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Abstract— Energy storage can generate significant revenue
by taking advantage of fluctuations in real-time energy market
prices. In this paper, we investigate the real-time price arbitrage
potential of aerodynamic energy storage in wind farms. This
under-explored source of energy storage can be realized by
deferring energy extraction by turbines toward the front of a
farm for later extraction by downstream turbines. In large wind
farms, this kinetic energy can be stored for minutes to tens of
minutes, depending on the inter-turbine travel distance and the
incoming wind speed. This storage mechanism requires minimal
capital costs for implementation and potentially could provide
additional revenue to wind farm operators. We demonstrate
that the potential for revenue generation depends on the
energy arbitrage (storage) efficiency and the wind travel time
between turbines. We then characterize how price volatility
and arbitrage efficiency affect real-time energy market revenue
potential. Simulation results show that when price volatility is
low, which is the historic norm, noticeably increased revenue
is only achieved with high arbitrage efficiencies. However, as
price volatility increases, which is expected in the future as the
composition of the power system evolves, revenues increase by
several percent.

[. INTRODUCTION

Electric power storage devices can generate considerable
revenue through energy market arbitrage, where the storage
operator buys and stores electricity at low prices and sells
at a higher price [1]. In New York, battery storage devices
were found to generate a median net revenue of $50 per MW
of capacity per day by arbitraging energy prices over 2 hour
intervals [2]. Similar revenue potential was found for pumped
hydro storage in Great Britain, however the revenue did not
justify the large capital cost of these systems [3]. Energy
arbitrage with distributed energy resources, such as electric
vehicles [4] and electric water heaters [5], and through
demand-response programs in buildings [6] has also been
shown to be cost-effective. The price volatility that enables
this arbitrage is expected to increase as generation from
renewable resources continues to expand [7], further raising
the revenue potential of real-time energy market arbitrage.

The control design in [8] exploited an aerodynamic energy
storage mechanism to enable a wind farm to efficiently
provide the minute-scale ancillary service, secondary fre-
quency regulation. This storage of kinetic energy in the
wind farm flow field can be accomplished by reducing
energy extraction at upstream turbines, thereby increasing the
energy available to subsequent turbines. More specifically,

ICarl R. Shapiro, Chengda Ji, and Dennice F. Gayme are with
the Department of Mechanical Engineering, Johns Hopkins Uni-
versity, Baltimore, Maryland 21218, USA cshapir5@jhu.edu,
chengdaji@jhu.edu, dennice@jhu.edu

as the wind travels through a turbine, the extraction of
kinetic energy leads to a less energetic region downstream,
known as the turbine wake [9]. Reducing energy extraction
at an upstream turbine leads to a more energetic wake. As
this wake travels downstream, the additional energy can
be partially extracted by subsequent turbines. The energy
storage duration is proportional to the minute scale inter-
turbine wind travel time and the number of rows in the
farm. Inter-turbine wind travel times at rated power range
from 30 seconds to 2 minutes in typical farms, resulting in
storage durations of minutes to tens of minutes in moderately
sized wind farms. Therefore, the mechanism is potentially
applicable to real-time energy market price arbitrage with
clearing times of five-minutes or less.

In this paper, we develop an optimization framework for
energy arbitrage in 5-minute real-time markets via aerody-
namic energy storage in wind farms. The feasibility and
efficiency of the aerodynamic energy storage mechanism is
first studied using high-fidelity computational fluid mechan-
ics simulations [10], [11]. We construct a simplified model
to estimate the revenue potential of such an approach under
different farm configurations and price volatility scenarios.
This model uses a graph representation of a wind farm [12]
that is informed by high-fidelity simulation data. The model-
based control algorithm is used to study the revenue potential
of energy market arbitrage for a wind farm operating under
historic price and wind speed data. We then further analyze
the revenue potential of this approach under different price
volatility scenarios, as measured by a proposed inter-period
volatility index. Under low volatility, which is the historic
norm, aerodynamic energy arbitrage increases revenue by
less than one percent. In scenarios with higher volatility,
which is expected in the future, revenue increases by several
percent.

The remainder of this paper is organized as follows. In
Section II we demonstrate the aerodynamic energy storage
potential of wind farms using high-fidelity simulations. We
introduce a directed graph model of the wind farm and
formulate the energy market arbitrage problem in Section III.
In Section IV, we show energy market revenue results from
simulations of the wind farm model. Finally, the implications
of the results are discussed and conclusions are made in
Section V.

II. AERODYNAMIC ENERGY STORAGE

Aerodynamic energy storage with wind farms has not been
widely studied. In this section, we explain the aerodynamic
storage mechanism using control actuation of the first row of



turbines as an example. This actuation reduces power gen-
eration for a specified time period and results in additional
power generation for the entire farm during a later time pe-
riod by increasing power generation at downstream turbines.
We then estimate the aerodynamic storage efficiency from
high fidelity simulations of staggered and aligned wind farms
operating at constant power coefficients.

To demonstrate the feasibility of aerodynamic energy stor-
age for energy arbitrage, we consider a wind farm composed
of 84 turbines arranged in 7 rows of 12 aligned columns.
Rows and columns are defined as shown in Figure 2. The
turbines are numbered as shown in Figure 3. Each turbine
has a D = 2R = 100 m rotor diameter and a 100 m hub
height. The spacing between turbines is s, = 7D in the
streamwise (aligned with the wind) direction and s, = 5D
in the spanwise (perpendicular to the wind) direction.

We assume idealized Betz-optimal wind turbines and
neglect dynamic effects in turbine rotation rate and pitching
actuation. With these assumptions, the power generation at
the maximum power point of the i-th turbine is given by
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where u; is the incoming wind speed to the i-th turbine,
Urated 1S the rated wind speed of the turbine, upyax is the
cut-out wind speed of the turbine, and p is the air density.
The rated power is Prated = 3p0mR2Cpud 4, where py =
1.223 kg/m? is the nominal density of air. For the unwaked
turbines, the inflow velocity is equal to the wind speed at
the beginning of the farm Uy (t).

This wind farm is simulated using high-fidelity computa-
tional fluid mechanics code that simulates the wind turbine
array velocity field and the energy extraction by individual
turbines. More information about the simulation environment
can be found in [13], [14]. The power generation of the
first row of turbines is modulated dynamically by controlling
the power coefficient C'p to provide energy storage over
a minute time scale. In particular, the power coefficient is
adjusted such that the first row of turbines is turned off
Cp,i(t)=0.5625[1—H(t+ 1)+ H(t))],i=1,...,12for
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Fig. 1: Wind farm power when the first row turbines are
turned off at ¢ = —90 s and back on at £ = 0.

7 =90 s, where H (t) is the Heaviside function and all other
turbines operate at C'p; = 0.5625, i = 13,..., N.

The total power of this dynamically controlled wind farm
is shown in Figure 1. Initially, all turbines are operating at
Cp = 0.5625, generating approximately Py = 96 MW. At
t = —90 s, the first row of turbines are turned off, Cp = 0,
reducing the generation to approximately P_ = 76 MW
and eliminating the wake behind the first row of turbines.
After 90 seconds, which is the travel time between the
turbine rows, the wake from the first row is no longer
affecting the generation of the second row. At this point,
the first row of turbines is turned back on, which increases
the total wind farm power generation to approximately
P, = 105 MW. This increased generation continues until
around ¢ = 90 s, at which point the generation returns
to approximately 96 MW. This experiment demonstrates
that energy arbitrage through aerodynamic energy storage
is feasible, and in this case the storage efficiency can be
computed as a = (P — By)/(Py — P-) = 45%.

The instantaneous starting and stopping of wind turbines
in this numerical experiment is unrealistic. However, these
results provide an estimate of the efficiency of aerodynamic
energy storage. Similar efficiencies with somewhat lower
storage capacities can likely be obtained by pitch and torque
control actuation over a few seconds.
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Fig. 2: Aligned and staggered wind farms with rows and
columns shown. The direction of the wind velocity U, is
also shown at the inlet to the aligned farm. Adapted from [8].

Storage efficiency in aligned farms can also be estimated
from time-averaged power data of wind farms in aligned
and staggered arrangements, as shown in Figure 2 [10]. Let
PP, P3, and Pg denote the power production of the first
three rows of an aligned wind farm under normal operating
conditions, and Py, Pj, and P; denote the same quantities
for a staggered wind farm. First, consider the power storage
efficiency of the first row of turbines in an aligned farm.
Turning off the first row of turbines reduces the power
production of the farm by Pj*. Once the wind travels to
the second row, which produces Pj under normal waked
conditions, the second row’s power will increase to the first
row’s unwaked power generation Pp. The corresponding
extra generation will be (P{* — P§) with a storage efficiency
of a = (P—Pg§)/P{. Energy can also be stored by reducing
the generation of the second row. Consider the aligned wind
farm in Figure 2. If the second row is turned off, then the
third turbine will not be affected by the turbine’s wake and
will behave like the third row of turbines in the staggered
wind farm in Figure 2. In this case, the inter-turbine distance
will be doubled and the third row’s power will increase from



Pg to the power generated by the third row in a staggered
farm Pj. The storage efficiency is then o = (P5 — Py')/Py'.

TABLE I: Aerodynamic energy storage efficiency when
controlling rows 1 and 2 at various streamwise spacings s,.
Efficiencies calculated from data in [10].

sz/D Row 1l Row 2
7.85 0.44 0.43
5.24 0.59 0.53
3.49 0.72 0.76

Some example storage efficiencies for different streamwise
inter-turbine spacings computed based on the simulation data
in [10] are shown in Table I for various streamwise spacings
sz. The results are consistent with the storage efficiency
found from simulations with dynamic modulation of the
first row’s power extraction. The storage efficiency decreases
with increasing streamwise spacing and appears to be nearly
constant regardless of the row that is controlled. The constant
nature of the arbitrage efficiency for a given arrangement
will form the basis of the wind farm price arbitrage model
discussed in the next section.

IIT. PROBLEM FORMULATION

Consider a wind farm represented by a directed graph
G = {N, &}, where the nodes i € N represent the turbines
and the edges e;; € & describe the interconnection of
turbines through wake effects. The edges can be described
by an adjacency matrix with e;; = 1 if turbine i’s wake
affects turbine j and e;; = 0 if turbine j cannot be affected
by the wake of turbine ¢. Each edge is assigned an edge
weight a(e;;) that represents the storage efficiency between
connected turbines. In other words, a(e;;) is the fraction
of any energy stored by turbine ¢ that can be extracted by
turbine j. Although the aerodynamics of wind turbines and
farms is highly nonlinear, this assumption appears to hold
for the present analysis based on the results in Section II.
Each edge is also assigned a time-varying edge time delay
Ta(e;j,t) that represents the inter-turbine wake travel time
between turbines ¢ and j.

In this paper, we limit the configurations to aligned wind
farms with regular streamwise spacings between turbines s,
(see Figure 2). In this configuration, the wind farm graph
is simply a collection of directed line graphs, as shown in
Figure 3. The results of the high-fidelity simulation based
computations in Section II demonstrate that the inter-turbine
storage efficiency « in these farm configurations is nearly
constant across all of the wind farm edge connections. We
therefore set the edge weights a(e;;) = «a,Ve;; € £ to
a constant value. The corresponding time-delay between
turbines 7 and j connected by edge e;;,
Td(ei 75 f,) = S

Uso(t)’
is computed by assuming that the wakes travel at the inflow
velocity Uso(t) to the wind farm. This linear advection
assumption has been previously used in dynamic wind farm
models with good results [8], [15].

3)

The maximum power generation at each turbine is given
by (1), which requires knowledge of the incoming wind
velocity to each turbine wu ;(t). For the set of unwaked
turbines U (i.e. the first row), the incoming wind speed
to the turbine modeled as the average wind speed at the
inlet to the farm u ;(t) = U (t) Vi € U. For the set of
downstream (waked) turbines W = N \ U, the wind speed
will be lower due to the effect of upstream turbine wakes.
Further examination of simulation results [10] shows that the
power generation of these turbines is nearly constant. We can
therefore adopt the model that for a given arbitrage efficiency
of an aligned wind farm «, the maximum power of waked
wind turbines is a fraction 5 = (1 — «) of the unwaked
turbines’ maximum power. The corresponding inflow wind
speed is Un i (t) = Uso (t)BY/3, Vi € W.

We formulate the problem of providing real-time energy
market arbitrage with wind farms as the optimization prob-
lem (2). The objective function (2a) represents the wind
farm operator revenue revenue and A(t) denotes the real-
time locational marginal price (LMP) at the wind farm
interconnection at time ¢, P;(¢) is the power generation of
the i-th turbine at time ¢, and ¢; is the time interval. In
this formulation, we neglect subsidies like the production
tax credit and renewable energy credits, which are expected
to be phased out in the future. The power generation is upper
bounded by the rated power of the turbine (2b) and the power
available in the wind (2¢)—(2d), which includes the maximum
power point generation P;"®* and additional power stored in
the wake through aerodynamic storage Pf’jtored.

The stored power along the edge connecting j and [,
Pjsltore‘i(t), is given in equation (2d), which measures the
stored energy as the difference between the sum of the max
power and the upstream power storage and the power P;(t)
extracted by turbine j. The non-negative extracted power is
subsequently upper-bounded by the sum of the maximum
power and weighted upstream stored power (2b).

With these assumptions, we have constructed a wind farm
representation that includes the dynamics of wind and wake
travel. However, nonlinearities inherent in the aerodynamics
of wind farms and the dynamics of wind turbine torque
and pitch actuation have not been incorporated. Although
changing wind directions are not considered here, this could
be incorporated by making the graph topology time de-
pendent. The simplifying assumptions applied here provide
a realistic, yet tractable, formulation that can be used to
evaluate the applicability of aerodynamic energy storage
in real time energy markets. We next apply the approach
described above to explore the revenue potential of real-time
energy market arbitrage with aerodynamic energy storage
through numerical examples.

IV. SIMULATIONS

The revenue generation potential of an 84-turbine wind
farm, shown in Figure 3, is studied using the nodal real-
time prices [16] for the Hudson Valley zone of the New
York Independent System Operator (NYISO) on February
28, 2018. The five-minute real-time data is interpolated into
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Fig. 3: Graph structures for an 84-turbine aligned wind farm
with 7 rows, 12 columns, and o = 0.45. Nodes are shown
in black. Edges and edge weights are shown in red.
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Fig. 4: Revenue increase under historical prices for various
arbitrage efficiencies « and turbine spacing. Realistic arbi-
trage efficiencies and spacings are also shown (in white) for
wind farms composed of turbines with power ratings of 3,
5, 8, and 15 MW.

minute data for the revenue maximization problem in (2).
Historical wind speed data [17] for the same location and day
is used to construct the maximum power point generation
of the wind farm. We first conduct a parametric study by
varying the arbitrage efficiency « and turbine spacing s, as
shown in Figure 4.

As expected, revenue increases with greater turbine spac-
ing. The revenue increase is strongly dependent on the
arbitrage efficiency, increasing dramatically for o > 0.9. In
real wind farms, however, arbitrage efficiencies are limited
by aerodynamics and strongly related to the inter-turbine

spacing, which typically ranges from three to seven rotor
diameters, s, = 3D-7D. Figure 4 superimposes the values
associated with realistic turbine spacings and efficiencies
corresponding to the configurations used in [10], for different
wind turbine power ratings plotted over the parameter sweep
in white. Greater turbine power ratings correspond to larger
rotor sizes and turbine spacing. In all cases, the revenue
increases are near or less than 1% for realistic configurations.
Price volatility is expected to increase as the composition
of the power system evolves. To evaluate this situation we
consider the revenue potential of aerodynamic energy storage
under scenarios with varying price volatility. Synthetic real-
time prices, A (t) = A;(t)v(t), are generated by multiplying
the historic prices \; by a random number v drawn from a

beta distribution given by
F(Q’}/) »y—l(l _ ’U)’Y_l. (4)

PO = araa)

Values of v are selected ranging from 0 to 1.

A quantitative index is needed to evaluate the volatility of
the prices generated in this manner, as standard definitions
of price volatility, e.g., variance or price spread, may not
be relevant to aerodynamic energy storage in wind farms.
Therefore, we propose an inter-period volatility index, as a
measurement of the arbitrage capacity of a LMP trajectory
under no efficiency losses; i.e., the downstream turbines
receive all un-extracted power. This inter-period volatility
index,

v=(1-E), 5)

is determined by the mean value of the price increase
trajectory, which is denoted as E, and given by

At+1 t+1
exp(()\(;r))) A1) >0 & ((j))>1,
Ex(t) =190, IEA() <0 & A(t+1)>0,
1, otherwise,
where t € {1,---,T—1}, and T is the length of the LMP

trajectory. ¥ € [0,1] is a nonegative parameter with larger
values indicating greater arbitrage capacity. ¥ = 1 indicates
that arbitrage occurs during all time intervals, whereas, ¥ =
0 indicates that there is no arbitrage potential because the
LMP trajectory either goes down or remains constant.
Some example LMP trajectories under three different
inter-period volatility index scenarios are shown in Figure 5.
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Fig. 6: LMPs and stored energy from 6am to 10am for 15
MW turbines spaced 3.49D apart.

Revenue increases as a function of the inter-period volatility
index for wind farms with different wind turbine power
ratings and turbine spacings are shown in Figure 7. Under a
large inter-period volatility index, revenue potential increases
substantially, reaching nearly 10% for 15 MW turbines
reasonably closely spaced at 3.49D apart, which is about
half of the typical inter-turbine spacing of installed farms.
For this case, the energy storage from 6 am to 10 am is
shown in Figure 6. As expected, energy is stored in advance
of large relative price increases.

V. DISCUSSION AND CONCLUSIONS

This feasibility study of the revenue potential of real-time
energy market arbitrage using aerodynamic energy storage
in wind farms highlights the potential use of aerodynamic
storage and the efficiency of this storage mechanism. The

results of the simulations presented here indicate that his-
toric price volatility in NYISO does not provide significant
revenue increases for wind farms using aerodynamic en-
ergy storage for real-time energy market arbitrage. Under
higher price volatility scenarios, however, wind farms can
generate significantly increased revenue. This is particularly
true for large, closely-spaced turbines. These two trends may
simultaneously occur in the near future as increased renew-
able generation affects prices and wind farms composed of
large turbines are built offshore. We believe these results
and potential future changes in the power grid and wind
power plants demonstrate that additional investigation of this
approach is warranted. In particular, aerodynamic energy
storage could potentially provide additional revenue to wind
farm operators as the renewable energy market model evolves
beyond “must-take” and production tax credits.

This work made several simplifying assumptions whose
validity needs to be further studied to fully understand the
potential of the proposed approach in practice. For example,
we assumed perfect knowledge of wind farm power output
and real-time energy LMP predictions. The fidelity of the re-
sults would be improved by incorporating existing prediction
methods. Wind power predictions over 1-5 hour horizons
are possible using persistence models or mass-spring damper
models of the unsteady Ekman layer [18], [19]. Real-time
LMP predictions based on historical prices, power demand,
and weather data are also the topic of on-going research,
e.g., [20]. Extensions of the work accounting for uncertainty
in these price and wind speed predictions will provide an
estimate of how tight of an upper bound the current results
provide for revenue potential. Furthermore, detailed wind
turbine control algorithms need to be developed to implement
this approach, and refined wind farm models are needed to
account for aerodynamic nonlinearities.
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Coupling the aerodynamic storage mechanism discussed
in this paper with other wind farm storage approaches could
enhance the revenue potential of real-time energy market
arbitrage with wind farms. For example, kinetic energy
storage in the rotating rotor [21] could improve the storage
efficiency. Such an approach has been previously used to
reduce short-term fluctuations in power generation [21] and
provide primary frequency regulation [22]. Aerodynamic
storage could also increase the effectiveness of other storage
mechanisms, such as co-located batteries [23]. As with all
dynamic control applications, the effect of control actions on
wind turbine loading and maintenance can be considerable
and will affect the total profits of wind farms using aerody-
namic energy arbitrage. These considerations are directions
of ongoing work.
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