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A typical Cybersecurity Operations Center (CSOC) is a service organization. It hires and trains analysts,
whose task is to perform analysis of alerts that were generated while monitoring the client’s networks. Due
to ever-increasing financial and infrastructure burden on a CSOC driven by the rapidly growing demand for
security services, it would become prohibitively expensive to continually expand the size of a CSOC to meet
the demands in the future. An alternative solution is to outsource the alert analysis process to on-demand
analysts, to provide scalable CSOC service to its clients with features, such as (1) higher throughput, (2) higher
quality, and (3) more economical service than the current in-house service. The current outsourcing model
is not cost effective and an exact optimization model is computationally inefficient. This article presents a
novel two-step sequential mixed integer programming optimization method that is used in the development
of a new decision-support business model for outsourcing the alert analysis process. It is demonstrated that
through this model, a CSOC can effectively deliver its alert management services with the above-mentioned
features. Results indicate that the model is scalable, computationally viable, real-time implementable, and
can deliver CSOC services that meet the service-level agreement (SLA) between the CSOC and its client. In
addition, the article provides valuable insights into the cost of operating the new business process outsourcing
model for cybersecurity services.
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1 INTRODUCTION

In a security-as-a-service (SECaaS) model, organizations (clients) pay for the security services by
entering into a service-level agreement (SLA) with a cybersecurity operations center (CSOC), who
is the service provider. Alert management is one of the primary services provided by a CSOC
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[D’Amico and Whitley 2008]. A typical CSOC employs in-house analysts who are scheduled and
managed to perform alert analysis. Due to the financial and infrastructure burden on a CSOC
driven by the growing demand for security services, it would become prohibitively expensive to
continually expand the size of a CSOC to meet the demands in the future. Newer CSOCs will re-
quire establishment time to train their employees, which further augments the already growing
differences between higher demand for security services and lower supply of service providers. As
an alternative, an outsourcing business model of a CSOC for alert management is researched in this
article, in which the CSOC selects resources from a large pool of analysts with various expertise
levels that are available on-demand. Outsourcing of alert management benefits an organization by
reducing the financial and infrastructure burden of maintaining an in-house security group and
by allowing the organization to focus on its core competencies. Such core competencies include
its ability to deliver security in an economical way (minimize cost of operation and remain prof-
itable), faster response time on alert analysis within a job (higher throughput), scalable services to
meet higher demands, and a guaranteed quality of alert analysis compared to an in-house security
center. The above motivated our research to build models that would assist a CSOC to outsource
some or all of their operations.

In this research, we define an alert analysis job as a group of alerts generated and clustered from
a single client over a period of time (usually an hour to a few hours) that can be assigned to one
or more analysts. The number of alerts and the type of alerts within a job can vary. Alert analysis
requires analysts to perform several steps for investigating an alert, and based on both the alert
and the analyst’s expertise, the time taken for analysis may vary. The task for the analysts is to
analyze all the alerts in the job or a portion of the alerts in a job that is assigned to them, and
classify each of them as significant or innocuous. The classified alerts are then sent back to the
client organization for further action.

Typically, SLAs are signed to provide a threshold on timeliness and quality of services. With
respect to a SECaaS model, the SLA requirements are as follows:

(1) Timeliness: All the alerts in a job must be analyzed within the agreed-upon (target) com-
pletion time for each client.

(2) Quality of service: The average error rate (alerts that are falsely classified as negatives)
from alert analysis for each job must not exceed the agreed-upon threshold between the
CSOC and the client.

Alert analysis jobs have the following attributes: (a) total number of alerts in each job, (b) thresh-
old on job completion time, and (c) threshold on the error rate. The thresholds are governed by
the SLA between the client and the CSOC as described above. Analysts differ from one another in
terms of the following attributes: (a) alert analysis rates, (b) quality of analysis, which is measured
by the number of false negatives reported (error rates), and (c) hiring costs (base rate per hour).

A CSOC receives a number of alert analysis jobs simultaneously from various clients. Assign-
ment of alert analysis jobs to analysts is a continuous process. In the approach presented in this
research, all the alert analysis jobs that arrive in the previous time-stamp (for instance, last hour)
are collected at the beginning of the current time-stamp (current hour) and assigned to the selected
analysts in real-time (within a few minutes) from the available pool of analysts. The above action
to select and assign analyst to jobs is non-trivial because of the numerous combinations that are
possible, and the exponential computational time needed to final optimal solutions, which makes
the problem NP-Hard. The research objective is to develop an optimized decision-support tool for
selecting and assigning on-demand analysts for processing alert analysis jobs such that the SLA
requirements are met by minimizing the cost of operation, and the solution is computable and
implementable in real-time.
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1.1 Modeling Assumptions

(1) Based on our conversations with the CSOC operators, we found that the base rate per hour
of hiring an analyst varies based on the number of hours for which an analyst is hired.
For instance, analysts offer a discount of 10% if they are hired for more than 4 hours and
15% for 8 or more hours in an on-demand service model. However, it may be unrealistic
to expect quality work from security analysts if they are assigned work that takes more
than a threshold number of hours in this model. Based on our discussions with the CSOC
operators, the maximum time interval for which an analyst could be hired for is no more
than 12 hours. Also, for security and accountability reasons, an analyst is allowed to work
on only one job at a time, however, a job could be assigned to multiple analysts to reduce
analysis time, error rate, or cost of analysis.

(2) Alerts vary in their types and correspondingly need different length of time for inves-
tigation. Alerts could also be correlated. The article assumes that job creation is a pre-
processing step that has already taken into account the type and quantity of alerts to esti-
mate the threshold time for completing the job, to be used later in the optimization model.

The research presents two models for solving the optimization problem of minimizing the total
cost of processing all alert analysis jobs subject to SLA and analyst constraints. The first model
is a single exact optimization model, which takes into account individual attributes of all the
available analysts and the attributes of all alert analysis jobs waiting for processing, subject to
their respective SLA requirements. In the experiments and analysis of results section (Section 5),
it is demonstrated that the exact model is computationally very expensive and will not yield
decisions in a timely manner for a decision-maker at the CSOC. One of the innovations in this
research is to develop a second model that uses a two-step optimization approach by sequentially
solving two mathematical models to obtain good solutions in a computationally efficient manner
that can then be implemented by a decision-maker at the CSOC. The second model relies on the
following property:

1.2 Property of an On-demand Cybersecurity Resources Pool

A CSOC has access to a large pool of analysts in an on-demand SECaaS model, who are carefully
vetted and whose performances are monitored continuously. As a result, there exists a strong cor-
relation between the values of the analyst attributes in the outsourcing business model of a CSOC,
i.e., higher throughput alert analysis rates and lower error rates strongly correlate with higher
hiring cost (base rate per hour). Similarly, lower throughput alert analysis rates and higher error
rates correlate with lower hiring base rate per hour. This is an important property that intrinsically
groups analysts with similar attribute values into respective expertise-level categories.

The second model takes into account the above property of an on-demand SECaaS model com-
prising a large pool of resources, where the analyst resources are categorized into expertise-level
categories based on the values of their attributes. The optimization problem is decomposed into
two steps. First, the minimum number of analysts required and the duration of time (time interval)
for which they are hired is determined for each expertise-level j such that the SLA requirements
of all jobs are met. In this step, individual analysts are not chosen, instead the number of analysts
needed from each expertise-level j (demand per expertise-level j) is determined. Second, individual
analysts from the available analysts pool are selected to meet the demand from each expertise-level
j for all given time intervals such that the total cost of processing all alert analysis jobs is mini-
mized. Within a given j, the optimization model will select the available analysts with the lowest
cost until all the demand per expertise-level j is met.

The contributions of this research are as follows. First, the article demonstrates an exact op-
timization model for selecting individual analysts from a pool and assigning them to jobs while
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minimizing the cost, and it shows that it is not a computationally efficient way to perform alert
analysis outsourcing. In general, this is a very important insight for organizations who wish to out-
source operations that involve selection and assignment of resources to tasks. Second, the article
presents an efficient two-step optimization approach that exploits the property of expertise-level
categorization, which is used for Step 1: to determine the analyst demand per expertise-level, and
in Step 2: to fulfill the analyst demand with individual analysts such that the total cost is mini-
mized. The two-step optimization model is scalable and practical to implement in real-time, and it
can be extended to outsourcing problems in other domains where decision-making consists of both
selection and assignment of resources to tasks with specific objectives. Third, in the experiments,
a significant improvement in the run-time of the model over the first model (exact optimization)
is demonstrated along with the trade-off in the total cost. It is shown that the two-step sequential
MIP model takes on average less than one second of run-time even for larger instances of prob-
lem size, whereas the exact optimization model takes over several hours to days of run-time. The
trade-off, however, is the average cost of outsourcing operations using the two-step sequential
MIP model, which is slightly higher than the exact optimization model but within 1% of its aver-
age cost. Clearly, the gain in computational run-time significantly overweighs the slightly higher
cost of using the two-step sequential MIP model. Finally, the article provides valuable insights into
the cost of operating a new business process outsourcing model for cybersecurity services.

The article is organized as follows. Section 2 presents the related literature in the field of cyber-
security and security-as-a-service business models. In Sections 3 and 4, the exact and the two-step
sequential MIP models are presented. Also, model parameters, mathematical formulation for the
optimization models, computational complexity, and algorithms are discussed. Section 5 presents
the numerical experiments performed using both the models along with a greedy baseline method
and their respective results. Last, in Section 6, the conclusions and future work are presented.

2 RELATED LITERATURE

Clients have SLAs with the CSOC provider for their security needs. While a CSOC offers many
services, alert handling is the top service offered by the CSOC [D’Amico and Whitley 2008] to
the clients. A CSOC monitors alerts, which are generated from the intrusion detection systems
(using signature or anomaly-based techniques [Scarfone and Mell 2007; Crothers 2002; Bejtlich
2005; Rasoulifard et al. 2008]) in the clients’ networks. Though machine learning techniques
[Sommer and Paxson 2010] and data mining techniques [Barbara and Jajodia 2002] have been
utilized for accurate identification of suspicious activities in the form of alerts, the automated
filters still generate a large volume of alerts (many of them being innocuous), which require a
manual inspection to identify the significant alerts. The significant alerts are categorized under
categories 1, 2, 4, or 7 depending upon the severity [CIO 2008].

Strategies for effective CSOCs, in regards to people, processes, and technology, are described
in Zimmerman [2014]. A framework for CSOC as a service for cloud computing environments to
protect against cyber-attacks and to comply with security and regulatory policies is proposed by
Alruwaili and Gulliver [2014]. SECaaS models are optimized mainly from a customer viewpoint in
recent literature. For instance, Chaisiri et al. [2015] proposed an optimization model for customers
purchasing cloud-based services to optimally allocate security services to SECaaS providers. A
stochastic programming model with a three-stage recourse is proposed in that study to balance
the costs for service allocation and cyber insurance policies. In a recent study by Liu et al. [2017]
it was found that a university with centralized Information Technology decision-making that opts
for outsourcing their information security has a lower likelihood of suffering from a cybersecurity
breach.
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A CSOC hires analysts who have various attributes such as alert analysis rate, hiring cost, and
quality of analysis to process the alert analysis jobs [Altner et al. 2017; Ganesan et al. 2017]. Pi-
oneering work by Ganesan et al. [2017] focused on the in-house staffing and scheduling of ana-
lysts. The work in Ganesan et al. [2016] and Shah et al. [2018] focused on allocation of additional
resources to supplement the in-house cyber workforce. However, operating a CSOC with an in-
house team of analysts is prohibitively expensive due to the uncertainty of the demand for alert
handling, especially for CSOCs with multiple clients. Issues such as burnout that affect analyst
effectiveness in CSOCs are studied in Sundaramurthy et al. [2015]. The following presents some
of the well-known examples in scheduling and their differences with this research.

Traditional scheduling heuristics focus on objectives such as minimizing completion time or the
weighted tardiness [Pinedo 2009], where release time, processing time, and due dates are given. For
example, job shop scheduling is focused on the above objectives and attempt to schedule machines
with jobs that have to follow a machine sequence. The article differs from the above scheduling
methods in the following manner. The alert management task at a CSOC consists of many domain-
specific characteristics such as the attributes of alerts (jobs) and that of the cybersecurity analysts
(machines). Alert jobs differ from each other in terms of their importance (captured as target com-
pletion time) and sensitivity to error, which is a unique feature unlike traditional job shop settings,
while being analyzed (captured as a target error rate). Also, the time taken to analyze a job depends
on both the types and the number of alerts in the job. Another important difference is the dynamic
setting in which alerts are generated and the critical need to find analysts that are not only cost
effective but also have credentials to analyze them. In contrast, job shops in general, have complete
information on jobs and machines prior to their scheduling, which make the decision to allocate
machines static at a given point in time for the following shift or day of operation. The above
makes the outsourcing research problem of allocating alerts to analysts in a cost effective manner
challenging and different when compared to traditional scheduling tasks. Applying heuristics at a
given point in time to schedule the available jobs and machines is a one-time static and highly my-
opic decision, which is not suitable to minimize cost in the long run. Hence, the research focuses
on mathematical optimization methods, which are in general computationally very hard even for
job shop scheduling problems, however, the article goes even deeper in developing a two-stage
approach to mitigate the computational complexity and significantly improve the scalability of
the approach. To the best of the authors’ knowledge, outsourcing decision-making from a cyber-
security provider’s viewpoint to minimize the total cost of alert analysis has not been studied in
the literature.

Broadcast data delivery systems continuously deliver data from a server to the user community:.
Broadcast scheduling, which has been an active area of research, determines when and what a
server needs to broadcast to the users. Vaidya and Hameed [1999] proposed algorithms that mini-
mize the wait time encountered by the users. Su et al. [1999] formulated the scheduling problem as
a deterministic Markov Decision Process (MDP) to minimize the average response time of user’s
requests. Yeo et al. [2002] proposed a sequential vertex coloring algorithm to minimize the system
delay in an ad-hoc network where all the users share a single channel and the time overlap of two
or more packet receptions must be avoided. The broadcast scheduling problem is NP-complete and
as a result, there are heuristic approaches proposed by researchers. For instance, Wang and Ansari
[1997] proposed a mean field annealing-based algorithm for scheduling and Salcedo-Sanz et al.
[2003] solved the scheduling problem in two steps, where they first tackle the hardest constraints
and then optimize the throughput. Hu et al. [2015] uses a dynamic index strategy for an on-
demand data broadcasting schedule, where the focus is to reduce the user’s drop ratio and waiting
time. Pattanayaka and Kumar [2019] proposed a genetic algorithm for multiple-input multiple-
output broadcast scheduling to reduce the complexity of search. More recently, Qiu et al. [2018]
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Inputs:

Individual analyst attributes (cost, Alert job attributes
average error rate, average alert (number of alerts, target
analysis rate) completion time)
Constraints:
All jobs must be completed
as per SLA target time : o Qutputs:
Exact Optimization Model -

Selection of analysts for
particular time-intervals and
assignment to alert analysis jobs

Average error rate must
meet SLA threshold

Fig. 1. Exact optimization model framework.

studied the problem of base station access capacity and a high server concurrency in a real-time
on-demand data broadcast scheduling and proposed a method to improve the broadcast effi-
ciency. The research problem presented in this article is different from the broadcast scheduling
problems as follows. The broadcast scheduling problems deal with capacity and concurrency
issues, whereas in this research problem, we focus on selecting the right types and numbers of
resources and pair them with jobs. While the objectives in the broadcast scheduling problems are
minimizing the wait-time, minimizing the average response time and maximizing the throughput
of broadcasting, the objective of the research problem presented in this article is to minimize the
cost of alert management for an on-demand CSOC subject to the SLAs between the CSOC and
the clients.

Qutsourcing services for profit maximization (or cost minimization) by businesses has been
studied in published literature for various fields. Li et al. [2009] proposed a column generation
method for making outsourcing decisions for transportation services, which included the in-house
pre-scheduling of rides and staffing. A game theoretic model is presented in Zhu [2016] for optimal
outsourcing contracts for buyers and suppliers by taking into consideration the three main factors
for outsourcing management: cost, quality and time. Co-sourcing decisions by outsourcing calls
in a call center to minimize the long-run average costs with linear staffing cost per unit time
and linear costs with outsourcing is studied in Kocaga et al. [2015]. A mathematical model for
minimizing the total cost of airline in-house and outsourced maintenance is proposed in Bazargan
[2016]. Optimizing cost of processing all the alert analysis jobs such that the SLA targets are met
for all the clients by selecting from a large pool of resources (analysts) with varying attributes has
not been addressed before, to the best of the authors’ knowledge.

3 AN EXACT OPTIMIZATION MODEL

An exact optimization model for selection and assignment of on-demand analysts to alert analysis
jobs is shown in Figure 1. The inputs to the model takes into account the attributes of all the
available analysts, and the unprocessed alert analysis jobs that are awaiting analyst assignment.
The SLA requirements are treated as constraints for each of the jobs that arrive at the CSOC from
its respective clients. The exact optimization model formulation and its computational complexity
are presented next.

3.1 Formulation for Exact Optimization Model

The exact model formulation consists of the objective function, constraints, mathematical model,
and outputs, which are explained in detail below. The notations for the parameters of the exact
optimization model are described in Table 1.
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An Outsourcing Model for Alert Analysis in a Cybersecurity Operations Center 2:7

Table 1. Definitions of Notations

Notation Definition

Indices

i Time-interval index

a Analyst identity

J Expertise-level identity

k Job identity

Inputs

I Maximum time interval for which an analyst can be hired

A Total number of analysts available

J Total number of expertise levels

K Total number of jobs

Aj Total number of analysts available per expertise-level j

N Total number of alerts in job k

Ciq Hiring cost of analyst a for time interval i

AC;; Average cost of hiring an analyst from level j for time interval i
M; 4 Average number of alerts analyzed by analyst a in time interval i
AM; Avg. number of alerts analyzed by analysts from level j for time interval i
E, Average error rate for alert analysis of analyst a

AE; Average error rate for alert analysis of analysts from level j

Ry SLA threshold for the error rate for job k

Tk SLA target completion time for job k

Variables

xi,j k (Integer)
v;,j (Integer)

Vi j,a (Binary)
Zi,q.k (Binary)

Number of analysts required from level j for time interval i for job k

Total number of analysts required from expertise-level j for time interval i
1 if analyst a from level j is selected for time interval i, and 0 otherwise

1 if analyst a is assigned to job k for time interval i, and 0 otherwise

3.1.1

Input Parameters.

Total number of available analysts, A.

Total number of jobs, K.

Total number of alerts in job k, Nj.

Cost of hiring analyst a for time interval i, C; 4.

Average number of alerts analyzed by analyst a in time interval i (obtained from historical
data), M; 4.

Average error rate for alert analysis of analyst a (obtained from historical data), E,.

e SLA threshold for the error rate for job k, Rk.
e SLA target completion time for job k, Tk.

3.1.2 Decision Variables.

® z; 4 = 1if analyst a is assigned to job k for time interval i, and 0 otherwise.

3.1.3  Objective Function. The objective of the exact optimization model is to minimize the total
hiring cost of the analysts for processing all the alert analysis jobs by (1) assigning jobs to analysts,
and (2) selecting the time interval (duration) for which analysts are hired subject to meeting the
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SLA constraints of the jobs. It is defined as follows:
w = Min ZZZCi’“*Zi’“’k' (1)
i a k

3.1.4 Constraints. The constraints for the exact optimization model are as follows: Each job
must be completed, which is given by

Z Zzi’a’k * M; g > N Vk. (2)
i a

The above constraint translates to assigning analysts such that all the alerts in a respective job are
analyzed. Job completion time must meet the SLA target, which is given by

Z Zzi,a,k:OVk~ (3)

i>T, a
The above constraint translates to not selecting any analyst for time interval greater than the

target completion time of the respective jobs. Average error rate must meet the SLA threshold for
the job, which is given by

Z Z Ziiak ¥ Mi q % Eq < R * Ny Vk. (4)
i a

An analyst must be assigned to, at most, one job, which is given by
Z sz,k <1 Va. (5)
ik

3.1.5 Outputs. The outputs from the exact optimization model are as follows:

e Total hiring cost of the analysts for processing all the alert analysis jobs.
e Assignment of jobs to analysts.
e Time intervals for which analysts are hired for the respective jobs.

3.2 Algorithm for the Exact Optimization Model

Algorithm 1 provides the implementable steps for the exact optimization model described above.

THEOREM 1. The decision-problem of minimizing the total cost of assigning alert analysis jobs to
cybersecurity analysts such that the SLA constraints are satisfied has a complexity of 241K,

Proor. In a Generalized Assignment Problem (GAP), let G be the total number of items, and L
be the total number of bins available. Each bin [ has an upper-bound on capacity u;. Each pair of
bin [ and item g, has a weight w4, and a profit p; ; associated with it. Then, the decision-problem
is to find the maximum total profit P that could be attained by assigning items to the bins such
that the total sum of the weight of items in each bin does not exceed the capacity of each bin
(represented by the upper-bound u;). This problem is known to be NP-hard. GAP is the closest
known algorithm that can be reduced to the problem presented in this article.

In the research problem presented here, G represents the total number of jobs to process, and
L represents the total number of analysts available. Each analyst has an alert analysis rate, which
determines the average number of alerts that could be analyzed in each time interval for any job.
This number is the value for the weight, w; 4, for the analyst selected for a particular time interval
and the respective job assigned to the analyst. The analyst has varying hiring costs associated with
each job, which is based on the number of alerts that are needed to be analyzed in that job and the
time interval for which an analyst is hired. The profit p; , represents this negative cost between
the analyst [ and the job g. In this problem, there exists a constraint based on reality where an
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ALGORITHM 1: Exact Optimization Algorithm for Minimizing Alert Analysis Cost.

Input: Total number of available analysts, A, Total number of jobs, K, Total number of alerts in job k, Ny,
Cost of hiring analyst a for time interval i, C;, 4, Expected number of alerts analyzed by analyst a in
time interval i, M; 4, Average error rate for alert analysis of analyst a, E,, SLA threshold for the
error rate for job k, Ry, SLA target completion time for job k, Ty.

Output: Assignment of jobs to analysts and time intervals for which analysts are hired for the respective

jobs, z; 4 1 Vi,a, k.
/*Initiate a solution search using an integer programming solver */ repeat
for a set of z; 4 . = 1, /*Potential soln. obtained in a search®/ Check for feasibility: do
i 2aZi,ak * Mi,a = Ni Yk /*Job completion™/ };~7, 34 Zi a.k = 0 Yk /*Job completion time
SLA* 3i Ya Zi,a k * Mi,a * Eq < Ry * N Vk /*Error rate SLA"/Y; Yk zj . < 1 Ya /*Analyst to at
most 1 job*/

end
if Feasible then

w=Min ¥; ¥4 2k Cia * Zi q /"Min total cost*/
end

until Stopping criteria /*Optimal value for w is found™/;
return z; , i Vi, a, k.

analyst cannot be hired for a time interval greater than I. Hence, u; represents this upper-bound
on the number of alerts that can be analyzed by analyst [. However, unlike a GAP, an alert analysis
job can be assigned to more than one analyst by allocating different portions of the job (number
of alerts in a job) to different analysts. Hence, by representing the pair of analyst (selected for the
respective hired time interval) and the job as a binary decision variable, the time complexity of
finding the best (job, analyst) pairs to obtain the minimum cost (maximum profit) of processing
all the alert analysis jobs is equivalent to choosing from 2/7*¢ possibilities, where H = L*I. O

In this research problem with on-demand resources, it is assumed that a large pool of analysts is
available. Hence, even with I = 12, G = 20, and L = 60 (used for one of the experiments), 260*12+20
is a large number, and even a relatively small practical instance of the problem remains computa-
tionally difficult to solve.

4 A TWO-STEP SEQUENTIAL MIXED-INTEGER PROGRAMMING MODEL

A new two-step approach to solving the research objective presented in this work is detailed in
this section. This approach takes into consideration the property of an on-demand service model
as explained in the Introduction (Section 1.2) that groups analysts into various expertise-level cate-
gories. For each expertise-level category, an average value is assigned to their respective attributes
(cost, alert analysis rate, and error rate). The problem is decomposed into two steps: Mixed-integer
programming (MIP) models 1 and 2. The two models are solved individually to optimality in a se-
quential manner. Figure 2 shows the two-step sequential framework presented in this section. The
objective of MIP model 1 is to determine the total number of analysts that are required from each
expertise-level category for all possible time intervals. The output of MIP model 1 is then provided
as an input to the second model (MIP model 2). The objective of MIP model 2 is to minimize the to-
tal hiring cost of the analysts for processing all the alert analysis jobs by selecting analysts from the
available pool to meet the demand for the number of analysts required from each expertise-level
category, as determined by MIP model 1.

4.1 Formulation for MIP Model 1

The notations for the parameters of the model are described in Table 1, and the mathematical
formulation is described below.
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Inputs:
Analyst attributes per expertise level Alert job attributes
(average cost, average error rate, (number of alerts, target
average alert analysis rate) completion time)
Constraints:
All jobs must be completed Output:
as per SLA target time
MIP 1 Number of analysts required
Average error rate must from each expertise level per
meet SLA threshold time-interval
Inputs:
Individual analyst attributes
Constraint:
Lonstraint. Output:
Demand for the number of
MIP 2

analysts required per Selection of anzlysts from various

expertise level must be met expertise levels for the pre-
determined time-intervals and
assignment to alert analysis jobs

Fig. 2. Two-step sequential mixed-integer programming model framework.

4.1.1 Input Parameters.

e Total number of expertise levels, J.

e Average cost of hiring an analyst from expertise-level j for time interval i, AC; ;.

e Average number of alerts analyzed by an analyst from expertise-level j for time interval i,
AM ij-

e Average error rate for alert analysis of an analyst from expertise-level j, AE;.

e Total number of alerts in job k, Ni.

e SLA threshold for the error rate for job k, Ry.

4.1.2 Decision Variables.

® X j is an integer variable that represents the number of analysts required from expertise-
level j for time interval i for job k.

e v;; is an integer variable that represents the total number of analysts required from
expertise-level j for time interval i.

4.1.3 Objective Function. The objective of MIP model 1 is to minimize the expected total hiring
cost of the analysts for processing all the alert analysis jobs by selecting the optimal number of
analysts that are required from each expertise-level category for all possible time intervals. It is

defined as follows:
q = Min ZZAC,-J*U,-J. (6)
i
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4.14 Constraints. The constraints for MIP model 1 are as follows: Each job must be completed,
which is given by

Z in,j,k * AM; ; > Nj. Vk. @)
i

Job completion time must meet the SLA target, which is given by
Z Zx,.,j,k =0 Vk. (8)
i>Ty J
Expected error rate must meet the SLA threshold for the job, which is given by
szi,j,k*AMi,j*AEstk*Nk Vk. (9)
iJ
Calculating the number of analysts required per expertise-level for each time interval, which is
given by
in,j,k = Ui’j Vl,] (10)
k

4.1.5 Output. The output from MIP model 1 is the number of analysts required from each
expertise-level to meet the demand of alert analysis jobs per time interval, v; ;.

4.2 Formulation for MIP Model 2
The notations for the parameters of the model are described in Table 1, and the mathematical
formulation is described below.

4.2.1 Input Parameters.

e Total number of available analysts per expertise-level j, A;.

e Cost of hiring analyst a for time interval i, C; ,.

e Total number of analysts required from level j for time interval i (obtained as an output
from MIP model 1), v; ;.

4.2.2 Decision Variables.
® y;j o = 1if analyst a from level j is selected for time interval i, and 0 otherwise.

4.2.3 Objective Function. The objective of MIP model 2 is to minimize the total hiring cost
(actual) of the analysts by selecting the optimal number of analysts to meet the demand from each
expertise-level category in the given time interval for processing all the alert analysis jobs. It is

defined as follows:
Aj
p = Min ZZZCw*yw (11)
i Jj a

4.2.4  Constraints. The constraints for MIP model 2 are as follows: An analyst must be assigned
to, at most, one job, which is given by

Zyi’f’“ <1Vj,a. (12)

1

Demand for the number of analysts required from each expertise-level per time interval must be
met, which is given by
4j

D Yija i Vi) (13)
a
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ALGORITHM 2: Two-step Sequential Mixed-Integer Programming Algorithm for Minimizing Alert Analy-

sis Cost.

Input: Total number of available analysts, A, Total number of jobs, K, Total number of alerts in job k, N,
Cost of hiring analyst a for time interval i, C; 4, Average error rate for alert analysis of analyst a, E,,
SLA threshold for the error rate for job k, Ry, SLA target completion time for job k, Ty, Total number
of expertise levels, J, Average cost of hiring an analyst from expertise-level j for time interval i,
AC;, j, Average number of alerts analyzed by an analyst from expertise-level j for time interval i,
AM;_ j, Average error rate for alert analysis of an analyst from expertise-level j, AE;, Total number of
available analysts per expertise-level j, A;.

Output: Selection of analysts from the various expertise levels for the required time intervals, y; j Vi, j, a,

and assignment to jobs, x; ; ¢ Vi, j, k.

/* Initiate a solution search using an integer programming solver */repeat
for a set of x; j i, /*Potential soln. obtained in a search™/ Check for feasibility: do
2i 2 Xi,j k * AMj j > Ny Yk /* Job completion */ ¥~ 1, X.j X j,x = 0 Yk /* Job completion time
SLA*/ 3 X Xi,j k * AMi, q * AEj < Ry = Ny Yk/* Average error rate SLA ™/, x; j = vij Vi, j/*
Number of analysts per expertise-level */

end
if Feasible then

q=Min ¥; 3 ;ACi j * vj j/* Min expected total cost */
end

until Stopping criteria /*Optimal value for q is found™/;
/* Initiate a solution search using an integer programming solver */repeat
for a set of yi,j o = 1, /" Potential soln. obtained in a search */ Check for feasibility: do
2iVi,j,a < 1Vj,a/" Analyst to at most 1 job */ Z?j Yi,j,a = vi,j Yi,j/* Demand for number of
analysts per expertise-level */

end
if Feasible then

p=Min 3;3; ij Ci,a * Yi,j,a/"Min total cost (actual)”/
end

until Stopping criteria /* Optimal value for p is found */;
return y; j o Vi, j,a and Xijk Vi, j, k.

4.2.5 Output. The output from the MIP model 2 is the selection of individual analysts from the
various expertise-level categories for the required time intervals.

4.3 Algorithm for Two-step Sequential MIP Model

Algorithm 2 provides the implementable steps for the two-step sequential MIP model described
above.

4.4 Reduction in Computational Time

The computational complexity of the two-step sequential MIP algorithm presented above is Max
(n] #I oJxIK ), where n takes an integer value between 0 and the maximum number of analysts that
could be hired, and J is significantly smaller than A. It is to be noted that the actual run-time of a
problem instance depends on the input data. By utilizing the property of an on-demand cybersecu-
rity resources pool (as explained in Section 1.2) in the two-step sequential MIP model formulation,
the expertise-level attribute values had significant variance among each other. As a result, the MIP
model 1 is able to select the near-optimal number of analysts from each expertise-level with a
significantly lower computational time unlike the exact model where the variances in the analyst

ACM Transactions on the Web, Vol. 14, No. 1, Article 2. Publication date: January 2020.

RIGHTSE LI MN iy



An Outsourcing Model for Alert Analysis in a Cybersecurity Operations Center 2:13

attribute values among certain analysts were very small, which would take computationally longer
time to evaluate for a larger set of candidate solutions.

It should be noted that MIP model 2 can also be implemented using a sorting heuristic, however,
the article presents only the results from the MIP model 2. In the sorting heuristic, all combina-
tions of (i, j) pairs are represented as bins with all analysts available, and are further sorted in an
increasing order of costs in each of the bins. For each expertise-level j, analysts can be picked from
the top starting from the (i, j) bin with the largest time interval i until the demand v; ; is met. Once
an analyst is selected from a bin, the same analyst cannot be selected from the remaining bins. This
process is followed until all time intervals are covered in a decreasing order of expertise levels.

4.5 Convergence and Optimality

The exact optimization model and the two-step approach are modeled as mixed-integer program-
ming models (MIPs), which are proven to converge to optimal solutions [Chen et al. 2010]. How-
ever, the exact model is optimal but computationally expensive and time consuming. In the two-
step model, the result of MIP model 1 is optimal to the given average values, which are assigned to
the respective attributes (cost, alert analysis rate, and error rate). The MIP model 2 is also optimal.
However, when taken together, the final solution of the two-step model in comparison to the exact
model is only near-optimal to the optimal solution obtained from the exact model but it is compu-
tationally faster than the exact model. This trade-off between optimality and computational time
savings is due to the average values taken in MIP model 1 as given above.

5 EXPERIMENTS AND ANALYSIS OF RESULTS

In this section, the setup for conducting experiments is described first, followed by the analysis of
results, which are obtained by implementing the models developed in this research. Results from
the scalability experiments are described later in the section.

5.1 Experimental Setup

An experiment with 20 jobs and 60 analysts is considered for demonstrating the capabilities of
the optimization models along with the computational time needed. It is reminded that the alert
analysis jobs that arrived in the previous hour are considered, and the decision to select analysts
and allocate them to the jobs is done in the current hour. Hence, results from one instance of
decision making are shown below, which is repeated for each hour of decision making.

The attribute values for the jobs and analysts in the experiments are selected as follows. The
number of alerts in each job is chosen randomly between 1,000 and 6,000 alerts, and the target
completion time is chosen randomly between 4 and 12 hours. Table 2 shows a sample of attribute
values of the jobs that are selected for a single simulation run. There are three categories (expertise
levels) of analysts created: senior, intermediate, and junior. The following attributes are assigned
to each expertise-level: an average rate of alert analysis per hour, an average error rate, and an
average base rate per hour. It is to be noted that the cost of hiring an analyst for a time interval
takes into account the discount on the respective average base rate per hour if hired for more
than 4- or 7-hour time interval. By definition of the property given in the introduction, a senior
analyst is said to have higher throughput, lower error rate, and higher cost per hour. Likewise, a
junior analyst is said to have lower throughput, higher error rate, and lower cost per hour. The
intermediate analyst is said to be in-between the senior and junior for their attributes values.
Similar to discounts offered in other crowd-sourced service industries, there is a discount on the
base rate of analysts if they are hired for more number of hours (10% discount if hired for more than
four hours and 15% discount if hired for eight or more hours). These numbers were chosen from
literature [Altner et al. 2017; Ganesan et al. 2017] and our conversations with the CSOC operators.
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Table 2. Input: Alert Job Attributes for a Single Sample Simulation Run

Job (k) # of Alerts (Ng) Target Completion Time (T, in hours)

1 1,685 8

2 3,449 6

3 2,755 10

4 4,895 12

5 4,311 10

6 4,543 10

7 2,002 6

8 4,257 7

9 3,890 9

10 2,372 11

11 3,414 12

12 3,015 7

13 1,562 8

14 2,647 7

15 3,724 11

16 4,772 11

17 2,448 11

18 2,789 6

19 2,327 9

20 1,493 7

Table 3. Input: Average Values of Analyst Attributes

Attributes Senior Intermediate Junior
Avg. rate of alert analysis/hour 360 alerts 240 alerts 180 alerts
Avg. error rate 5% 7.5% 9%
Avg. base rate/hour $75 $50 $38
Discount on base rate (for 5-7 hours) 10% 10% 10%
Discount on base rate (for > 8 hours) 15% 15% 15%

Table 3 shows the average of the attribute values of the analysts for the various expertise levels.
All 60 analysts were equally divided among the three expertise levels. Next, the values of the
expertise-level attributes were varied for each of the individual analysts by randomly choosing
values that were within +/— 5% of the average values, i.e., each analyst from a senior expertise-
level is assigned a random value between 342 and 378 (360 +/— 5% of 360) for the attribute value
of alert analysis rate per hour, 5 +/— 5% of 5 for the error rate, and 75 +/— 5% of 75 for the
base rate per hour. Similar values were randomly drawn for each individual intermediate and
junior analyst. The experiments were conducted using the Julia language and Gurobi solver. In
what follows, the results from three models are presented: (1) a baseline myopic greedy model,
(2) the exact optimization model, and (3) the two-step sequential MIP model. It should be noted
that 50 simulation runs were conducted, and the input data on the jobs and analyst attributes for
all three models across a single run were kept the same. The input data, however, varied between
the runs.
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Table 4. Output: Comparison of Alert Analysis Minimum Cost, Computational Time, and Number of
Runs with SLA Violations between the Models Across 50 Simulation Runs

Model Minimum Cost ($) Avg. Computational Time (s) SLA violations

Baseline Model 1 11,770.85 0.05 11 of 50 runs
(sub-optimal)

Baseline Model 2 11,720.47 0.07 5 of 50 runs
(sub-optimal)

Exact Optimization 11,636.95 10,376.44 (3 hours) None
(optimal)

Two-step Sequential MIP  11,674.50 0.12 None

(near-optimal)

5.2 Baseline Models

In this section, we setup two baseline models to compare with the proposed research models:
(1) time of arrival-based selection model and (2) target completion time-based selection model
with collection of jobs. Next, the two models are explained.

5.2.1 Baseline Model 1: Time of Arrival-based Selection Model. A baseline method is setup for
comparison with the models developed in this research. In this method, alert analysis jobs have
a time of arrival stamp, and are processed as and when they arrived, i.e., one job at a time (first-
in-first-out policy). The decision on selecting the best set of analyst resources and their respective
hiring time intervals for a job is taken such that it minimizes the cost of processing the job. The
process is repeated for all the jobs, and it is to be noted that such decisions are made in a myopic
manner (greedy selection), which does not consider saving the best analyst resources for a later
time.

5.2.2  Baseline Model 2: Target Completion Time-based Selection Model with Collection of Jobs.
Another baseline method is setup to compare with the models developed in this research. In this
method, the alert analysis jobs that arrived in the previous hour are collected and the decision to
select analysts and allocate them to the jobs is taken in the current hour. The list of alert analysis
jobs is sorted based on the target completion time. Unlike the myopic model, which considers the
time of arrival of the jobs as the selection criteria for assignment to the analysts, this method first
accumulates the jobs that arrived in the last hour and then assigns analysts by picking one job at
a time starting with the shortest target completion time. This method differs from the proposed
research methods (exact optimization and two-step sequential MIP) as it considers the selection of
analysts for assignment to one job at a time. Once the analysts are assigned to a job, the selected
analysts are removed from the available analyst pool and the job is dequeued. This continues until
all the jobs are assigned.

5.3 Results of the Baseline Model
Next the results obtained from using the baseline models are presented.

5.3.1 Time of Arrival-based Selection (Baseline Model 1). The experiment was conducted with
50 simulation runs. The input data was generated for each run, which consisted of 20 jobs (see a
sample in Table 2), and 60 analysts whose attributes were generated using data in Table 3 with

+/— 5% variation about their averages. The minimum cost of processing all the alert analysis jobs
obtained from the 50 simulation runs is shown in Table 4 for the baseline models. It is to be noted
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that 11 out of the 50 simulation runs (22%) did not produce a feasible solution. It was observed
that in these 11 experiments, all the analysts with faster analysis rates and lower error rates were
assigned to the first few jobs among the 20 jobs that arrived in order of their time-stamp. Hence,
when a new job arrived later in the same order that required a faster completion time or a lower
error rate, the SLA requirements were violated because the selection of analysts from the remain-
der available analysts did not have the required attributes to meet the SLA. This demonstrated that
the allocation of the best available analysts to the jobs in the order of their arrival based on their
time-stamp is not optimal. Hence, it is better to collect the jobs from the previous hour of arrival
and allocate the analysts. Next, the results from another baseline method is presented with such
a collection of the jobs and assignment of analysts to jobs, which are selected one at a time based
on their target completion times.

5.3.2  Target Completion Time-based Selection with Collection of Jobs (Baseline Model 2). Similar
experiment to that of baseline model 1 was conducted. The minimum cost of processing all the alert
analysis jobs obtained from the 50 simulation runs using the baseline model 2 is shown in Table 4.
It was observed that 5 out of the 50 simulation runs (10%) did not produce a feasible solution. Due
to the collection of jobs and then processing one job at a time with respect to a selection criterion,
it is observed that the minimum cost obtained for processing all of them is slightly lower than
that obtained using the baseline model 1, in which the jobs are not accumulated over the last hour.
The target completion time violations that occurred using the baseline model 1 were avoided due
to the earlier selection of the shortest target completion time jobs from the list of accumulated
jobs. It was observed that the analysts with lower error rates were assigned to the earlier jobs,
which resulted in violations due to higher error rates from the remaining analysts on the jobs that
were selected later. Henceforth, the baseline models are not used for comparisons, because they
are expensive, myopic, and result in many infeasible solutions (SLA violations). Next, the results
from the exact optimization model are presented.

5.4 Results of the Exact Optimization Model

The results obtained from using the exact optimization model (Algorithm 1) on the experimental
data set are presented here. By processing all jobs collected from the previous hour and the avail-
able analysts, both taken together in one mathematical model, an optimal solution is obtained for
each of the 50 simulation runs. The input data that was generated for each run is the same as that
of the baseline model. Table 4 shows the lowest optimal cost over 50 runs of processing all the alert
analysis jobs, and the substantially high computational time taken to find the optimal solution for
the exact optimization method. The cost was observed to be lower and optimal for the exact model
when compared to the baseline myopic greedy model for each of the 50 simulation runs. This is
an important observation, which justifies the collection of jobs from the previous hour, and the
use of an optimization model over the baseline myopic greedy model for selecting and allocating
available analysts to the jobs such that the cost of operation is minimized.

Table 5 shows the number of analysts required per time interval using the exact model. This
table corresponds to the input data shown in Table 2, in which the highest target completion time
is 12 hours for job #4 and job #11. Jobs are spread over the maximum time interval (12 hours),
for which an analyst could be hired as shown in Table 5. By solving for all jobs at once, both
analysts and their hiring time intervals are optimally selected such that the SLA constraints of all
jobs are met by the exact optimization model. A similar observation was made for each of the 50
simulations; hence, there were no SLA violations. It is to be noted that a large number of analysts
are chosen for time intervals that offer the best discount rates (such as 5-hour time-interval with 10
analysts, and 8-hour time interval with 8 analysts). With the hiring rate per hour being maximum
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Table 5. Output: Comparison of Number of Analysts Required Per Time Interval

Time Interval (i)  # of Analysts (Exact Model)  # of Analysts (Sequential MIP)

1 11 9
2 1 2
3 1 0
4 0 0
5 10 12
6 6 2
7 1 2
8 8 11
9 3 3
10 1 0
11 0 1
12 0 0
Total 42 42

Table 6. Output: Number of Analysts Required Per Expertise-level Per Time Interval
for Exact Optimization Model

Time Interval (i) # of Senior Analysts # of Intermediate Analysts  # of Junior Analysts

1 0 6 5
2 0 1 0
3 1 0 0
4 0 0 0
5 6 1 3
6 4 1 1
7 1 0 0
8 4 1 3
9 3 0 0
10 1 0 0
11 0 0 0
12 0 0 0
Total 20 10 12

(without discount) for the first 4 hours, it is observed that a majority of the analysts (11) are chosen
for the minimum time interval of 1-hour to minimize the total cost. Furthermore, Table 6 also shows
the number of analysts that are hired from various expertise-level categories for the different time
intervals. The optimal solution for input data shown in Table 2 consists of 20 senior-level analysts,
10 intermediate-level analysts, and 12 junior-level analysts.

The trade-off in achieving an optimal solution is a substantial increase in computational time.
It was observed that the average computational time taken across all 50 runs is close to 3 hours
(as shown in Table 4) for the problem size of 20 jobs and 60 analysts at a single decision making
instance of the outsourcing problem. Experiments conducted with a larger problem size at a single
decision making instance, for example, 50 jobs and 240 analysts, and 100 jobs and 1050 analysts,
took many hours to several days for the exact optimization algorithm to reach an optimal solution
as shown in Table 7. The scalability results are discussed at the end of this section. Clearly, the
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Table 7. Average Alert Analysis Cost and Computational Time of
the Exact Optimization Model (50 Simulation Runs)

(Jobs, Analysts) Avg. Cost ($) Avg. Time (s)
(20,120) 10,042.86 16,200 (4.5 hours)
(50,240) 27,476.12 39,600 (11 hours)
(100,1050) 53,630.67 691,200 (8 days)

Table 8. Output: Number of Analysts Required Per Expertise-level Per Time Interval for
the Two-step Sequential MIP Model

Time Interval (i) # of Senior Analysts # of Intermediate Analysts  # of Junior Analysts

1 3 3 3
2 2 0 0
3 0 0 0
4 0 0 0
5 8 2 2
6 0 1 1
7 0 0 2
8 5 4 2
9 1 2 0
10 0 0 0
11 1 0 0
12 0 0 0
Total 20 12 10

substantial increase in computational time renders the exact optimization model impractical to
implement in real-time if the decision to select and allocate on-demand analyst to jobs are to be
performed for each hour of CSOC operation. This observation motivates the need for the two-step
sequential MIP model, whose results are presented next.

5.5 Results of the Two-step Sequential MIP Model

In this section, the results obtained from using the two-step sequential MIP model (Algorithm 2)
on the experimental data set are discussed. The model is decomposed into two MIP models. The
first model, MIP 1, determines the number of analysts that are needed from each expertise-level
category for each time interval. The second model, MIP 2, selects the individual analysts that are
available to meet the demand for analysts generated from MIP 1 model. The input data that was
generated for each run is the same as that of the baseline model.

Table 4 shows that the lowest total cost of processing all alert analysis jobs across all 50 runs is
slightly higher than that obtained from the exact optimization model. However, the cost is lower
than that of the baseline model. Table 8 shows the number of analysts that are selected for each
time interval. This table corresponds to the input data shown in Table 2. Similar to the selection of
analysts in the exact optimization model, it is shown in Table 5 that a large number of analysts are
selected for the time intervals, which offer the best discount rate per hour (such as the 5-hour time
interval and the 8-hour time interval). It is also observed that the total number of analysts that
are required by the two-step sequential MIP model is the same as the one obtained from the exact
optimization model for the jobs data in Table 2. However, out of the 42 analysts needed using the

ACM Transactions on the Web, Vol. 14, No. 1, Article 2. Publication date: January 2020.

RIGHTSE LI MN iy



An Outsourcing Model for Alert Analysis in a Cybersecurity Operations Center 2:19

Table 9. Average Alert Analysis Cost and Computational Time of
the Two-Step Sequential MIP Model (50 Simulation Runs)

(Jobs, Analysts) Avg. Cost ($) Avg. Time (s)

(20,120) 10,956.64 0.15
(50,240) 27,553.06 0.12
(100,1050) 54,120.58 0.58

Table 10. Average Alert Analysis Cost and Average Computational Time Comparison of
the Two-step Sequential MIP Model Over the Exact Optimization Model

(Jobs, Analysts)

Avg. Increase in Cost (%)

Avg. Decrease in Computational Time (%)

(20,120)
(50,240)
(100,1050)

0.126
0.28
0.91

very high
very high
very high

sequential MIP approach, 20 of them are senior-level analysts, 12 of them are intermediate-level
analysts, and 10 of them are junior-level analysts. One of the reasons for the differences in the
total cost among the exact and sequential MIP models is due to the selection of 2 intermediate-
level analysts in place of 2 junior-level analysts by the sequential MIP model. Another reason is
that the exact optimization model selected only 1 senior-level analyst for the first 4 hours of the
12-hour time interval (being the most expensive base rate per hour), while the sequential MIP
model selected 5 senior-level analysts during the same 4-hour time-interval window.

The computational time taken to obtain the solution was under one second. This is a significant
saving in computing time over the exact model, which took on average about 3 hours of computing
time for 20 jobs and 60 analysts. The results of the sequential MIP model shows that while there is
a marginal increase in cost (within 1%), there are significant decreases (several folds) in the com-
putation time over the exact optimization model, which made the sequential MIP model practical
to implement. However, to prove that the MIP model can still remain practical for implementation
in larger-sized problems (more number of jobs and analysts), the research conducted a scalability
test. The results for the scalability experiments are discussed next.

5.6 Scalability Experiments

Several scalability experiments were conducted with larger input sizes to test whether the sequen-
tial MIP model is implementable in real-time. The input size for the number of jobs and number
of analysts were increased gradually for the experiments, and each experiment was simulated
50 times to evaluate the sequential MIP model. The results for the average total cost and the aver-
age computational time to solve the larger-size problems across 50 simulation runs are shown in
Table 7 for the exact optimization model, and in Table 9 for the two-step sequential MIP model. It
is to be noted that the computational time taken to solve these experiments is very high for exact
optimization model and under one second for the two-step sequential MIP model.

Table 10 shows the increase in average cost and the decrease in average computational time
using the two-step sequential MIP model over the exact optimization model. Table 10 is created by
comparing Tables 7 and 9. It is observed that while there is an increase of less than 1% in average
cost among all the cases, there is a substantial decrease in average computational time for the
two-step sequential MIP approach over the exact optimization approach. The exact optimization
model took several days to solve to optimality in many of the scalability experiments.
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6 DISCUSSION

Several useful insights were observed during the experiments, which are presented below.

e It is clear that a myopic greedy approach will result in higher cost in the long run. This is
because the method attempts to allocate analysts as and when a job arrives, without any
regard to the arrival of jobs in the future that might require more experienced analysts.
Hence, a first-in-first-out policy with the allocation of the best analyst is an extremely my-
opic decision making policy, which will become expensive in the long-run.

e The above issue is resolved by (1) collecting jobs from the previous hour, (2) selecting ana-
lysts, and (3) allocating analysts to jobs, all within one exact optimization model. However,
while optimal solution is obtained that minimizes the cost, the method is computationally
impractical to implement in real-time.

e The above computational time issue is resolved by exploiting an important property. The
cybersecurity outsourcing problem presented in this work has a unique feature where the
variances in the attributes values of the resources are very small in certain groups. Hence,
it takes longer to find an optimal set of analysts and their time intervals in the solution
search due to the evaluation of a large number of candidate solutions. It is intuitive that
the solution search will be faster if the variances in the attribute values of the candidates
are larger. Hence by exploiting the property of pooling the cybersecurity resources (ana-
lysts) into fewer expertise-level categories with larger variances in their respective attribute
values among the category levels, the sequential MIP model was able to find the solution
significantly faster than the exact optimization model.

e There is a tradeoff between finding a solution faster and minimizing cost among the se-
quential two-step MIP model and the exact model. In general, the sequential MIP model is
expected to have a higher cost over the exact model, because the former uses the average
base rate per hour for determining the number of analysts per expertise-level (demand),
followed by the determination of the exact cost during the selection of individual analysts
for meeting the demand of each expertise-level, while the latter uses the exact base rate per
hour directly. By doing so, the sequential MIP model introduces two errors in MIP model
1: (a) the use of average base rate instead of exact rate per hour to minimize cost and to
calculate the number of individuals needed, and (b) rounding errors for each category of
expertise-level (the number of individuals needed per expertise level are rounded to the
next highest integer), whereas the exact model picks the exact number of individuals and
their duration of hire that minimizes the cost.

e In all our experiments, similar to the average cost, there were no significant differences
between the average error rates of the analysts chosen by the exact optimization model and
the two-step sequential MIP model. It should be noted that the exact optimization model
and the MIP 2 model of the two-step sequential MIP model can be optimized with multiple
objectives of both minimizing cost and error rates whose weights can be varied ion the
objective function. The focus of this article, however, remained on the minimization of cost.

7 CONCLUSIONS AND FUTURE WORK

The article presented a scalable and real-time implementable two-step sequential MIP model for
outsourcing the alert analysis process at a CSOC. The model is shown to significantly outperform
an exact optimization model in terms of computational time, although with an increase in cost,
which is within 1% deviation from the cost of the exact optimization model. To our knowledge this
is the first article that analyzes a business process outsourcing model for alert investigation at a
COSC, which is scalable and cost effective, and can be implemented in real-time. Several insights

ACM Transactions on the Web, Vol. 14, No. 1, Article 2. Publication date: January 2020.

RIGHTSE LI MN iy



An Outsourcing Model for Alert Analysis in a Cybersecurity Operations Center 2:21

are presented in the article, and the most notable is the exploitation of the property that clusters
similar analysts into groups with a certain expertise-level. The property is shown to reduce the
computational time of the two-step sequential MIP model, which makes it viable for real-time
implementation. Scalability tests demonstrated the ability of the two-step sequential MIP model
to handle large number of jobs and analysts, and obtain near-optimal solutions for the selection
and allocation of analysts to jobs such that the cost of operation is minimized. As part of future
research, the MIP model 2 can be extended to include an incentive or a constraint for the rotation of
analysts. A CSOC would benefit by giving alert analysis jobs to analysts who have been idling for
some time. Another extension is to optimize multiple objectives such as both cost and error rates
of analysts chosen from the on-demand pool while meeting the SLA requirements. The two-step
sequential MIP model is a paradigm shift in how future CSOCs can be operated using on-demand
analysts to meet the growing demands for providing security to its clients through (1) higher
throughput rate of alerts investigated, (2) higher quality of alert investigation (lower error rate),
and (3) lower cost of operation.
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