Geometrically flexible
synthetic manganese-oxygen
and manganese-nitrogen
cubane clusters as reactive
biomimics of the oxygen

evolving complex of
photosystem II

SciMeetings
ACS Spring 2020
Michael J. Zdilla
Temple University



Photosystem II

Photosystem Il: Nature’s water oxidation catalyst.

Active site contains a unique Mn-Ca-O cluster, the
OEC.
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Photosystem II-photon driven water
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The OEC operates
by a 5-step
photooxidation cycle
Red photons excite
oxidation of
chlorophyll Pgg,

Psgo IN turn oxidizes
the OEC (S,)

S, oxidizes water to
O, to close the cycle.



Proposed mechanisms of O-O bond formation
from theory are shown below. There 1s not

currently a consensus.
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Modeling the OEC

—

Synthetic model complexes are one tool
that may be used to examine potential
reaction mechanisms.

A model complex can never prove the
mechanism of an enzyme, but they may be
used to probe the reasonableness of
certain mechanistic proposals.

Many structural models are known, but
functional models are rarer.Some
examples are shown on the next page.
Structural and functional models remain an
Important goal.



Structural models of
the OEC

= , These excellent structural
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the OEC
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Functional models
typically use motifs
dissimilar from
biology, limiting
translation of

— findings to biological
system.

Brudvig et al, Science.,
1999, 283, 1524

[Mn" 10, (Ci,C00),51W,0,0¢ Bonchio et. Al. Angew. Chem.
Int. Ed. 2014, 53, 11182 -
11185



Preparation of unchelated clusters of
reduced coordination number

Our approach: lower-coordinate clusters with R % M
minimal chelation.

Imide as a surrogate of oxide to control cluster
geometry @*M

|solobal

Charge

Heteroatom size

Sterically and electronically tunable R-group

This motifs may show O-based biomimetic
chemistry, or show biomimetic chemistry via the
oxene-nitrene analogy (below)

OH, OH" 02 HO—OH 0=0

RNH, RNH "~ RN? RHN—NHR RN=NR
(water/amine) (hydroxide/amide) (oxide/imide) (peroxide/hydrazine) (dioxygen/diazene)



Heterocubane with pendant Mn

Prepared by a simple metathesis reaction, involving somewhat
chaotic redox chemistry, giving the two shown products in a 9:1
ratio (top:bottom)
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Removal of L1 from dicubane

To improve relevance to the OEC, we sought to remove the L

ion (and replace with Ca). We can remove Li* using crown
either.

Crystallographic problem: Non-positive displacement
parameters on three carbons. This means the computer
“thinks” these are heavy atoms, which is hard to explain.

More on this later.

Shiva Vaddypally
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Mn-L1 heterodicubane

Bu Bu ‘Bu
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The crystallographic problem By /< / \ /\ \fBu

was circumvented by
precipitating Li*using CI 5 / \;\1/ \tB

(instead of crown ether). This v Bu ! 0\?
made no sense, but it worked Et,NCI\ LiCI, LiN |

(we will explain why later). BUN=NBL

The removal of Li* results in

an unstable anionic cluster,

which triggers reductive

elimination of azo-tert-butane BUN

to alleviate negative charge ‘BuN

buildup on imide. Mn// ‘\ ' \ >
The reductive elimination of N\ Mn\w NBuWN % “Mn1A N\

‘BuN=N®Bu from a Mn!VV \/\/ [ =
cubane cluster is a nitrene \w/

analog of the OEC oxygen =
evlolution reaction tBuN

Vaddypally, S., et al. Chem. Commun., 2014, 50, 1061.
Vaddypally, S., et al. Inorg. Chem. 2017, 56, 3733.



Removal of L1 from dicubane with
crown ether: What happened?

B”\N /5” /B“ Considering further the non-positive
M g \L./ displacement parameters when crown ether was
’BuN—Mn/ NA"”\ / L\N\Mn—N used
Bu /\ ¢ N\ /\ Bu We also noticed long bond lengths similar to
tB/ \tBu/ \,Bu permanganate. This is clearly not just a tert-
butyl group.
d % . .
[ j Structure modeled as a disordered mixture of
° P tert-butyl imido ligands and
nitridotrioxomanganese(VIl) metalloligands gave
1.63 A \% an excellent crystallographic model.
BuN o N DS @
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Vaddypally, et al. J. Am. Chem. Soc. 2017, 139, 4675



How did this happen? Where did

oxygen come from?

Li removed by crown ethers (wet).

Protolysis of tert-butyl N 2-
amide fragement of parent cluster gives MnO;N?- N/%NB“ H,0 N/%O
MnO;N? structurallly comparable to tert-butyl, and N= \ N V=
incorporates randomly. \NBU 5
Majority of the material is all-t-butyl (90%), and a single
metalloligand (10%). Other species with several
metalloligands are only present in traces.
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Laser Electrospray Mass Spectroscopy —
LEMS for detection of metalloligand cluster
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LEMS is a novel ionization technique
that uses a femtosecond laser to non-
destructively vaporize a sample and

deposit it onto the surface of charged

electrospray droplets. |

Ideal for nonplar molecules that are

insoluble in normal electrospray 832 834 836 838 840
Robert J. Levis solvents. m/z




Isotopic labelling with 120
confirms water 1s the source of O
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S, state as a high-valent Mn=0

Nucleophilic attack by Ca-bound hydroxide on high-valent Mn-O
at dangler Mn is a popular mechanistic proposal for O-O bond
formation. Our cluster is an intriguing mimic of this proposed
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Reactivity of the Pendant Mn=0

“Dangler” oxygens do not oxidize water to give detectable oxygens in
our experiments, but they do react with olefins quantitatively to give
deoxygenated products (permanganate-like reactivity).

Oxygen is transferred from the cluster to the substrate.
Hydrogen atom is transferred from the stubstrate to the cluster.
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Reactivity of the Pendant Mn=0 —
[sotopic labelling

Isotopic 180 labelling shows transfer of cluster
oxygen to the substrate ketone product.
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Reactivity of the Pendant Mn=0 —
[sotopic labelling

2D isotopic labelling illustrates transfer of substrate
hydrogen atom to the cubane cluster
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Concluding statements

Lower-coordinate, unchelated manganese clusters
show significant reactivity (though no water
oxidation...yet).

Future tests will try to “stack the deck” in favor of the
nucleophilic attack mechanism to test its plausibility.

Reduce the MnY!' cubane with dangler oxygen to a
more bio-relevant MnV

Test reactivity with OH- and H,0O to see if O,is
formed

Such experiments—fail or succeed—may shed light
on the plausibility of the nucleophilic attack
hypothesis.
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