

PLASMA-TREATED PDMS AS INTRINSICALLY NON-WETTING SURFACE FOR GALLIUM-ALLOY LIQUID METAL MICROFLUIDICS

Sachin Babu¹ and Jeong-Bong Lee^{1*}

¹The Department of Engineering & Computer Engineering,

The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, Texas 75080, U.S.A.

ABSTRACT

We report the *CFJ02* plasma treatment of polydimethylsiloxane (PDMS) surface as a new method to create an intrinsically non-wetting surface for gallium-based liquid metal microfluidics. It was found that *CFJ0 2* plasma on PDMS for > 120s creates nanoscale roughness which exhibits a non-wetting property against liquid metals. Static contact angles and contact angle hysteresis (CAH) of the plasma-treated PDMS surfaces using gallium-based liquid metal droplets were found to be > 144° and < 16.8°, respectively. Rolling test with 15° inclined surfaces were used to confirm non-wetting property of the surface.

KEYWORDS

Liquid metal, Galinstan, PDMS, Microfluidics, Plasma.

INTRODUCTION

Gallium-based liquid metals have been the focus of intense research in recent years due to its nature as an excellent electrically and thermally conductive fluid and its nontoxicity when compared with other liquid metals, such as mercury. However, gallium-based liquid metals naturally oxidize in ambient air [1], forming a few nanometers thin oxide shell consisting Ga₂O and Ga₂O₃ [2]. This oxide shell has the property of being strongly adhesive to a variety of materials [3] and are a hindrance in areas such as liquid metal microfluidics, which requires the liquid metal to freely move in a microfluidic channel. Liquid metal microfluidics show great promise for creating flexible, stretchable, and reconfigurable electronics [4,5], thus it is critical to find an easy solution to move liquid metal cleanly and precisely.

There have been attempts to counter the wettability of the oxide layer of the liquid metals using caustic agents, such as HCl [6,7], introducing foreign thin films such as Nevelwet® [8] or Ga nanoparticle [9], or multistep fabrication of hierarchical micro/nanoscale structures [10]. However, these methods may not be readily compatible with other methods and requirements of the device. For example, while Ga nanoparticle coating is an attractive method, the Ga coating is conductive and not applicable to many electronics and radio frequency (RF) applications.

This work shows that a single *CFJ0i* plasma treatment converts any PDMS surface into an intrinsically non-wetting surface against oxidized gallium-based liquid metals.

FABRICATION

PDMS pre-polymer and polymerizing agent from the

SYLGARD™ 184 Silicone Elastomer Kit were mixed, using the standard 10:1 ratio by weight of pre-polymer to polymerizing agent, then degassed in a vacuum chamber for 1 hour. The mixture was gently poured into a 105 mm x 105 mm x 2 mm square polypropylene mold, set on a flat surface to slowly cure for 24 hours at 25°C to enhance elasticity, then baked at 65°C for 30 minutes in a convection oven. After allowing the mold to cool to room temperature, the 105 mm x 105 mm x 2 mm PDMS slab was peeled from the mold and cut into three 105 mm long, 35 mm wide, and 2 mm thick PDMS strips. Six similar strips were fabricated from two PDMS slabs. One strip was cut into five equally sized smaller pieces. PDMS strips and smaller pieces were subsequently treated to a 3:1 ratio *CFJ0 2* plasma (at 250 W, 100 mTorr, 3 sec

0.2, 9 see in CF 4). Groups of PDMS samples were plasma treated with durations of 0 s, 60 s, 120 s, 900 s, and 3,600 seconds.

Initially all PDMS strips exhibited non-wettability immediately after plasma treatment. However, over a period of days, some of the strips with less exposure time lost their non-wettability property. Due to this transient property, the samples were characterized after 7 days by which time the property is stabilized. During that week, the samples were kept in a polypropylene case, in ambient air, at room temperature (~25°C). SEM micrographs and contact angle measurements were carried out for all samples. Rolling test was also carried out for all samples to double confirm their surface nonwetting property.

MICRO/NANOSCALE STRUCTURE OF PLASMA-TREATED PDMS SURFACE

Figure 1 shows SEM micrographs of PDMS surfaces that have been exposed to the *CFJ0 2* plasma. The PDMS exposed to the 60 s plasma treatment (Figure 1a) has fairly uniform nanoscale pillar structure with typical structural height of ~ 212 nm and a width of about ~ 75 nm. While this surface was initially non-wetting, over the period of a week, this property was lost, and any portion of the surface that was tested a week later wetted liquid metal instantly.

Lopes et. al have reported simulations indicating that the Cassie-Baxter state (non-wetting state) cannot be sustained for pillar heights and spacings below a critical fraction of the droplet radius [11]. By applying these criteria to plasma treated PDMS, if the plasma treatment time is not long enough to create surface roughness of a certain height and spacing, the surface will not meet the criteria for the Cassie-Baxter state non-wettability. However, note that this does not explain the initial transient non-wettability.

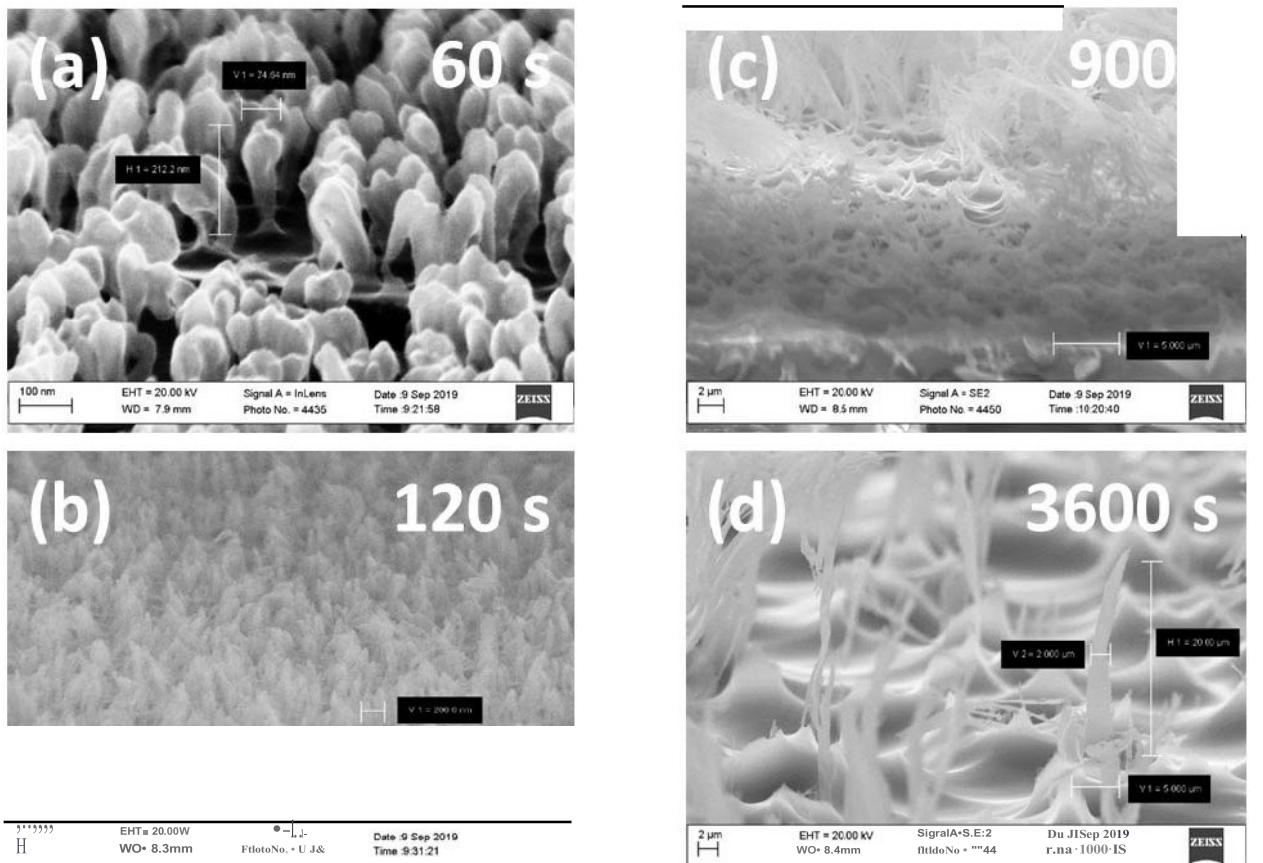


Figure 1. SEM images of CF_3,IO_2 plasma-treated PDMS surface with treatment time of (a) 60 s, (b) 120 s, (c) 900 s, (d) 3,600 s.

The PDMS exposed to the 120 s plasma treatment (Figure 1 b) show nanower and sharper surface-etched sub-micron scale PDMS filaments. Such densely-packed, sh01i, spiked structures appear to have length on the order of a micron or less making it very likely for it to sustain a Cassie-Baxter state for liquid metal over the entire surface.

The PDMS pieces exposed for 900 s (Figure 1 c) and 3,600 s (Figure 1 d) show an extremely "hairy" surface that has a dense collection of heavily etched PDMS fibers roughly 5-10 μm and $>20 \mu m$ long, respectively. These interconnected networks of flat-edged filaments likely create a roughened surface meeting Cassie-Baxter criterion, allowing for the nonwetting of liquid metal.

Thus, the non-wetting property of the PDMS samples is due to the surface roughness created by the CF_3,IO_2 plasma, and requires an exposure time long enough to create a surface roughness that meets the Cassie-Baxter state criteria.

STATIC AND DYNAMIC CONTACT ANGLE MEASUREMENTS

All contact angles were measured using the KRUSS Drop Shape Analysis System DSA30B (Hamburg, Germany) using their DSA4 image analysis software. A SY3601 syringe (4.706 mm diameter, 1.0 mL, Henke Sass Wolf GmbH) was loaded with Gallium-based liquid metal alloy (Ga 66.5%, In 20.5%, Sn 13%; Smaii-Elements GmbH). The needle used for the measurements was the KRUSS NE47 needle with polypropylene inner tubing

with a stainless-steel metal jacket (0.7 mm outer diameter).

Wettability/non-wettability regimes of each plasma-treated PDMS strips were characterized by dropping $\sim 8 \mu L$ liquid metal droplets, naturally oxidized in ambient air, on to the PDMS strip's surface, which lay on the horizontally-leveled stage of the DSA30B system. To test stretched PDMS strips, the ends of a strip were clamped, across the entire width of the strip, to opposing ends of a vise, which had an initial separation of 20 mm. The vise screw was gently turned to separate the vise ends until they were about 25 mm apart, giving about 25% strain to the PDMS strip (Figure 2). The vise was then placed on the leveled stage of the DSA30B system for contact angle measurements.

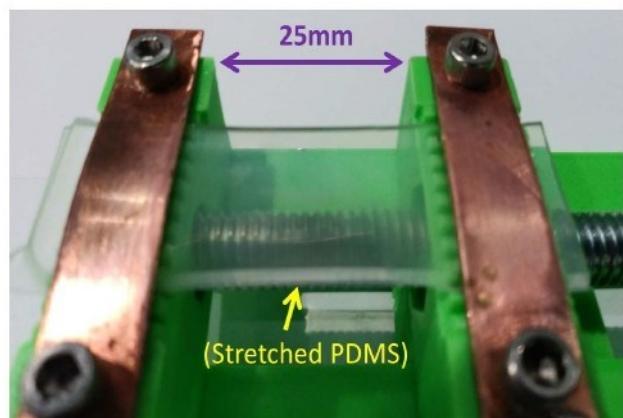


Figure 2. Vise with clamped PDMS strip stretched 25mm.

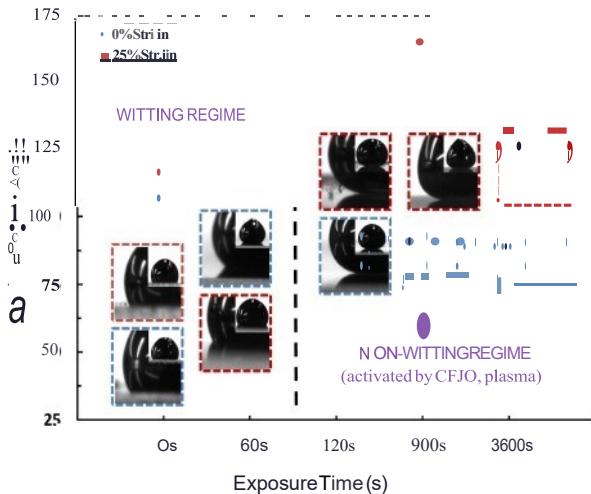


Figure 3. Static contact angle of $\sim 8 \mu\text{L}$ surface oxidized liquid metal droplets on various plasma-treated PDMS surfaces.

The static contact angle for each strip, in resting and stretched state, was estimated by averaging the measured left and right contact angles of a liquid metal droplet. The static contact angles were found to be greater than 144° for the PDMS samples with 120 s or longer plasma treatment (non-wetting regime), while the angles were 135.8° or lower for the samples with 60 s less plasma treatment (wetting regime) (Figure 3).

Dynamic contact angle was measured by initially placing the needle tip about 1 mm from the PDMS strip surface, forming a sessile drop by first depositing $\sim 8 \mu\text{L}$ on to the surface, depositing $\sim 5 \mu\text{L}$ more during the advancing contact angle measurement phase, then retrieving $\sim 13 \mu\text{L}$ during the receding contact angle measurement phase. Figure 4 shows dynamic contact angle measurements for each PDMS strip, in stretched and resting state. Contact angle hysteresis (CAH) were less than 16.8° for the samples with 120 s or longer treatment (non-wetting regime). However, CAH for the PDMS samples with 60 s or less plasma treatment showed

large CAH of 95.8° or higher, typical for a wetting surface.

These contact angle measurements allow us to define an activation exposure time of about 120 s of *CFJ02* plasma treatment. This is the minimum time needed to convert a PDMS surface from the wetting regime to the non-wetting regime. Furthermore, it is clear that the wetting/non-wetting properties of plasma-treated PDMS surfaces does not seem to be affected much by strains at 25%.

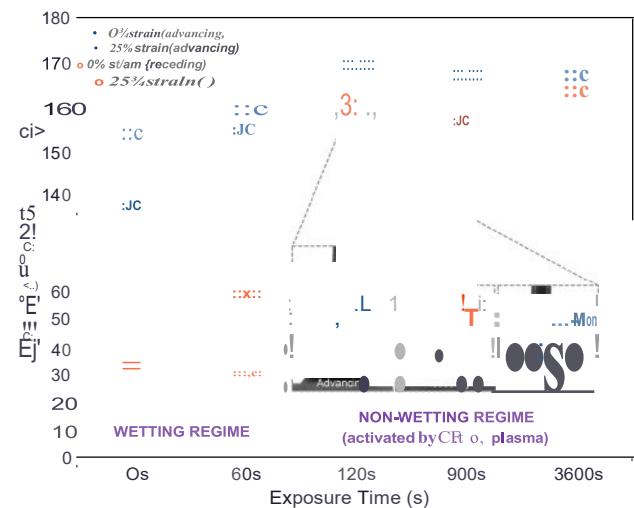


Figure 4. Dynamic contact angle of surface oxidized liquid metal droplets on various plasma-treated PDMS surfaces.

ROLLING TEST

To confirm non-wettability of a PDMS strip, rolling tests were performed by dropping $\sim 8 \mu\text{L}$ of liquid metal droplets using a syringe on to each plasma treated PDMS strip, in the unstrained state, and under a 15° incline (Figure 5). Samples with 60 s or less plasma treatment had the liquid metal droplet instantly stick to its surface, exhibiting a clear wetting property (Figure 5a). Samples with 120 s or longer plasma treatment had liquid metal droplets readily roll off on the inclined surface without

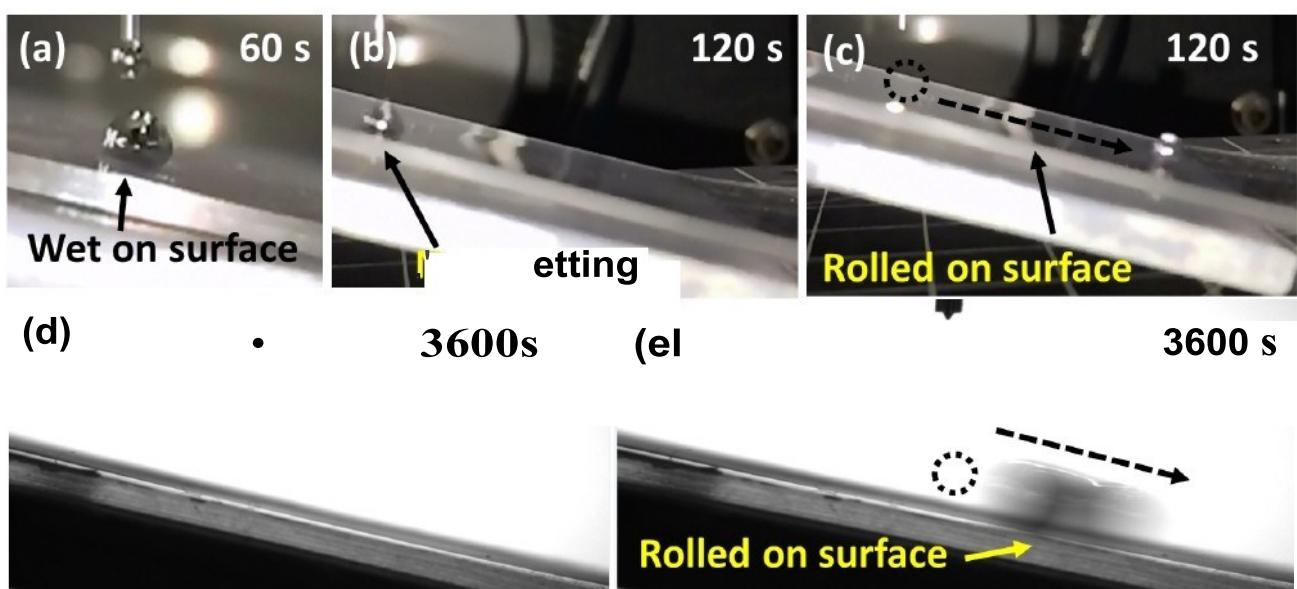


Figure 5. Optical images of the rolling test of the liquid metal droplet on (a) 60 s and (b, c) 120 s (d, e) 3,600 s plasma-

treated surfaces tilted at the angle of 15°. Liquidmetal droplet stuck on 60 s surface (a) while rolled on 120 s surface (b, c) and 3,600 s surface (d, e).

leaving any apparent residue on the PDMS, exhibiting a clear non-wetting property (Figure 5b-e). This result clearly demonstrates that the plasma-treatment indeed creates the non-wetting property, and that the duration of exposure plays a critical role in maintaining that property.

CONCLUSION

In this work, CFJ0 2 plasma-treated PDMS surfaces were demonstrated to have long-term non-wetting properties against oxidized gallium-based liquid metal droplets. The treated PDMS surfaces were shown to have wettability/non-wettability regimes that were quantitatively characterized by static and dynamic contact angle measurements, and shown to have a regime transition based on the duration of plasma exposure. It was further shown that the wetting/non-wetting property does not change much under an applied strain. SEM micrographs of the plasma treated surfaces show that the plasma etches the PDMS surface to create nanoscale to microscale filaments and that these filaments collectively work together to create a non-wetting rough surface against liquid metal. This nonwetting property can be readily created on any PDMS surfaces regardless if the surface is flat or with topology. This simple method

promises to be a valuable tool in liquid metal microfluidic applications.

ACKNOWLEDGEMENTS

This work was supported in part by the United States National Science Foundation grant NSF ECCS-1908779, NSF ECCS-1710824 and NSF ECCS-1307997.

The authors would like to acknowledge Prof. S.M. You and Dr. Pillutla for use of their KRUSS DSA30B system and UT Dallas Clean Room staff for their support on this work.

REFERENCES

- [1] T. Liu, P. Sen, C.J. Kim. "Characterization of nontoxic liquid-metal alloy galinstan for applications in microdevices", *IEEE/ASME Journal of Microelectromechanical Systems*, 21(2), pp.443-450, 2011.
- [2] F. Schainkann, G. Cherkashin, V. Bretemitz, C. Knedlik, G. Haliung, T. Weber, J.A. Schaefer. "Viscosity effect on GalnSn studied by XPS", *Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films*, 36(8), pp.981-985, 2004.
- [3] K. Doudrick, S. Liu, E. M. Mutunga, K. L. Klein, V. Damle, K. K. Varanasi, K. Rykaczewski. "Different shades of oxide: From nanoscale wetting mechanisms to contact printing of gallium-based liquid metals", *Langmuir*, 30(23), pp.6867-6877, 2014.
- [4] S. Cheng, Z. Wu. "Microfluidic electronics", *Lab on a Chip*, 12(16), pp.2782-2791, 2012.
- [5] K. Khoshmanesh, S. Y. Tang, J.Y. Zhu, S. Schaefer, A. Mitchell, K. Kalantai-Zadeh, M.D. Dickey. "Liquid metal enabled microfluidics", *Lab on a Chip*, 17(6), pp.974-993, 2017.
- [6] G. Li, M. Pamw, D. Kim, J.B. Lee, D.W. Lee.

"PDMSbased coplanar microfluidic channels for the surface reduction of oxidized Galinstan." *Lab on a Chip*, 14(1), pp.200-209, 2014.

- [7] D. Kim, P. Thissen, G. Viner, D.W. Lee, W. Choi, Y.J. Chabal, J.B. Lee. "Recovery of nonwetting characteristics by surface modification of gallium-based liquid metal droplets using hydrochloric acid vapor." *ACS applied materials & interfaces*, 5(1), pp.179-185, 2012.
- [8] M. Varga, C. Ladd, S. Ma, J. Holbery, G. Troster. "On-skin liquid metal inertial sensor", *Lab on a Chip*, 17(19), pp.3272-3278, 2017.
- [9] Z. Chen and J.B. Lee. "Surface Modification with Gallium Coating as Nonwetting Surfaces for Gallium-Based Liquid Metal Droplet Manipulation." *ACS applied materials & interfaces*, 11 (38), pp.35488-35495, 2019.
- [10] D. Kim, D.W. Lee, W. Choi, J.B. Lee. "A super-lyophobic 3-D PDMS channel as a novel microfluidic platform to manipulate oxidized galinstan" *IEEE/ASME Journal of Microelectromechanical Systems*, 22(6), pp.1267-1275, 2013.
- [11] D.M. Lopes, S.M. Ramo, L.R. de Oliveira, J.C. Mombach. "Cassie- Baxter to Wenzel state wetting transition: a 2D numerical simulation" *RSC Advances*, 3(46), pp.24530-24534, 2013.

CONTACTS

* J.B. Lee, tel: +1-972-883-2893; jblee@utdallas.edu.