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Genetic structure of Mycoplasma
ovipneumoniae informs pathogen
spillover dynamics between
domestic and wild Caprinae in the
western United States

Pauline L. Kamath®¥?*, Kezia Manlove®?3*, E. Frances Cassirer®, Paul C. Cross? &
Thomas E. Besser®

Spillover diseases have significant consequences for human and animal health, as well as wildlife
conservation. We examined spillover and transmission of the pneumonia-associated bacterium
Mycoplasma ovipneumoniae in domestic sheep, domestic goats, bighorn sheep, and mountain goats
across the western United States using 594 isolates, collected from 1984 to 2017. Our results indicate
high genetic diversity of M. ovipneumoniae strains within domestic sheep, whereas only one or a few
strains tend to circulate in most populations of bighorn sheep or mountain goats. These data suggest
domestic sheep are a reservoir, while the few spillovers to bighorn sheep and mountain goats can
persist for extended periods. Domestic goat strains form a distinct clade from those in domestic sheep,
and strains from both clades are found in bighorn sheep. The genetic structure of domestic sheep strains
could not be explained by geography, whereas some strains are spatially clustered and shared among
proximate bighorn sheep populations, supporting pathogen establishment and spread following
spillover. These data suggest that the ability to predict M. ovipneumoniae spillover into wildlife
populations may remain a challenge given the high strain diversity in domestic sheep and need for more
comprehensive pathogen surveillance.

Disease management at the interface between wildlife and livestock is crucial for animal health and conservation,
but remains a logistical and scientific challenge'. The role of a given species as a reservoir versus spillover host is
particularly difficult to determine* as long-term surveillance data are often lacking, which limits the inferences
that can be made about the amount of disease transmission occurring within versus across species. However,
genetic data from pathogens have recently proven valuable for gaining insights into pathogen spillover and trans-
mission between livestock and wildlife>. In this study, we investigated the genetic relationships of the respiratory
pathogen, Mycoplasma ovipneumoniae, among domestic and wild sheep and goats across the western United
States to elucidate pathogen transmission dynamics.

Bronchopneumonia has been a key contributor to the historical declines and widespread extirpations of big-
horn sheep (Ovis canadensis) across their range in western North America'’. The disease is believed to have
originated from pathogen transmission to bighorn sheep following exposure to domestic sheep (Ovis aries) and
goats (Capra hircus) accompanying European settlers as they expanded westward'!. As a result of disease-related
die-offs, overharvesting, and habitat loss and fragmentation, the range-wide population dramatically decreased in
size from a rough estimate of 1.5-2 million sheep in the early 1800s to under 40,000 sheep in the United States by
the end of the 19 century'% Today, the disease continues to severely limit recruitment, abundance, and distribu-
tion of the bighorn sheep'*~'*, impeding conservation efforts to reestablish the species across its range.
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Bronchopneumonia of bighorn sheep is a complex polymicrobial disease with an etiology that has been exten-
sively debated in the scientific literature. While multiple bacterial species, including Mannheimia haemolytica,
Pasteurella multocida, and Fusobacterium necrophorum, have been detected in the lungs of affected individuals,
amassed evidence points to Mycoplasma ovipneumoniae as the primary causative agent of pneumonia epizootics
in bighorn sheep!'®!¢. Furthermore, M. ovipneumoniae has been identified as cause of pneumonia outbreaks in
other wild Caprinae species, including both free-ranging Norwegian muskox (Ovibos moschatus)'” and captive
Dall’s sheep (Ovis dalli dalli)'8.

Domestic Caprinae hosts, particularly domestic sheep, are thought to be a reservoir and source of pathogen
infection to naive bighorn sheep populations. The prevalence of M. ovipneumoniae was high (60%) in a sample
of domestic sheep studied as part of the 2011 National Animal Health Monitoring Survey'>?°. Domestic sheep as
a reservoir of infection has also been supported by field observations of pneumonia-related bighorn mortalities
following association with domestic sheep?. In addition, across 12 experimental commingling trials, ~99% of
bighorn sheep died from pneumonia after contact with domestic sheep, together providing convincing evidence
that contact with domestic sheep is a key risk factor for lethal pneumonia outbreaks in bighorn sheep?. A smaller
set of experiments have also shown that domestic goats are capable of transmitting the pathogen to bighorn
sheep; however the resulting respiratory disease symptoms were of reduced severity, with no fatalities observed?.

A variety of factors, including behavior?*-%¢, herd density*”?*, and social structure? may influence the risk of
pathogen exposure and transmission in wild sheep populations. In domestic sheep, operation size and manage-
ment type were associated with the probability of M. ovipneumoniae infection, with larger and unfenced herded
operations at higher risk?’. The primary mechanism by which some of these factors likely influence pathogen
spillover and transmission risk is through alterations in the spatial overlap, and thus contact rates, of wild and
domestic hosts?® Therefore, to reduce this risk, federal and state natural resource agencies have implemented
policies focused on the spatial separation of wild sheep and domestic Caprinae®.

Pathogen persistence and spread may also involve both natural and anthropogenic movement of wildlife.
Translocation, in particular, has been extensively used as an approach for restoring bighorn sheep across their
former range and, in some cases, has been successful in increasing population abundance and genetic diver-
sity®'~**. However, translocations may also introduce pathogens into naive populations®. Bighorn sheep are a
spatially-structured species, with loosely connected populations that reside in steep, rugged terrain. During
an epizootic event, this structure may help to localize intraspecific pathogen transmission by limiting contact
between neighboring populations or subpopulations®. However, rams have been shown to occasionally move
more than 30 km beyond their core herd home range?®, which may facilitate pathogen introductions into pre-
viously uninfected herds. Here, we assess what the genetics of M. ovipneumoniae can tell us about broad scale
pathogen movement within and across host species.

Knowledge on the pathways of M. ovipneumoniae transmission is lacking, particularly at landscape-level spa-
tial scales. We examined the strain diversity and phylogeographic structure of M. ovipneumoniae in domestic
and wild Caprinae hosts affected by bronchopneumonia across the western United States (Fig. 1). Our primary
objectives were to (1) evaluate M. ovipneumoniae transmission within and among hosts and locations, and (2)
evaluate patterns of pathogen spillover and persistence in bighorn sheep populations. These results elucidated
broad-scale M. ovipneumoniae transmission dynamics, data that may inform disease control strategies to promote
bighorn sheep conservation.

Results

Strain diversity in wild and domestic sheep and goats. We found a remarkably high number of M.
ovipneumoniae strains (each defined as a group of sequence variants that differed by no more than 4 base pairs
in pairwise comparisons) in domestic sheep flocks, with a total of 184 strains in 207 sheep sampled in the U.S
(Dataset 1). The vast majority (159 out of 207, 77%) of individual domestic sheep possessed unique strains, and a
single strain was never detected in more than three sheep. Only three strains (DS-7, DS-22, DS-23) were detected
in more than a single operation, each in two domestic sheep operations located in different states. Otherwise
herd strain composition was 100% divergent between any two operations. Although fewer samples were obtained
from domestic goats in the U.S., a relatively high number of strains were observed, with a total of 16 strains in 26
individual goats. A moderate proportion of goats also had unique strains (9 out of 26, 35%); one strain (DG-3)
was shared among three operations in WA, and another (DG-6) between three operations located in two different
states (WA, NV).

In contrast, 88 strains were identified in 349 bighorn sheep (Dataset 1). Only 9% of individual bighorn sheep
had unique strains, and 82% of bighorn sheep possessed a strain that was shared with at least two other bighorn
sheep in our dataset. Of the approximately 134 bighorn sites sampled, we observed more than one strain at any
given site only 35 times (26% of sites). Two strains detected in bighorn sheep were shared with domestic spe-
cies: one strain from domestic sheep (BHS-55/DS-96) and one from domestic goats (BHS-50/DG-6). In the 12
mountain goats sampled, there were 5 strains, three of which were also found in bighorn sheep (MTG-1/BHS-48,
MTG-4/BHS-32, MTG-5/BHS-37).

Despite a smaller sample size, all estimated genetic diversity indices at the national level were higher in domes-
tic sheep (n =179, A =162, Hy=0.999, 7= 0.027) than in bighorn sheep (n =341, A=118, H;=0.981, 7 =0.022)
(Fig. 2, Table S2). Diversity was similarly high across regional groupings of domestic sheep (Table S3). M. ovi-
pneumoniae genetic diversity in domestic goats was lower than that observed in domestic sheep (n=26,A=17,
Hy=0.966, m=0.022), and comparable to levels of diversity in bighorn sheep (Fig. 2, Table S2). In contrast, M.
ovipneumoniae genetic diversity was low in mountain goats (n =12, A=5, H;=0.788, 7= 0.019), falling within
the range of state-level bighorn sheep diversity estimates (Fig. 2, Table S4).
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Figure 1. Mycoplasma ovipneumoniae isolate locations and host species. Samples were derived from bighorn
sheep (red; n=349), mountain goat (purple; n=12), domestic goat (green; n = 34), and domestic sheep

(blue; n=208). States from which domestic sheep samples were obtained are represented by shading, rather
than points, as state localizations are confidential. Isolates from Michigan, Minnesota, Wisconsin, China, and
Australia are not shown. Circle size is relative to isolate sample size from a particular host and location. Current
occupied bighorn sheep habitat distribution is shown in gray (Wild Sheep Working Group).

Rarefaction analyses. Non-linear least squares estimates of the strain accumulation curve at the operation-
or herd-level were B=47.4 (95% CI [24.8, 437.3]) and §max =47.4 ([27.4, 389.3]) for domestic sheep, and B=23
([1.3, 4.0]) and §m 2 = 2.9 ([2.3, 3.8]) for bighorn sheep. The fitted strain accumulation curve for domestic sheep
predicts up to 47 strains may be found within a single herd, and indicates that high levels of sampling would be
required to capture the full extent of M. ovipneumoniae strain diversity within domestic sheep. In contrast, big-

horn sheep within-herd diversity asymptotes at a maximum of approximately 3 strains (Fig. 3).

Recombination and phylogenetic model selection. A full exploratory scan for recombination in RDP
v.4.83 revealed no strong support for recombination within any of the four loci. Of 3 putative recombination
events detected within the IGS locus, none could be validated by at least 3 (out of 7) methods (Table S5). Similarly,
only a single method detected recombination within rpoB and gyrB, each; thus, there were no verified recom-
bination events in these loci. No recombination signals were detected within the 16S locus. However, we did
detect the possibility of a significant degree of inter-locus recombination, with 38 unique signals of recombination
confirmed by at least 3 methods (Table S5). Given this result, we ran the phylogenetic analyses using an align-
ment with the recombinant sequences removed. Bayesian MLE model selection identified the TN93 model* with
gamma-distributed rate variation (TN93 +4-T") as the best fit nucleotide substitution model for the IGS and gyrB
loci, and the General Time Reversible model*”’” with gamma-distributed rate variation (GTR+1I") as best fit for
the 16S and rpoB loci.

Phylogenetic relationships among M. ovipneumoniae strains from wild and domestic hosts.
The M. ovipneumoniae consensus phylogeny showed strong support (Posterior Probability (PP) =1.0) for a
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Figure 2. Haplotype and nucleotide diversity estimates in bighorn sheep (BHS; red), showing variation in
estimates made at the state-level (boxplot; # = 10 states) and over all samples (star). Overall diversity estimates
are shown for other Caprinae host species, including mountain goat (MTG; purple), domestic sheep (DS; blue),
and domestic goat (DG; green), and are also reported in Table S2. Diversity was not estimated at the state-level
for domestic sheep, domestic goats, and mountain goats due to lack of available state-level information or
sufficient samples from more than one state. See Tables S3, S4 for the geographic distribution of the data by host
and state.
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Figure 3. Rarefaction of Mycoplasma ovipneumoniae strains found in bighorn (black, BHS) and domestic sheep
(blue, DS). Analyses were conducted at the population/operation level.
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Figure 4. Mycoplasma ovipneumoniae consensus tree with predicted ancestral host state traces shown across
branches. Phylogenetic analyses were run using all available data, without de-duplication. Posterior probabilities
for the two major clades (sheep, goat) are shown. Taxon labels are color-coded by host species (red = bighorn
sheep, BHS; purple = mountain goat, MTG; blue = domestic sheep, DS; light green = domestic goat, DG).

The red star represents a M. ovipneumoniae isolate derived from a bighorn sheep outside of its native range,

in a Wisconsin zoo. Bolded text indicates identification numbers for strains found in multiple host species or
referred to in the text. See Dataset 1 for complete list of strains and clade assignments.

domestic goat clade that was highly divergent from the majority of wildlife and domestic sheep strains (Figs 4,
S1; light green). The goat clade also included all goat-origin isolates from China. Only one strain detected in a
goat (DG-16) collected in Challis, Idaho in 2016, fell outside of this cluster. Nine isolates from bighorn sheep
representing three strains (BHS-23, —50, —72) from independent sites in CO, NV and WA also fell within the
goat clade, suggesting a minimum of three potential spillover events from domestic goats to bighorn sheep. All
domestic sheep, including the Y98 reference strain, the majority of bighorn sheep, and all 12 mountain goat
isolates were found in a second major clade (Figs 4, S1, gray), with strains from different species interspersed
throughout the clade, indicating the occurrence of multiple transmission events among the three host species. The
PPs were relatively low (PP <0.80) for many of the ancestral nodes of the tree, but many sub-clusters within the
sheep clade were well supported (PP >0.95), particularly those representing M. ovipneumoniae emergence and
evolution within bighorn sheep meta-populations (Figs 5, S1).

Reconstruction of ancestral host states.  Ancestral state reconstruction predicted domestic sheep as the
most probable host state for ancestral nodes in the “sheep clade,” whereas domestic goats were predicted as the
host state for ancestral nodes within the “goat clade” (Fig. 4). Host state changes across the phylogeny was greatest
from domestic sheep to bighorn sheep (mean = 35.1, range = 27-42 host state changes; Table 1). Fewer host state
changes were observed in the reverse direction, from bighorn to domestic sheep (mean=10.9, range =4-19).
Host transitions were estimated to be very low (mean = 1-4) from domestic sheep to goats, domestic goats to
sheep, and between wild Caprinae species; whereas, no transitions (mean = 0) were estimated from bighorn sheep
to domestic goats, mountain goats to domestic sheep, or between domestic goats and mountain goats (Table 1).
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Figure 5. Mycoplasma ovipneumoniae consensus tree showing the geographic distribution of strains in bighorn
sheep. Taxon are color-coded by region (mint green = northwest, pink = southwest, blue = mountain west,
orange = central plains), or are shown in black for strains found outside of the bighorn sheep native range.
Domestic sheep, domestic goats, and mountain goats appear as unlabeled branches in the phylogeny. Posterior
probabilities are represented by branch width, with thickness relative to probability. Black bolded text indicates
identification numbers for strains referred to in the text. Panel inset shows the frequency distribution of genetic
distance (i.e., number of mutational differences) for all pairwise comparisons of bighorn sheep strains found in
the same location, where geographic distance between pairs =0.

Spatial structure of M. ovipneumoniae strains in wildlife hosts. The M. ovipneumoniae phylogeny
revealed high phylogenetic diversity within geographic regions. Related strains in bighorn sheep tend to cluster by
geography, with identical strains often (~94% of strains) observed only within the same population or neighbor-
ing populations (Figs 5 and 6). The most prevalent strain (BHS-24) was detected in 30 bighorn sheep, distributed
among 8 spatially proximal populations in Hells Canyon, which spanned Oregon, Idaho, and Washington (Figs 5
and 6a; light blue). Similarly, 17 bighorn sheep shared a strain (BHS-2) across 10 populations in the desert big-
horn sheep range (Figs 5 and 6b; blue), and 31 sheep shared two closely related strains (BHS-25, BHS-26) across
more than 10 populations in Idaho, Montana, and Oregon (Figs 5 and 6a; light yellow, pink).

Closely related localized strains also illustrate the potential for strain emergence and evolution in bighorn
sheep following spillover, examples of which we observed in desert bighorn sheep (BHS-3 to —16, —47, —59,
—64, —64, —69, —70) and the Rocky Mountain bighorn sheep across the Greater Yellowstone Ecosystem (BHS-
29, —31, —33, —78; Fig. 5). However, we also observed genetically divergent strains within some populations
(Fig. 6), likely representing multiple pathogen introductions. At broader spatial scales, strains in bighorn sheep
were nearly always completely different than those found in bighorn sheep from another region (e.g., Fig. 6).

A large proportion (5 out of 12) of mountain goats were from the East Humboldt and Ruby Mountains in
Nevada and were infected with a single M. ovipneumoniae strain (MTG-1) that was identical to a strain observed
in three bighorn sheep (BHS-48) from the East Humboldt Mountains and the Snake Range in Nevada (Fig. 6b,
orange). Similarly, a single mountain goat strain (MTG-4) from Castle Creek near Tom Miner, Montana, was
shared with a strain identified in three bighorn sheep (BHS-32) collected in nearby Cinnabar Mountain and across
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From To Min Max Mean
BHS MTG 2 2 2.0
BHS DS 4 19 10.9
BHS DG 0 3 0.0
MTG BHS 3 3 3.0
MTG DS 0 0 0.0
MTG DG 0 0 0.0
DS BHS 27 42 35.1
DS MTG 3 3 3.0
DS DG 1 1 1.0
DG BHS 4 4 4.0
DG MTG 0 0 0.0
DG DS 1 1 1.0

Table 1. Summary of host state changes along the M. ovipneumoniae phylogeny based on ancestral state
reconstruction using a parsimony model. The mean, minimum, and maximum number of host changes, “from”
the ancestral “to” the derived host state, is shown for each host combination: bighorn sheep (BHS), mountain
goat (MTG), domestic sheep (DS), and domestic goat (DG).

the border in northwest Wyoming (Fig. 6a, bright green). Finally, a strain found in a mountain goat (MTG-5)
sampled in Battle Creek, South Dakota, was identical to a strain found in 10 bighorn sheep (BHS-37) sampled
across populations in North Dakota, Nebraska, Utah, and Montana (Fig. 6a, cyan).

Discussion

The high degree of genetic diversity of M. ovipneumoniae in domestic sheep suggests that the pathogen is likely
endemic and that domestic sheep are an important reservoir host and source of infection. In contrast, M. ovipneu-
moniae genetic diversity in wild sheep and mountain goats is low, consistent with a limited number of spillover
infections. Ancestral state reconstruction confirmed domestic sheep as a primary source of infection to bighorn
sheep, with the highest number of host state transitions (mean = 35) from domestic to bighorn sheep over the
pathogen phylogeny. We observed geographical clustering of select strains in bighorn sheep, as well as clusters of
related strains that are likely a consequence of intraspecific transmission, persistence, and evolution, following
spillover. In addition, we detected multiple distinct strain types within some bighorn populations, which may
represent unique spillover events. In contrast, there was little spatial clustering of the diverse strains detected in
domestic sheep. Together, these data are most consistent with the occurrence of multiple invasions of M. ovipneu-
moniae from domestic hosts, particularly domestic sheep, into wild Caprinae, and in some cases, pathogen spread
and evolution within bighorn sheep following spillover.

M. ovipneumoniae detected in goats were genetically divergent from sheep-derived strains, indicating that
domestic goats operate as a distinct epidemiological host group, which corroborates previous studies®® and supports
host-pathogen adaptation in the domestic hosts. Domestic goats were also a source of infection to bighorn sheep, but
to alesser extent than domestic sheep. In contrast, strains detected in mountain goats were all of domestic sheep origin.

Mycoplasma ovipneumoniae strain diversity and the detection of spillover events. High levels of
Mycoplasma ovipneumoniae genetic diversity, as documented in this study, have also been reported in domestic
sheep operations in the United Kingdom®, New Zealand*’, and Iceland*!. Furthermore, our rarefaction analysis
revealed a large difference in the maximum number of strains predicted to be found within domestic versus big-
horn sheep herds, and highlights the fact that we are not even close to capturing all the M. ovipneumoniae strain
types present within domestic sheep operations in the western U.S. Given these observations, it is important to
note that our ability to detect spillover events may be limited due to undersampling of domestic host strains.
For example, a herd of only 10 domestic sheep is likely to have at least 8 different strains, indicating that even
sampling half the herd may miss a spillover strain. We further hypothesize that spillover may be occurring at a
higher rate than expected as strains may go undetected if they are not associated with disease events, if they fail to
persist due to local extinctions prior to diagnosis, or if there are limited strains that are able to transmit effectively
in bighorn sheep. Regular surveillance of bighorn sheep populations combined with more thorough sampling
from neighboring domestic operations would be required to better understand the frequency and duration of
spillover. Currently, there is no surveillance system for M. ovipneumoniae in domestic sheep operations, and dis-
ease management strategies for wild Caprinae differ by state. Historically, sampling was opportunistic in bighorn
sheep, and primarily occurred during or after an outbreak. Recently, however, many states have initiated statewide
M. ovipneumoniae sampling of all bighorn herds, regardless of apparent disease states, which may lead to new
insights about spillover frequency in the near future.

Mechanisms promoting spillover and transmission of Mycoplasma ovipneumoniae. Domestic
and bighorn sheep are closely related, sharing a common ancestor approximately 3 million years ago***, with a
high degree of genome synteny**. Similarity in host genetic ancestry may facilitate pathogen spillover* and this is
backed by our phylogenetic analysis, which revealed the majority of bighorn M. ovipneumoniae strains were most
closely related to those from domestic sheep.
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Figure 6. Mycoplasma ovipneumoniae strains in bighorn sheep populations. Selected regions include a large
proportion of the range of the (a) Rocky Mountain bighorn (O. c. canadensis) and (b) Nelson Desert bighorn
(O. c. nelsoni) subspecies. Nearly all strains were different between the two regions shown in the panels above,
except for one strain (BHS-37/MTG-5; cyan) found in Montana, North Dakota, Nebraska (panel a), and Utah
(panel b). With the exception of this strain, colors used in the two maps are independent (i.e., the same or
similar color across maps does not indicate identical strains). States not shown similarly exhibited high strain
allelic diversity with some strain sharing across neighboring populations.

Genetic adaptation in both the host and pathogen may also affect the ability to resist infection, thereby influ-
encing the probability of disease emergence within spillover hosts. For example, bighorn sheep experimentally
exposed to domestic goat strains of M. ovipneumoniae exhibited less severe (non-fatal) pneumonia than has been
reported for domestic sheep strains®*?. Of the three goat-clade strains detected in bighorn sheep in the present
study, only one was associated with observed pneumonia-induced mortality*®. No conclusions about disease pres-
ence or severity were possible in other cases. Wide variation has also been observed in the prevalence and severity
of disease associated with spillover of sheep-clade strains into bighorn sheep, some of which may be associated
with M. ovipneumoniae phylogeny*’. Furthermore, sequential introductions of different M. ovipneumoniae strains
within a bighorn sheep population resulted in repeated severe disease outbreaks, suggesting a lack of cross-strain
immunity*®. While analysis of virulence associated with phylogeny is beyond the scope of the present study, it
represents a potentially key important area for future research.

We observed mountain goat M. ovipneumoniae strains that fell within the sheep clade, and bighorn strains
within both sheep and goat clades. These results suggest other factors, such as spatial overlap and the probability
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of contact, may play a large role in facilitating pathogen spillover. Transmission through contact between domes-
tic and wild hosts is plausible; for example, animals were reported to have escaped their enclosures in 78% of M.
ovipneumoniae-infected domestic sheep and goat flocks found in close proximity to bighorn sheep*®. Bighorn sheep
herds in proximity to domestic sheep grazing allotments were also more likely to experience a pneumonia-related
die-off event®. Furthermore, the use of domestic sheep and goats for weed control management was associated with
increased risk of a pneumonia epizootic in nearby or overlapping bighorn sheep herds?”.

Transmission of M. ovipneumoniae in wild Caprinae populations. Emergence of pneumonia in pre-
viously healthy bighorn sheep populations presents with a characteristic spatiotemporal pattern of disease: an
initial outbreak of fatal pneumonia affecting all age classes, followed by persistent or recurring pneumonia out-
breaks, particularly in bighorn lambs, for years or decades afterwards'*. M. ovipneumoniae strain types provide a
tool to document this dynamic of invasion, persistence, and disease association, as well as onward transmission
to neighboring bighorn sheep populations over extended periods of time. For example, we observed one M.
ovipneumoniae genotype (BHS-24) in the Hells Canyon meta-population over an 11-year window, between 2006
and 2015. BHS-24 shares identical IGS-, LM- and gyrB-locus alleles first detected in an outbreak affecting all
age classes in northern Hells Canyon in 1995/96, which suggests this strain was introduced as early as 1995 and
has persisted (with ongoing association with respiratory diseases) for 20 years. Similarly, multiple instances of
identical or closely-related strains were observed to persist between 2009 and 2017 in neighboring populations
across the desert bighorn sheep range in Arizona, California and Nevada'®*. Introduction of at least one novel
strain after 2011 was associated with more severe disease, and apparent displacement of previous strains®. In the
desert bighorn metapopulation, some strains appear to have accumulated mutations, again possibly representing
transmission, persistence, and strain evolution within bighorn sheep, following a single spillover event. We note
that our observation of strain persistence in these particular study sites may be due to increased sampling inten-
sity and could represent a larger phenomenon that may frequently go undetected in populations subjected to less
intensive or prolonged pathogen surveillance. Pathogen surveillance can also inform investigations of animal
movement and gene flow. When identical M. ovipneumoniae strains were found in two bighorn sheep populations
previously found to be genetically distinct, presumably due to separation by a landscape barrier®, a subsequent
genetic study found evidence to support newly increased host gene flow across this barrier®'.

We observed the sharing of identical strains between sympatric bighorn sheep and mountain goats, indicating
some degree of cross-species transmission among wildlife hosts. However, the degree and direction of transmis-
sion remains unclear, and dynamics of the disease in mountain goats, until recently, has been largely overlooked.
In the East Humboldt Range and Ruby Mountains of Nevada, M. ovipneumoniae infections and signs of respira-
tory disease were documented in mountain goats simultaneous to outbreaks in sympatric bighorn sheep, which
resulted in decreased kid survival®**. Strain typing in this region identified mountain goats as a source of infec-
tion to reintroduced naive bighorn sheep following close associations between the two species™, data that are rep-
resented in our study as strain MTG-1/BHS-48. Previously exposed bighorn sheep and mountain goats have also
been documented as asymptomatic carriers, and may play a role in disease maintenance within populations®”.
Our limited data from mountain goats, however, are insufficient to assess the extent of cross-species transmission
among wild hosts. Further localized sampling from sympatric bighorn sheep and mountain goats would help to
elucidate the transmission dynamics between the two wildlife species.

Our data showing strain-sharing among neighboring bighorn populations most likely represents intraspe-
cific transmission. However, it is important to note that repeated spillover from contact with common domestic
sources might also produce this pattern. We suspect this alternative to be less likely given the extraordinary diver-
sity of strains found within a single domestic sheep operation.

Translocations and disease risk.  Translocations have played a vital role in the restoration of bighorn sheep
populations across the western United States®®. However, these well-intended efforts may also have contributed
to the movement of pathogen strains to new locations, increasing the risk of disease in naive populations®. From
the early 1920s to 2015, there were approximately 1,460 translocation events that involved the movement of
over 21,000 sheep in the United States and Canada®. For example, the Sun River bighorn sheep population in
Montana has frequently been used as a stock population for reintroductions of bighorn within Montana and
beyond, including populations in Idaho, Nebraska, North Dakota, Utah, and Washington®”*,

While we could not formally assess the effects of translocation on M. ovipneumoniae transmission, we specu-
late that the rare pathogen genetic linkages among geographically disparate bighorn populations may be largely
due to management-driven movements of bighorn sheep. We identified two M. ovipneumoniae strains associated
with the Sun River population (BHS-31, BHS-37/MTG-5) that were geographically dispersed and shared with
bighorn sheep and mountain goat in Montana, Nebraska, North Dakota, South Dakota and Utah. However, we
are unable to directly track and confirm that these observations of strain sharing are the result of translocations
between populations due to the large numbers of bighorn sheep translocated within and among these states over
the past five decades.

MLST approach: Strengths and limitations. This study applied a multi-locus sequence typing (MLST)
approach targeting four genetic loci. MLST schemes are widely applied to genetic-based epidemiologic and evo-
lutionary investigations of bacterial pathogens, and have proven useful for studies focused on several Mycoplasma
species, including M. agalactiae, M. bovis, M. hyopneumoniae, M. hyorhinis, M. mycoides, M. pneumoniae, and
M. synoviae>=%. For M. pneumoniae, a MLST assay had increased discriminatory power over traditional typing
methods for the detection of distinct strain types and identification of epidemic infection cycles®. In addition, the

approach has been shown to be valuable for examining the evolution of M. bovis strains over time®.
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One assumption of the MLST approach is that the targeted genetic loci accurately represent the genomic var-
iation in M. ovipneumoniae. We acknowledge that our strain typing and phylogenetic reconstructions could be
largely influenced by the variation, and therefore discriminatory ability, of the loci included in the MLST assay.
Hence, the sequencing of additional loci may enable the discovery of more strains within our dataset or better
topological resolution of the phylogenetic relationships among strains. One study on the poultry pathogen, M.
synoviae, found that while a MLST scheme (based on 7 housekeeping genes) identified the same number of strain
types as a conventional single locus assay, it did provide better phylogenetic resolution to aid in the identification
of epidemiologically-linked infections®.

Mycoplasma ovipneumoniae diagnostics based on culture-independent PCR assays were also used in our
study, which limited our ability to identify cases of individuals being infected by multiple strains simultaneously,
as has been reported to occur in domestic sheep®. Also, using this approach, we assumed the amplified sequences
for each of the four loci originated from the same strain. Theoretically, if individuals harbor mixed infections
consisting of different strain types, the PCR-based MLST approach could result in the false concatenation of loci
from different strains, which may misleadingly increase the apparent within-population diversity. However, we
only infrequently observed ambiguous sequences consistent with co-amplification of multiple strains, and while
we did detect some possible evidence for false concatenation of loci from different strains based on inter-locus
recombination events, the number of these possible potentially spurious recombination events were small and
our analyses showed that removal of the data associated with these did not affect the conclusions of our study.

Conclusions

This large-scale investigation into the genetic structure of the primary causative agent of bronchopneumonia
across sympatric wild and domestic Caprinae host species provides key insights into pathogen transmission path-
ways. The genetic data identify domestic sheep as an infection reservoir with multiple and ongoing spillovers to
bighorn sheep. Domestic goats are also a source of infection to bighorn sheep, but dynamics of spillover appear
to differ from domestic sheep. Strain-sharing across bighorn sheep populations and between wild hosts suggests
that, following spillover, pathogen persistence and host movements also contribute to pathogen spread. The abil-
ity for M. ovipneumoniae to persist and maintain virulence in the absence of spillover is unclear. In addition,
we stress that the severity of a pneumonia outbreak and the extent of pathogen spread may be influenced by a
combination of strain type, reservoir host species, spillover host immunity, and population exposure history.
This knowledge of pathogen movement, invasion frequency, and sources, integrated with data on host-resistant
genotypes®, will be an informative next step towards predicting the ability of the spillover host species to persist
and recover from pathogen invasions.

Materials and Methods

Sampling and detection of Mycoplasma ovipneumoniae. We obtained sequence data from 594 sam-
ples from M. ovipneumoniae-infected bighorn sheep (n=349), mountain goats (n=12), domestic sheep (n=207),
and domestic goats (n=26). Some samples were submitted between 1984 and 2017 to the Washington Animal
Disease and Diagnostic Laboratory (WADDL) for diagnostic testing or to the Besser Laboratory for research
purposes (Table S1; Dataset 1). Data originated from M. ovipneumoniae detected in multiple sample types, but
the predominant sample type was deep nasal swabs from live, apparently healthy animals. Samples from necropsy
cases included pneumonic lung tissue and/or swabs of the bronchi, trachea, sinus linings or middle ears. Many
domestic sheep were originally part of a previously published study as detailed in Manlove et al.?°. Other domestic
sheep and goat samples were obtained by convenience sampling of private operations by the Besser Laboratory

All sample collection for this study was carried out in accordance with the recommendations in the Guide for
the Care and Use of Laboratory Animals of the National Institutes of Health and in conformance with United
States Department of Agriculture animal research guidelines, under protocols #03793 and #04482, approved by
the Washington State University Institutional Animal Care and Use Committee.

Samples were originated from 19 states (AZ, CA, CO, ID, KS, MI, MN, MT, ND, NE, NM, NV, OR, SD, TX,
UT, WA, WI, WY), with isolates spanning the extent of the current bighorn sheep distribution in the western
United States (Fig. 1), defined by the Wild Sheep Working Group as the geographic area currently occupied by
bighorn sheep. Population origin or herd locations were known for all samples from wildlife and domestic goats,
but for only some domestic sheep samples. The majority of the domestic sheep sequence data used were obtained
from GenBank (Accession Nos.: MH042304-MH042516, MH045511-MH045514, MH087248-MH087420,
MH107389-MH107763)% and only regional localizations (East, Central, or West) within the United States
were available. Additional reference strains were included from Australia (n =1, Y98, domestic sheep, 1976,
NCBI BioProject PRJNA253514) and China (n =38, domestic goat, 2010, NCBI BioProjects PRINA253501-4,
PRJNA253506, PRINA253509, PRINA253511, PRINA63641).

DNA extraction and strain typing. The majority of DNA extracts were obtained through the laboratory
that performed the original diagnostic testing, predominantly from WADDL, but also included approximately
50 bighorn sheep extracts prepared by the Wyoming Game and Fish Department’s Wildlife Health Laboratory
(Laramie, WY). The presence of M. ovipneumoniae was detected by previously described polymerase chain reac-
tion (PCR) methods**#%70 applied to DNA extracted either from broth culture media or from DNA extracted
directly from nasal or lung swab samples. Additional diagnostic samples obtained directly for this study were han-
dled as follows: whole genomic DNA was extracted from M. ovipneumoniae broth cultures or swabs using DNeasy
blood and tissue kits (Qiagen Inc., Germantown, MD), following manufacturer’s instructions. PCR-positive M.
ovipneumonide extracts were genotyped using a multi-locus sequence typing (MLST) approach that targets
four genetic loci. The targeted loci are partial DNA sequences from the 16S-23S intergenic spacer region (IGS),
the small ribosomal subunit (16S), and housekeeping genes encoding RNA polymerase B (rpoB) and gyrase B
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(gyrB). Protocols and primers for PCR amplification of these loci were described previously**#>7%. DNA sequenc-
ing of amplified PCR products was conducted by commercial service laboratories, including Amplicon Express
(Pullman, WA) and Eurofins Genomics (Louisville, KY) for bidirectional Sanger sequencing, and using the same
primers used in PCR reactions. All nucleotide sequence ambiguities were coded following the standard codes
defined by the International Union of Pure and Applied Chemistry”. We aligned sequences for each independent
locus in MUSCLE"?, using default parameter settings as implemented in Geneious R10.1.3 (http://geneious.com,
Biomatters, Ltd.).

Genetic diversity of Mycoplasma ovipneumoniae strains by host species. We estimated the genetic
diversity of M. ovipneumoniae in bighorn sheep, domestic goats, and mountain goats by state and nationally using
DNAsp v57, and from domestic sheep regionally and nationally, since state of origin data were not available.
Estimated diversity indices include allelic diversity (A; the number of different alleles detected), haplotype diver-
sity (Hg; the probability that two randomly sampled alleels are different’*), and nucleotide diversity (7; the mean
number of nucleotide differences in pairwise comparisons of DNA sequences’). Sequences with ambiguities
were excluded from the analysis (9 from bighorn, 29 from domestic sheep), and Hy and 7 were only estimated
for states or regions with at least 5 sequences from a given species, which implies detection of strains present at a
minimum frequency of 20%.

Definition of a strain and rarefaction analyses. Strains that differed by no greater than 4 base pairs
(bp) were considered to be the same strain. This was equivalent to >99.8% identical sites across the 1,778 bp
concatenated sequence alignment. This strain definition was determined after observing a bimodal frequency
distribution of pairwise genetic distances in bighorn sheep, and estimating the cutoff between modes to be 5.68 bp
in bighorn and 4.90bp in domestic sheep (Fig. S2). Variants within a strain were uncommon, and the majority
of sequences assigned to a strain were 100% identical across nucleotide sites. Strain data were used to generate a
rarefaction curve using the individual-based methods outlined by Colwell & Coddington (1994)” and Gotelli &
Colwell (2001)76. In this model, the cumulative number of strain types, S(n), is treated as a saturating function of
the total number of individuals sampled, n. Saturation occurs at a rate determined by the total number of strains,
Spaw as well as a rate parameter, B, so that S(n) = (S,,,,, 1)/(B+ n). We used the data to estimate parameters for the
Michaelis-Menten-like hyperbolic fit">’”. Parameters were estimated using non-linear least squares (R function
nls() in package stats), and confidence intervals were based on profile likelihoods.

Recombination and phylogenetic analyses. Recombination within each locus was assessed using the
RDP’8, GENECONV?”, BOOTSCAN?®’, MAXCHI®!, CHIMAERA®, SISSCAN®, and 3SEQ3 programs in RDP4
v4.83%. Evidence for a specific recombination event was based on significant support by at least three out of the
seven methods’®.

Individual locus alignments were trimmed and concatenated, resulting in a total alignment length of 1,778 bp,
which included variant indels within the IGS locus. For each locus, the best fit nucleotide substitution models
were selected by applying a marginal likelihood estimation (MLE) approach®® using generalized stepping stone
sampling®”. Model selection was performed in BEAST v1.8.4%; for each locus, we combined the results from two
independent runs (300 million generations, sampling the posterior distribution every 10,000 generations) in
LogCombiner v1.8.4 and assessed convergence in Tracer v1.6%.

Evolutionary relationships among M. ovipneumoniae isolates were estimated through Bayesian inference
using a Metropolis-coupled Markov chain Monte Carlo analysis in MrBayes v3.2°, with branch lengths in sub-
stitutions per site. Two independent analyses were run in parallel for 50 million generations, each using 4 chains
(3 heated, 1 cold) run in parallel to ensure thorough exploration of the tree parameter space. The cold chain is the
primary sampled chain, which accepts incremental steps that increase the likelihood of the tree state; whereas,
heated chains explore parameter space more freely and can swap with the cold chain upon sampling a state of
higher likelihood. Posterior distributions were sampled every 100 generations and model convergence evaluated
by ensuring the standard deviations of the split frequencies approached 0 (<0.05) and the potential scale reduc-
tion factor was 1 for all parameters. The consensus tree was estimated using combined posterior trees from the
two runs, after discarding the first 25% of trees as “burn-in”. The phylogenetic analyses described above were
run with all data (n =603), and then limited to unique strains (n = 363), after removing duplicate strains, to
reduce the over-representation of bighorn sheep outbreaks and of repeated sampling within intensively studied
post-outbreak bighorn sheep populations. We observed structuring of location and host data within the resulting
pathogen phylogeny to gain insight into pathways of pathogen movement. We further reconstructed the ancestral
states of the host to evaluate pathogen transitions (i.e. spillover) over the evolutionary history of M. ovipneumo-
niae. Ancestral state reconstruction analysis was performed assuming a parsimony model in Mesquite v. 3.6°!, and
based on the consensus phylogeny of all M. ovipneumoniae isolates generated in MrBayes®. Host state changes
were summarized, over 100 mappings, in terms of minimum, maximum, and mean number of changes in host
state over the phylogeny.

Data availability

Sequence data for all isolates used in this study can be obtained through the National Center for Biotechnology
Information (NCBI) GenBank repository (https://www.ncbi.nlm.nih.gov/genbank/). GenBank accession
numbers and associated metadata for each isolate can be found in Dataset 1.
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