016-6480(90)90226-c).

550 Deane, E.E., Luk, J.C., Woo, N.Y., 2011. Aquaporin 1a expression in gill, intestine, and kidney of 552 the euryhaline silver sea bream. Front. Physiol 2, 39. <https://doi.org/10.3389/fphys.2011.00039>.

554 Edery, M., Young, G., Bern, H.A., Steiny, S., 1984. Prolactin receptors in tilapia (*Sarotherodon mossambicus*) tissues: binding studies using I-125 labeled ovine prolactin. Gen. Comp. Endocrinol. 556 56, 19-23. [https://doi.org/10.1016/0016-6480\(84\)90056-x](https://doi.org/10.1016/0016-6480(84)90056-x).

558 Ellis, L.V., Bollinger, R.J., Weber, H.M., Madsen, S.S., Tipsmark, C.K., 2019. Differential 560 expression and localization of branchial AQP1 and AQP3 in Japanese medaka (*Oryzias latipes*). Cells 8(5), 422. <https://doi.org/10.3390/cells8050422>.

562 Engelund, M.B., Chauvigné, F., Christensen, B.M., Finn, R.N., Cerdá, J., Madsen, S.S., 2013. 564 Differential expression and novel permeability properties of three aquaporin 8 paralogs from seawater-challenged Atlantic salmon smolts. J. Exp. Biol. 216, 3873-3885. <https://doi.org/10.1242/jeb.087890>.

568 Esbaugh, A.J., Cutler, B., 2016. Intestinal Na^+ , K^+ , 2Cl^- cotransporter 2 plays a crucial role in
569 hyperosmotic transitions of a euryhaline teleost. *Physiol. Rep.* 4(22), e13028-e13028.
570 <https://doi.org/10.14814/phy2.13028>.

572 Evans, D.H., Claiborne, J.B., 2008. Osmotic and ionic regulation in fishes, in: Evans, D.H. (Ed.),
573 Osmotic and ionic regulation: cells and animals. CRC Press, Boca Raton, pp. 295-366.

574 Evans, D.H., Piermarini, P.M., Choe, K.P., 2005. The multifunctional fish gill: dominant site of gas
575 exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste.
576 *Physiol. Rev.* 85, 97-177. <https://doi.org/10.1152/physrev.00050.2003>.

578 Fargher, R.C., McKeown, B.A., 1989. The effect of prolactin on calcium homeostasis in coho
579 salmon (*Oncorhynchus kisutch*). *Gen. Comp. Endocrinol.* 73, 398-403.
580 [http://doi.org/10.1016/0016-6480\(89\)90197-4](http://doi.org/10.1016/0016-6480(89)90197-4).

582 Ferlazzo, A., Carvalho, E.S.M., Gregorio, S.F., Power, D.M., Canario, A.V.M., Trischittla, F.,
584 Fuentes, J., 2012. Prolactin regulates luminal bicarbonate secretion in the intestine of the sea
585 bream (*Sparus aurata* L.). *J. Exp. Biol.* 215, 3836-3844. <http://doi.org/10.1242/jeb.074906>.

588 Fiol, D.F., Sanmarti, E., Sacchi, R., Kültz, D., 2009. A novel tilapia prolactin receptor is
589 functionally distinct from its paralog. *J. Exp. Biol.* 212, 2007-2015.
590 <https://doi.org/10.1242/jeb.025601>.

592 Flik, G., Fenwick, J.C., Wendelaar Bonga, S.E., 1989. Calcitropic actions of prolactin in
593 freshwater North American eel (*Anguilla rostrata* LeSueur). *Am. J. Physiol. Regul. Integr.*
594 *Comp. Physiol.* 257, R74-R79. <http://doi.org/10.1152/ajpregu.1989.257.1.R74>.

596 Flik, G., Klaren, P.H.M., Schoenmakers, T.J.M., Bijvelds, M.J.C., Verbost, P.M. Wendelaar
597 Bonga, S.E., 1996. Cellular calcium transport in fish: unique and universal mechanisms.
598 *Physiol. Biochem. Zool.* 69, 403-417. <http://doi.org/10.1086/physzool.69.2.30164192>.

600 Flik, G., Rentier-Delrue, F., Wendelaar Bonga, S.E., 1994. Calcitropic effects of recombinant
601 prolactins in *Oreochromis mossambicus*. *Am. J. Physiol. Regul. Integr. Comp. Physiol.* 266,
602 R1302-R1308. <https://doi.org/10.1152/ajpregu.1994.266.4.R1302>.

604 Flik, G., Van Der Velden, J.A., Dechering, K.J., Verbost, P.M., Schoenmakers, T.J.M., Kolar, Z.I.,
605 Wendelaar Bonga, S.E., 1993. Ca^{2+} and Mg^{2+} transport in gills and gut of tilapia, *Oreochromis*
606 *mossambicus*: a review. *J. Exp. Zool.* 265, 356-365. <https://doi.org/10.1002/jez.1402650404>.

608 Flik, G., Verbost, P.M., Wendelaar Bonga, S.E., 1995. Calcium transport processes in fishes, in:
609 Wood, C.M., Shuttleworth, T.J. (Eds.), *Cellular and Molecular Approaches to Fish Ionic*
610 *Regulation*. Academic Press, San Diego, pp. 317-342. [https://doi.org/10.1016/S1546-5098\(08\)60251-4](https://doi.org/10.1016/S1546-5098(08)60251-4).

612 Flores, A.M., Shrimpton, M.J., 2012. Differential physiological and endocrine responses of
613 rainbow trout, *Oncorhynchus mykiss*, transferred from fresh water to ion-poor or salt water.
614 *Gen. Comp. Endocrinol.* 175, 244-250. <https://doi.org/10.1016/j.ygcen.2011.11.002>.

616 Freeman, M.E., Kanyicska, B., Lerant, A., Nagy, G., 2000. Prolactin: structure, function and
617 regulation of secretion. *Physiol. Rev.* 80, 1523-1631.
618 <https://doi.org/10.1152/physrev.2000.80.4.1523>.

620 Fryer, J.N., 1979. Prolactin-binding sites in tilapia (*Sarotherodon mossambicus*) kidney. *Gen.*
621 *Comp. Endocrinol.* 39, 397-403. [https://doi.org/10.1016/0016-6480\(79\)90137-0](https://doi.org/10.1016/0016-6480(79)90137-0).

622

624 Fuentes, J., Eddy, F.B., 1997. Effect of manipulation of the renin-angiotensin system in control of
drinking in juvenile Atlantic salmon (*Salmo salar* L) in fresh water and after transfer to sea
water. *J. Comp. Phys. B* 167(6), 438-443. <https://doi.org/10.1007/s003600050094>.

626 Fuentes, J., Brinca, L., Guerreiro, P.M., Power, D.M., 2010. PRL and GH synthesis and release
628 from the sea bream (*Sparus auratus* L.) pituitary gland in vitro in response to osmotic
challenge. *Gen. Comp. Endocrinol.* 168, 95-102. <https://doi.org/10.1016/j.ygcen.2010.04.005>.

630 Giffard-Mena, I., Boulo, V., Aujoulat, F., Fowden, H., Castille, R., Charmantier, G., Cramb, G.,
632 2007. Aquaporin molecular characterization in the sea-bass (*Dicentrarchus labrax*): the effect
of salinity on AQP1 and AQP3 expression. *Comp. Biochem. Physiol. A* 148(2), 430-444.
634 <https://doi.org/10.1016/j.cbpa.2007.06.002>.

636 Gong, N., Ferreira-Martins, D., McCormick, S.D., Sheridan, M.A., 2020. Divergent genes
638 encoding the putative receptors for growth hormone and prolactin in sea lamprey display
distinct patterns of expression. *Sci. Rep.* 10, 1674. <https://doi.org/10.1038/s41598-020-58344-5>.

640 Gregório, S.F., Carvalho, E.S.M., Encarnação, S., Wilson, J.M., Power, D.M., Canário, A.V.M.,
642 Fuentes, J., 2013. Adaptation to different salinities exposes functional specialization in the
intestine of the sea bream (*Sparus aurata* L.). *J. Exp. Biol.* 216: 470-479.
644 <https://doi.org/10.1242/jeb.073742>.

646 Grosell, M., 2006. Intestinal anion exchange in marine fish osmoregulation. *J. Exp. Biol.* 209,
2813-2827. <https://doi.org/10.1242/jeb.02345>.

648 Grosell, M., 2011. Intestinal anion exchange in marine teleosts is involved in osmoregulation and
650 contributes to the oceanic inorganic carbon cycle. *Acta. Physiol.* 202, 421-434.
<https://doi.org/10.1111/j.1748-1716.2010.02241.x>.

652 Grosell, M., 2014. Intestinal transport, in: Evans, D.H., Claiborne, J.B., Currie, S. (Eds.), *The
654 Physiology of Fishes*. CRC Press, Boca Raton, pp. 175-203.

656 Grosell, M., Genz, J., Taylor, J.R., Perry, S.F., Gilmour, K.M., 2009. The involvement of H⁺-
658 ATPase and carbonic anhydrase in intestinal HCO₃⁻ secretion in seawater-acclimated
rainbow trout. *J. Exp. Biol.* 212, 1940-1948. <https://doi.org/10.1242/jeb.026856>.

660 Guh, Y., Lin, C., Hwang, P.P., 2015. Osmoregulation in zebrafish: ion transport mechanisms and
functional regulation. *EXCLI Journal* 14, 627-659. <https://doi.org/10.17179/excli2015-246>.

662 Harris, J., Bird, D.J., 2000. Modulation of the fish immune system by hormones. *Vet. Immunol.
664 Immunopathol.* 77, 163-176. [https://doi.org/10.1016/s0165-2427\(00\)00235-x](https://doi.org/10.1016/s0165-2427(00)00235-x).

666 Hennighausen, L., Robinson, G.W., 2005. Information networks in the mammary gland. *Nat. Rev.
668 Mol. Cell. Biol.* 6(9), 715-725. <https://doi.org/10.1038/nrm1714>.

670 Higashimoto, Y., Nakao, N., Ohkubo, T., Tanaka, M., Nakashima, K., 2001. Structure and tissue
distribution of prolactin receptor mRNA in Japanese flounder (*Paralichthys olivaceus*):
672 conserved and preferential expression in osmoregulatory organs. *Gen. Comp. Endocrinol.*
123, 170-179. <https://doi.org/10.1006/gcen.2001.7660>.

674 Hirano, T., 1974. Some factors regulating water intake by the eel, *Anguilla japonica*. *J. Exp. Biol.*
676 61(3), 737-747.

678 Hirano, T., 1986. The spectrum of prolactin action in teleosts. *Prog. Clin. Biol. Res.* 205, 53-74.

680 Hirano, T., Mayer-Gostan, N., 1976. Eel esophagus as an osmoregulatory organ. Proc. Nat.
Acad. Sci. USA. 73, 1348-1350. <https://doi.org/10.1073/pnas.73.4.1348>.

682 Hirano, T., Utida, S., 1968. Effects of ACTH and cortisol on water movement in isolated intestine
of the eel, *Anguilla japonica*. Gen. Comp. Endocrinol. 11(2), 373-380.
[https://doi.org/10.1016/0016-6480\(68\)90094-4](https://doi.org/10.1016/0016-6480(68)90094-4).

684

686 Horseman, N.D., Gregerson, K.A., 2013. Prolactin actions. J. Mol. Endocrinol. 52(1), R95-R106.
<https://doi.org/10.1530/JME-13-0220>.

688

690 Hoshijima, K., Hirose, S., 2007. Expression of endocrine genes in zebrafish larvae in response to
environmental salinity. J. Endocrinol. 193, 481-491. <https://doi.org/10.1677/joe-07-0003>.

692 Huang, X., Jiao, B., Fung, C.K., Zhang, Y., Ho, W.K., Chan, C.B., Lin, H., Wang, D., Cheng,
C.H.K., 2007. The presence of two distinct prolactin receptors in seabream with different
tissue distribution patterns, signal transduction pathways and regulation of gene expression
by steroid hormones. J. Endocrinol. 194, 373-392. <https://doi.org/10.1677/joe-07-0076>.

694

696 Huising, M.O., Kruiswijk, C.P., Flik, G., 2006. Phylogeny and evolution of class-I helical cytokines.
J. Endocrinol. 189, 1-25. <https://doi.org/10.1677/joe.1.06591>.

700 Ingleton, P.M., Baker, B.I., Ball, J.N., 1973. Secretion of prolactin and growth hormone by teleost
pituitaries in vitro. I. Effect of sodium concentration and osmotic pressure during short-term
incubations. J. Comp. Physiol. 87, 317-328. <https://doi.org/10.1007/bf00695266>.

702

704 Jackson, L.F., McCormick, S.D., Madsen, S.S., Swanson, P., Sullivan, C.V., 2005.
Osmoregulatory effects of hypophysectomy and homologous prolactin replacement in hybrid
striped bass. Comp. Biochem. Physiol. B. 140, 211-218.
<https://doi.org/10.1016/j.cbpc.2004.10.004>.

706

708 Jung, D., Adamo, M.A., Lehman, R.M., Barnaby, R., Jackson, C.E., Jackson, B.P., Shaw, J.R.,
Stanton, B.A., 2015. A novel variant of aquaporin 3 is expressed in killifish (*Fundulus*
heteroclitus) intestine. Comp. Biochem. Physiol. C 171, 1-7.
<https://doi.org/10.1016/j.cbpc.2015.03.001>.

710

714 Kaneko, T., Hirano, T., 1993. Role of prolactin and somatolactin in calcium regulation in fish. J.
Exp. Biol. 184, 31-45.

716

718 Kaneko, T., Watanabe, S., Lee, K.M., 2008. Functional morphology of mitochondrion-rich cells in
euryhaline and stenohaline teleosts. Aqua-BioSci. Monogr. 1, 1-62.
<https://doi.org/10.5047/absm.2008.00101.0001>.

720

722 Kaufman, S. 1981. The dipsogenic activity of prolactin in male and female rats. J. Physiol. 310(1),
435-44. <https://doi.org/10.1113/jphysiol.1981.sp013559>.

724

726 Kawauchi, H., Suzuki, K., Yamazaki, T., Moriyama, S., Nozaki, M., Yamaguchi, K., Takahashi, A.,
Youson, J., Sower, S.A., 2002. Identification of growth hormone in the sea lamprey, an extant
representative of a group of the most ancient vertebrates. Endocrinology 143(12), 4916-
4921. <https://doi.org/10.1210/en.2002-220810>.

728

730 Kelly, S.P., Chow, I.N., Woo, N.Y., 1999. Effects of prolactin and growth hormone on strategies of
hypoosmotic adaptation in a marine teleost, *Sparus sarba*. Gen. Comp. Endocrinol. 113, 9-
22. <https://doi.org/10.1006/gcen.1998.7159>.

732

734 Khong, H.K., Kuah, M.K., Jaya-Ram, A., Shu-Chien, A.C., 2009. Prolactin receptor mRNA is
upregulated in discus fish (*Sympodus aequifasciata*) skin during parental phase. *Comp. Biochem. Physiol. B* 153, 18-28. <https://doi.org/10.1016/j.cbpb.2009.01.005>.

736 Kim, Y., Watanabe, S., Kaneko, T., Huh, M., Park, S., 2010. Expression of aquaporins 3, 8 and
738 10 in the intestines of freshwater- and seawater-acclimated Japanese eels *Anguilla japonica*.
Fish. Sci. 76(4), 695-702. <https://doi.org/10.1007/s12562-010-0259-x>.

740 Kurita, Y., Nakada, T., Kato, A., Doi, H., Mistry, A.C., Chang, M.H., Romero, M.F., Hirose, S.,
742 2008. Identification of intestinal bicarbonate transporters involved in formation of carbonate
744 precipitates to stimulate water absorption in marine teleost fish. *Am. J. Physiol. Regul. Integr. Comp. Physiol.* 294(4), R1402-R1412. <https://doi.org/10.1152/ajpregu.00759.2007>.

746 Kwong, A.K., Ng, A.H., Leung, L.Y., Man, A.K., Woo, N.Y., 2009. Effect of extracellular osmolality
748 and ionic levels on pituitary prolactin release in euryhaline silver sea bream (*Sparus sarba*).
Gen. Comp. Endocrinol. 160, 67-75. <https://doi.org/10.1016/j.ygcen.2008.10.024>.

750 Lee, K.M., Kaneko, T., Aida, K., 2006a. Prolactin and prolactin receptor expression in a marine
752 teleost, pufferfish *Takifugu rubripes*. *Gen. Comp. Endocrinol.* 146, 318-328.
<https://doi.org/10.1016/j.ygcen.2005.12.003>.

754 Lee, K.M., Kaneko, T., Katoh, F., Aida, K., 2006b. Prolactin gene expression and gill chloride cell
756 activity in fugu *Takifugu rubripes* exposed to a hypoosmotic environment. *Gen. Comp. Endocrinol.* 147, 285-293. <https://doi.org/10.1016/j.ygcen.2006.06.009>.

758 Li, Z., Lui, E.Y., Wilson, J.M., Ip, Y.K., Lin, Q., Lam, T.J., Lam, S.H., 2014. Expression of key ion
760 transporters in the gill and esophageal-gastrointestinal tract of euryhaline Mozambique tilapia
762 *Oreochromis mossambicus* acclimated to fresh water, seawater and hypersaline water. *PLoS One* 9(1), e8751. <https://doi.org/10.1371/journal.pone.0087591>.

764 Lignot, J.H., Cutler, C.P., Hazon, N., Cramb, G., 2002. Immunolocalisation of aquaporin 3 in the
766 gill and the gastrointestinal tract of the European eel *Anguilla anguilla* (L.). *J. Exp. Biol.* 205,
2653-2663.

768 Lin, C.H., Hwang, P.P., 2016. The control of calcium metabolism in zebrafish (*Danio rerio*). *Int. J. Mol. Sci.* 17(11), 1783. <https://doi.org/10.3390/ijms17111783>.

770 Lin, L.Y., Weng, C.F., Hwang, P.P., 2002. Regulation of drinking rate in euryhaline tilapia larvae
772 (*Oreochromis mossambicus*) during salinity changes. *Physiol. Biochem. Zool.* 74, 171-177.
<https://doi.org/10.1086/319670>.

774 Liu, N.A., Liu, Q., Wawrowsky, K., Yang, Z., Lin, S., Melmed, S., 2006. Prolactin receptor
776 signaling mediates the osmotic response of embryonic zebrafish lactotrophs. *Mol. Endocrinol.* 20, 871-880. <https://doi.org/10.1210/me.2005-0403>.

778 Liu, Z., Ma, A., Zhang, J., Zhang, J., Yang, S., Cui, W., Xia, D., Qu, J., 2020. Cloning and
780 molecular characterization of PRL and PRLR from turbot (*Scophthalmus maximus*) and their
782 expressions in response to short-term and long-term low salt stress. *Fish Physiol Biochem.* 46, 501-517. <https://doi.org/10.1007/s10695-019-00699-2>.

784 Loretz, C.A., 1995. Electrophysiology of ion transport in teleost intestinal cells, in: Wood, C.M.,
786 Shuttleworth, T.J. (Eds.), *Cellular and Molecular Approaches to Fish Ionic Regulation*.
Academic Press, San Diego, pp. 25-56. [https://doi.org/10.1016/S1546-5098\(08\)60241-1](https://doi.org/10.1016/S1546-5098(08)60241-1).

788 Loretz, C.A., Bern, H.A., 1982. Prolactin and osmoregulation in vertebrates. *Neuroendocrinology* 35, 292-304. <https://doi.org/10.1159/000123397>.

790 Madsen, S.S., Bujak, J., Tipsmark, C.K., 2014. Aquaporin expression in the Japanese medaka
 792 (*Oryzias latipes*) in freshwater and seawater: challenging the paradigm of intestinal water
 transport? *J. Exp. Biol.* 217(17), 3108-3121. <https://doi.org/10.1242/jeb.105098>.

794 Madsen, S.S., Engelund, M.B., Cutler, C.P., 2015. Water transport and functional dynamics of
 796 aquaporins in osmoregulatory organs of fishes. *Biol. Bull.* 229(1), 70–92.
<https://doi.org/10.1086/BBLv229n1p70>.

798 Madsen, S.S., Nishioka, R.S., Bern, H.A., 1997. Prolactin antagonises seawater acclimation in
 800 the anadromous striped bass, *Morone saxatilis*, in: Kawashima, S., Kikuyama, S. (Eds.),
 Advances in Comparative Endocrinology, Vol. 2. Monduzzi Editore, Italy, pp. 1011–1015.

802 Madsen, S.S., Olesen, J.H., Bedal, K., Engelund, M.B., Velasco-Santamaría, Y.M., Tipsmark,
 804 C.K., 2011. Functional characterization of water transport and cellular localization of three
 aquaporin paralogs in the salmonid intestine. *Front. Physiol.* 2, 56.
<https://doi.org/10.3389/fphys.2011.00056>.

806 Mainoya, J.R., 1978. Possible influence of prolactin on intestinal hypertrophy in pregnant and
 808 lactating rats. *Experientia* 34(9), 1230-1231. <https://doi.org/10.1007/bf01922975>.

810 Mainoya, J.R., 1982. Water and NaCl absorption by the intestine of the tilapia *Sarotherodon*
 812 *mossambicus* adapted to fresh water or seawater and the possible role of prolactin and
 cortisol. *J. Comp. Physiol.* 146, 1-7. <https://doi.org/10.1007/bf00688710>.

814 Malvin, R.L., Schiff, D., Eiger, S., 1980. Angiotensin and drinking rates in the euryhaline killifish.
 816 *Am. J. Physiol. Regul. Integr. Comp. Physiol.* 239, R31-R34.
<https://doi.org/10.1152/ajpregu.1980.239.1.r31>.

818 Manzon, L.A., 2002. The role of prolactin in fish osmoregulation: a review. *Gen. Comp.*
 820 *Endocrinol.* 125, 291-310. <https://doi:10.1006/gcen.2001.7746>.

822 Martinez, A.S., Cutler, C.P., Wilson, G.D., Phillips, C., Hazon, N., Cramb, G., 2005. Regulation of
 824 expression of two aquaporin homologs in the intestine of the European eel: effects of
 seawater acclimation and cortisol treatment. *Am. J. Physiol. Regul. Integr. Comp. Physiol.*
 288(6), R1733-R1743. <https://doi.org/10.1152/ajpregu.00747.2004>.

826 Martos-Sitcha, J.A., Gregório, S.F., Carvalho, E.S.M., Canario, A.V.M., Power, D.M., Mancera,
 828 J.M., Martínez-Rodríguez, G., Fuentes, J., 2013. AVT is involved in the regulation of ion
 transport in the intestine of the sea bream (*Sparus aurata*). *Gen. Comp. Endocrinol.* 193,
 221-228. <https://doi.org/10.1016/j.ygcn.2013.07.017>.

830 McCormick, S.D., 2001. Endocrine control of osmoregulation in teleost fish. *Amer. Zool.* 41, 781-
 832 794. <https://doi.org/10.1093/icb/41.4.781>.

834 Meister, M.F., Humbert, W., Kirsch, R., Vivien-Roels, B., 1983. Structure and ultrastructure of the
 836 oesophagus in sea-water and fresh-water teleosts (Pisces). *Zoomorphology* 102, 33-51.
<https://doi.org/10.1007/BF00310731>.

838 Morley, M., Chadwick, A., El Tounsy, E.M., 1981. The effect of prolactin on water absorption by
 840 the intestine of the trout (*Salmo gairdneri*). *Gen. Comp. Endocrinol.* 44, 64-68.
[https://doi.org/10.1016/0016-6480\(81\)90356-7](https://doi.org/10.1016/0016-6480(81)90356-7).

842 Ocampo Daza, D., Larhammar, D., 2018. Evolution of the growth hormone, prolactin, prolactin 2
 844 and somatolactin family. *Gen. Comp. Endocrinol.* 264, 94-112.
<https://doi.org/10.1016/j.ygcn.2018.01.007>.

846 Pang, P.K.T., 1973. Endocrine control of calcium metabolism in teleosts. Amer. Zool. 13, 775-
792. <https://doi.org/10.1093/icb/13.3.775>.

848 Pang, P.K.T., Schreibman, M.P., Balbontin, F., Pang, R.K., 1978. Prolactin and pituitary control of
850 calcium regulation in the killifish, *Fundulus heteroclitus*. Gen Comp Endocrinol. 36, 306-316.
[https://doi.org/10.1016/0016-6480\(78\)90037-0](https://doi.org/10.1016/0016-6480(78)90037-0).

852 Perrott, M.N., Grierson, C.E., Hazon, N., Balment, R.J., 1992. Drinking behaviour in sea water
854 and fresh water teleosts, the role of the renin-angiotensin system. Fish Physiol. Biochem. 10(2), 161-168. <https://doi.org/10.1007/BF00004527>.

856 Peter, M.C.S., Mini, V.S., Bindulekha, D.S., Peter, V.S., 2014. Short-term in situ effects of
858 prolactin and insulin on ion transport in liver and intestine of freshwater climbing perch
(*Anabas testudineus* Bloch). J. Endocrinol. Reprod. 18(1), 47-58.

860 Pickford, G.E., Griffith, R.W., Torretti, J., Hendlez, E., Epstein, F.H., 1970. Branchial reduction
862 and renal stimulation of (Na^+ , K^+)-ATPase by prolactin in hypophysectomized killifish in fresh
water. Nature 228(5269), 378-379. <https://doi.org/10.1038/228378a0>.

864 Pickford, G.E., Phillips, J.G., 1959. Prolactin, a factor in promoting survival of hypophysectomized
866 killifish in fresh water. Science 130, 454-455. <http://dx.doi.org/10.1126/science.130.3373.454>.

868 Pierce, A.L., Fox, B.K., Davis, L.K., Visitacion, N., Kitashashi, T., Hirano, T., Grau, E.G., 2007.
870 Prolactin receptor, growth hormone receptor, and putative somatolactin receptor in
Mozambique tilapia: tissue specific expression and differential regulation by salinity and
fasting. Gen. Comp. Endocrinol. 154, 31-40. <https://doi.org/10.1016/j.ygcen.2007.06.023>.

872 Power, D.M., 2005. Developmental ontogeny of prolactin and its receptor in fish. Gen. Comp.
874 Endocrinol. 142, 25-33. <https://doi.org/10.1016/j.ygcen.2004.10.003>.

876 Prunet, P., Auperin, B., 1994. Prolactin receptors, in: Sherwood, N.M., Hew. C.L. (Eds.), Fish
878 Physiology, vol. 13: Molecular Endocrinology of Fish. Academic Press, New York, pp. 367-
391.

880 Prunet, P., Sandra, O., Le Rouzic, P., Marchand, O., Laudet, V., 2000. Molecular characterization
882 of the prolactin receptor in two fish species, tilapia *Oreochromis niloticus* and rainbow trout,
Oncorhynchus mykiss: a comparative approach. Can. J. Physiol. Pharmacol. 78, 1086-1096.
<https://doi.org/10.1139/y00-093>.

884 Raldúa, D., Otero, D., Fabra, M., Cerdà, J., 2008. Differential localization and regulation of two
886 aquaporin-1 homologs in the intestinal epithelia of the marine teleost *Sparus aurata*. Am.
Physiol. Regul. Integr. Comp. Physiol. 294, R993-R1003.
<https://doi.org/10.1152/ajpregu.00695.2007>.

890 Reindl, K.M., Sheridan, M.A., 2012. Peripheral regulation of the growth hormone-insulin-like
892 growth factor system in fish and other vertebrates. Comp. Biochem. Physiol. A 163, 231-245.
<https://doi.org/10.1016/j.cbpa.2012.08.003>.

894 Rhee, J.S., Kim, R.O., Seo, J.S., Lee, J., Lee, Y.M., Lee, J.S., 2010. Effects of salinity and
896 endocrine-disrupting chemicals on expression of prolactin and prolactin receptor genes in the
euryhaline hermaphroditic fish, *Kryptolebias marmoratus*. Comp. Biochem. Physiol. C 152,
413-423. <https://doi.org/10.1016/j.cbpc.2010.07.001>.

898 Rouzic, P.L., Sandra, O., Grosclaude, J., Rentier-Delrue, F., Jolois, O., Tujague, M., Pakdel, F.,
900 Sandowski, Y., Cohen, Y., Gertler, A., Prunet, P., 2001. Evidence of rainbow trout prolactin

interaction with its receptor through unstable homodimerisation. *Mol. Cell. Endocrinol.* 172, 105-113. [https://doi.org/10.1016/s0303-7207\(00\)00377-4](https://doi.org/10.1016/s0303-7207(00)00377-4).

Ruhr, I.M., Schauer, K.L., Takei, Y., Grosell, M., 2018. Renoguanylin stimulates apical CFTR translocation and decreases HCO_3^- secretion through PKA activity in the Gulf toadfish (*Opsanus beta*). *J. Exp. Biol.* 221(6), jeb173948. <https://doi.org/10.1242/jeb.173948>.

Ruhr, I.M., Takei, Y., Grosell, M., 2016. The role of the rectum in osmoregulation and the potential effect of renoguanylin on SLC26a6 transport activity in the Gulf toadfish (*Opsanus beta*). *Am. J. Physiol. Regul. Integr. Comp. Physiol.* 311, R179–R191. <https://doi.org/10.1152/ajpregu.00033.2016>.

Sage, M., 1968. Responses to osmotic stimuli of *Xiphophorus* prolactin cells in organ culture. *Gen. Comp. Endocrinol.* 10, 70-74. [https://doi.org/10.1016/0016-6480\(68\)90010-5](https://doi.org/10.1016/0016-6480(68)90010-5).

Saito, K., Nakamura, N., Ito, Y., Hoshijima, K., Esaki, M., Zhao, B., Hirose, S., 2010. Identification of zebrafish Fxyd11a protein that is highly expressed in ion-transporting epithelium of the gill and skin and its possible role in ion homeostasis. *Front. Physiol.* 1, 129. <https://doi.org/10.3389/fphys.2010.00129>.

Sakamoto, T., McCormick, S.D., 2006. Prolactin and growth hormone in fish osmoregulation. *Gen. Comp. Endocrinol.* 147, 24-30. <https://doi.org/10.1016/j.ygcn.2005.10.008>.

Sandra, O., Sohm, F., de Luze, A., Prunet, P., Edery, M., Kelly, P.A., 1995. Expression cloning of a cDNA encoding a fish prolactin receptor. *Proc. Natl. Acad. Sci. USA* 92, 6037-6041. <https://doi.org/10.1073/pnas.92.13.6037>.

Sandra, O., Rouzic, P.L., Cauty, C., Edery, M., Prunet, P., 2000. Expression of the prolactin receptor (tiPRL-R) gene in tilapia *Oreochromis niloticus*: tissue distribution and cellular localization in osmoregulatory organs. *J. Mol. Endocrinol.* 24, 215-244. <https://doi.org/10.1677/jme.0.0240215>.

Sandra, O., Rouzic, P.L., Rentier-Delrue, F., Prunet, P., 2001. Transfer of tilapia (*Oreochromis niloticus*) to a hyperosmotic environment is associated with sustained expression of prolactin receptor in intestine, gill, and kidney. *Gen. Comp. Endocrinol.* 123, 295-307. <http://doi.org/10.1006/gcen.2001.7672>.

Santos, C.R.A., Ingleton, P.M., Cavaco, J.E.B., Kelly, P.A., Edery, M., Power, D.M., 2001. Cloning, characterization, and tissue distribution of prolactin receptor in the sea bream (*Sparus aurata*). *Gen. Comp. Endocrinol.* 121, 32-47. <https://doi.org/10.1006/gcen.1998.7228>.

Seale, A.P., Stagg, J.J., Yamaguchi, Y., Breves, J.P., Soma, S., Watanabe, S., Kaneko, T., Cnaani, A., Harpaz, S., Lerner, D.T., Grau, E.G., 2014. Effects of salinity and prolactin on gene transcript levels of ion transporters, ion pumps, and prolactin receptors in Mozambique tilapia intestine. *Gen. Comp. Endocrinol.* 206, 146-154. <https://doi.org/10.1016/j.ygcn.2014.07.020>.

Seale, A.P., Watanabe, S., Grau, E.G., 2012. Osmoreception: Perspectives on signal transduction and environmental modulation. *Gen. Comp. Endocrinol.* 176, 354-360. <https://doi.org/10.1016/j.ygcn.2011.10.005>.

Seidelin, M., Madsen, S.S., 1997. Prolactin antagonizes the seawater-adaptive effect of cortisol and growth hormone in anadromous brown trout (*Salmo trutta*). *Zool. Sci.* 14(2), 249-256. <https://doi.org/10.2108/zsj.14.249>.

958 Seidelin, M., Madsen, S.S., 1999. Endocrine control of Na^+,K^+ -ATPase and chloride cell
development in brown trout (*Salmo trutta*): interaction of insulin-like growth factor-I with
prolactin and growth hormone. *J. Endocrinol.* 62, 127-135.
<https://doi.org/10.1677/joe.0.1620127>.

962 Shepherd, B.S., Sakamoto, T., Hyodo, S., Nishioka, R.S., Ball, C., Bern, H.A., Grau, E.G., 1999.
Is the primitive regulation of pituitary prolactin (tPRL_{177} and tPRL_{188}) secretion and gene
expression in the euryhaline tilapia (*Oreochromis mossambicus*) hypothalamic or
environmental? *J. Endocrinol.* 161, 121-129. <https://doi.org/10.1677/joe.0.1610121>.

966 Sundell, K., Jutfelt, E., Agustsson, T., Olsen, R.E., Sandblom, E., Hansen, T., 2003. Intestinal
968 transport mechanisms and plasma cortisol levels during normal and out-of-season parr-smolt
970 transformation of Atlantic salmon, *Salmo salar*. *Aquaculture* 222, 265-285.
[https://doi.org/10.1016/s0044-8486\(03\)00127-3](https://doi.org/10.1016/s0044-8486(03)00127-3).

972 Sundell K., Sundh H., 2012. Intestinal fluid absorption in anadromous salmonids: importance of
tight junctions and aquaporins. *Front. Physiol.* 3, 338.
<https://doi.org/10.3389/fphys.2012.00388>.

976 Takagi, C., Takahashi, H., Kudose, H., Kato, K., Sakamoto, T., 2011. Dual in vitro effects of
978 cortisol on cell turnover in the medaka esophagus via the glucocorticoid receptor. *Life Sci.* 88,
239-245. <https://doi.org/10.1016/j.lfs.2010.11.017>.

980 Takahashi, H., Kudose, H., Takagi, C., Moriyama, S., Sakamoto, T., 2013. In vitro effects of the
982 prolactin, growth hormone and somatolactin on cell turnover in fish esophagus: possible
984 mode of opposite osmoregulatory actions of prolactin and growth hormone, in: Nagy, G.M.,
Toth, B.E. (Eds.), *Prolactin*. Intech Open, Croatia, pp. 21-34. <http://dx.doi.org/10.5772/53867>.

986 Takahashi, H., Prunet, P., Kitahashi, T., Kajimura, S., Hirano, T., Grau, E.G., Sakamoto, T., 2007.
Prolactin receptor and proliferating/apoptotic cells in esophagus of the Mozambique tilapia
(*Oreochromis mossambicus*) in fresh water and in seawater. *Gen. Comp. Endocrinol.* 152,
326-331. <https://doi.org/10.1016/j.ygenc.2007.02.021>.

990 Takahashi, H., Sakamoto, T., Narita, K., 2006a. Cell proliferation and apoptosis in the anterior
992 intestine of an amphibious, euryhaline mudskipper (*Periphtalmus modestus*). *J. Comp.*
Physiol. B 176(5), 463-468. <https://doi.org/10.1007/s00360-006-0067-x>.

994 Takahashi, H., Takahashi, A., Sakamoto, T., 2006b. *In vivo* effects of thyroid hormone,
996 corticosteroids and prolactin on cell proliferation and apoptosis in the anterior intestine of the
euryhaline mudskipper (*Periphtalmus modestus*). *Life Sci.* 79(19), 1873-1880.
<https://doi.org/10.1016/j.lfs.2006.06.021>.

1000 Takei, Y., Hiroi, J., Takahashi, H., Sakamoto, T., 2014. Diverse mechanisms for body fluid
regulation in teleost fishes. *Am. J. Physiol. Regul. Integr. Comp. Physiol.* 307(7), R778-R792.
<https://doi.org/10.1152/ajpregu.00104.2014>.

1002 Takei, Y., Wong, M.K.S., Ando, M., 2019. Molecular mechanisms for intestinal HCO_3^- secretion
1004 and its regulation by guanylin in seawater-acclimated eels. *J. Exp. Biol.* 222, 1-12.
<https://doi.org/10.1242/jeb.203539>.

1006 Takei, Y., Wong, M.K., Pipil, S., Ozaki, H., Suzuki, Y., Iwasaki, W., Kusakabe, M., 2017.
1008 Molecular mechanisms underlying active desalination and low water permeability in the
esophagus of eels acclimated to seawater. *Am. J. Physiol. Regul. Integr. Comp. Physiol.*
1010 312(2), R231-244. <https://doi.org/10.1152/ajpregu.00465.2016>.

1012 Teerapornpuntakit, J., Wongdee, K., Thongbunchoo, J., Krishnamra, N., Charoenphandhu, N.,
 1014 2012. Proliferation and mRNA expression of absorptive villous cell markers and mineral
 1016 transporters in prolactin-exposed IEC-6 intestinal crypt cells. *Cell Biochem. Func.* 30(4), 320-
 327. <https://doi.org/10.1002/cbf.2807>.

1018 Tipsmark, C.K., 2008. Identification of FXYD protein genes in a teleost: tissue- specific
 1020 expression and response to salinity change. *Am. J. Physiol. Regul. Integr. Comp. Physiol.*
 1022 294, R1367-R1378. <https://doi.org/10.1152/ajpregu.00454.2007>.

1024 Tipsmark, C.K., Baltzegar, D.A., Ozden, O., Grubb, B.J., Borski, R.J., 2008a. Salinity regulates
 1026 claudin mRNA and protein expression in the teleost gill. *Am. J. Physiol. Regul. Integr. Comp. Physiol.*
 1028 294, R1004-R1014. <https://doi.org/10.1152/ajpregu.00112.2007>.

1030 Tipsmark, C.K., Breves, J.P., Seale, A.P., Lerner, D.T., Hirano, T., Grau, E.G., 2011. Switching of
 1032 Na^+ , K^+ -ATPase isoforms by salinity and prolactin in the gill of a cichlid fish. *J. Endocrinol.*
 1034 209, 237-244. <https://doi.org/10.1530/JOE-10-0495>.

1036 Tipsmark, C.K., Kiilerich, P., Nilsen, T.O., Ebbesson, L.O., Stefansson, S.O., Madsen, S.S.,
 1038 2008b. Branchial expression patterns of claudin isoforms in Atlantic salmon during seawater
 1040 acclimation and smoltification. *Am. J. Physiol. Regul. Integr. Comp. Physiol.* 294, R1563-
 1042 R1574. <https://doi.org/10.1152/ajpregu.00915.2007>.

1044 Tipsmark, C.K., Madsen, S.S., 2012. Tricellulin, occludin and claudin-3 expression in salmon
 1046 intestine and kidney during salinity adaptation. *Comp. Biochem. Physiol. A.* 162(4), 378-385.
<https://doi.org/10.1016/j.cbpa.2012.04.020>.

1048 Tipsmark, C.K., Mahmmoud, Y.A., Borski, R.J., Madsen, S.S., 2010a. FXYD-11 associates with
 1050 Na^+ - K^+ -ATPase in the gill of Atlantic salmon: regulation and localization in relation to changed
 1052 ion-regulatory status. *Am. J. Physiol. Regul. Integr. Comp. Physiol.* 299, R1212-1223.
<https://doi.org/10.1152/ajpregu.00015.2010>.

1054 Tipsmark, C.K., Sørensen, K.J., Hulgard, K., Madsen, S.S., 2010b. Claudin-15 and -25b
 1056 expression in the intestinal tract of Atlantic salmon in response to seawater acclimation,
 1058 smoltification and hormone treatment. *Comp. Biochem. Physiol. A.* 155(3), 361-370.
<https://doi.org/10.1016/j.cbpa.2009.11.025>.

1060 Tipsmark, C.K., Sørensen, K.J., Madsen, S.S., 2010c. Aquaporin expression dynamics in
 1062 osmoregulatory tissues of Atlantic salmon during smoltification and seawater acclimation. *J. Exp. Biol.* 213, 368-379. <https://doi.org/10.1242/jeb.034785>.

1064 Tomy, S., Chang, Y.M., Chen, Y.H., Cao, J.C., Wang, T.P., Chang, C.F., 2009. Salinity effects on
 1066 the expression of osmoregulatory genes in the euryhaline black porgy *Acanthopagrus schlegeli*. *Gen. Comp. Endocrinol.* 161, 123-132. <https://doi.org/10.1016/j.ygcn.2008.12.003>.

1068 Tran-Ngoc, K.T., Schrama, J.W., Le, M.T.T., Nguyen, T.H., Roem, A.J., Verreth, J.A., 2017.
 1070 Salinity and diet composition affect digestibility and intestinal morphology in Nile tilapia
 1072 (*Oreochromis niloticus*). *Aquaculture* 469, 36-43.
<https://doi.org/10.1016/j.aquaculture.2016.11.037>.

1074 Tse, D.L., Chow, B.K., Chan, C.B., Lee, L.T., Cheng, C.H., 2000. Molecular cloning and
 1076 expression studies of a prolactin receptor in goldfish (*Carassius auratus*). *Life Sci.* 66(7), 593-
 1078 605. [https://doi.org/10.1016/s0024-3205\(99\)00632-3](https://doi.org/10.1016/s0024-3205(99)00632-3).

1080 Utida, S., Hirano, T., Oide, H., Ando, M., Johnson, D.W., Bern, H.A., 1972. Hormonal control of
 1082 the intestine and urinary bladder in teleost osmoregulation. *Gen. Comp. Endocrinol.* 3(Suppl),
 1084 317-327. [https://doi.org/10.1016/0016-6480\(72\)90161-x](https://doi.org/10.1016/0016-6480(72)90161-x).

1068 Veillette, P.A., Sundell, K., Specker, J.L., 1995. Cortisol mediates the increase in intestinal fluid
 1070 absorption in Atlantic salmon during parr-smolt transformation. *Gen. Comp. Endocrinol.* 97,
 250-258. <https://doi.org/10.1006/gcen.1995.1024>.

1072 Wang, P.J., Lin, C.H., Hwang, H.H., Lee, T.H., 2008. Branchial FXYD protein expression in
 1074 response to salinity change and its interaction with Na^+/K^+ -ATPase of the euryhaline teleost
Tetraodon nigroviridis. *J. Exp. Biol.* 211, 3750-3758. <https://doi.org/10.1242/jeb.018440>.

1076 Watanabe, W.O., Kuo, C.M., Huang, M.C., 1985. Salinity tolerance of Nile tilapia fry
 1078 (*Oreochromis niloticus*), spawned at various salinities. *Aquaculture* 48, 159-176.
[https://doi.org/10.1016/0044-8486\(85\)90102-4](https://doi.org/10.1016/0044-8486(85)90102-4).

1080 Watanabe, S., Mekuchi, M., Ideuchi, H., Kim, Y.K., Kaneko, T., 2011. Electroneutral cation- Cl^-
 1082 cotransporters NKCC2 β and NCC β expressed in the intestinal tract of Japanese eel *Anguilla*
japonica. *Comp. Biochem. Physiol. A.* 159, 427-435.
<https://doi.org/10.1016/j.cbpa.2011.04.009>.

1086 Whittamore, J.M., 2012. Osmoregulation and epithelial water transport: lessons from the intestine
 1088 of marine teleost fish. *J. Comp. Physiol. B.* 182, 1-39. <https://doi.org/10.1007/s00360-011-0601-3>.

1090 Wongdee, K., Charoenphandhu, N., 2013. Regulation of epithelial calcium transport by prolactin:
 1092 from fish to mammals. *Gen. Comp. Endocrinol.* 181, 235-240.
<http://dx.doi.org/10.1016/j.ygcen.2012.07.006>.

1094 Wongdee, K., Teerapronpuntakit, J., Sripong, C., Longkunan, A., Chankamngoen, W., Keadsai,
 1096 C., Kraidith, K., Krishnamra, N., Charoenphandhu, N., 2016. Intestinal mucosal changes and
 upregulated calcium transporter and FGF-23 expression during lactation: contribution of
 1098 lactogenic hormone prolactin. *Arch Biochem Biophys.* 590, 109-117.
<https://doi.org/10.1016/j.abb.2015.11.038>.

1100 Xue, H., Zhang, Z., Li, X., Sun, H., Kang, Q., Wu, B., Wang, Y., Zou, W., Zhou, D., 2014.
 Localization and vasopressin regulation of the $\text{Na}^+/\text{K}^+/\text{2Cl}^-$ cotransporter in the distal colonic
 1102 epithelium. *World J. Gastroenterol.* 20(16), 4692-4701.
<https://doi.org/10.3748/wjg.v20.i16.4692>.

1104 Yada, T., Hirano, T., Grau, E.G., 1994. Changes in plasma levels of the two prolactins and growth
 1106 hormone during adaptation to different salinities in the euryhaline tilapia (*Oreochromis*
mossambicus). *Gen. Comp. Endocrinol.* 93, 214-223.
<https://doi.org/10.1006/gcen.1994.1025>.

1110 Yada, T., Uchida, K., Kajimura, S., Azuma, T., Hirano, T., Grau, E.G., 2002. Immunomodulatory
 1112 effects of prolactin and growth hormone in the tilapia, *Oreochromis mossambicus*. *J.*
Endocrinol. 173, 483-492. <https://doi.org/10.1677/joe.0.1730483>.

1114 Yamamoto, M., Hirano, T., 1978. Morphological changes in the esophageal epithelium of the eel,
 1116 *Anguilla japonica*, during adaptation to seawater. *Cell Tissue Res.* 192, 25-38.
<https://doi.org/10.1007/bf00231020>.

1118 Yang, W.K., Kang, C.K., Chang, C.H., Hsu, A.D., Lee, T.H., Hwang, P.P., 2013. Expression
 1120 profiles of branchial FXYD proteins in the brackish medaka *Oryzias dancena*: a potential
 saltwater fish model for studies of osmoregulation. *PLoS One* 8, e55470.
<https://doi.org/10.1371/journal.pone.0055470>.

1122

1124 Zhang, Y., Long, Z., Li, Y., Yi, S., Shi, Y., Ma, X., Huang, W., Lu, D., Zhu, P., Liu, X., Meng, Z.,
 Huang, X., Cheng, C.H.K., Lin, H., 2010. The second prolactin receptor in Nile tilapia
(Oreochromis niloticus): molecular characterization, tissue distribution and gene expression.
 1126 Fish Physiol. Biochem. 36, 283-295. <https://doi.org/10.1007/s10695-009-9355-1>.

1128 Zhang, K., Zhang, X., Wen, H., Qi, X., Fan, H., Tian, Y., Liu, Y., Li, Y., 2019. Spotted sea bass
(Lateolabrax maculatus) *cftr*, *nkcc1a*, *nkcc1b*, and *nkcc2*: genome-wide identification,
 1130 characterization and expression analysis under salinity stress. J. Ocean Univ. China 18,
 1470-1480. <https://doi.org/10.1007/s11802-019-4114-0>.

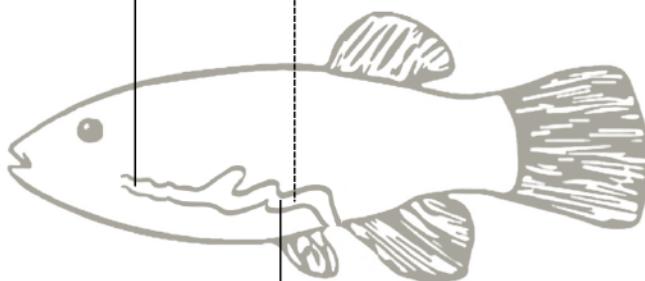
1132

Figure legend

1134 **Figure 1.** Overview of the molecular, cellular, and organ level responses to prolactin
 (Prl) signaling in the gastrointestinal tract of teleosts. Processes stimulated by Prl are
 1136 listed within green-shaded boxes with solid lines; processes inhibited by Prl are listed
 within red-shaded boxes with dashed lines. The demonstrated effects of Prl are listed
 1138 alongside their associated study species (indicated within parentheses). Specific
 references: ¹Takahashi et al., 2007, ²Takahashi et al., 2013, ³Utida et al., 1972, ⁴Morley
 1140 et al., 1981, ⁵Ferlazzo et al., 2012, ⁶Tippsmark et al., 2010b, ⁷Takahashi et al., 2006a,
⁸Seale et al., 2014, ⁹Kelly et al., 1999, ¹⁰Peter et al., 2014, ¹¹Mainoya et al., 1982,
 1142 ¹²Madsen et al., 1997.

1144 **Highlights:** ► Prl regulates gastrointestinal processes supportive of hydromineral
 balance. ► Prl receptors are expressed in esophagus and intestine of fishes. ► Prl
 directs the expression of intestinal solute transporters in euryhaline teleosts. ►
 1146 Agnathans will provide insight into how Gh/Prl-family hormone function evolved.

1148


Fig. 1

Esophagus:

↑ Epithelial cell proliferation (*Oreochromis mossambicus*; *Oryzias latipes*)¹²

Intestine:

↓ Na⁺, Cl⁻, and H₂O absorption (*Anguilla japonica*)³
↓ H₂O absorption (*Oncorhynchus mykiss*)⁴
↓ HCO₃⁻ secretion (*Sparus aurata*)⁵
↓ *slc4a4* mRNA (*Sparus aurata*)⁵
↓ *claudin-15* and -25b mRNA (*Salmo salar*)⁶

Intestine:

↑ Epithelial cell proliferation (*Periophthalmus modestus*)⁷
↑ *nkcc2* mRNA (*Oreochromis mossambicus*)⁸
↑ Na⁺/K⁺-ATPase activity (*Sparus sarba*; *Anabas testudineus*)⁹⁻¹⁰
↑ Na⁺ and H₂O absorption (*Oreochromis mossambicus*)¹¹
↑ H₂O absorption (*Morone saxatilis*)¹²