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Abstract
Purpose of Review Identifying the spatial scale at which a species or population most strongly responds to habitat composition
and configuration is known as scale-of-effect and is a fundamental pursuit of landscape ecology. In conducting scale-of-effect
studies, it is common to measure habitat in landscape buffers of varying sizes surrounding sample sites. When sample sites are in
close spatial proximity to one another, these landscape buffers will overlap. Researchers commonly worry that data generated
from these overlapping landscapes, and subsequently used as predictor variables in statistical modeling, represent a form of
pseudoreplication that violates the assumption of independence.
Recent Findings Here, we review the concept of overlapping landscapes and their theoretical and practical implications in
landscape ecology. We suggest that the perceived problem of overlapping landscapes is distinct from more important issues in
landscape ecology, such as a robust sampling design complete with a discrete assessment of spatial autocorrelation. Through
simulation, we demonstrate that changing the amount of landscape overlap does not alter the degree of spatial autocorrelation.
Yet, in reviewing over 600 journal articles, we found that a third (29%) of the studies perceived overlapping landscapes as an
issue requiring either changes in sampling design or statistical solutions. Researchers concerned with overlapping landscapes
often go to great lengths to alter their sampling design by removing or aggregating sites. Overlapping landscapes remain a
prevalent concern in landscape ecology despite previous studies that show that overlapping landscapes are not a violation of
independence and represent an oversimplification of the statistical concerns of spatial autocorrelation.
Summary The concern over overlapping landscapes as a form of pseudoreplication persists in landscape ecology, but acts as a
potential red herring detracting from more relevant concerns of proper sampling design and spatial autocorrelation in ecological
studies.

Keywords Habitat fragmentation .Habitat loss .Landscape ecology .Macroecology .Samplingdesign . Spatial autocorrelation .

Statistical independence

Introduction

A fundamental pursuit of landscape ecology is quantifying
how and at what scales species and populations respond to
habitat composition and configuration [1]. One method to
accomplish this is to model the relationship between a land-
scape predictor (e.g., forest patch density) and an ecological
response (e.g., variation in abundance) across landscapes of
varying spatial extents. The scale at which a landscape predic-
tor best explains variation in an ecological response has been
called the “scale-of-effect” [2]. Although the scale-of-effect is
typically not known a priori, theory suggests that it should be
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strongly influenced by life-history characteristics such as body
size, behavior, and dispersal limitations. For example, species
with greater dispersal capabilities may respond to habitat
availability at broader scales [3, 4], whereas behavioral traits,
such as gap avoidance, result in smaller scales-of-effect [3].
Such information on the scale at which a species responds to
their environment is critical for assessing the effects of habitat
loss and fragmentation as well as informing management and
conservation [2, 5, 6].

Quantifying the scale-of-effect in natural settings is diffi-
cult due to the need to evaluate species-environmental rela-
tionships across multiple spatial scales and landscapes of
varying extents [7, 8]. As an example, an investigator may
be interested in examining how forest cover explains variation
in the abundance of a warbler at multiple sampling sites. For
such a multi-scaled analysis, the investigator may conduct
multiple bird surveys and then quantify the proportion of for-
est cover within landscape buffers of varying sizes (e.g., radii
ranging from 1 to 5 km) surrounding each bird survey site. A
practical issue when conducting such multi-scale analyses is
that, when sampling sites are in close spatial proximity, these
landscape buffers may overlap. A frequently cited concern of
overlapping landscapes is that data generated from these land-
scapes violate the assumption of independence when used as
predictors in statistical modeling [9, 10]. This concern has led
researchers to address overlapping landscapes by altering their
sampling design prior to data collection [11, 12] or filtering or
aggregating data points after data collection [13, 14].

The concern that overlapping landscapes lead to a violation
of statistical independence, however, is potentially
misdirected and may distract from more important issues—
thus acting as a “red herring” in landscape ecology. To eval-
uate whether overlapping landscapes violate statistical inde-
pendence, Zuckerberg et al. [15] used data from two indepen-
dent bird monitoring programs to quantify the relationship
between forest cover and bird abundance and occurrence
using multiple landscapes ranging from 100 m to 24 km in
diameter with varying levels of overlap. They found no evi-
dence that greater landscape overlap increased spatial autocor-
relation in model residuals (a measure of statistical indepen-
dence) and thus provided empirical evidence that the statisti-
cal concerns of overlapping landscapes are misdirected.
Despite these findings, it remains unknown whether re-
searchers continue to perceive overlapping landscapes as a
contemporary problem in ecological investigation, and if so,
what actions are taken to avoid overlapping landscapes in
practice.

To explore the impacts of overlapping landscapes in land-
scape ecology, we (1) presented the statistical and sampling
design issues of overlapping landscapes; (2) performed simu-
lation of the effects of overlapping landscapes on species-
environment relationships; (3) conducted a literature-based
assessment of the perceived problem of overlapping

landscapes; and (4) offered a synthesis of the issue and best
practices for designing studies in landscape ecology.

Statistical Concerns of Overlapping
Landscapes

The primary concerns of overlapping landscapes relate to con-
cepts of statistical independence, pseudoreplication, and spa-
tial autocorrelation. Statistical independence among sampling
sites is a persistent concern in ecological studies, and in some
cases, a source of both practical and theoretical disagreement
[16–19]. This tension likely occurs for two reasons. First,
adhering to statistical rigor with respect to independence is
sometimes at odds with the realities of fieldwork and data
collection [16]. Second, independence follows from careful
study design and representative sampling [18] and is often
not straightforward to assess. Evaluating pseudoreplication
reflects the challenges of determining the appropriate scale
of independent replication and occurs when we fail to account
for temporal or spatial dependencies across observations that
are assumed to be independent [20]. While problems of
pseudoreplication are well-defined in traditional blocked and
treatment-oriented designs [18], statistical independence and
pseudoreplication are more difficult to evaluate in observa-
tional or mensurative studies of species-environment relation-
ships [21].

Investigators often worry that overlapping landscapes are a
form of pseudoreplication that leads to a violation of statistical
independence due to similarity in values of a predictor vari-
able across sites [9, 10, 22]. In other words, because portions
of the same landscape may predict more than one response, it
is suggested that these observations should be considered
pseudoreplicates [10]. This implies that landscape overlap re-
duces the effective sample size of the data, inflating the risk of
type I error. However, the concept of pseudoreplication artic-
ulated by Hurlbert et al. [18] is not that multiple replicates
cannot be influenced by the same values of predictor vari-
ables. In fact, this is typical of nested or hierarchical data
and regression makes no assumptions about the independence
of predictors [23]. Rather, the assumption of independence
relates strictly to the variation in the response left unexplained
by the predictors (i.e., independence of residuals). Hurlbert
et al. [18] were primarily concerned about lack of indepen-
dence in study designs in which replicates are poorly inter-
spersed or where sampling sites are influenced by a systemat-
ic, but unknown, predictor. In field settings, the clustering of
sampling sites may lead to such a lack of independence where
adjacent observations have similar data values, but there is a
distinction between the poor interspersion of sampling sites
and overlapping landscapes.

We offer the following scenario to better illustrate that is-
sues of overlapping landscapes are distinct from the concerns
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of pseudoreplication. Suppose a researcher wishes to quantify
the environmental predictors of species occurrences on a
patchy landscape of forest and non-forest habitat (Fig. 1).
Initially, the researcher implements a design with four ran-
domly placed sampling sites and records species occurrence
(Fig. 1a). Following sampling, the researcher measures habitat
predictors within a fixed-radius landscape buffer, but fails to
account for elevation in both the sampling design and the
subsequent statistical analyses. As it happens, forest habitats
were sampled in high-elevation areas, where the species is less
likely to occur, leading to a biased estimate of occurrence in
this habitat. This sampling design fails to adequately sample
the landscape and reflects the concern of pseudoreplication
because forest habitat replicates are not independent due to
an unaccounted source of variation (elevation), as opposed
to overlapping landscape buffers. Now suppose the researcher
resamples using a systematic grid, improving both sampling
site replication and coverage (Fig. 1b). Here, the
pseudoreplication issue of the previous design is addressed
(by sampling across the elevation gradient) and sampling bias
is reduced, but many of the landscape buffers overlap. In re-
sponse, the researcher reduces buffer sizes (Fig. 1c) or main-
tains the buffer size but reduces the number of sampling sites
(Fig. 1d) to avoid overlapping landscapes. However, overlap-
ping landscape buffers were not the source of non-
independence; the sites potentially violated independence

because they failed to sample an unknown and important en-
vironmental predictor. Importantly, this potential violation of
independence would persist in both the presence and absence
of overlapping landscapes. In fact, reducing buffer size (Fig.
1c) could artificially limit the scale of investigation or reduce
sample size (Fig. 1d) and thereby sacrificing statistical power
and inducing spatial autocorrelation.

Spatial autocorrelation describes the presence of systematic
spatial variation in a variable and positive spatial autocorrela-
tion, which is most often of concern in assessing statistical
independence, is the tendency for sampling sites that are close
together to have more similar values than sites that are far apart
[24, 25]. Spatial autocorrelation is a common phenomenon in
landscape ecology and often results from two distinct sources:
endogenous factors relating to the life-history characteristics of
a species (e.g., dispersal limitations or density dependence) or
exogenous factors relating to the spatial clustering of environ-
mental predictors [26–30]. Spatial autocorrelation, in of itself, is
not a statistical artifact, but a natural manifestation of species’
ecology and their relationship to environmental variation.
However, spatial autocorrelation is a concern when it results
from a flawed sampling design or a statistical model that does
not adequately describe the spatial dependencies of the ecolog-
ical phenomena of interest. A common diagnostic tool for
assessing this problem is to test for spatial autocorrelation in
the residuals of the fitted model; positive spatial autocorrelation

Fig. 1 Four experimental designs
sampling species occupancy on a
theoretical landscape. a A simple
random sampling scheme
demonstrating classical
pseudoreplication by failing to
adequately sample an important
environmental predictor
(elevation) operating across the
study area. b A systematic
sampling design with strong
replication and landscape
coverage, but with significant
overlapping of landscape buffers.
c A systematic design that
attempts to avoid overlap by
reducing buffering extent. d A
systematic design that attempts to
avoid overlap by sacrificing
sample size
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in model residuals suggests a mismatch between the statistical
model and the ecological pattern. Positive spatial autocorrela-
tion in model residuals is indicative of a violation of indepen-
dence, but is distinct from pseudoreplication by which depen-
dence among sampling replicates results from a flawed sam-
pling design (described above) [18]. Consequently, it is impor-
tant to ask: If overlapping landscapes do not themselves repre-
sent a violation of independence, is there any evidence that the
presence of overlapping landscapes increases spatial autocorre-
lation in model residuals?

As discussed above, when residual spatial autocorrelation
is present, but not explicitly accounted for in models, it will
produce elevated type I error rates [26]. However, landscape
overlap does not necessarily induce spatial autocorrelation
[10]. To the contrary, reducing sample size or altering sam-
pling design specifically to reduce landscape overlap may
increase spatial autocorrelation in model residuals [15].
Thus, removing sampling sites to avoid landscape overlap
could increase spatial autocorrelation. Consequently, altering
sampling designs to avoid overlapping landscapes may unin-
tentionally limit scales of analysis and ecological inference,
provide a false sense of security that statistical independence
was achieved, and even contribute to unexplained spatial de-
pendencies in ecological models [16, 19].

Simulation of Overlapping Landscapes

To explore whether landscape overlap influences spatial auto-
correlation in statistical modeling, we simulated landscapes
and species-environmental relationships under different sam-
pling designs and varying degrees of landscape overlap. Our
simulation adapted the methods of Graham et al. [29] for
virtual landscapes (see Appendix 1 for full simulation
details). In short, we built virtual landscapes representing
patchy configurations of different land cover types (e.g., for-
est, non-forest) superimposed on a strong environmental gra-
dient (e.g., elevation) at a 1-grid cell resolution (Fig. 2). Next,
we generated a virtual species, modeling the spatial

probability of its occurrence (0–1) influenced by both the dis-
tribution of forest and elevation mapped at a 1-grid cell reso-
lution [26]. Next, we sampled grid cells within this 1-grid cell
distribution to obtain our sampling sites. Then, we aggregated
the 1-grid cell probability of occurrence to an average proba-
bility of occurrence that is based on either an 8- or 16-grid cell
radius to generate probabilities of occurrence at the desired
landscape level. We then superimposed the sampling sites to
extract their corresponding aggregated probability of occur-
rence values and applied a random binomial distribution to
generate a presence (1) or absence (0) for each sampling site.
This results in the presence-absence data for each sampling
site that is based on the environmental conditions at all cells
within the landscape buffer of the sampling site.

We simulated four different sampling designs to estimate
population presence-absence from landscape-level predictors
(Fig. 3). In scenario A, we applied simple random sampling,
stratified by only habitat type (18 sampling sites per habitat
class for a total of 36 sampling sites), thus ignoring the envi-
ronmental gradient, and using fixed 16-grid cell buffers. To
simulate a biased sampling design, we constrained our

Fig. 2 Simulated landscapes consisting of forest habitat (green) and non-
forest (white) habitats and a gradient of elevation were used for modeling
virtual species occurrences

Fig. 3 Four different sampling scenarios superimposed on maps of
probability of occurrence aggregated to different scales of resolution to
match the corresponding landscape buffer. Scenario A implemented a
biased sampling scheme with 18 sampling sites stratified by only
habitat and ignored the environmental gradient. Scenario B used a
regular sampling approach with overlapping landscape buffers.
Scenario C used the same sampling sites as scenario B, but with a finer
resolution (8-grid cell) to ensure non-overlapping buffers. Scenario D
used the same buffer radius as scenarios A and B, but with fewer
sampling sites to remove overlapping buffers. Overlapping landscapes
were allowed to extend beyond the study region in order to avoid
spatial bias towards the center of the landscapes (e.g., mid-domain effect)
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sampling of forest and non-forest habitat to opposite extremes
of the gradients. In scenarios B–D, we used systematic sam-
pling with a total of 36 sampling sites covering the full range
of the environmental predictors and allowing for overlapping
landscapes (scenario B) or non-overlapping landscapes (sce-
narios C and D). We ensured non-overlapping landscapes by
either reducing buffer size from 16 to 8-grid cell buffers while
maintaining the sample size (scenario C) or maintaining the
16-grid cell buffers while reducing the number of sampling
sites from 36 to 16 (scenario D). To match the scale-of-effect
between the landscape-level predictors and simulated species
occurrences, the presence-absence values for scenarios A, B,
and D were based on the aggregate species probability of
occurrence within a 16-grid cell resolution while in scenario
C, these were based on 8-grid cell resolutions.

Next, we constructed 4 binomial general linear models for
each sampling scenario fitting species presence-absence data
from the sampling sites as a response variable and used aver-
age forest amount calculated within each buffer as the predic-
tor variables (including linear and quadratic effect forms) in
eachmodel [15].We calculated the total percent overlap of the
landscapes in the study area as the area of intersecting overlap/
total area covered by landscapes [11] (Appendix 1), and quan-
tified the spatial autocorrelation of model residuals using
Moran’s I [27]. We repeated this process with 1000 different
virtual landscape patterns to account for potential variability in
model outputs given differences in the spatial distribution of
randomly sampled plots in scenario A and habitat configura-
tion of random virtual landscapes.

Positive spatial autocorrelation in model residuals was
strongest under a sampling method with non-overlapping
landscapes, but with a low sample size that did not sufficiently
account for spatial effects of the predictors (scenario D;
Table 1; Fig. 4; Mood’s median test p < 0.001). Scenario A
also demonstrated residual positive spatial autocorrelation
(Table 1; Fig. 4) and was characterized by a high likelihood
of overlapping landscapes (Appendix S1) and a sampling de-
sign that did not sufficiently account for an important predic-
tor (elevation). The spatial sampling biases of scenario A and
D induced significantly higher spatial autocorrelation than
scenarios B and C (Table 1; Fig. 4; Mood’s median tests
p < 0.001). Under a systematic sampling method (scenarios

B–C), the levels of positive spatial autocorrelation in model
residuals are significantly reduced regardless of whether the
landscapes overlapped or not (Table 1; Fig. 4d). In scenarios
B–C, the sampling sites captured the full breadth of environ-
mental variation of both landscape predictors, thus reducing
the likelihood of pseudoreplication. Scenario D, however, rep-
resents a design with fewer sampling points to avoid land-
scape overlap, and shows a significant increase in spatial au-
tocorrelation (Table 1, Fig. 4c). This scenario has the highest
potential for pseudoreplication among sampling units due to
the dependencies imposed by a reduced sample size and
under-sampling important spatial predictors. Importantly,
our simulation demonstrates that the risk of insufficient sam-
pling of spatial predictors in the sampling design is clearly
more relevant for violating statistical independence than the
risk of overlapping landscapes (Fig. 4).

Literature Review of Overlapping Landscapes:
a Persistent Concern

We surveyed recent literature to evaluate how studies in land-
scape ecology assess and avoid potential issues of overlapping
landscapes and spatial autocorrelation. Our primary goal was
to compare the proportion of landscape ecology studies that
addressed spatial autocorrelation in their data with those that
investigated only the influence of overlapping landscapes. Our
questions were the following: (1) are studies attempting to
address overlapping landscapes, spatial autocorrelation, or
neither?; (2) have studies shifted their approach over the last
25 years, following recent work suggesting that overlapping
landscapes are not likely to bias landscape-scaled studies (e.g.,
15)?; and (3) do studies vary in their approach depending on
taxonomic focus, region, time-of-year, or ecological response
(e.g., abundance, occurrence, species richness)? For this last
question, we hypothesized that researchers may be more con-
cerned regarding overlapping landscapes or spatial autocorre-
lation for more wide-ranging and vagile species (such as birds
and mammals). We further hypothesized that consideration of
overlapping landscapes varied by region and season because
many species are likely to respond differently to habitat com-
position and configuration across their ranges and as a

Table 1 Median absolute Moran’s I values (italicized) and Mood’s median test results for statistical differences between the median of absolute
Moran’s I for each combination of scenarios. Values in bold refer to significant differences between medians

Scenario A Scenario B Scenario C Scenario D

Scenario A (stratified random sampling by habitat) 0.090

Scenario B (systematic sampling; overlapping landscapes) p < 0.001 0.072

Scenario C (systematic sampling; non-overlapping landscapes) p < 0.0.01 p = 0.1 0.069

Scenario D (systematic sampling; non-overlapping landscapes; low sample size) p < 0.001 p < 0.001 p < 0.001 0.147

Curr Landscape Ecol Rep

Author's personal copy



function of varying life history stages (e.g., overlapping land-
scapes could be of greater concern during breeding seasons
when many species are territorial and geographically clus-
tered). Finally, we explored these relationships across a range
of what we a priori considered to be the most common eco-
logical responses collected in landscape-scale studies—abun-
dance, occurrence, and species richness.

To answer our questions, we modified previous search
terms for identifying multi-scale studies [31] and searched
Web of Science in December 2019 for the following terms,
aiming to find papers that studied the relationship between
environmental heterogeneity and wildlife (and plant) popula-
tions or communities with some consideration of spatial scale:
((“spatial scale*” OR “spatial extent*”) AND (“landscape
size” OR “multi-scale” OR “landscape area” OR “buffers”
OR “focal patch*” OR “focal point*”) AND (“surrounding
landscape*” OR “landscape context” OR “landscape struc-
ture” OR “landscape composition” OR “scale-of-effect”)
AND (abundance OR occupancy OR incidence)). The selec-
tion of search terms was designed to identify a subset of the
landscape ecology literature that explicitly analyzed relation-
ships between land cover and an ecological response variable
across varying spatial scales. Our search returned 1446 results,
which we narrowed to 612 relevant studies after screening
abstracts using the metagear package [28] (Appendix 2). We
determined whether each paper either (1) did not attempt to
address overlapping landscapes or spatial autocorrelation; (2)
modified their sampling design or filtered/aggregated data

post hoc to avoid overlapping landscapes, but ignored
assessing spatial autocorrelation; or (3) assessed or accounted
for spatial autocorrelation in their approach, regardless of
whether overlapping landscapes were also considered. In ad-
dition, we recorded the taxonomic focus, continent, and sea-
son of each study. Finally, we recorded the response variable
of the study as occurrence, abundance, richness, other re-
sponse, or multiple responses.

The studies were evenly split across the three approaches,
with 37% not addressing overlapping landscapes or spatial
autocorrelation, 29% attempting to minimize the impact of
overlapping landscapes despite not assessing spatial autocor-
relation, and 33% of studies addressing spatial autocorrelation
in some fashion (Fig. 5a). The proportion of studies
attempting to address overlapping landscapes decreased
slightly over time; 33% of studies before 2010 addressed the
issue of overlapping landscapes (n = 222), but this declined to
27% after 2010 (n = 390) (Fig. 5b). Overlapping landscapes
were considered an issue for studies across a diversity of eco-
logical responses, including in 34% of studies that modeled
multiple responses (n = 185), 30% of occurrence studies (n =
177), 23% of abundance studies (n = 122), and 28% of rich-
ness studies (n = 96) (Fig. 5c).

We observed the greatest variation in concern for overlap-
ping landscapes based on the taxonomic focus of the study.
Studies focused on birds and mammals addressed overlapping
landscapes 35% (n = 122) and 33% (n = 179) of the time, re-
spectively, while studies modeling invertebrates (23%, n =

Fig. 4 Distribution of absolute Moran’s I values across 1000 iterations
for the four simulation scenarios. a, b Scenario A had higher residual
autocorrelation compared with scenarios B and C (p < 0.001; Table 1).
c Scenario D had the highest amount of residual spatial autocorrelation

across all scenarios (p < 0.001; Table 1). d We do not find significant
differences in spatial autocorrelation between scenarios B and C (p =
0.10), despite scenario B having overlapping landscapes. Medians for
absolute Moran’s I for each scenario (dashed lines)
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180), reptiles or amphibians (28%, n = 36), fish (14%, n = 28),
or plants (21%, n = 29) addressed them less often (Fig. 5d). A
potential reason for this taxonomic focus could be that scale-of-
effect studies on birds and mammals assume comparatively
higher dispersal distances and home ranges (compared with
more sessile organisms) and would be interested in larger land-
scapes with a higher likelihood of potential overlap. There was
little variation in concern for overlapping landscapes and spatial
autocorrelations among geographic regions and seasons (Fig.
5e–f). Overall, it is clear that overlapping landscapes remain a
perceived concern across many ecological studies.

How Researchers Address Overlapping
Landscapes

Based on our review of over 600 studies, researchers go to great
lengths to avoid overlapping landscapes, despite the lack of any
rigorous testing of spatial autocorrelation. In reviewing these
studies, one common approach to address the perceived con-
cern of overlapping landscapes, used in 25% of studies, is to
deploy or adapt a sampling design in which landscape buffers
do not overlap. Many of these studies either limited landscape
buffer sizes following data collection or spaced sampling loca-
tions far enough apart to prevent overlap [32–36]. Other studies
made nomention of landscape overlap per se but still employed

sampling designs in which it was avoided [15]. In these cases,
capturing sufficient variation in the landscape was usually cited
as the primary factor used to determine landscape buffer sizes
and distances between sample sites.

Several studies demonstrated a desire to avoid overlapping
landscapes based on recommendations from previous reviews
on sampling designs [16, 37, 38]. For example, reviews on
experimental approaches in landscape ecology recommend
that studies evaluate response variables from within patches
and landscape variables within a specified landscape radius,
without overlap between the resulting landscape buffers [7,
39]. The argument is that avoiding landscape overlap would
strengthen ecological inference by eliminating the confound-
ing effects of spatial autocorrelation. Consequently, studies
designed around these recommendations indirectly endorsed
the idea that eliminating overlapping landscapes avoids
pseudoreplication and reduces spatial autocorrelation.

Attempting to avoid overlapping landscapes is logistically
challenging and may complicate experimental design. For ex-
ample, Talaga et al. [40] stated a desire to minimize spatial
overlap, but the buffers around each site, which ranged from
10 to 70 m, had considerable overlap with buffers greater than
50 m. Similarly, in their study of the scale-of-effect of land
cover on the density of an agricultural pest, Horak et al. [12]
attempted to use non-overlapping landscapes across six spatial
scales to avoid violating site independence, but the two largest

Fig. 5 How have studies (n =
612) addressed overlapping
landscapes and spatial
autocorrelation? Studies were
split roughly evenly between
three approaches: (1) no effort to
address spatial effects (gray); (2)
avoided overlapping landscapes
through sampling design or data
analysis, but did not test for
spatial autocorrelation (red); (3)
or assessed or accounted for
spatial autocorrelation in their
data, regardless of whether they
addressed overlapping landscapes
(blue). This split varied over time,
by taxonomic focus, and by
response variable of the study
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scales (32 and 64 km) still had substantial overlap between
landscapes. This indicates that, despite the desire or intention
to avoid overlapping landscapes, there could be logistical or
other challenges associated with altering sampling design.
Another response to overlapping landscapes involved remov-
ing or aggregating sampling sites when landscape buffers o-
verlapped (i.e., data filtering) due to stated concerns of a lack
of independence among sampling sites (e.g., [18]).

Many studies in our literature review explicitly stated that
their sampling design was adapted to avoid landscape overlap,
a practice that could be constraining research on the scale-of-
effect. Determining the size of an appropriate landscape buffer
is often done a priori and should reflect aspects of the species
biology such as maximum dispersal distance, home range
size, or sensitivity to habitat loss and fragmentation [31, 41].
However, Jackson and Fahrig [31] note that the characteristic
scale-of-effect often appears to be larger (or smaller) than the
range investigated by researchers, which suggests that truncat-
ing landscape size to avoid overlap can compromise ecologi-
cal inference.

Conclusions

The concern that overlapping landscapes represent a violation
of statistical independence and result in pseudoreplication per-
sists in landscape ecology. Pseudoreplication is ultimately
failing to account for temporal or spatial dependencies across
observations [20]. With respect to scale-of-effect relation-
ships, the primary concern relates to dependencies of spatial
autocorrelation imposed by exogenous sources on an ecolog-
ical response. However, both empirical results and simulation
demonstrate that overlapping landscapes do not induce or pro-
tect from residual spatial autocorrelation. Despite these find-
ings and statistical arguments, our literature review revealed
that nearly one-third of studies exploring scale dependency in
species-environment associations perceive overlapping land-
scapes as a problem. Studies that focus on birds and mammals
appear to be disproportionately concerned about overlapping
landscapes, perhaps due to a priori assumptions that these
species respond to habitat composition and configuration at
larger spatial scales. This concern of overlapping landscapes is
not without costs, and researchers implement a number of
“solutions” such as altering sampling design or data filtering.

The concern that overlapping landscapes are a violation of
statistical independence continues to vex landscape ecologists.
Importantly, evaluating and detecting patterns of spatial auto-
correlation in model residuals should be standard practice, re-
gardless of overlapping landscapes, and can be achieved using
spatial correlograms [27]. If residual spatial autocorrelation is
detected, researchers should first consider whether there are
important environmental conditions that could have been
overlooked when designing the study. If so, researchers should

consider modifying future data collection to capture that miss-
ing environmental predictor or include a measurement of that
variable in their statistical model and check to see if that reduces
residual spatial autocorrelation to an acceptable level. Sampling
designs that emphasize systematic sampling are more robust to
spatial independencies induced by an unknown environmental
predictor. However, in cases when such a sampling design is
not possible due to logistical difficulties, researchers should not
assume that avoiding overlapping landscapes is a safeguard
from issues of spatial autocorrelation.

Spatial autocorrelation is a well-known issue in ecology
and there are a plethora of statistical methods available to
diagnose and accommodate spatial dependencies in ecological
data [21, 26, 27, 41]. In terms of data analysis, approaches
such as simple autoregressive or kernel-based models can ac-
count for spatial autocorrelation induced by exogenous factors
[42, 43]. For example, Chandler and Hepinstall-Cymerman
[42] developed an approach based on smoothing kernels to
identify the scale-of-effect of primary productivity on the
abundance of Canada warblers (Cardellina canadensis).
Importantly, this approach does not rely on using pre-
defined landscape buffers, but rather on a distance-weighted
average of landscape features surrounding the sampling sites;
such a framework can easily accommodate spatial dependen-
cies without having to worry about overlapping landscapes.
Investigators can also implement a diversity of mixed effects
models and spatial random effects designed for nested or hi-
erarchical data to address spatial dependencies [20, 44].
Overlapping landscapes and spatial autocorrelation are two
separate issues in the modeling of scale-of-effect relation-
ships: Non-overlapping landscapes do not ensure spatial inde-
pendence and overlapping landscapes do not necessarily lead
to greater spatial autocorrelation. The exploration and study of
scale-of-effect have important implications for species conser-
vation and management and ecological inference should not
be limited by the perceived problem of overlapping
landscapes.
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