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Highlights

1. Eclogite from the Tso Morari UHP terrane is used as a representative metabasite to test the
efficacy of various thermodynamic modeling protocols.

2. User’s choice of modeling program, version, and thermodynamic database, have little
effect on the model’s outcome in terms of predicted stable mineral assemblage and P-T
path. However, the choice of garnet solution model can have a significant effect on
pressure predictions.

3. Bulk compositions measured by XRF do not represent the reactant or effective bulk
composition at the time of garnet nucleation and throughout garnet prograde growth.

Taking into account calculations of the effective bulk composition of the system
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throughout prograde metamorphism leads to more realistic P-T path predictions than
modeling using only an initial bulk composition.

More careful consideration of the key mineral solid solution models in calculations,
comparing results of calculations to petrological observations, and consideration of

uncertainties are key to interpreting geological processes.
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ABSTRACT

Thermodynamic modeling is an important technique to simulate the evolution of metamorphic
rocks, particularly the poorly preserved prograde metamorphic reactions. The development of new
thermodynamic modeling techniques and availability of updated thermodynamic databases and
activity-composition (a-X) relations, call for an evaluation of best practices for modeling pressure-
temperature (P-T) paths of metabasites. In this paper, eclogite from the Tso Morari UHP terrane,
NW India, is used as a representative metabasite to directly compare the outputs (pseudosections
and P-T paths) generated from recent versions of the widely used THERMOCALC and Theriak-
Domino programs. We also evaluate the impact of using the most updated thermodynamic
database (ds 62, Holland and Powell 201 1) relative to an older version (ds 55, Holland and Powell
1998), and the effect of the user’s choice of mineral a-X relations while considering the effect
garnet fractionation on the rock’s effective bulk composition. The following modeling protocols
were assessed: (1) TC33; THERMOCALC version 3.33 with database ds 55 and garnet a-X
relations of White et al. (2007); (2) TC47; THERMOCALC version 3.47 with database ds 62 and
garnet a-X relations of White et al. (2014a); (3) TDG; Theriak-Domino with database ds 62 and
garnet a-X relations of White et al. (2014a), and (4) TDW,; Theriak-Domino with database ds 62
and garnet a-X relations of White et al. (2007).

TC47 and TDG modeling yield a similar peak metamorphic P-T of 34 £+ 1.5 kbar at 544 +
15 °C and 551 + 12 °C, respectively. The results are 5—8 kbar higher in pressure than that
determined from TC33 modeling (26 = 1 kbar at 565 + 8 °C), and TDW modeling (28.5 + 1.5 kbar
at 563 = 13 °C). Results indicate that all four modeling protocols generally provide consistent
metamorphic phase relations and thermodynamic simulations regarding fractionation of the bulk

composition and prograde metamorphism within uncertainty. In all model calculations, the initial
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bulk composition measured by XRF does not represent the effective bulk composition at the time
of garnet nucleation. The choice of garnet a-X relations can affect predictions of peak pressure,
regardless of program choice. This study illustrates the importance of careful consideration of
which a-X relations one chooses, as well as the need for comparison between modeling predictions

and evidence from the geochemistry and petrography of the rock(s) themselves.

Key words: Metabasites, Thermodynamic modeling, Tso Morari, UHP eclogite, P-T paths,

Garnet fractionation
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1. Introduction

Recent developments in high pressure-temperature (P-7) experiments, theoretical
petrochemistry, high-precision geochemical analysis, and computational science have led to
improved models of the formation and evolution of metamorphic rocks. Thermodynamic modeling
programs (e.g., THERMOCALC, Theriak-Domino) can calculate rock and mineral properties for
a specific set of conditions (e.g., pressure, temperature, and composition) and predict equilibrium
mineral assemblages (de Capitani 1994; Powell et al. 1998). These programs utilize internally
consistent thermodynamic databases and activity-composition (a-X) relations to calculate mineral
stabilities and phase relations at different P-7 conditions. The user must carefully choose which
program (and program version), database, and set of a-X relations when executing a modeling
protocol. These choices are nontrivial and can affect the outcome of the calculations in various
ways — sometimes leading to significantly different predictions for the stability of phase
assemblages, thus having important implications in the calculated P-T path. The effects of user’s
choices for metabasic compositions have not yet been formally evaluated.

Many previous studies have applied thermodynamic modeling programs to metabasites using
the internally consistent thermodynamic database (e.g., Helgeson et al. 1978; Berman 1988;
Holland and Powell 1998) and various a-Xrelations (e.g., Berman 1990; Holland and Powell 1996;
Meyre et al. 1997, Dale et al. 2000, 2005; Diener et al. 2007; Green et al. 2007; White et al. 2007)
to model phase equilibrium and estimate P-T conditions during prograde metamorphism (Konrad-
Schmolke et al. 2008; St-Onge et al. 2013; Hernandez-Uribe et al. 2018, 2019). In some cases,
studies modeling metabasites (Konrad-Schmolke et al. 2008; St-Onge et al. 2013; Imayama 2014;
Hernéndez-Uribe et al. 2019) used a-X relations that were developed originally for modeling felsic

rocks (White et al. 2007), omitted minor components (e.g., Mn, and Ti1), or were not calibrated for
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ultra-high pressure (UHP) conditions. Updated versions of these modeling programs, internally
consistent thermodynamic databases (e.g., ds 62; Holland and Powell 2011), and a-X relations
(Diener and Powell 2012; White et al. 2014a, 2014b; Green et al. 2016), offer improvements that
may yield better results in terms of interpreting phase relations for minerals with a large group of
endmembers (e.g., amphibole and clinopyroxene) and calculating phase stabilities using an
expanded library of bulk components (e.g., Mn, Ti, and Fe*").

New a-X relations for metabasic rocks have resolved the stability fields of coexisting sodic-
calcic pyroxenes, and clinoamphiboles (Green et al. 2007; Green et al. 2016). Also, improved a-X
relations for clino- and orthoamphiboles (Diener et al. 2007) and revised a-X relations for
clinopyroxene and amphibole (Diener and Powell 2012) allow the prediction of mineral
assemblages in ferric-bearing systems (NCFMASHO) and are more consistent with observed
phase relations in natural rocks. In addition, the model formulation of a-X relations for mafic melts
in the CaO-MgO-A1,03-Si0; (CMAS) system, representing the core components for modeling
metabasites, was recalibrated (Green et al. 2012, 2016) to calculate melting equilibria for a high
pressure range (up to 50 kbar at 1800 °C).

The ability to include minor components (e.g., MnO;, Fe;03) in thermodynamic modeling
(Diener et al. 2007; Diener and Powell 2012; White et al. 2014a, 2014b; Green et al. 2016) makes
it possible to evaluate their effect on phase stabilities and phase reactions for key metamorphic
minerals (e.g., spessartine garnet at low P-T conditions). Care must be taken when using the bulk
rock composition to model metamorphic histories as it may lead to unrealistic results without
consideration of chemical heterogeneity (e.g., outcrop scale, mineral zoning, and relics) and

definition of reactive equilibrium volume (e.g., Warren and Waters 2006; Lanari and Engi 2017).
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Effective bulk composition (EBC, also called reactive bulk-rock composition) is the
composition of the equilibration volume at a specific stage of metamorphism. A rock’s EBC
evolves along a P-T trajectory because of compositional fractionation commonly due to
porphyroblastic growth of minerals like garnet (Tracy 1982; Spear 1988; Spear et al. 1990; Lanari
and Engi 2017), which will continuously consume constituents from the bulk rock composition,
and may trap other minerals as inclusions inside. Components and inclusions locked in the garnet
core are then excluded from participating in any subsequent chemical reactions in the matrix and
hence should not be included when modeling later stages of the metamorphic history (Spear et al.
1990; Lanari and Engi 2017). For this reason, the EBC can differ from the bulk or whole-rock
composition commonly measured by X-ray fluorescence spectrometry (XRF) (Evans 2004;
Gaidies et al. 2008a; Moynihan and Pattison 2013; Lanari and Engi 2017; Spear and Wolfe 2018).
Including EBC calculations in thermodynamic modeling makes it possible to more accurately
model the P-T conditions and phase relations in metamorphic terranes with mafic rocks, and more
effectively compare the results with previous studies and conventional thermobarometers (Palin et
al. 2016; Hernandez-Uribe et al. 2018; Yu et al. 2019).

This study evaluates the effects of the user’s choice of modeling program, Theriak-Domino
(TD; de Capitani 1994) and THERMOCALC (TC; Powell et al. 1998), database (ds 55 vs. ds 62),
and garnet a-X relations (White et al. 2007 vs. White et al. 2014a) on predictions of stable mineral
assemblages and P-T path estimates for metabasites, by providing direct comparisons and
evaluation of the results achieved from various combinations of these choices, focusing on pitfalls,
strengths, and limitations of the modeling protocols when applied to high pressure-ultra high
pressure (HP-UHP) mafic rocks. We make recommendations for best practices in modeling

metabasites and compare our results with those from previous studies.
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In all calculations, we use data collected from the well-characterized coesite-bearing eclogite
of the Tso Morari UHP terrane, in NW Himalaya, as input for our models (Steck et al. 1998; de
Sigoyer et al. 2000; Konrad-Schmolke et al. 2008; Mukherjee and Sachan 2009; Singh et al. 2013a,
2013b; Donaldson et al. 2013; St-Onge et al. 2013; Chatterjee and Jagoutz 2015; Palin et al. 2014,
2017; Jonnalagadda et al. 2017a, 2017b). The Tso Morari UHP eclogites were formed as a result
of the continental collision and continuous subduction of the Indian subcontinent beneath the
Eurasian continent (Pognante et al. 1990; Guillot et al. 1997; de Sigoyer et al. 2000; Lombardo
and Rolfo 2000; Kohn and Parkinson 2002; O’Brien 2018, 2019). Previous studies have estimated
the P-T conditions and predicted metamorphic phase assemblages of Tso Morari UHP eclogites
through thermodynamic modeling (Konrad-Schmolke et al. 2008; St-Onge et al. 2013), stable
mineral assemblages and conventional thermobarometry (Guillot et al. 1997; de Sigoyer et al. 1997,
Lombardo et al. 2000; Mukherjee et al. 2003; Lanari et al. 2013; Singh et al. 2013a, 2013b;
Chatterjee and Jagoutz 2015; Wilke et al. 2015), thermomechanical modeling (Palin et al. 2017),
and by the presence of coesite, suggesting peak conditions at UHP conditions were reached in the
terrane (Mukherjee and Sachan 2001; Sachan et al. 2004). Multiple approaches have been applied
to calculate prograde and peak P-T conditions in the Tso Morari eclogite (e.g., pseudosection
construction, stable mineral assemblages, and conventional thermobarometry) making it an ideal
UHP metabasite case study for evaluating the performance of different modeling programs,
thermodynamic databases, and a-X relations.

Thermodynamic modeling studies on HP-UHP metabasites (e.g., eclogite facies) are not as
well represented in the literature as those on metapelites and metagranites. Modeling HP-UHP
metabasites can be difficult because they have a lower degree of variability in mineral phases or

their endmembers (lower variance in thermodynamic modeling) making it harder to track changes
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in P-T-t space. The problem is exacerbated at eclogite-facies conditions, because the mineral
compositions and proportions do not change significantly with changing P and 7. Additionally,
the effects of dehydration during prograde metamorphism and compositional fractionation due to
garnet growth make modeling metabasites even more challenging.

This study examines the effects of user choices in thermodynamic modeling protocols used
with metabasites and uses information from the rocks themselves (mineral assemblages,
compositions, and textures) as ground truth by which to evaluate the efficacy of the various
protocols tested. Specifically, we use bulk compositions, in situ mineral compositions, and mineral
modal proportions and textures from a Tso Morari eclogite block to test four different modeling
protocols. The protocols were designed to evaluate the effect of choice of database (ds 55 vs. ds
62), program (TC vs. TD) and garnet solution model (White et al. 2007 vs. White et al. 2014a).
The four protocols are as follows: (1) TC33 — THERMOCALC version 3.33 with database ds 55
and a-X relations of White et al. (2007) for garnet; (2) TC47 — THERMOCALC version 3.47 with
database ds 62 and a-X relations of White et al. (2014a) for garnet; (3) TDG — Theriak-Domino
with database ds 62 and a-X relations of White et al. (2014a) for garnet; and (4) TDW — Theriak-
Domino with database ds 62 and modified a-X relations using White et al. (2007) for garnet. Table
1 presents this information, as well as other details (e.g., a-X relations of non-garnet minerals) of
the different protocols. For each protocol, mineral phase diagrams (pseudosections) were
constructed and EBC calculations were done to address element fractionation during prograde
garnet growth. The ultimate goals of this study are to evaluate P-T conditions during burial and
exhumation of the Tso Morari UHP eclogite by thoroughly and thoughtfully comparing results of
commonly used thermodynamic modeling software and databases, to determine which give the

best results, and to make recommendations for best practices in modeling HP-UHP metabasites.
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2. Geologic Setting: Tso Morari UHP Terrane

UHP rocks occur in the Himalaya in two locations south of the Indus-Yarlung-Tsangpo (IYT)
suture zone, which separates Indian and Asian rocks: (1) in the Kaghan Valley of northern Pakistan
(Pognante and Spencer 1991; Spencer 1993; Spencer et al 1995; O’Brien et al. 1999, 2001, 2018;
Lombardo et al. 2000; Lombardo and Rolfo 2000; Rehman et al. 2007, 2008; Wilke et al. 2010a,
2010b; Donaldson et al. 2013), and (2) north of Tso (Lake) Morari in northwestern India (Guillot
et al. 1997, 2000; de Sigoyer et al. 1997, 1999, 2004; Sachan et al. 1999; Mukherjee and Sachan
2001, 2004; Mukherjee et al. 2003; Konrad-Schmolke et al. 2005, 2008; Leech et al. 2005, 2007;
O’Brien 2019) (Fig. 1 inset). UHP metamorphism in Tso Morari rocks is confirmed by preserved
coesite in eclogite blocks (Mukherjee and Sachan 2001; Sachan et al. 2004). UHP rocks crop out
within dominantly felsic Indian supracrustal rocks (e.g., de Sigoyer et al. 2004), as seen in Figs. |
and 2a. Table 2 presents mineral abbreviation used throughout this paper.

The Tso Morari is considered a relatively small UHP terrane (Kylander-Clark et al. 2012),
primarily composed of the quartzo-feldspathic Puga Gneiss with rare, small eclogite blocks (Fig.
2a). Since the discovery of eclogite in the Tso Morari UHP terrane by Berthelsen (1953), it has
been extensively studied. The terrane is chemically linked to subducted Tethyan Himalayan crust
(Steck et al. 1998). The eclogite-facies boudins only occur within the Tso Morari nappe.

Some of the larger eclogite blocks in the UHP Tso Morari terrane preserve eclogite facies
mineral assemblages with some amphibolite retrograde overprint especially near the block edges.
The peak eclogite facies assemblage is garnet + omphacite & phengite + rutile + quartz/coesite (see
O’Brien, 2019 for review). This study uses samples from the most extensively studied eclogite

outcrop (e.g., Sachan et al. 1999; O’Brien and Sachan 2000; Mukherjee and Sachan 2001;

10
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Mukherjee et al. 2003; Sachan et al. 2004; Konrad-Schmolke et al. 2008; Donaldson et al. 2013;
Singh et al. 2013a, 2013b; St. Onge et al. 2013; Palin et al. 2014; Chatterjee and Jagoutz 2015;
Wilke et al. 2015; Jonnalagadda et al. 2017a, 2017b); the samples were also used in the Donaldson
etal. (2013) geochronologic study. The eclogite has abundant garnet (1-1.5 mm in diameter), often
found in clusters in a matrix of finer-grained omphacite (Fig. 2a & b). The two iconic eclogite
minerals occur with large porphyoblasts of carbonate and phengite and smaller crystals of rutile
and quartz (Fig. 2a, b & c). The high-pressure phases are partially overgrown with amphibole
(barroisite-winchite), clinozoisite, and paragonite (Fig. 2¢ & d). Garnets have significant zoning
contain abundant inclusions (Fig. 3).

Previous P-T studies have proposed that the Tso Morari UHP terrane either experienced a
relatively cool, concave prograde P-T path (St-Onge et al. 2013; Chatterjee and Jagoutz 2015;
Palin et al. 2017) or a hotter, convex prograde path (Konrad-Schmolke et al. 2008; Warren et al.
2008; Beaumont et al. 2009). Hotter prograde P-T paths are predicted by thermal-mechanically
modeling the subduction-collision dynamics of the continental Tso Morari UHP rocks (Warren et
al. 2008; Beaumont et al. 2009) as opposed to the cold slab path by Syracuse et al. (2010). The
position of the prograde path has implications for the prograde assemblage with the cooler path
predicting significant lawsonite and hotter amphibole (see O’Brien et al. 2019 for review). The
proposed peak pressure varies significantly from ~28 to ~48 kbar with the higher estimates (33-48
kbar) based on carbonate assemblages (Mukherjee et al. 2003; Wilke et al. 2015). Peak pressure
calculations using the non-carbonate assemblage range from 22-28 kbar (Konrad-Schmolke et al.
2008; Lanari et al. 2013; St-Onge et al. 2013; Chatterjee and Jagoutz 2015; Palin et al. 2017). The

duration of exhumation of the Tso Morari UHP terrane is proposed by multiple studies to be ~6

11
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My (Leech et al. 2007; Guillot et al. 2008; St-Onge et al. 2013), putting it into the fast exhumation

category of Kylander-Clark et al. (2012).

3. Samples and Analytical Methods

3.1. Sample Description

At Tso Morari, eclogite lenses are hosted as small boudins (<20 m) within the gneiss body (Fig.
2a). The eclogite boudins show strong ductile deformation and have lensoid shapes parallel to
strongly developed shear fabric in the gneiss. Data from one sample was used in this study, TM-
15 (Fig. 2a). It was collected from the center of a single, well-studied eclogite boudin (see
references above), where the largest proportion of eclogite-facies phases are preserved. The modal
abundance of amphibolite facies minerals increases from core to rim of the block.

Sample TM-15 is medium-grained with granoblastic texture. Modal mineralogy was
determined by using ImagelJ (Schneider et al. 2012) to calculate percent area of different minerals
based on grayscale levels in a backscattered electron image mosaic (17x40 mm) of a thin section
of TM-15 (part of which is shown in Fig. 2c). TM-15 is 28.6% garnet, 20.2% omphacite, 18.8%
amphibole, 12.7% quartz, 9.3% epidote, and 9.2% phengite. The remaining 1.2% includes the
minor minerals rutile, ilmenite, magnetite, dolomite, paragonite and zircon (Fig. 2b & c). The
abundance of high-pressure minerals (high-Mg garnet rims, omphacite, and high-Si phengite), and
the discovery of coesite in this eclogite block (Mukherjee and Sachan 2001; Sachan et al. 2004)
confirm that this sample experienced UHP conditions. TM-15 has a weak foliation defined by
matric omphacite and phengite (Fig. 2b), fabric development is variable within the block and host

gneiss (Fig. 2a).

12
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Garnet has abundant inclusions in darker red cores while the lighter rims have significantly
less to no inclusions (Figs. 2b & c, 3). There is a change in the inclusion population from core to
rim domain. The inclusion phases in garnet cores include aegirine-rich omphacite, sodic-calcic
amphibole (winchite), epidote, muscovite, jadeite, chlorite, quartz, magnetite, and rutile (Fig. 3).
The garnet rim has fewer mineral inclusions, including jadeite-rich omphacite, clinoamphibole,
phengite, quartz and carbonates. We did not observe any lawsonite or its pseudomorph (as epidote
or paragonite) or any glaucophane in this study.

The UHP phases are overgrown by sodic-calcic amphibole, clinozoisite, and paragonite (Fig.
2¢ & d). Matrix omphacite is partially replaced by symplectites of sodium-rich plagioclase and
jadeite-poor clinopyroxene (Fig. 2d). Rutile grains are rimmed by titanite and magnesite is locally

present with dolomite grains.

3.2. Analytical Methods

Bulk rock composition of TM-15 was measured by XRF (Thermo ARL-ARL Advant XP and
XP+X-Ray Fluorescence Spectrometer) (Table 3). Part of the sample was crushed using a mortar
and pestle to <I mm, then powdered in a tungsten-carbide shatter box. Scanning electron
microscope (SEM) and energy dispersive x-ray spectroscopy (EDS) analyses were performed
using the Zeiss EVO-10 SEM with Bruker XFlash6, 60 mm? EDS detector at Indiana University-
Purdue University Indianapolis. Backscattered electron (BSE) images were obtained at 15 kV with
an analytical Resolution 3.0 nm, and qualitative compositional data (EDS analyses) were also
collected at these conditions. XMapTools (De Andrade et al. 2006; Lanari et al. 2019) was used
on SEM/EDS X-ray maps to identify mineral phases and quantify mineral proportions for small

areas.
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Electron probe micro-analyzer (EPMA) measurements were performed using the CAMECA
SX-50 Electron Microprobe in EM laboratory at Indiana University, Bloomington to obtain
quantitative compositional data from minerals. Analytical conditions were 15 keV accelerating
voltage, 20 nA beam current, 1 um beam size and peak counting time of 20 s for major element
analysis of all minerals. Analytical uncertainty for major elements is less than 2 wt. %. Elements
were calibrated by the following standards: Si (clinopyroxene), Al (anorthite), Mg (San Carlos
olivine), Fe (fayalite), Mn (grueninite), Na (albite), K (orthoclase), Ca (clinopyroxene), Ti
(ilmenite). The measured mineral phases include pyroxene (mainly omphacite), garnet, amphibole,
micas (muscovite, biotite, paragonite), K-feldspar, albite, epidote, titanite, dolomite, calcite. Point
analyses (EPMA) were also conducted on mineral inclusions trapped in garnet to evaluate its

equilibrium status at the early stages of metamorphism.

4. Mineral Chemistry and Petrography
Garnet

In sample TM-15, garnet occurs as individual euhedral crystals with sizes ranging from 500 to
2000 pm, or as coalesced clumps of several grains (Fig. 2b-c). An EPMA traverse across TM-
15G#3 (rim-core-rim) was collected to investigate compositional variation (Figs. 3b & ¢, 4a & b,
5; Table 4) in the garnet. A large (~1200x800 um), single garnet crystal with well-preserved
zoning, referred to hereafter as TM-15G#3, was chosen for detailed analysis (Fig. 3a-c). TM-
15G#3 preserves sharp growth zones, recognized in thin section and BSE images, and the
commonly observed change in inclusion population from core to rim (Fig. 3a-c).

The garnet TM-15G#3 has three zones from core to rim labeled on Fig. 5 as Core, Rim 1, and

Rim 2. The large core domain displays variability with each element (Alms4.65Grs24-34Spsi.o-
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23Prp1.5.6.5) but roughly uniform composition across the core region starting at 328 to 920 um in
Fig. 5. For 100 um on either side of the core, in Rim 1 pyrope increases and grossular decreases
while almandine stays the same. In the outermost rim, Rim 2, almandine drops sharply as pyrope
increases (Alma4-52Grsi523Spso.s-1.7Prp20-32) (Fig. 5). The pyrope-rich outermost rim has a very

sharp compositional boundary changing ~15 mol. % over 20 um (Figs. 3a-c, 5).

Omphacite

In sample TM-15, omphacite accounts for ~20.2% of the modal abundance. The matrix
omphacite ranges in size from 100-500 um with subhedral crystallization and no marked zonation
(Figs. 3b-d, 4c), and has a composition of Quads>Jds2Aes based on Morimoto (1988) nomenclature,
and x(Fe) = 0.16-0.29 (0.24 avg.), where x(Fe) = Fe?"/(Fe**+Mg). Minor aegirine-rich omphacite
occurs in the garnet cores of TM-15 as mineral inclusions; these can be strongly zoned (Fig. 3a)
and have composition of QuadsiJdsiAezr and x(Fe) =0.38-0.53 (0.52 avg.) (Fig. 4c; Table 4). The
pyroxene formulas in Table 4 (including Fe**) have been recalculated based on stoichiometry and

charge balance (Droop, 1987).

Amphibole

Amphibole occurs in TM-15 as sodic-calcic amphibole (camp). The amphibole in TM-15
makes up ~18.8% of the rock, and ranges in size from 200-1000 um (Fig. 2¢ & d). Amphibole in
the matrix of TM-15 shows mostly idiomorphic texture, with only minor amphibole showing
poikilitic texture (Fig. 2¢c & d). It belongs to the winchite sub-group based on the amphibole
reclassification of IMA 2012 standard (Hordk and Gibbons 1986; Locock 2014), with Si=7.41—

7.77 p.fu. (7.49 avg.), Mg/(Mg+Fe?") = 0.85-0.90 and Na (M4) = 0.66 (Table 4). Amphibole in
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the garnet core of TM-15 shows no discernible texture and belongs to the winchite sub-group with

Si=7.12-7.52 p.fu. (7.30 avg.), Mg/(Mg+Fe?*) = 0.56-0.62 and Na (M4) = 0.82 (Table 4).

White Mica

White micas are the major potassium-bearing mineral phases in TM-15 (Table 4). White mica
(phengite and paragonite), occurs mostly in the matrix TM-15, ranging in size from 100—-1000 um
(Fig. 2c¢). When found in the core of garnet, white micas are <50 um in size (Fig. 3d). White mica
with >3.12 Si p.f.u. are referred to hereafter as phengite (Menold et al. 2009). Phengite in TM-15
have a large compositional range (Si p.f.u. = 3.24-3.54) (Fig. 4d), suggesting growth over a range
of P-T conditions. The highest silica phengite has 3.51-3.54 Si p.f.u. Paragonite (muscovite) in
the matrix of TM-15 has a Si p.fu. = 2.91-2.98, Aliv = 1.02-1.09 and Na/(Na+K) = 0.03-0.07
(Table 4) and mostly occurs as a thin ring around phengite in the rock matrix (Fig. 2d). No

paragonite has been found in garnet cores in this study.

Carbonates
Carbonate phases, primarily dolomite make up <1 % of sample TM-15 occurring as small
porphyroblasts in the matrix (Fig. 2d). Dolomite and calcite also occur as inclusions in the cores

of garnets (Fig. 3b & c¢).

Accessory Phases
Epidote accounts for ~9—-11% of the minerals TM-15, occurs as apparently idiomorphic
crystals in the rock matrix (~150%750 um) (Fig. 2¢ & d), and as tiny inclusions in garnet (~10 pm)

with no proximity to paragonite. The average epidote in the matrix of TM-15 has an
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Fe*"/(A*"+Fe’") ratio of 0.08-0.12 (0.11 avg.) (Table 4). Accessory minerals in TM-15 include
chlorite (Fig. 3d), albite (Fig. 3b), K-feldspar, rutile (Fig. 3b), ilmenite (Fig. 3b) and magnetite

(Fig. 3b).

5. Conventional Thermobarometry
5.1. Thermobarometry Methods

Multiple conventional thermobarometers were utilized to constrain metamorphic P-T
conditions to compare with predictions from modeling trials, including garnet-clinopyroxene
thermometry (Powell 1985; Ravna 2000), garnet-phengite thermometry (Green and Hellman
1982), garnet-omphacite-phengite geobarometry (Waters and Martin 1996), phengite
geobarometry (Kamzolkin et al. 2016), and muscovite-paragonite thermobarometry (Guidotti et al.
1994; Roux and Hovis 1996) (presented in Section 5.2).

To provide some estimate of the uncertainty associated with the P-T predictions from
conventional thermobarometry, workers commonly use a function in THERMOCALC version
3.33 (TC3.33) called AVE _PT mode (e.g., Powell and Holland 1994; Worey and Powell 2000;
Walker and Searle 2001; Proyer et al. 2004; Endo et al. 2012; St-Onge et al. 2013). This function
calculates an average P-T for a given mineral assemblage and bulk composition, as well as an
associated model error estimate. The error ellipses in Fig. 6a were determined with AVE_PT mode
as described here.

To minimize the effect of disequilibrium of selected mineral pairs on the accuracy of the
thermobarometers, EPMA data from the highest-Si phengite, garnet rim domain, and matrix

omphacite with x(Fe) < 0.25 in TM-15 have been used to calculate peak pressure conditions. Due
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to limited EPMA data on inclusions from the garnet core (Table 4), we did not use data from those
phases to conduct thermobarometry calculations.

Eclogite facies mineral assemblages facilitate the use of Fe*"-Mg partitioning between both
garnet-clinopyroxene (GC) and garnet-phengite (GP) pairs for geothermometry, as the partitioning
of these two elements is strongly temperature dependent in these mineral pairs (GC: Powell 1985;
Ravna 2000; GP: Green and Hellman 1982; see thermobarometry methods Section 1.1-1.3 in
supplementary materials). However, cation exchange between Fe*" and Mg has two major issues
regarding its accuracy in application to eclogites: (1) diffusional re-equilibration during retrograde
metamorphism and (2) the high uncertainties associated with calculations of Fe**/Fe?". The first is
highly temperature dependent and therefore will be a bigger problem for high temperature
(>800 °C) eclogite and granulite facies rocks (Florence and Spear 1995; Pattinson et al. 2003).
Previous work on the Tso Morari suggests peak temperatures <700 °C (e.g., St. Onge et al. 2013).
Regarding the second issue, mineral Fe*'/Fe** can be determined indirectly by charge balance
methods (e.g., Droop 1987) or directly measured by Mdossbauer spectroscopy. Omphacite from
UHP terranes have been analyzed previously by Mdssbauer spectroscopy, revealing that Fe*" can
be up to 50% of Ferowl, and values measured often exceed those calculated by charge balance on
the same samples (Ravna and Paquin 2003; Proyer et al. 2004). The charge-balance calculation
(Droop 1987) has been used here to estimate Fe**/Fe** in garnet and omphacite. Concentrations of
Fe" in garnet are estimated to be ~0.2% of Ferotal; in omphacite estimates range from 11% to 60%.
The result of underestimation of Fe**/Fe?" will be an overestimation of temperatures.

Geologic barometers utilize net-transfer reactions instead of exchange reactions (e.g., Spear
1995). Net-transfer reactions avoid the issues mentioned above by requiring longer diffusive

length-scales (Hacker et al. 2006). A commonly used barometer for phengite-bearing eclogites is
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the garnet-omphacite-phengite geobarometer (GOP) of Waters and Martin (1996), which can be
calculated through the KMASH mode reaction equilibrium (See Section 1.4 Garnet-Omphacite-
Phengite Geobarometer (GOP) in supplementary materials). Use of the GOP barometer (Waters
and Martin 1996) is predicated on the fact that the silica concentration in phengite has been found
to be strongly pressure dependent, linearly increasing from >3.00 to values <4.00 in a 12 (O, OH)

1'V.; substitution, since Al" is not favored at high

formula unit in response to Mg"1Si'VAIVL A
pressures (Massonne and Schreyer 1987; Carswell and Harley 1990). Activity models for garnet
and clinopyroxene are a major source of uncertainty in applying this barometer. Following Waters
and Martin (1996), the simple Mg-Ca mixing model of Newton and Haselton (1981) for garnet,
the non-ideal activity model of Holland (1990) for omphacite, and ideal mixing model of Holland
and Powell (1990) for phengite were used for this study. An empirical correction of -0.000543 is
added to the original T*InK coefficient (0.002995) to account for the discrepancy with
the experiments of Schmidt (1993) (see Section 1.4 Garnet-Omphacite-Phengite Geobarometer
(GOP) in supplementary materials). Another empirical phengite geobarometer (Kamzolkin et al.
2016) for conditions of Si >3.25 p.f.u. and T <750 °C was used in this study to compare with the
GOP barometer (see Section 1.5 phengite geobarometer in supplementary materials).

Muscovite-paragonite thermobarometry was used to estimate retrograde P-T conditions based

on K-Na exchange equilibria (Guidotti et al. 1994; Roux and Hovis 1996) (Fig. 6b).

5.2. Thermobarometry Results
To estimate the metamorphic conditions in sample TM-15 from conventional thermobarometry,
the following eclogite facies assemblage was used: garnet (TM-15G#3) rim average composition

between 367 um and 490 um (low-calcium), omphacite from the matrix (EPMA data show that
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the matrix omphacite has low compositional variation; average value in Table 4), and high silica
phengite (3.51-3.54 Si p.f.u.) from the matrix (Figs. 2c¢ and 4d). The intersections of lines
generated using GC and GP thermometers, and GOP and empirical phengite barometers, provide
a poorly constrained P-T estimate of ~520—700 °C and ~20-26 kbar (Fig. 6a) at peak pressure.
As discussed in Section 5.1, we used the AVE PT function in TC3.33 to provide an estimate
of the uncertainty for the thermobarometry calculations. The average P-T conditions calculated
using TC3.33 AVE PT for the assemblage (omp, grt, ms, tlc, Iws, rt, coe, H>O) from the garnet
rim was 572 = 15 °C and 23.3 + 1.2 kbar. The average P-T condition calculated using TC3.33
AVE _PT for the assemblage (omp, grt, hbl, ep, ms, rt, qtz, H>O) from the garnet core is 523 +
37 °C and 21.0 + 1.6 kbar. Low silica phengite and paragonite in the matrix of sample TM-15 (pg-
ms) were used to estimate late retrograde metamorphic conditions (Guidotti et al. 1994; Roux and

Hovis 1996), yielding a P-T range of ~450-500 °C and 7-14 kbar (Fig. 6b).

6. Thermodynamic Modeling of the Tso Morari Eclogite

6.1. Modeling Methods

TC and TD programs operate in different ways. TC calculates equilibria by solving a set of
nonlinear equations for model systems in equilibrium (Powell et al. 1998). TD calculates and
plots equilibrium phase diagrams by means of Gibbs free energy minimization (de Capitani 1994).
Both programs can use the same thermodynamic databases (e.g., ds 55 and ds 62) and a-X relations
for modeling metamorphic rocks. A thermodynamic database describes the internally consistent
thermodynamic properties for mineral endmembers, while a set of a-X relations dictates

calculations of the thermodynamics of mixing of multiple endmember phases (e.g., Holland and
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Powell 2011; Green et al. 2016). To generate a pseudosection, which is a diagram showing the
fields of stability of different equilibrium mineral assemblages at a fixed bulk composition or along
a chosen vector of variation within bulk composition space, and model the P-T history for
metamorphic phases of interest, a thermodynamic database has to be combined with a set of a-X
relations when executing a modeling program.

The thermodynamic database and a-X relations used in the two modeling programs (TC and
TD) differ in format but are identical in terms thermodynamic properties and mixing properties of
end-member phases, if they are from the same versions. The conversion of the latest metabasite a-
X relations (Green et al. 2016), originally built for TC, to one being compatible with the TD
working environment (http://dtinkham.net/peq.html) made the modeling of metabasites easier and
more automatic. Pseudosection construction is the key function of thermodynamic modeling
programs (TC and TD), as it predicts the stability fields of equilibrium phases (i.e., minerals, melts,
and fluids) in P-T space, as well as their compositions and proportions. A prograde metamorphic
P-T path can be modeled for HP-UHP rocks by projecting garnet compositional data onto the
theoretically predicted mineral compositional isopleths in pseudosections (e.g., St-Onge et al. 2013;
Hernandez-Uribe et al. 2018; Laurent et al. 2018; Yu et al. 2019).

As introduced in Section 1, the four protocols that we test here are: (1) TC33 , which uses
THERMOCALC version 3.33 with database ds 55 and a-X relations of White et al. (2007) for
garnet; (2) TC47, using THERMOCALC version 3.47 with database ds 62 and a-X relations of
White et al. (2014a) for garnet; (3) TDG, using Theriak-Domino with database ds 62 and a-X
relations of White et al. (2014a) for garnet; and (4) TDW, using Theriak-Domino with database
ds 62 and modified a-X relations using White et al. (2007) for garnet. The a-X relations of non-

garnet minerals used the different protocols are shown in Table 1.
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6.2. Model Input and Components

Garnet, being a key mineral in HP and UHP metamorphic rocks, is capable of recording
evidence of the metamorphic history of the rock in its structure by responding to the changes in
composition, P, 7, and fO>, over time as the crystals grow (Spear and Selverstone 1983; Spear et
al. 1990; Spear 1995; Vance and Mahar 1998; Stowell and Tinkham 2003; Ague and Axler 2016).
This is due to the robust chemical and mechanical properties of garnet and its resistance to post-
growth dissolution (Caddick et al. 2010; Baxter et al. 2017). Pseudosections and garnet
compositional isopleths (alm, prp and grs) are commonly used in thermodynamic modeling to
constrain prograde metamorphism and corresponding P-T conditions (Spear 1995; Tinkham and
Ghent 2005; Gaidies et al. 2008a, 2008b; Massonne 2012; St-Onge et al. 2013).

Eclogite TM-15, and garnet crystal TM-15G#3 (Fig. 3a-c) were selected as the representative
eclogite bulk composition and garnet composition, respectively, to perform the modeling presented
here — to create pseudosections and model P-T paths using the various protocols we test. The large
grain size, evident growth zonation, x(Ca)gt minimum and x(Mg)g+ maximum occurring along the
garnet profile (Fig. 5), and the ~200 pm rim seen in photomicrographs and BSE images (Fig. 2b
and 3b), indicate that prograde metamorphism conditions, including peak pressure, have been
recorded in garnet crystal TM-15G#3. Also, among three measured garnet profiles this grain had
the lowest grossular and highest pyrope content.

Table 3 presents the bulk composition of TM-15, measured by XRF, which was used as starting
input to construct pseudosections. MnO is omitted from the bulk composition when constructing
pseudosections and calculating EBCs during the early stages of garnet growth. This is because

while MnO is a significant component in the garnet core composition (Fig. 3c), it becomes less
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significant at later stages of prograde metamorphism/garnet growth (Symmes and Ferry 1992;
Mabhar et al. 1997; White et al. 2014b). Carbonate and phosphorus minerals were omitted from the
bulk composition due to low concentrations in this sample (Table 3). A compositional profile
(1200 um traverse) across garnet TM-15G#3 (Fig. 5; Table S1), measured by EPMA, is utilized
to model prograde garnet growth attending metamorphism.

Thermodynamic modeling and calculations in this paper are performed in the 10-component
system, Na;0O-Ca0O-K,0-FeO-MgO-Al>03-Si02-H20-Ti0;-Fe;O3 (NCKFMASHTO). See Table
1 for lists of minerals included in each of the modeling protocols and which a-X relations were
used for those minerals with solid-solution. The presence of hydrous mineral inclusions (e.g.,
phengite, epidote, chlorite) in the core of garnet TM-15#G3 suggests that eclogite TM-15 was
water-saturated in the early stages of metamorphism. Here we assume water is to be saturated
along the prograde path in all calculations.

The bulk Fe**/>Fe (~10.9%) of eclogite TM-15 was estimated using stoichiometric criteria in
the mineral compositions and recalculating the mineral ferric contents using the AX program of
Holland and Powell (2000). The effect of garnet intra-crystal diffusion was not considered due to
the high heating rate (~10 °C My!) (Gaidies et al. 2008a) and short duration (<10 Ma) of prograde
metamorphism (St-Onge et al. 2013; Wilke et al. 2015). Effects from mineral inclusions on
modeling results are very limited due to the low abundance of inclusions in TM-15. Mineral
inclusions occur mostly in the garnet core as omphacite, rutile, phengite, omphacite, albite, and

quartz, and account for less than ~1% of the bulk composition of the whole rock.
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6.3. Effective Bulk Composition Calculations and Mineral Fractionation Methods

EBC estimates are among the most important factors affecting the accuracy of predictions of
metamorphic P-T conditions attending prograde metamorphism, and this task is non-trivial as the
EBC continuously changes with progressive metamorphism and porphyroblastic mineral (e.g.,
garnet) crystallization (Marmo et al. 2002; Evans 2004; Tinkham and Ghent 2005; Warren and
Waters 2006; Zeh 2006; Gaidies et al. 2008b; Lanari and Engi 2017). Reaction kinetics (e.g.,
reaction rate, driving force, and crystallization mechanism) can also hinder obtaining the realistic
reactive equilibrium volume (e.g., Carlson et al. 2015; Lanari and Engi 2017). In this paper, only
garnet is considered as affecting the EBC evolution with changes of P and 7, and hence only garnet
removal is included in the EBC calculations.

The growth of garnet will consume larger proportions of Fe and Al relative to other elements
from the initial bulk composition, and this can cause changes in the EBC and hence affect the
modeling results. Assuming that garnet growth is occurring at an equilibrium state, the main
principal driving EBC calculations is the quantitative removal of the newly formed portion of the
garnet core domain from the bulk composition at each P and 7 step in the calculation. There are
myriad approaches available to calculate the EBC (only considering garnet removal) at a given P-
T condition (e.g., Gaidies et al. 2008a; White 2010; Marmo et al. 2012; Moynihan and Pattison
2013; St-Onge et al. 2013). For this study, we used techniques specific to the modeling programs,
TD and TC. These are described in detail in Supplementary Materials Section 2.

Fourteen fractionation steps were performed for garnet (TM-15G#3) prograde growth, which
specifically includes 7 steps in the core domain (0-367 pm) and 7 steps in the rim (367—490 um)
(Fig. 7; Table S2). The stepping of garnet fractionation in the modeling is based on changes in

composition (i.e., alm, prp, and grs) along the EMPA profile.
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6.4. Uncertainties

Identifying the source and magnitude of uncertainties in the P-7 predictions from
thermodynamic modeling are essential when considering how realistically a calculated
metamorphic P-T path represents an actual geological process. Past studies have focused on
identifying the nature of uncertainties, quantifying the magnitude, and evaluating their effects on
geological interpretations (e.g., Kohn and Spear 1991; Powell and Holland 2008; Palin et al. 2016;
Lanari and Engi 2017). In this paper, we consider two sources of uncertainty and their potential
effects when modeling metabasites: (1) uncertainty associated with compositional variability in
mineral domains, and (2) uncertainty associated with internally-consistent databases and a-X
relations used in modeling programs.

The uncertainty associated with compositional variability in mineral domains refers to the
degree to which in situ mineral compositions (measured by EPMA) vary within a user defined
mineral domain (e.g., rim, core). This will depend on how homogenous each domain is in a given
crystal, how the domains are defined by the user, and the quality of the measurements. Therefore,
both the degree to which the measured compositional profile accurately represents garnet growth
during prograde metamorphism, and the errors of EPMA analyses (relative and systematic) can
have an effect on modeling results (Lanari et al. 2017, 2019). This type of uncertainty will vary
from sample to sample and depend heavily on user choices in defining mineral domains.

The second type of uncertainty, those associated with internally-consistent databases and a-X
relations used in modeling programs, have been heavily debated (Engi 1992), and are commonly
neglected in presentations of modeling results. Attempts to quantify these modeling uncertainties

in past studies yielded a generally accepted overall uncertainty of £50 °C and +1 kbar (2c) for
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mineral isopleth thermobarometry in pseudosections (Powell and Holland 2008). These values of
overall modeling uncertainty are especially useful for directly comparing results of models that
use the same compositions as input, as we do in this study. Here we will present both types of
uncertainty. Calculations of uncertainty associated with compositional variability in garnet
domains for TM-15G#3 will be given when reporting P-T predictions from our modeling protocols
to highlight the degree to which sample zonation can affect model results. Because the input for
all of the modeling protocols is the same, we will use the overall modeling uncertainty (50 °C
and 1 kbar, 26) of Powell and Holland (2008) when comparing results of the different modeling
protocols.

The sources of uncertainty discussed above are not exhaustive by any means. In addition,
consideration of the scale and constituents of selected equilibration volume, techniques to calculate
EBC, factors affecting the phase reactions in equilibrium, and petrological observations, could
potentially affect the results and associated uncertainties of models. Other factors that may affect
the modeling of metabasites include uncertainties in the estimation of ferrous/ferric iron and H>O
contents, and chemical diffusion during garnet growth (Kelsey and Hand 2015; Lanari and Engi
2017; Lanari and Duesterhoeft 2019). Evaluation of all potential sources of uncertainty is beyond
the scope of this paper. Past studies have already done this work, and we adopt the overall

modeling uncertainty of Powell and Holland (2008) for comparing modeling protocols in this study.

7. Thermodynamic Modeling Results
The results of each modeling protocol are presented individually below and summarized in
Table 5. As discussed in Section 6.4, calculations of uncertainty associated with compositional

variability in garnet domains are presented below (10o).

26



O J o U bW

AT UTUTUTUTUTUTUTOTE BB DB DD DSDNWWWWWWWWWWNNNONNNMNNNNNNRE R PR ERRRRP R R
O WNRPOWVWOUJdANT D WNRPRPOW®O-TAURWNROWOWO®-JdANUD™WNRFROW®OW-JIOUD™WNR OW®W-IO U B WN R O W

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

7.1. Modeling Trial 1 (TC33): TC3.33 with ds 55 and Garnet W07

Results of protocol TC33 are shown in Figs. 8a & b, 9 and Sla, and in Table 5. The TC33
generated pseudosection (Fig. 9a) shows that garnet started to grow at 540 + 15 °C and 21.5 £ 1.5
kbar in a mineral assemblage of gln + act + grt + omp + ms + chl + lws + rt + H>O. Prograde
metamorphism reached a peak pressure of 26 + 1 kbar at 565 + 8 °C, and then achieved peak
metamorphism (peak temperature) of 603 + 3 °C at 24 + 0.5 kbar, when considering the effect of
garnet crystallization on the EBC. This P-T path provides a constant geothermal gradient d7/dP of
~5 °C/kbar during its burial stage and ~15°C/kbar during the exhumation stage. If garnet
fractionation is not considered (i.e., no EBC calculations), the predicted peak pressure estimated
with this protocol would be 32.5 + 3 kbar at 571 + 11 °C (Fig. 13), and the peak metamorphism
would be beyond the constructed P-T range.

As garnet grows, mineral compositions and the EBC continuously change (Fig. 8a & b). This
modeling protocol (TC33) predicts that as metamorphism progresses from the beginning of garnet
growth (540 + 15 °C and 21.5 £ 1.5 kbar) to peak metamorphism (603 + 3 °C and 24 + 0.5 kbar),
FeO drops from 11.8 to 3.0 mol. %; MgO increases from 11.9 to 16.0 mol. %; and Al>O3 and CaO
slightly decrease from 9.7 and 11.6 to 6.9 and 10.9 mol. %, respectively (Fig. 8a). In terms of the
changes in mineral assemblage during prograde metamorphism, garnet, omphacite and talc
generally increase from 22.6, 23.2 and 0.0 to 35.9, 39.3, and 12.2 mol. %, respectively.
Glaucophane and actinolite drop to almost zero at peak-pressure metamorphism, and lawsonite

drops from 13.8 to 8.6 mol. % during prograde metamorphism (Fig. 8b).
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7.2. Modeling Trial 2 (TC47): TC3.45 with ds 62 and Garnet W14

The results of protocol TC47 are shown in Figs. 8c & d, 10, and S1b, and in Table 5. Garnet
begins to nucleate at 25 + 2.5 kbar and 515 £ 21 °C in the phase stability field of gln + di + omp +
grt + bt + chl + Iws + rt + H2O; reaches a peak pressure of 34 + 1.5 kbar at 544 + 15 °C; and
achieves peak metamorphism at 29 + 0.5 kbar and 595 £ 3 °C (Figs. 10a & S1b). This P-T path
provides a constant geothermal gradient d7/dP of ~6 °C/kbar during burial and ~11°C/kbar during
exhumation. If mineral fractionation is not considered, the predicted peak pressure would be 39 +
4 kbar at 539 + 15 °C, and the peak metamorphism would be beyond the constructed P-T range
(Fig. 13).

The evolution of the EBC and mineral assemblage during garnet growth predicted by modeling
protocol TC47 are shown in Figs. 8c & d. Starting from garnet nucleation (25 + 2.5 kbar and 515
+ 21 °C) to end of the prograde metamorphism (29 + 0.5 kbar and 595 + 3 °C), FeO and ALO;
abundances drop from 11.8 and 9.7, to 2.8 and 7.1 mol. %, respectively. During this metamorphic
stage, MgO keeps increasing from 11.9 to 16.1 mol. %, and CaO remains mostly unchanged (Fig.
8c). Along the prograde metamorphism path, garnet, omphacite, and talc increase from 22.2, 0.15,
and 0, to 35.5, 34.7, and 8.7 mol. %. Glaucophane and lawsonite drop from 30.6 and 21.5, to 5.1

and 8.2 mol. %, respectively. Diopside drops to zero at ~596 °C and peak pressure (Fig. 8d).

7.3. Modeling Trial 3 (TDG): TD with ds 62 and Garnet W14

Results of protocol TDG are shown in Figs. 8¢ & f, 11, and Slc, and in Table 5. As Figs. 11
and S1c show, garnet begins to nucleate at 530 =25 °C and 26 + 2 kbar in the phase stability field
of gln + omp + di + grt + bt + chl + lws + rt + H>O. Peak pressure is 34 = 1.5 kbar at 551 + 12 °C,

which is followed by exhumation to 29 + 1 kbar and 602 + 8 °C, where it reaches peak temperature
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(Fig. 11). The P-T path shows a general thermal gradient (d7/dP) of ~5 °C/kbar from garnet
nucleation to peak pressure, and ~11°C/kbar during exhumation period recorded by garnet (Fig.
11). If mineral fractionation is not considered, the predicted peak pressure would be 39 + 3 kbar
at 553 + 35 °C (Fig. 13), and peak metamorphism would be beyond the constructed P-T range.
Figures 8e & f show the evolution of the EBC and mineral assemblages predicted by TDG
from garnet nucleation (530 & 25 °C and 26 + 2 kbar) to the end of prograde metamorphism (602
+ 8 °C and 29 + 1 kbar). As garnet crystallizes over a temperature range of 508—604 °C, FeO and
Al>Os decrease from 11.7 and 9.7, to 2.9 and 7.0 mol. %, respectively, while MgO increases from
11.8 to 15.9 mol. % (Fig. 8e). Garnet and omphacite increase from 23.8 and 2.4, to 30.7 and 44.6
mol. %, respectively, and diopside drops from 25.9 mol. % to zero during prograde metamorphism.

Glaucophane and lawsonite drop from 13.4 and 19.1, to 1.2 and 5.5 mol. %, respectively (Fig. &f).

7.4. Modeling Trial 4 (TDW): TD with ds 62 and Garnet W07

Results of protocol TDW are shown in Figs. 8g & h, 12, and S1d, and in Table 5. The TDW
protocol calculations predict garnet nucleation at 537 + 25 °C and 22 + 2 kbar at the stable phase
field of gln + omp + di + grt + chl + ms + lws + rt + H>O, peak pressure of 28.5 + 1.5 kbar at 563
+ 13 °C, and peak 7 of metamorphism of 613 £ 7 °C at 24.5 + 0.5 kbar (Fig. 12). The same effect
from compositional fractionation is seen here as was seen with the other three modeling protocols:
if mineral fractionation is not considered, the predicted peak pressure would be 30 + 3 kbar at 564
+ 25 °C (Fig. 13), and the peak metamorphism would be beyond the constructed P-T range.

Figures 8g & h show how the EBCs and mineral modal abundances change with prograde
metamorphism according to TDW modeling. As garnet crystallizes during prograde

metamorphism, FeO and Al>O3 decrease from 11.7 and 9.7, to 3.6 and 6.9 mol. %, respectively,
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while MgO increases from 11.8 to 15.8 mol. % (Fig. 8g). In Fig. 8h, garnet and omphacite
abundances increase from 18.6 and 12.4, to 28.2 and 45.9 mol. %, respectively, and diopside drops
to zero at ~541 °C. Glaucophane and lawsonite drops from 10.1 and 14.6, to 2.2 and 4.7 mol. %,

respectively.

8. Discussion

8.1. Comparing the results of modeling protocols

When comparing the results of the four modeling protocols tested here (TC33, TC47, TDG,
and TDW), we find many similarities and some significant differences. The shapes of the
fractionated P-T paths (calculated considering removal of garnet from the EBC) in Figs. 9-12 are
generally similar — all showing steep pressure increases during garnet core formation, weakly
concave curves approaching peak P, followed by the classic “fishhook™ turn as pressure drops
steeply at first, then levels out as peak 7 is achieved. Figures 9-12 show that the pseudosections
constructed by the four trials are similar with regard to the stability fields of equilibrium mineral
assemblages (gln, act, omp, di, grt, lws, tlc, ms, bt, ep, chl, rt, spn, H>O). The pseudosection
constructed with TC33 is slightly different from the other three with respect to the stability fields
of clinoamphibole (gln and act) and clinopyroxene (omp and di), and it has no predicted diopside
(amphibole and clinopyroxene a-X relations from Diener and Powell 2012) whereas the TC47,
TDG, and TDW protocols (clinoamphibole and clinopyroxene a-X relations from Green et al. 2016)
do.

Predicted temperatures agree within error (=50 °C, 2o; Powell and Holland 2008) among all

of the models for all stages of metamorphism investigated (Fig. 13). This means that choice of
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program, database, and set of a-X relations used in a modeling protocol will not significantly affect
the resulting temperature predictions for metabasites. Pressure estimates, however, differ
significantly. Considering the results of our modeling protocols that accounted for garnet
fractionation and its effect on the EBC (solid curves in Fig. 13), and the generally accepted
modeling uncertainty (£1 kbar, 2c; Powell and Holland 2008), pressure predictions at all stages of
metamorphism are higher in TC47 and TDG results than in TC33 and TDW, with TDG giving the
highest P predictions and TC the lowest. The differences in pressure predictions stem not from the
user’s choice of program or database, but from the choice of garnet solution model (a-X relations
of White et al. 2007 vs. White et al. 2014a). The garnet grossular isopleths in TC33 and TDW
(Figs. 9b and 12b, respectively), the pseudosections constructed with the White et al. (2007) garnet
a-Xrelations, predict lower pressures, in the graphite stability field. While TC47 and TDW, which
use White et al. (2014a), indicate pressures in the diamond stability field (Figs. 10b and 11b,
respectively). The difference in pressure exceeds overall modeling error, indicating that user’s
choice of garnet solution model in the modeling protocol has a significant impact on the pressure
results for metabasites (Fig. 13).

The main difference between the two sets of a-X relations is that the modified ASF
(asymmetric formalism) interaction energy between pyrope and grossular (Wprp-ors) in White et al.
(2014a) is 30.1 kJ, whereas it is 45 kJ in White et al. (2007). Also, the asymmetry parameters used
in garnet a-X relations of White et al. (2014a) are app = aaim = akno = 1, agrs = 2.7, whereas, the ags
adopted in the previous iteration of this parameter (from White et al. 2007) is 3.0 (Table 1). The
modification of the ASF interaction energies and asymmetry parameters among garnet
endmembers (from White et al. (2007) to White et al. (2014a)) apparently has a significant effect

on the grossular proportion in equilibrium garnet calculations (especially at high pressures), and
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thus TC47 and TDG lead to much higher pressure estimates than that predicted using the Wprp-grs
and ags in the garnet a-X relations formulation of White et al. (2007).

Comparing the P-T paths generated by assuming no garnet fractionation (i.e., no EBC
calculations; dashed curves in Fig. 13) with the paths generated using garnet fractionation (i.e.,
incorporating EBC calculations; solid curves in Fig. 13), we see that not accounting for changes
to the bulk composition as garnet grows causes significant overestimations of peak pressure for
TM-15; yielding pressure predictions of >38 kbar for TC47 and TDG, ~5 kbar higher than the peak
pressures calculated assuming garnet fractionation. These differences exceed the overall modelling
error, telling us that EBC calculations have a significant effect on P predictions. User’s should be
cautioned that neglecting to use EBC calculations when constructing P-T paths for metabasites,
will result in nontrivial overestimations of peak pressure.

Figures 8a, ¢, ¢ & g show that the four trials, TC33, TC47, TDG, and TDW, predict similar
patterns of EBC evolution during mineral fractionation and prograde metamorphism. During this
stage in all protocols, Si02 and MgO increase slightly, while FeO and Al>O3 drop significantly,
and CaO generally remains unchanged. Mineral evolution with prograde metamorphism is shown
in Figs. 8b, d, f & h. Similar patterns are observed when using the same program (TC or TD).
TC33 and TCA47 trials (Figs. 8b & d) result in similar trends of mineral evolution and mineral
proportions with increasing 7, with the exception of diopside in TC33 (as noted above). TDW and
TDG (Figs. 8f & h) also exhibit similar mineral evolution patterns during prograde metamorphism,
but these patterns are different to those from TC protocols. When comparing the modal proportions
predicted by the two programs (TC vs. TD), we observe that TC protocols predict a higher modal
abundance of garnet (35.5 and 35.9 vs. 28.2 and 30.7%, respectively) and lower modal abundance

of omphacite (39.3 and 34.7 vs. 44.6 and 45.9%, respectively) than TD protocols (Fig. 8). The
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TDG and TDW results of 30.7 and 28.2% garnet and 44.6 and 45.9% omphacite are much closer
to the actual mineral modal abundance observed in sample TM-15 for garnet (~28.6%). The modal
abundance of omphacite (~20.2%) in TM-15 is much lower than the model results (~45%) likely
due to retrograde metamorphism.

For all protocols, the calculated EBC prograde path produces almost identical compositional
evolution with 7 (Fig. 8a, ¢, e & g). By comparing model predictions with actual petrographic and
geochemical data from the well characterized eclogite sample used in the models, we conclude
that the differences between fractionation methods of the modeling programs (TC and TD) cause

minor differences in EBC and mineral evolution predictions.

8.2. Modeling Predictions vs. Petrological Observations

Thermodynamic modeling programs provide an important and useful method for numerically
simulating metamorphic histories. The accuracy, functionality, and ease of use of these techniques
have improved immensely over the past few decades making them applicable to a wide variety of
P-T ranges and bulk compositions. However, care should be taken when making interpretations
based on model outputs considering the significant overall modeling uncertainties. Model results
should be evaluated by ground-truthing with geochemical and textural data from the actual sample
as much as possible.

The prograde P-T paths predicted by TC47 and TDG modeling predict an assemblage of
garnet, lawsonite, sodic amphibole (glaucophane), diopside, omphacite, and biotite (only major
phases listed) in the Tso Morari eclogite (Figs. 9-12); TDW predicts muscovite instead of biotite
(other minerals are the same as in TC47 and TDG); TC33 predicts garnet, lawsonite, glaucophane,

calcic amphibole (actinolite), omphacite and muscovite (Table 5). None of the models predict
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phengite. The protocols also predict the modal abundance of each phase. The TC47, TDG, and
TDW protocols predict that garnet starts to grow along the prograde path in the presence of
significant amounts of lawsonite (15-20 mol. %), clinopyroxene (15-25 mol. %) and glaucophane
(10-30 mol. %) (Fig. 8d, f & h). Clinopyroxene and glaucophane are consumed earlier but
lawsonite is predicted to be modally significant for most of the prograde path as the abundance of
especially omphacite increases (Fig. 8d, f & h), in all cases lawsonite is predicted to be present
through peak UHP metamorphism. Actinolite is predicted instead of clinopyroxene for only one
protocol: TC33 (Fig. 8b). Prograde garnet growth is interpreted as being recorded in the core
domain in most Tso Morari eclogitic garnets (O’Brien et al. 2019).

The observed inclusion population of the garnet cores in this study and others (see O’Brien et
al. 2019 for a review) are inconsistent with modeling predictions for early stages of metamorphism
in all four modeling trials. The inclusion phases in garnet cores include aegirine-rich omphacite,
sodic-calcic amphibole (winchite), epidote, muscovite, jadeite, chlorite, quartz, magnetite, and
rutile (Fig. 3). We did not observe any lawsonite or its pseudomorphs (as epidote or paragonite),
glaucophane, or biotite in garnet cores in this study. Only minor sodic amphibole and lawsonite
have been reported in garnet cores from this outcrop by one study (St-Onge et al. 2013). Garnet
rims have fewer mineral inclusions, including jadeite-rich omphacite, clinoamphibole, phengite,
quartz, and carbonates; these closely correlate with the matrix assemblage of TM-15 (Figs. 2 & 3)
and agree better with model predictions, with the exception of lawsonite which the models predict
to remain at 10 mol. % post-peak metamorphism (Fig. 8b, d, f & h).

Figure 14 shows pseudosections constructed by the four protocols at the stage of peak pressure
(using EBCs calculated from just before peak pressure), overlain by a grey bar showing the highest

phengite Si p.fu. (3.51-3.54) observed in eclogite TM-15. The TC33 and TDW protocols (using
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the White et al. 2007 garnet solution model) predict peak P-T conditions close to observed phengite
compositions, with TC33 overlapping the region and TDW approaching closely (Fig. 14a & d).
The highest phengite Si p.f.u. reported in this eclogite boudin is 3.56 by de Sigoyer et al. (1997).
If peak pressure had reached ~35 kbar as predicted in the TC47 and TCG protocols, the silicon
concentrations in phengite should greatly exceed values measured here and elsewhere (Fig. 14b &
c).

There are several possible reasons for the mismatch between the inclusion population of the
garnet cores in TM-15 and the predicted prograde assemblages. The first possibility discussed in
this section relates to garnet equilibration and preservation of phases grown during early
metamorphism. Electron microprobe data from garnet TM-15G#3 (and other garnet crystals in
TM-15) confirms compositions and zoning observed in other studies (e.g., St. Onge et al. 2013)
Garnets in Tso Morari eclogites have large, relatively flat, homogeneous core regions
(Alme2Grs2sSps2-3Prpio for TM-15G#3) (Fig. 5), which is not consistent with a progressively
growing garnet along a specific P-T path. St-Onge et al. (2013) interprets the homogeneous garnet
cores as garnet overgrowth on matrix minerals coupled with effective cation diffusion (e.g., Spear
1995) and homogenization of the already formed garnet domain at some point during prograde
metamorphism. However, the P-T conditions (~520 °C and ~25 kbar, St-Onge et al. (2013))
calculated are too cool to cause cation diffusion during the relatively short prograde metamorphism
stage (Donaldson et al. 2013).

The observations of a homogenous garnet core domain in TM-15G#3 and lack of some of the
predicted mineral phases (e.g., sodic amphibole, lawsonite) might be due to fluid release during
prograde metamorphism. Our modeling indicates that dehydration reactions (breakdown of sodic

amphibole and lawsonite) occur at ~515-530 °C and ~23.5 kbar, prior to peak pressure conditions
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(Figs. 9-12). Those released fluids may have reset the system and homogenized or semi-
homogenized the already formed garnet core domain (e.g., Wei and Clarke 201 1; Hernandez-Uribe
et al. 2018). Partial water driven recrystallization and the resulting disequilibrium can also help
explain the disparate results by the conventional thermobarometers using data from garnet core

domains (Chatterjee and Jagoutz 2015).

8.3. P-T Paths for the Tso Morari Eclogite

All modeling protocols examined here predict cold, concave P-T paths, similar to recent
thermodynamic modelling studies on Tso Morari eclogite (e.g., St-Onge et al. 2013; Palin et al.
2017). The predicted peak pressures in all protocols (possibly excepting TC33) are consistent with
the discovery of coesite in the garnet rim domain (Mukherjee and Sachan 2001; Sachan et al. 2004).
TC33 and TDW are represented by the red solid curve on Fig. 15, with peak pressures of ~27 kbar
at ~540-590 °C. The TC47 and TDG protocols, represented by the solid orange curve, predict a
significantly higher peak pressure of ~34 kbar at ~540-550 °C. These differences, as discussed
earlier, are likely due to the choice of garnet a-X relations used in the protocols, not the choices of
modelling program, version, or database.

Conventional thermobarometry calculations from this and previous studies were used to
evaluate which protocol best fits available data (Fig. 15). For sample TM-15, the intersections of
lines generated using GC and GP thermometers, and GOP and empirical phengite barometers using
the peak assemblage, provide a poorly constrained P-T estimate of ~520—700 °C and ~20-26 kbar
(Fig. 6a). Additional estimates using AVE PT function in TC3.33 for the assemblage from the
garnet rim was 572 = 15 °C and 23.3 £+ 1.2 kbar, and 523 + 37 °C and 21.0 £ 1.6 kbar from the

garnet core (Figs. 6a and 15). Low silica phengite and paragonite in the matrix of sample TM-15
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(ms-pg) were used to estimate late retrograde metamorphic conditions (Guidotti et al. 1994; Roux
and Hovis1996) of ~450-500 °C and 7—14 kbar (Fig. 6b).

The peak pressure conditions determined by the TDW (28.5 + 1.5 kbar at 563 + 13 °C) and
TC33 (26 + 1 kbar at 565 = 8 °C ) protocols are within error of calculations by conventional
thermobarometry on the same sample (TM-15); TC47 and TDG predict much higher pressures
(>30 kbar) (Figs. 6a and 15). Thermobarometric studies of the Tso Morari eclogite using GC, GP,
and GOP yield peak conditions of 27-29 kbar and 690—750 °C (O’Brien et al. 2001), consistent
with TDW and TC33 results. Conventional estimates that were pinned by carbonate assemblages
have predicted much higher pressures in the diamond stability field (>39 kbar) (Wilke et al. 2015;
Mukherjee et al. 2003). These estimates are significantly higher than all other results for Tso
Morari from modeling or conventional thermobarometry. None of the P-7' estimates from
conventional thermobarometry (high or low), are within the uncertainty of our predictions from
the TC47 and TDG protocols, suggesting that these protocols do not yield realistic results.

Figure 15 presents our preferred P-T path for the Tso Morari eclogite (the bold red line), which
is a result of considering all results from our modeling trials and thermobarometric calculations.
Four P-T constraints (M0—-M3) for the metamorphic evolution of Tso Morari eclogite are presented
(Fig. 15). Position MO represents the P-T conditions during formation of the garnet core (before
onset of bulk composition fractionation). Position M1 represents the P-T conditions at peak
pressure predicted by models (TC33 and TDW), which is more consistent with the pressure
obtained from calculations using highest silica phengite (3.54 Si p.f.u.) in TM-15 (Fig. 14a & d).
Position M2 represents the peak metamorphic conditions preserved by the garnet composition in

the rim of TM-15G#3 (low x(Ca)gt), which is interpreted to have formed during peak
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metamorphism. Position M3 represents a point along the retrograde path, calculated using the
muscovite-paragonite barometer of Roux and Hovis (1996).

Figure 15 also shows paths from previous studies. St-Onge et al. (2013) used the same
approach as protocol TC33 (TC version 3.33, ds 55, and garnet a-X relation in White et al. 2007)
yeilding similar P-T results (path 10 in Fig. 15). Palin et al. (2017) predicted peak P-T conditions
of 26-28 kbar and 600—620 °C (paths 12 and 13 in Fig. 15), and estimated garnet nucleation
occurred at 350-370 °C and 18-20 kbar using combined thermodynamic (TC version 3.40i, ds 55,
and garnet g-X relations in White et al. 2007) and geodynamic numerical modeling (MVEP2).
However, Konrad-Schmolke et al. (2008), using TD and different garnet a-X relations (Berman
1990), predicted a warmer, convex prograde P-T path starting from 17.2 kbar and 545 °C, with
amphibole- instead of lawsonite-rich assemblages. This study produced similar peak conditions of
628 °C at 24.4 kbar (path 8 in Fig. 15).

Metamorphic P-T paths obtained by thermodynamic modeling (regardless of modeling
program, version of thermodynamic database, and mineral a-X relations) for the Tso Morari
eclogite predict a cold subduction path (this study; St-Onge et al. 2013; Chatterjee and Jagoutz
2015; Palin et al. 2014, 2017). Protocols TC47 and TDG predictions (orange curve in Fig. 15) are
close to the forbidden geothermal gradient (5 °C/km) in the lawsonite-eclogite field (Schreyer
1995; Liou 1998), landing in the very rare ultralow thermal gradient classification (Brown 2014)
of subduction related P-T paths. Petrologic evidence does not support this low gradient or the
elevated peak pressures. In addition, the protolith of Tso Morari UHP terrane is continental crust
with significant sedimentary rock cover; thermomechanical modeling accounting for this produces

warmer prograde paths (Warren et al. 2008; Beaumont et al. 2009). Thermodynamic modeling
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may be underestimating temperature by not accounting for the effect of shear heating, hydration

reactions and fluid and rock advection (Penniston-Dorland et al. 2015).

9. Conclusions

Our petrologic, compositional, and thermodynamic evidence from eclogite from the Tso

Morari UHP, NW India yield the following conclusions:

1.

After comparing the modeling results of all four protocols with supporting petrologic and
thermobarometric data, we conclude that the selection of a-X relations, specifically for
garnet, is more important than the choice of modeling program, version, or database. In
metabasites, the a-X relations chosen for garnet have the largest impact on estimate of peak
pressure. The thermodynamic models using the newer a-X relations for garnet (White et al.
2014a) predict a higher metamorphic peak pressure than the modeling results by using the
garnet a-X relations of White et al. (2007). Using the White et al. (2014a) data for garnet
also produces unreasonable cool prograde paths.

In metabasites, the changes in mineral assemblage and relative proportions predicted by
thermodynamic modeling are very sensitive to whether garnet is assumed to be in
equilibrium during its entire growth or whether it is fractionating. As demonstrated above,
independent of the protocol selected, peak pressure will be significantly over-estimated in
the non-fractionated case (Fig. 13).

The cool prograde paths and higher pressures predicted using the newer garnet a-X
relations (White et al. 2014a) are not supported by petrologic observations. The peak
pressures predicted by TC33 and TDW modeling (26 + 1 kbar at 565 + 8 °C and 28.5+ 1.5

kbar at 563 £+ 13 °C, respectively), are consistent with the conventional thermobarometry
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results in this study and previous work using thermodynamic models from the well-studied
Tso Morari (e.g., St-Onge et al. 2013; Chatterjee and Jagoutz 2015; Palin et al. 2017).
However, TC33 and TDW still produce prograde paths that predict significant lawsonite,
which is not observed in the rocks. Thermodynamic modelling alone may underestimate
temperature during prograde metamorphism.

4. Quantitative results from thermodynamic modeling should be integrated with petrographic
observations to obtain a geologically meaningful interpretation. More careful consideration
of the key mineral a-X relations, comparison between multiple techniques, and sourcing

and controlling of uncertainties can essentially help interpret geological problems.
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1307  Figure Captions

g w N

6
71308  Figure 1. Geological map of the Himalayan orogenic belt showing the rock units, tectonic
8

. [9) 1309 boundaries, and location of the Tso Morari ultra high pressure (UHP) terrane. The inset shows
ié 1310 the Himalayan-Tibetan orogeny. ST: Stak Valley; ISZ: Indus Suture Zone; KG: Kaghan
g 1311 Valley; MFT: Main Frontal Thrust. Modified after (Thakur and Virdi 1979; Thakur and Misra
i$1312 1984; Steck 2003).

18

191313  Figure 2. Images of sample TM-15. (a) Mafic eclogite boudin (dark color) enclosed within the
20

;; 1314 felsic gneiss (light color) in the field. (b) Plane polarized light photomicrograph of a thin
23

241315 section of eclogite sample TM-15. (¢) False color BSE image of TM-15, showing major
25

5313 16 minerals and textures an 8 x 6 mm portion of the thin section. (d) XMapTools processed image
28 .. . .

291317 based on an X-ray compositional map of TM-15, showing phases and textures ina 2 x 1.5 mm
30

311318 portion of the thin section. The box in this image shows evidence of poikilitic texture of
32

22 1319 amphibole, although this is texture is rarely observed in the sample. Mineral abbreviations as
35

361320 in Table 2.

37

221321 Figure 3. Photomicrographs of garnet crystals in eclogite TM-15. (a) Crossed polarized image of

40
411322 garnet TM-15G#3. (b) BSE image of garnet TM-15G#3, showing the traverse of EPMA-

42
221323 measured garnet compositional profile (A-A’). (c) XMapTools processed image of garnet

45
4161324 TM-15G#3 based on an X-ray map, showing the garnet zonation and inclusion phases. (d)
47
481325 BSE images of the mineral inclusions in garnet (TM-15G#2) core. Mineral abbreviations as
49

21326 in Table 2.
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1327  Figure 4. Diagrams of mineral (garnet, clinopyroxene, muscovite/phengite) compositions in

g w N

21328 eclogite sample TM-15. (a) Quadrilateral diagram of garnet compositions in TM-15, showing
1%1329 the compositional change from the central core to outermost rim. Data are from three garnet
ié 1330 crystals in TM-15. (b) Diagram of Fe/Mg ratio vs. X(Ca)gt from rim to central core of three
%51331 garnet crystals in TM-15. Garnet rim can be subdivided to Rim 1 and Rim 2 based on garnet
i$1332 compositional variability from core to rim (separation rules of the three garnet zones follows
221333 that of garnet TM-15G#3). (c) Nomenclature ternary diagram of sodium pyroxenes, showing
;;1334 the composition of omphacitic pyroxene in eclogite TM-15. (e) Diagram of white mica Al
221335 p.fau. vs. Si p.fou. in eclogite TM-15.

25

351336 Figure 5. Compositional profile indicating garnet endmember fractions of almandine (alm),

28
291337 pyrope (prp), grossular (grs), and spessartine (sps) across a traverse of garnet TM-15G#3 from
30

311338 rim to core to rim (A-A’). The garnet rim has be subdivided to Rim 1 and Rim 2 based on
32

221339 garnet compositional variability from core to rim. EPMA spots can be seen in Fig. 3b, and

35
361340 data are presented in Table S1. The diameter of the garnet crystal is ~1200 pm.
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62 56
63
64
65



1341

g w N

6
11342
8
91343
10
11
151344
13
141345
15
16
101346
18

191347
20

21
221348

23
241349
25
261350
27

28
291351
30

311352
32

33
341353
35

361354
37

38
391355
40

411356
42

43
441357
45
461358
47

48
151359
50

511360
52

53
541361
55
561362
57
58
59
60
61
62
63
64
65

Figure 6. Thermobarometry calculations using selected minerals from eclogite sample TM-15. (a)

Lines are labeled with the thermobarometer used and sample number. The lines are calculated
using data from the rim of garnet TM-15G#3 and high-Si phengite in TM-15. The red error
ellipse and point within are the output from AVE_PT mode on THERMOCALC (version 3.33)
with the assemblage (omp, grt, ms, tlc, Iws, rt, coe, and H,0). Temperature maxima from GC
thermometry (blue and orange dashed lines) are calculated using garnet (FeO/MgO)minimum
and omphacite (FeO/MgO)maximum, and temperature maximum from GP thermometry (red
dashed lines) is calculated using garnet (FeO/MgO )minimum and phengite (FeO/MgO)maximum
(Carswell et al. 2000). Vice versa for temperature minima in thermometers. Garnet, omphacite,
and phengite FeO/MgO minima and maxima are calculated based on compositional variability
at 1o level. Pressure maximum and minimum for Phg Si barometer (purple dashed lines) is
based on the Si p.f.u. variability at 16 level from phengite with high Si p.f.u. (3.51-3.54). An
overall uncertainty of £2.5 kbar for the non-ideal garnet and clinopyroxene of typical eclogites
is suggested for the GOP barometer (Waters and Martin 1996). The ellipse in AVE_PT depicts
(1 o) uncertainties calculated by the program. The gray shaded region depicts the P-T range
suggested when comparing all thermobarometers. (b) Comparison between paragonite and
low-Si phengite from eclogite TM-15 and the solvi calculated at 5, 10, and 15 kbar (Roux and

Hovis 1996). pg: paragonite; ms: muscovite.

Figure 7. Observed and calculated core-rim garnet zonation profile expressed in a-X parameters

x(g)=alm/(alm+prp) and z(g)=grs/(alm+prp+grs) from TC modeling, and in alm, prp, and grs
from TD modeling. See text and Fig. 5 for explanation of the three garnet zones (domains),

Core, Rim 1, and Rim 2.
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Figure 8. Evolution of the effective bulk composition (EBC) and mineral phases calculated by
TC33 for (a) and (b), TC47 for (c) and (d), TDG for (e) and (f), and TDW for (g) and (h).
Figure 9. (a) Pseudosection generated with modeling protocol TC33 (see text for details) for
eclogite TM-15. The red dashed curve, P-T Path, is calculated considering garnet fractionation
using the garnet TM-15G#3 compositional profile in Fig. 7. The three boxes labeled “Grt
Core”, “Peak P”, and “Grt Rim” represent P-T conditions of garnet nucleation, peak pressure,
and peak metamorphism (i.e., peak temperature), respectively. These three P-T conditions are
calculated (Table 5 and Table S1) based on the EBCs obtained by modeling garnet TM-15G#3
prograde growth assuming domains are as assigned in Fig. 7. Boxes span 1o uncertainties
based on variation of garnet EPMA data within the domains defining each metamorphic stage
(Fig. 7). (b) Diagram of garnet compositional isopleths expressed by TC parameters, x(g) and
7(g). The forbidden zone (<5 °C/km) is determined based on Liou (1998) and Schreyer (1995).

Mineral abbreviations as in Table 2.

Figure 10. (a) Pseudosection generated with modeling protocol TC47 (see text for details) for
eclogite TM-15. (b) Diagram of garnet compositional isopleths expressed by TC parameters,
x(g) and z(g). Other details are the same as those provided in the caption of Fig. 9.

Figure 11. (a) Pseudosection generated with modeling protocol TDG (see text for details) for
eclogite TM-15. (b) Diagram of garnet compositional isopleths expressed by garnet individual
endmembers, alm, prp, and grs. Other details are the same as those provided in the caption of

Fig. 9.
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Figure 12. (a) Pseudosection generated with modeling protocol TDW (see text for details) for
eclogite TM-15. (b) Diagram of garnet compositional isopleths expressed by garnet individual
endmembers, alm, prp, and grs. Other details are the same as those provided in the caption of
Fig. 9.

Figure 13. Comparison of P-T paths with and without consideration of compositional (garnet)
fractionation calculated by the four modeling protocols (TC33, TC47, TDG, and TDW). Error
bars in lower right corner represent overall modeling uncertainty (2c; Powell and Holland
2008). Fract.: fractionated; Unfract.: unfractionated.

Figure 14. Pseudosections constructed by modeling protocol (a) TC33, (b) TC47, (c) TDG, and
(d) TDW, using the EBC calculated at peak pressure. White mica Si p.f.u. isopleths are
included and the grey shaded area represents the highest Si p.f.u. (3.51-3.54) phengite. Boxes
in the pseudosections represent peak pressure with 1 errors calculated using compositional

variation with assigned domains (see Section 6.4 for complete discussion of uncertainties).
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1396  Figure 15. Comparison of P-T paths predicted for the Tso Morari eclogite, including previous

o U W N

71397 studies and the results of this study. Thermobarometers and P-T constraints in this study
8
181398 include: @: TM-15 Phengite Si Peak <3.54 (Fig. 14); @ TM-15 pg-ms (Fig. 6b); @ TM-15
11
12
51399 Garnet Core AVE_PT; @ TM-15 Matrix AVE_PT (Fig. 6a); Previous Studies: &) Guillot et
15
16
171400 al. (1997); ® de Sigoyer et al. (2000); 7 Mukherjee et al. (2003); ® Konrad-Schmolke et al.
18
19
221401 (2008); @ Warren et al. (2008); @ St Onge et al. (2013); A1) Singh et al. (2013a); 12) Full
22
23
241402 transformation, Palin et al. (2017); @3 Non-transformation, Palin et al. (2017). Metamorphic
25
26
;;1403 facies background after (Bucher and Grapes 2011) and abbreviations: AM = amphibolite;
29
301404 Amp-EC = amphibolite-eclogite; BS = blueschist; EA = epidote amphibolite; EC = eclogite;
31
gi 1405 Ep-EC = epidote-eclogite; GR = granulite; GS = greenschist; HGR = high-pressure granulite;
34 . ) .
351406 Law-EC = lawsonite-eclogite. The forbidden zone (<5 °C /km) is determined based on Liou
36
371407 (1998) and Schreyer (1995). The P-T conditions of descending slab surfaces in modern-day
38
281408 subduction zones is shown in the shaded area (Syracuse et al. 2010).
41

421409  Figure S1. Pseudosections and garnet phase boundaries constructed by (a) TC33, (b) TC47, (c)
43

221410 TDG, and (d) TDW, using incrementally fractionated bulk composition. 14 steps of garnet

6
471411 removal and EBC calculations have been performed.
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Table 1. Comparison of thermodynamic modeling parameters for TC33, TC47, TDG, and TDW in this study

Thermo- Major Grt a-X relation parameters (W/kJ) Other Grt
Proeram Grt a-X mineral Mineral phases/endmembers fractionation
& dataset  relations? Wampp) Weimgs  Worpes @ Aaim Aers a-X included® 4
prp g prp-g prp ® o lations® procedure
A grt, gln, act, omp, ms, bt, chl, .
TC33 ds55 w07 2.5 10 45 1 1 3 Iws, ep qtz/coe, tt, ;0 TC (rbi)
TC47  ds62 W14 25 5 3010 1 1 27 B gtelnactomp.dims btchl, o pa g
Iws, ep qtz/coe, rt, spn, H,O
B grt, gln, act, gru, omp, di, ms, bt, .
TDG ds62 W14 2.5 5 30.1 1 1 27 ohl, Tws, ep qtz/coe, rt, spn, Hz0 TD (Theriak)
TDW  ds62 W07 2.5 10 45 113 B et gln,act, gru, omp, di, ms, by (i

chl, lws, ep, qtz/coe, rt, spn, H,O

*WO07: White et al. (2007);: W14: White et al. (2014a)

PA: clinoamphibole (glaucophane and actinolite) (Diener and Powell. 2012), clinopyroxene (omphacite and diopside) (Diener and Powell.
2012), chlorite (Holland and Powell 1998), K-feldspar and plagioclase (Holland and Powell 2003), muscovite (Coggon and Holland
2002), and biotite (White et al. 2007). B: clinoamphibole (glaucophane (gl dqf = -3 kJ/mol), actinolite, and grunerite) (Green et al. 2016),
muscovite (White et al. 2014a), clinopyroxene (omphacite and diopside) (Green et al. 2016), talc (Holland and Powell 1998), epidote
(Holland and Powell 2011), chlorite (White et al. 2014a), K-feldspar and plagioclase (Holland and Powell 2003), ilmenite (White et al.

2014a), and biotite (White et al. 2014a).

“See Table 2 for explanation of mineral abbreviations.
4TD (Theriak): Theriak long output; TC (rbi): White (2010): See supplement section 2 for discussion of the different garnet fractionation
procedures.
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Table 2

Table 2. Mineral abbreviations used in this paper
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Abbreviation® Mineral Abbreviation Mineral
ab albite hbl hornblende
act actinolite ilm ilmenite
adr andradite jd jadeite
alm almandine kho khohorite
an anorthite ky kyanite
ann annite lws lawsonite
bt biotite mag magnetite
cal calcite ms muscovite
camp clinoamphibole omp omphacite
chl chlorite pg paragonite
coe coesite phg phengite
di diopside prp pyrope
dol dolomite qtz quartz

ep epidote rt rutile

grt garnet spn sphene
gln glaucophane sps spessartite
gru grunerite tle talc

ars grossular

“Mineral abbreviations are after (Kretz 1983), except phengite
and khohorite.
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Table 3. Eclogite major element whole-rock geochemistry from Tso Morari sample TM-15, reported in wt. %
Sample SiO> TiO2 AlLO3 FeO* MnO MgO CaO NaxO KO POs LOI% Sum
TM-15 4553 237 1506 1192 0.19 727 103 279 057 024 274 96.22
aTotal iron expressed as FeO
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Table 4. Average compositions of garnet, inclusions, and matrix phases in Tso Morari
eclogite TM-15

Oxide TM-15 Eclogite
Mineral art grt pg phg ab dol ep omp camp omp camp
Position® core  rim matrix matrix grtin matrix matrix matrix matrix grtin grtin

Na,O 0.01 0.02 673 0.42 11.02  0.01 0.01 6.91 3.37 3.76  3.70
Al O3 21.57 2212 40.83 26.08 20.33 0.01 3048 992 811 10.81 9.06
SiO; 37.16 37775 47.02 5187 674 0.01 38.52 5581 53.84 4226 5045
MgO 3.17 5.66 037 4.72 0.00 20.8 0.11 7.98 1693 6.12 11.33
FeO 28.25 27.03 0.42 1.56 0.65 4.40 0.00 4.52 0.00 11.82 1391
K>O 0.00 0.00 1.06 1022 0.02 0.00 0.01 0.01 0.15 0.03  0.08
MnO 0.73 032  0.00 0.01 0.00 0.04 0.01 0.01 0.03 0.40 0.20
TiO; 0.10  0.05 0.06 0.24 0.00 0.01 0.15 0.04 0.11 0.60 0.12
CaO 858 696  0.30 0.02 0.83 3236 23.19 1244 8.4 8.14 6.83
Fex0; 0.07 0.01 0.00 0.00 0.00 0.00 5.11 2.26 6.72 13.84 1.08
Total 99.63 9991 96.79 95.14 100.24 57.65 9758 999 97.65 97.77 96.75

Na 000 0.00 082 005 093 00l 000 048 091 029 1.04
Al 202 204 303 204 105 00l 560 042 133 050 154
Si 296 295 296 345 295 000 600 200 749 167 730
Mg 038 0.66 003 047 000 10.18 002 043 351 036 244
Fe2t 1.88 177 002 009 002 115 000 014 000 039 138
K 0.00 0.00 009 087 000 000 000 000 003 000 0.2
Mn 005 0.02 000 000 000 00l 000 000 000 00l 0.3
Ti 001 000 000 001 000 000 002 000 001 002 0.0l
Ca 073 058 002 000 004 1135 387 048 125 034 1.06
Fel* 0.00 0.00 000 0.00 000 000 067 006 078 041 0.42
Sum 803 803 698 698 500 2270 16.18 4.00 1531 4.00 1523
Oxygen 12 12 11 11 8 60 25 6 23 6 23
adr 039  0.10 - - - - - - - - -
grs 23.6 19.07 - - - - - - - - -
prp 1237 21.67 - - - - - - - - -
sps 1.61  0.70 - - - - - - - - -
alm 62.02 5846 - - - - - - - - -

sgarnet inclusion: grt in
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Table 5. Tso Morari P-T conditions at different prograde metamorphic stages and the corresponding garnet composition in TM-15G#3. Errors are 1G°

. Grt Nucleation Peak Pressure Peak Metamorphism
Modeling 7 5 7 5 7 5
Protocol b
Grt Comp.” Stable Phases ©C) (kbar) Grt Comp. Stable Phases ©C) (kbar) Grt Comp. Stable Phases °C) (kbar)
gln+act+grt+ _g'_ltlll:f r?llsr:——il_)gtf:l omp-tgrt+tle
TC33 omp+ms+chl  540+15 21.5%1.5 wert-H,OH 565+8 26+1 +ms+Hws+rt+  603+£3  24+0.5
+Hws+t+H,0 o ? H.O
2
0 632111(): 03 gln+di+omp+ 0 6331110: 03 gln+omp+grt 0 43711110: 01 gln+omp+grt
TC47 T grt+bt+chl+l  515+21  25+£2.5 T +tlctms+bt+l  544+15  34+1.5 o +bt+ms+ttle+l  595+3  29+40.5
0.10t0.03  WSTTH:O 020£0.02 WSO 030£0.01 WSHTEFHEO
grs= gln+omp+di+ grs= gln+omp+grt grs= gln+omp+grt
TDG 0.28+0.03 grttbt+chl+l 530425 2642 0.17+£0.01 “Ttletms+bt+l 55112  34+1.5 (23+0.01 +msttlctlws 602+8 29+1
wstrt+H,O ws+rt+H,O +rt+H,O
gln+omp+di+ gln+omp+grt gln+omp+grt
TDW grt+chl+ms+l  537+25 2242 +tletms+bt+l  563+13  28.5+1.5 +tletms+lws  613+£7  24.540.5
ws+rt+H,O ws+rt+H,O + rt+H,O

*Garnet composition uncertainties are calculated from EPMA data from garnet TM-15G#3 (Table S1). Uncertainties of P-T conditions are calculated propagating
errors from the garnet composition in Grt Comp. columns.
°Garnet Composition (Grt Comp.) is the same for all protocols, and is presented here as almandine (alm), pyrope (prp), and grossular (grs) endmember ratios from
TD output. To convert to x(g) and z(g), the garnet composition parameters used in TC modeling, use (x(g)=alm/(alm+prp) and z(g)=gr/(alm+prp+grs)).
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Table S1. TM-15 Eclogite TM-15G#3 garnet crystal EPMA compositional profile

Sample No. Distance(um) Position X(Fe) XMg) X(Ca) X(Mn)

TM15G3L1P1 1173 Rim 0.465 0.303  0.227 0.005
TMI15G3L1P2 1149 Rim 0.458 0.298 0.239 0.005
TM15G3L1P3 1134 Rim 0.476 0.29  0.229 0.006
TMI15G3L1P4 1119 Rim 0.464 0.299 0.233 0.005
TMI15G3L1P5 1105 Rim 0.461 0.299 0.236 0.005
TM15G3L1P6 1097 Rim 0.48 0.288 0.226 0.006
TMI15G3L1P7 1090 Rim 0.442 0.317 0.237 0.005
TM15G3L1P8 1075 Rim 0.445 0.323  0.227 0.005
TM15G3L1P9 1060 Rim 0.45 0.31 0.235 0.005
TMI15G3L1P10 1045 Rim 0.465 0.303 0.228 0.004
TM15G3L1P11 1026 Intermediate 0.492 0.27 0.233 0.005
TMI15G3L1P12 1012 Intermediate 0.534 0.248 0.213 0.005
TMI15G3L1P13 998 Rim_Low grs 0.58 0.231 0.182 0.007
TM15G3L1P14 982 Core 0.611 0.147 0.224 0.017
TMI15G3LI1P15 967 Core 0.599 0.117 0.268 0.015
TM15G3L1P16 954 Core 0.605 0.116  0.263 0.016
TM15G3L1P17 952 Core 0.597 0.104 0.283 0.016
TMI15G3L1P18 937 Core 0.618 0.099 0.267 0.016
TM15G3L1P19 922 Core 0.602 0.122 0.26 0.016
TMI15G3L1P20 896 Core 0.625 0.092  0.265 0.019
TMI15G3L1P21 892 Core 0.572 0.097 0317 0.015
TM15G3L1P22 889 Core 0.547 0.145  0.295 0.012
TMI15G3L1P24 862 Core 0.598 0.098 0.282 0.021
TM15G3L1P23 862 Core 0.615 0.097 0.267 0.021
TM15G3L1P25 812 Core 0.596 0.1 0.281 0.023
TMI15G3L1P27 797 Core 0.593 0.075 0.31 0.023
TM15G3L1P26 797 Core 0.592 0.075 0.31 0.023
TM15G3L1P28 795 Core 0.617 0.073  0.287 0.024
TMI15G3L1P29 767 Core 0.597 0.102 0.28 0.022
TM15G3L1P30 752 Core 0.581 0.098 0.299 0.023
TM15G3L1P31 746 Core 0.598 0.074 0.303 0.026
TM15G3L1P32 745 Core 0.572 0.096 0.311 0.021
TM15G3L1P33 709 Core 0.595 0.081 0.303 0.02
TM15G3L1P34 707 Core 0.574 0.072  0.336 0.019
TM15G3L1P35 692 Core 0.565 0.102 0.312 0.021
TM15G3L1P36 679 Core 0.567 0.126  0.287 0.02
TM15G3L1P37 671 Core 0.584 0.098  0.298 0.021

TMI15G3L1P38 637 Core 0.58 0.135 0.271 0.015
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TM15G3L1P39
TM15G3L1P40
TM15G3L1P41
TM15G3L1P42
TMI15G3L1P43
TM15G3L1P44
TMI15G3L1P45
TM15G3L1P46
TM15G3L1P47
TMI15G3L1P48
TM15G3L1P49
TM15G3L1P50
TM15G3L1P51
TM15G3L1P52
TM15G3L1P53
TM15G3L1P54
TM15G3L1P55
TM15G3L1P56
TM15G3L1P57
TM15G3L1P58
TM15G3L1P59
TM15G3L1P60
TM15G3L1P61
TM15G3L1P62
TM15G3L1P63
TM15G3L1P64
TM15G3L1P65
TM15G3L1P66
TM15G3L1P67
TM15G3L1P68

623
600
572
572
537
537
537
511
507
482
457
457
432
402
392
390
357
357
327
319
297
217
187
187
112
102
100
92
92
82

Core
Core
Core
Core
Core
Core
Core
Core
Core
Core
Core
Core
Core
Core
Core
Core
Core
Core
Core
Core
Core
Rim_Low grs
Rim_Low grs
Rim_Low grs
Rim_Low grs
Rim_Low grs
Rim
Rim
Rim

Rim

0.577
0.541
0.621
0.621

0.59
0.644
0.646
0.655
0.633
0.636
0.632
0.616
0.629

0.65
0.652
0.655
0.652
0.646
0.647
0.608
0.619

0.64
0.648
0.648
0.626
0.617
0.472
0.524
0.521
0.478

0.065
0.21
0.088
0.089
0.138
0.081
0.082
0.082
0.089
0.097
0.06
0.124
0.12
0.092
0.088
0.09
0.093
0.102
0.095
0.132
0.113
0.167
0.188
0.189
0.205
0.2
0.295
0.274
0.273
0.308

0.345
0.238
0.273
0.272
0.253
0.257
0.253
0.245

0.26

0.25

0.29
0.244
0.233

0.24

0.24
0.237
0.237
0.233

0.24
0.243

0.25
0.187
0.156
0.157
0.162
0.177
0.228
0.197
0.201
0.209

0.014

0.01
0.018
0.018
0.019
0.018
0.019
0.018
0.018
0.017
0.017
0.016
0.018
0.018
0.019
0.018
0.019
0.019
0.018
0.018
0.018
0.007
0.007
0.006
0.007
0.007
0.005
0.006
0.004
0.006
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Table S2. TM-15 fitted and selected garnet compositional data along the TM-15G#3 profile
Steps  Distance(um) X(alm) TD  X(prp) TD  X(grs) TD x(g) TC z(g) TC

FO 0 0.586 0.089 0.325 0.868 0.325
F1 61 0.591 0.092 0.317 0.865 0.317
F2 122 0.596 0.096 0.308 0.862 0.308
F3 183 0.601 0.099 0.300 0.858 0.300
F4 244 0.605 0.102 0.292 0.855 0.292
F5 305 0.610 0.106 0.284 0.852 0.284
Fé6 366 0.615 0.109 0.276 0.849 0.276
F7 382 0.622 0.150 0.228 0.806 0.228
F8 398 0.584 0.233 0.183 0.715 0.183
F9 412 0.537 0.249 0.214 0.683 0.214
F10 426 0.495 0.271 0.234 0.646 0.234
F11 445 0.467 0.304 0.229 0.606 0.229
F12 460 0.452 0.311 0.237 0.593 0.237

F13 483 0.445 0.321 0.233 0.581 0.233



https://www.editorialmanager.com/ctmp/download.aspx?id=202143&guid=9301e264-bc64-401e-8486-4019be9876d1&scheme=1
https://www.editorialmanager.com/ctmp/download.aspx?id=202143&guid=9301e264-bc64-401e-8486-4019be9876d1&scheme=1

Electronic supplementary material

Click here to access/download
Electronic supplementary material
Supplement_final.docx


https://www.editorialmanager.com/ctmp/download.aspx?id=202145&guid=7af7d0a9-0268-4d4e-bb57-55da423ba604&scheme=1



