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Photosystem II
 Photosystem II: Nature’s water oxidation catalyst.
 Active site contains a unique Mn-Ca-O cluster, the 

OEC.



Photosystem II-photon driven water 
oxidation
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Umena, Y et al. Nature 2011, 473, 55. 

 The OEC operates 
by a 5-step 
photooxidation cycle 

 Red photons excite 
oxidation of 
chlorophyll P680

 P680 in turn oxidizes 
the OEC (Sn)

 S4 oxidizes water to 
O2 to close the cycle.
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Proposed mechanisms of O-O bond formation 
from theory are shown below. There is not 
currently a consensus.
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Modeling the OEC

 Synthetic model complexes are one tool 
that may be used to examine potential 
reaction mechanisms.

 A model complex can never prove the 
mechanism of an enzyme, but they may be 
used to probe the reasonableness of 
certain mechanistic proposals.

 Many structural models are known, but 
functional models are rarer.Some
examples are shown on the next page. 
Structural and functional models remain an 
important goal. 



Structural models of 
the OEC
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 These excellent structural 
models are useful for 
comparisons and calibrations to 
biophysical data, but do not 
show much biomimetic 
reactivity. 

 This may be due to their being 
highly constrained by 
multidentate ligands, and 6-
coordinate, leaving no place for 
H2O to bind



Functional models of 
the OEC
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 Functional models 
typically use motifs 
dissimilar from 
biology, limiting 
translation of 
findings to biological 
system.



Preparation of unchelated clusters of 
reduced coordination number
 Our approach: lower-coordinate clusters with 

minimal chelation.
 Imide as a surrogate of oxide to control cluster 

geometry
 Isolobal
 Charge
 Heteroatom size
 Sterically and electronically tunable R-group

 This motifs may show O-based biomimetic 
chemistry, or show biomimetic chemistry via the 
oxene-nitrene analogy (below) 
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Heterocubane with pendant Mn
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 Prepared by a simple metathesis reaction, involving somewhat 
chaotic redox chemistry, giving the two shown products in a 9:1 
ratio (top:bottom) 



 To improve relevance to the OEC, we sought to remove the L 
ion (and replace with Ca). We can remove Li+ using crown 
either. 

 Crystallographic problem: Non-positive displacement 
parameters on three carbons. This means the computer 
“thinks” these are heavy atoms, which is hard to explain.

 More on this later. 
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Removal of Li from dicubane
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Mn-Li heterodicubane
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 The crystallographic problem 
was circumvented by 
precipitating Li+using Cl-
(instead of crown ether). This 
made no sense, but it worked 
(we will explain why later).

 The removal of Li+ results in 
an unstable anionic cluster, 
which triggers reductive 
elimination of azo-tert-butane 
to alleviate negative charge 
buildup on imide.

 The reductive elimination of 
tBuN=NtBu from a MnIV/V

cubane cluster is a nitrene 
analog of the OEC oxygen 
evlolution reaction

tBuN=NtBu



Removal of Li from dicubane with 
crown ether: What happened?
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 Considering further the non-positive 
displacement parameters when crown ether was 
used

 We also noticed long bond lengths similar to 
permanganate. This is clearly not just a tert-
butyl group.

 Structure modeled as a disordered mixture of 
tert-butyl imido ligands and 
nitridotrioxomanganese(VII) metalloligands gave 
an excellent crystallographic model. 1.63 Å

1.66 Å

R1 = 2.84%Vaddypally, et al. J. Am. Chem. Soc. 2017, 139, 4675



How did this happen? Where did 
oxygen come from?
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 Li removed by crown ethers (wet).
 Protolysis of tert-butyl

amide fragement of parent cluster gives MnO3N2-

 MnO3N2- structurallly comparable to tert-butyl, and 
incorporates randomly. 

 Majority of the material is all-t-butyl (90%), and a single 
metalloligand (10%). Other species with several 
metalloligands are only present in traces.  

Vaddypally, et al. J. Am. Chem. Soc. 2017, 139, 4675



Laser Electrospray Mass Spectroscopy –
LEMS for detection of metalloligand cluster

Robert J. Levis
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 LEMS is a novel ionization technique 
that uses a femtosecond laser to non-
destructively vaporize a sample and 
deposit it onto the surface of charged 
electrospray droplets.

 Ideal for nonplar molecules that are 
insoluble in normal electrospray 
solvents. 



Isotopic labelling with 18O 
confirms water is the source of O
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S4 state as a high-valent Mn=O
 Nucleophilic attack by Ca-bound hydroxide on high-valent Mn-O 

at dangler Mn is a popular mechanistic proposal for O-O bond 
formation. Our cluster is an intriguing mimic of this proposed 
structure. 
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Reactivity of the Pendant Mn=O
 “Dangler” oxygens do not oxidize water to give detectable oxygens in 

our experiments, but they do react with olefins quantitatively to give 
deoxygenated products (permanganate-like reactivity).

 Oxygen is transferred from the cluster to the substrate.
 Hydrogen atom is transferred from the stubstrate to the cluster. 

tBuN
Mn N

MnN

N Mn

NMn

MnVII

O

tBu

NtBu

NtBu

tBuN

tBu

tBu

O

O

3

H H

tBuN
Mn N

MnN

N Mn

NMn
tBu

NtBu

NtBu

tBuN

tBu

tBu

4

H

O O

H[O]

Vaddypally, et al. J. Am. Chem. Soc. 2017, 139, 4675



Reactivity of the Pendant Mn=O –
Isotopic labelling
 Isotopic 18O labelling shows transfer of cluster 

oxygen to the substrate ketone product. 
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Reactivity of the Pendant Mn=O –
Isotopic labelling
 2D isotopic labelling illustrates transfer of substrate 

hydrogen atom to the cubane cluster
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Concluding statements

 Lower-coordinate, unchelated manganese clusters 
show significant reactivity (though no water 
oxidation…yet).

 Future tests will try to “stack the deck” in favor of the 
nucleophilic attack mechanism to test its plausibility.
 Reduce the MnVII cubane with dangler oxygen to a 

more bio-relevant MnV

 Test reactivity with OH- and H2O to see if O2is 
formed

 Such experiments—fail or succeed—may shed light 
on the plausibility of the nucleophilic attack 
hypothesis. 
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