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Blind Over-the-Air Computation and Data Fusion
via Provable Wirtinger Flow
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Abstract—Over-the-air computation (AirComp) shows great
promise to support fast data fusion in Internet-of-Things (IoT)
networks. AirComp typically computes desired functions of dis-
tributed sensing data by exploiting superposed data transmission
in multiple access channels. To overcome its reliance on channel
state information (CSI), this work proposes a novel blind over-
the-air computation (BlairComp) without requiring CSI access,
particularly for low complexity and low latency IoT networks. To
solve the resulting non-convex optimization problem without the
initialization dependency exhibited by the solutions of a number
of recently proposed efficient algorithms, we develop a Wirtinger
flow solution to the BlairComp problem based on random initializa-
tion. We establish the global convergence guarantee of Wirtinger
flow with random initialization for BlairComp problem, which
enjoys a model-agnostic and natural initialization implementation
for practitioners with theoretical guarantees. Specifically, in the
first stage of the algorithm, the iteration of randomly initialized
Wirtinger flow given sufficient data samples can enter a local region
that enjoys strong convexity and strong smoothness within a few
iterations. We also prove the estimation error of BlairComp in the
local region to be sufficiently small. We show that, at the second
stage of the algorithm, its estimation error decays exponentially at
a linear convergence rate.

Index Terms—Over-the-air computation, data fusion, bilinear
measurements, Wirtinger flow, regularization-free, random
initialization.

I. INTRODUCTION

THE broad range of Internet-of-Things (IoT) applications
continues to contribute substantially to the economic de-

velopment and the improvement of our lives [1]. In particular, the
wirelessly networked sensors are growing at an unprecedented
rate, making data aggregation highly critical for IoT services [2].
For large scale wireless networking of sensor nodes, orthogonal
multiple access protocols are highly impractical because of their
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low spectrum utilization efficiency for IoT and the excessive
network latency [3]. In response, the concept of over-the-air
computation (AirComp) has recently been considered for com-
puting a class of nomographic functions, such as arithmetic
mean, weighted sum, geometric mean and Euclidean norm of
distributed sensor data via concurrent, instead of the sequential,
node transmissions [4]. AirComp exploits the natural superpo-
sition of co-channel transmissions from multiple data source
nodes [5].

There have already been a number of published works related
to AirComp. Among them, one research thread takes on the
information theoretic view and focuses on achievable computa-
tion rate under structured coding schemes. Specifically, in the
seminal work of [6], linear source coding was designed to reli-
ably compute a function of distributed sensor data transmitted
over the multiple-access channels (MACs). Lattice codes were
adopted in [6], [7] to compute the sum of source signals over
MACs efficiently. Leveraging lattice coding, a compute-and-
forward relaying scheme [5] was proposed for relay assisted
networks. On the other hand, a different line of studies [8],
[9] investigates the error of distributed estimation in wireless
sensor networks. In particular, linear decentralized estimation
was investigated in [8] for coherent multiple access channels.
Power control was investigated in [9] to optimize the estimation
distortion. It was shown in [10] that pre- and post-processing
functions enable the optimization of computation performance
by harnessing the interference for function computations. An-
other more recent line of studies focused on designing trans-
mitter and receiver matrices in order to minimize the distor-
tion error when computing desired functions. Among others,
MIMO-AirComp equalization and channel feedback techniques
for spatially multiplexing multi-function computation have been
proposed [3]. Another work developed a novel transmitter de-
sign at the multiple antennas IoT devices with zero-forcing
beamforming [11].

Most recently, the paper [12] integrated wireless power trans-
fer into MIMO AirComp, thereby supporting self-sustainable
AirComp for low-power devices. In addition, [13] proposed
an intelligent reflecting surface (IRS) for AirComp to gen-
erate controllable wireless environments in order to improve
received signal power. The AirComp has also play a vital
role in various applications of wireless sensor networks, such
as enabling low-latency global model aggregation to support
large-scale distributed machine learning for edge AI in 6G [14].
Recently, the papers [15], [16] exploited AirComp in a federated
learning system to support fast global model aggregation for
locally updated model on each device. [17] further investigated
the power control problem for AirComp over fading channels
to adaptively control the devices’ transmit power to combat
channel distortion, thereby improving magnitude alignment of
simultaneous signals.
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Similar to the key idea of AirComp, federated learning (FL)
or the collaborative machine learning usually operates at a
wireless edge network instead of in a data center [18]–[20].
The paper [19] studied wireless collaborative machine learning
(ML), where mobile edge devices operate distributed stochastic
gradient descent (DSGD) over-the-air with the help of a wireless
access server. The channel state information (CSI) is available
only at this wireless access server. Additionally, the paper [20]
investigated machine learning at the wireless edge which con-
tains power and bandwidth-limited devices (workers). The au-
thors first introduced a digital DSGD (D-DSGD) scheme and an
analog scheme, called A-DSGD to solve collaborative machine
learning problem. The work [21] has recently considered a dis-
tributed learning problem over multiple access channel (MAC)
where the objective function is a sum of the nodes’ local loss
functions. A novel Gradient-Based Multiple Access (GBMA)
algorithm is developed to solve this distributed learning problem
over MAC. Furthermore, to address the communication issue
induced by the edge devices under the federated edge learning
scheme, the paper [22] proposed a novel digital version of
broadband over-the-air aggregation, called one-bit broadband
digital aggregation (OBDA).

However, the main limitation of current AirComp is the
dependence on channel-state-information (CSI), which leads to
high latency and significant overhead in the massive Internet-of-
Things networks with a large number of devices. Although in the
works [19], [23] the channel state information is unknown to the
transmitters, the receivers still need to obtain the channel state
information. Recently, blind demixing has become a powerful
tool to exclude channel-state-information (i.e., without channel
estimation at both transmitters and receivers) thereby enabling
low-overhead communications [24]–[26]. Specifically, in blind
demixing, a sequence of source signals can be recovered from the
sum of bilinear measurements without the knowledge of channel
information [27]. Inspired by the recent progress of blind demix-
ing, in this paper, we shall propose a novel blind over-the-air
computation (BlairComp) scheme for low-overhead data aggre-
gation, thereby computing the desired function (e.g., arithmetic
mean) of sensing data vectors without the prior knowledge
of channel information. The advantage of BlairComp is that
without the extra cost of obtaining the CSI, BlairComp can
achieve sufficiently low estimation error, which is illustrated
in Fig. 1. It can also support low-overhead communications
by excluding CSI from data packet transmission. However, the
BlairComp problem turns out to be a highly intractable noncon-
vex optimization problem due to the bilinear signal model.

There is a growing body of recent works to tame the non-
convexity in solving the high-dimensional bilinear systems.
Specifically, semidefinite programming was developed in [25]
to solve the blind demixing problem by lifting the bilinear model
into the matrix space. However, it is computationally prohibitive
for solving large-scale problem due to the high computation and
storage cost. To address this issue, the nonconvex algorithm, e.g.,
regularized gradient descent with spectral initialization [24],
was further developed to optimize the variables in the natural
vector space. Nevertheless, the theoretical guarantees for the
regularized gradient [24] provide a pessimistic convergence
rate and require carefully-designed initialization. The Rieman-
nian trust-region optimization algorithm without regulariza-
tion was further proposed in [26] to improve the convergence
rate. However, the second-order algorithm brings unique chal-
lenges in providing statistical guarantees. Recently, theoretical

Fig. 1. (a) Linear convergence rate of randomly initialized Wirtinger flow,
plotted semi-logarithmically. (b) Relative error error(θ, θ̄) vs. σw (dB).

guarantees concerning regularization-free Wirtinger flow with
spectral initialization for blind demixing was provided in [27].
However, this regularization-free method still calls for spectral
initialization. To find a natural implementation for the practition-
ers that works equally well as spectral initialization, in this paper,
we shall propose to solve the BlairComp problem via randomly
initialized Wirtinger flow with provable optimality guarantees.

Based on the random initialization strategy, a line of research
studies the benign global landscapes for the high-dimensional
nonconvex estimation problems, followed by designing generic
saddle-point escaping algorithms, e.g., noisy stochastic gradi-
ent descent [28], trust-region method [29], perturbed gradient
descent [30]. With sufficient samples, these algorithms are
guaranteed to converge globally for phase retrieval [29], matrix
recovery [31], matrix sensing [32], robust PCA [32] and shallow
neural networks [33], where all local minima are provably as
good as global and all the saddle points are strict. However, the
theoretical results developed in [28]–[33] are fairly general and
may yield pessimistic convergence rate guarantees. Moreover,
these saddle-point escaping algorithms are more complicated
for implementation than the natural vanilla gradient descent or
Wirtinger flow. To advance the theoretical analysis for gradient
descent with random initialization, the fast global convergence
guarantee concerning randomly initialized gradient descent for
phase retrieval has been recently provided in [34].

In this paper, our main contribution is to establish the global
convergence guarantee of Wirtinger flow with random initializa-
tion for the BlairComp problem, which enjoys a model-agnostic
and natural initialization implementation for practitioners with
theoretical guarantees. It turns out that, for BlairComp, the
procedure of Wirtinger flow with random initialization can be
separated into two stages:
� Stage I: the estimation error is nearly stable, which takes

only a few iterations,
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� Stage II: the estimation error decays exponentially at a
linear convergence rate.

In addition, we identify the exponential growth of the magni-
tude ratios of the signals to perpendicular components, which
explains why Stage I lasts only for a few iterations. Compared
with the theoretical analysis on the phase retrieval problem [34],
the theoretical analysis on the BlairComp problem is much more
complex and challenging. The primary challenge arises since the
“incoherence” between multiple sources in BlairComp leads
to distortion in the statistical property. Moreover, unlike the
Gaussian designed vector aj concerned in the phase retrieval
problem, the designed vector bj in the BlairComp problem is
deterministic, not random. We will clarify the technical details
exploited to address above issues in our paper in the sequel.

Notations: Throughout this paper, f(n) = O(g(n)) or
f(n) � g(n) denotes that there exists a constant c > 0 such
that |f(n)| ≤ c|g(n)| whereas f(n) � g(n) means that there
exists a constant c > 0 such that |f(n)| ≥ c|g(n)|. f(n) � g(n)
denotes that there exists some sufficiently large constant c > 0
such that |f(n)| ≥ c|g(n)|. In addition, the notation f(n) �
g(n) means that there exists constants c1, c2 > 0 such that
c1|g(n)| ≤ |f(n)| ≤ c2|g(n)|. Let superscripts (·)� and (·)H

denote the transpose and conjugate transpose of a matrix/vector,
respectively. Let the superscript (·)∗ denote the conjugate trans-
pose of a complex number.

II. PROBLEM FORMULATION

Blind over-the-air computation (BlairComp) aims to facilitate
low-overhead data aggregation in IoT networks without a priori
knowledge of CSI. This is achieved by computing the desired
functions of the distributed sensing data based on the natural
signal superposition of transmission over multi-access channels.

A. Blind Over-the-Air Computation

We consider a wireless sensor network consisting of s
active sensor nodes and a single fusion center. Let di =
[di1 . . . , di,N ]� ∈ C

N denote the sensor data vector collected at
the i-th node. The fusion center, through AirComp, aims to com-
pute nomographic functions of distributed data that can be de-
composed as [10] H�(d1�, . . . , ds�) = F�(

∑s
i=1 Gi�(di�)), � =

1, . . . , N. Function Gi�(·) : C → C denotes the pre-processing
function by the sensor nodes and F�(·) : C → C denotes
the post-processing function at the fusion center. Typical
nomographic functions by AirComp include the arithmetic
mean, weighted sum, geometric mean, polynomial, Euclidean
norm [10].

In this work, we focus on a specific nomographic function

θ̄ =

s∑

i=1

x̄i (1)

where x̄i = [Gi1(di1), . . . ,GiN (diN )]� ∈ C
N is the prepro-

cessed data vector transmitted by the i-th node. The transmitted
signals over m time slots from the i-th node are represented as

f i = Cixi, (2)

where Ci ∈ C
m×N with m > N is the encoding matrix and is

known at the fusion center. The signals f i’s are transmitted
through individual time-invariant channels denoted by their
respective CSI vectors hi’s where a maximum delay of at most

K samples is contained in hi ∈ C
K . The zero-padded channel

vector gi ∈ C
m is given as

gi = [h�
i , 0, . . . , 0]

�. (3)

Hence, based on the cyclic convolution operation, the received
signal is given as

p =
s∑

i=1

f i � gi + n, (4)

where n is the additive white complex Gaussian noise. For ease
of algorithm design and theoretical analysis, the blind demixing
model based on cyclic convolution is presented in the Fourier
domain. This is achieved by left multiplying the signals in
the time domain with the unitary discrete Fourier transform
(DFT) matrix, and converting the time domain convolution into
component-wise production operation in the Fourier domain

y = Fp =
∑

i

(FCixi)
Bhi + Fn, (5)

where the operation 
 is the component-wise product. Here, the
firstK columns of the unitary discrete Fourier transform (DFT)
matrix F ∈ C

m×m satisfying property FF H = Im form the
known matrix

B := [b1, . . . , bm]H ∈ C
m×K (6)

with bj ∈ C
K for 1 ≤ j ≤ m. Hence, over m channel access

opportunities (e.g., time slots), the received signals at fusion
center in the frequency domain can be written as [19], [21]

yj =
s∑

i=1

bH
j h̄ix̄

H
i aij + ej , 1 ≤ j ≤ m, (7)

where bj ∈ C
K for each 1 ≤ j ≤ m is an access vector, which

means that the vector is accessible to the fusion center. Addition-
ally, aij ∈ C

N denotes the j-th column of (FCi)
H, h̄i ∈ C

K

is the CSI vector that contains channel gains, and ej is an inde-
pendent circularly symmetric complex Gaussian measurement
noise.

To compute the desired functions via BlairComp without
knowledge of {h̄i}, we can consider a precoding scheme with
randomly selected known vectors aij ∈ C

N follows i.i.d. circu-
larly symmetric complex normal distribution N (0, 0.5IN ) +
iN (0, 0.5IN ) for 1 ≤ i ≤ s, 1 ≤ j ≤ m. The target of Blair-
Comp is to compute the desired function vector θ̄ via concurrent
transmissions without channel information, thereby providing
low-overhead data aggregation in the IoT networks.

B. Multi-Dimensional Nonconvex Estimation

For each 1 ≤ i ≤ s, h̄i and hi denote the ground-truth CSI
vector and the corresponding estimate, respectively. x̄i and xi

denote the ground-truth data vector generated by a node in the
sensor network and the corresponding estimate, respectively.

BlairComp facilitates low-latency data aggregation in the IoT
network, which aims to compute the desired function vector
θ̄ =

∑s
i=1 x̄i via concurrent transmissions. Instead of con-

cerning the sum of individual relative error of data vectors,
i.e.,

∑s
i=1 ‖xi − x̄i‖2/‖x̄i‖, the computational performance

of BlairComp is characterized by the estimation error of the
nomographic function θ̄. To estimate the vector θ̄ from the
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received signaly, we need to minimize the relative error between
θ̄ and the estimated vector θ =

∑s
i=1 ωixi which is denoted by

error(θ, θ̄) =
‖∑s

i=1 ωixi −
∑s

i=1 x̄i‖2
‖∑s

i=1 x̄i‖2
, (8)

where ωi ∈ C alignment parameters that align the estimated
vectors to the ground truth. The alignment parameters can be
estimated via

ωi = argmin
ω̄i∈ C

(‖(ω̄∗
i )

−1hi − h̄i‖22 + ‖ω̄ixi − x̄i‖22
)
. (9)

To estimate ωi, one reference symbol in xi is needed. One
way to address this problem is to develop a bilinear estimation
approach [26]:

P : minimize
{hi},{xi}

f(h,x) :=

m∑

j=1

∣
∣
∣

s∑

i=1

bH
j hix

H
i aij − yj

∣
∣
∣
2

, (10)

which estimates {hi} and {xi} from the sum of bilinear mea-
surements y. Even though problem P is nonconvex, some
algorithms, e.g., Wirtinger flow with spectral initialization, can
solve it with low statistical and computational guarantees [27].

In this paper, to find a model-agnostic and natural imple-
mentation for practitioners that works equally well as spectral
initialization, we shall propose to solve BlairComp problem P
via Wirtinger flow with random initialization. Our main contri-
bution is to provide the statistical optimality and convergence
guarantee for the randomly initialized Wirtinger flow algorithm
by exploiting the benign geometry of the high-dimensional
BlairComp problem.

III. MAIN APPROACH

In this section, we first propose an algorithm based on ran-
domly initialized Wirtinger flow to solve the BlairComp problem
P . We shall present a statistical analysis to demonstrate the
optimality of this algorithm for solving the high-dimensional
nonconvex estimation problem.

A. Randomly Initialized Wirtinger Flow Algorithm

Wirtinger flow with random initialization is an iterative algo-
rithm with a simple gradient descent update procedure without
regularization. Specifically, the gradient step of Wirtinger flow
is represented by the notion of Wirtinger derivatives [35], i.e.,
the derivatives of real valued functions over complex variables.

To simplify the notations, we denote f(z) := f(h,x), where

z =

⎡

⎣
z1

· · ·
zs

⎤

⎦ ∈ C
s(N+K) with zi =

[
hi

xi

]

∈ C
N+K . (11)

For each i = 1, . . . , s, ∇hi
f(z) and ∇xi

f(z) denote the
Wirtinger gradient of f(z)with respect tohi andxi respectively
as:

∇hi
f(z) =

m∑

j=1

( s∑

k=1

bH
j hkx

H
kakj − yj

)

bja
H
ijxi, (12a)

∇xi
f(z) =

m∑

j=1

( s∑

k=1

hH
kbja

H
kjxk − y∗j

)

aijb
H
j hi. (12b)

In light of the Wirtinger gradient (12), the update rule of
Wirtinger flow uses a stepsize η > 0 via

[
ht+1
i

xt+1
i

]

=

[
ht
i

xt
i

]

− η

⎡

⎢
⎢
⎣

1

‖xt
i‖22

∇hi
f(zt)

1

‖ht
i‖22

∇xi
f(zt)

⎤

⎥
⎥
⎦ , i = 1, . . . , s.

(13)

Compared with the paper [27] that solves the blind demixing
problem via Wirtinger flow with spectral initialization, we solve
the BlairComp via Wirtinger flow by utilizing random initial-
ization. Random initialization is a model-agnostic and natural
implementation for practitioners and works equally well as the
spectral initialization strategy. Moreover, different from the sum
of error, i.e.,

∑s
i=1 ‖ωixi − x̄i‖2/

∑s
i=1 ‖x̄i‖2 considered in

blind demixing, this work focuses on the relative error (8) as
the performance metric. This performance metric (8) can be
computed via exploring the superposition property of a wireless
multiple-access channel. Since computing the relative error
(8) of BlairComp does not require to transmit individual data
information to the fusion center, it can address the issue of
communication bandwidth limitation and support fast wireless
data aggregation [16].

Before proceed to theoretical analysis, we first present an
example to illustrate the practical efficiency of Wirtinger flow
with random initialization for solving problem P (10). The
ground truth values {h̄i, x̄i} and initial points {h0

i ,x
0
i } are

randomly generated according to

h̄i ∼ N (0,K−1IK), x̄i ∼ N (0, N−1IN ), (14)

h0
i ∼ N (0,K−1IK), x0

i ∼ N (0, N−1IN ), (15)

for i = 1, . . . , s. In all simulations, we set K = N . For each
value of K ∈ {20, 80, 160, 200}, s = 10 and m = 50K, the
design vectors aij’s and bj’s for each 1 ≤ i ≤ s, 1 ≤ j ≤ m,
are generated according to the descriptions in Section II. With
the chosen step size η = 0.1 in all settings, Fig. 1(a) shows the
relative error, i.e., error(θt, θ̄) (8), versus the iteration count. We
observe the convergence of Wirtinger flow with random initial-
ization exhibits two stages: Stage I: within dozens of iterations,
the relative error remains nearly flat, Stage II: the relative error
shows exponential decay despite the different problem size.

In practical scenario, the estimation error of ambiguity align-
ment parameters would have influences on the relative error, i.e.,
error(θt, θ̄) (8). Hence, we illustrate the relationship between
the estimation error of ambiguity alignment parameters and
the relative error via the following experience. Let K = 10,
m = 100, the step size be η = 0.1 and the number of users
s ∈ {1, 5, 10}. In each iteration, for i = 1, . . . , i, the estimated
ambiguity alignment parameter ŵi is represent by ŵi = wi +
ewi

, where wi is given by (9) and ewj
∼ N (0, 0.5σ−1

w ) +

iN (0, 0.5σ−1
w ). In the experiment, the parameter σw varies from

1 to 105. Fig. 1(b) shows the relative error error(θt, θ̄) versus
the parameter σw. Both the relative error and the parameter σw
are shown in the dB scale. As we can see, the relative error scales
linearly with the parameter σw.

We further study the relative error error(θ, θ̄) in noisy sce-
nario and explore the robustness of the Wirtinger flow with
random initialization. We assume that the additive noise in (7)
follows e = ς · ‖y‖2 · ω

‖ω‖2 , where e ∈ C
m and ω ∈ C

m is a
standard complex Gaussian vector. Here, the constant ς equals
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Fig. 2. Relative error error(θ, θ̄) vs. SNR (dB).

the signal to noise ratio (SNR). Consider the realistic applica-
tions in wireless communication, we further explore the robust-
ness of Wirtinger flow with random initialization in the setting
of Hadamard-type encoding matrices with s = 5,K = N = 10
and different sample sizes m = 512, 1024, 1536. Here, the en-
coding matrix in (2) is a Hadamard-type matrix. Specifically, for
1 ≤ i ≤ s, the Hadamard-type matrix is given by [26]

Ci = FDiH, (16)

whereF ∈ C
m×m is the DFT matrix,Di’s are diagonal matrices

with independent binary ±1 entries, and H ∈ C
m×N is a fixed

partial deterministic Hadamard matrix. For each setting, 100
independent trails are performed and the algorithm stops when
the relative error error(θt, θ̄) < 10−15 or the iterations t > 500.
The relative error error(θ, θ̄) in dB against the signal to noise
ratio (SNR) in the settings of Hadamard-type encoding matrices
is illustrated in Fig. 2. It depicts that the relative error error(θ, θ̄)
of WF with random initialization scales linearly with SNR.

B. Theoretical Analysis

To present the main theorem, we first introduce several funda-
mental definitions. Specifically, the incoherence parameter [24],
which characterizes the incoherence between bj and hi for
1 ≤ i ≤ s, 1 ≤ j ≤ m.

Definition 1 (Incoherence for BlairComp): Let the incoher-
ence parameter μ be the smallest number such that

max1≤i≤s,1≤j≤m
|bH

j h̄i|
‖h̄i‖2 ≤ μ√

m
.

The incoherence betweenbj andhi for1 ≤ i ≤ s, 1 ≤ j ≤ m
specifies the smoothness of the loss function (10). It is the
smoothness along with the strong convexity of the loss function
in the local region that guarantees Wirtinger flow to linearly
converge to the global optimal, which plays a vital role in the the-
oretical analysis in Stage II. Let h̃t

i and x̃t
i, respectively, denote

h̃t
i = (ωt

i
∗
)−1ht

i and x̃t
i = ωt

ix
t
i, i = 1, . . . , s, (17)

where ωt
i ’s are alignment parameters. We further define the

norm of the signal component and the perpendicular component
with respect to ht

i for i = 1, . . . , s, as

αht
i
:= 〈h̄i, h̃

t
i〉/‖h̄i‖2, (18)

βht
i
:=

∥
∥
∥
∥
∥
h̃t
i −

〈h̄i, h̃
t
i〉

‖h̄i‖22
h̄i

∥
∥
∥
∥
∥
2

, (19)

respectively. Here, ωi’s are the alignment parameters. Similarly,
the norms of the signal component and the perpendicular com-
ponent with respect to xt

i for i = 1, . . . , s, can be represented as

αxt
i
:= 〈x̄i, x̃

t
i〉/‖x̄i‖2, (20)

βxt
i
:=

∥
∥
∥
∥x̃

t
i −

〈x̄i, x̃
t
i〉

‖x̄i‖22
x̄i

∥
∥
∥
∥
2

, (21)

respectively.
Without loss of generality, we assume ‖h̄i‖2 = ‖x̄i‖2 =

qi (0 < qi ≤ 1) for i = 1, . . . , s and αh0
i
, αx0

i
> 0 for i =

1, . . . , s. Define the condition number κ := maxi ‖x̄i‖2
mini ‖x̄i‖2 ≥ 1 with

maxi ‖x̄i‖2 = 1. Then the main theorem is presented in the
following.

Theorem 1: Assume that the initial points obey (15) for i =
1, . . . , s and the stepsize η > 0 satisfies η � s−1. Suppose that
the sample size satisfies m ≥ Cμ2 s2κ4 max{K,N} log12m
for some sufficiently large constant C > 0. Then with prob-
ability at least 1− c1m

−ν − c1me
−c2 N for some constants

ν, c1, c2 > 0, there exists a sufficiently small constant0 ≤ γ ≤ 1
and Tγ � s log(max {K,N}) such that

1) The randomly initialized Wirtinger flow leads to expo-
nentially decaying estimation error, i.e., error(θt, θ̄) ≤
γ(1− η

16κ )
t−Tγ , t ≥ Tγ ,

2) The magnitude ratios of the signal component to the
perpendicular component with respect to ht

i and xt
i obey

max
1≤i≤s

αht
i

βht
i

� 1√
K logK

(1 + c3η)
t, (22a)

max
1≤i≤s

αxt
i

βxt
i

� 1√
N logN

(1 + c4η)
t, (22b)

respectively, where t = 0, 1, . . . for some constants
c3, c4 > 0.

3) The normalized root mean square error RMSE(xt
i, x̄i) =

βxt
i

‖xt
i‖2 for i = 1, . . . , s obey

RMSE(xt
i, x̄i) �

√
N logN(1 + c4η)

−t, (23)

for some constants c4 > 0.
Theorem 1 provides a precisely statistical analysis on the

computational efficiency of Wirtinger flow with random initial-
ization. In summary, for the BlairComp problem, θt updated
by the Wirtinger flow with random initialization can linearly
converge to the optimum solution, i.e., θ̄. The computation
performance is demonstrated in Fig. 1(a) which shows that
the estimation error declines linearly after a few iterations.
θ̄, as long as the sample size is sufficiently large. The com-
putation performance is demonstrated in Fig. 1 which shows
that the estimation error declines linearly after a few iterations.
Specifically, in Stage I, it takes Tγ = O(s log(max {K,N}))
iterations for randomly initialized Wirtinger flow to reach suffi-
cient small relative error, i.e., error(θTγ , θ̄) ≤ γ where γ > 0 is
some sufficiently small constant. The short duration of Stage I
is own to the exponential growth of the magnitude ratio of
the signal component to the perpendicular components. More-
over, in Stage II, it takes O(s log(1/ε)) iterations to reach
ε-accurate solution at a linear convergence rate. Thus, the it-
eration complexity of randomly initialized WF is guaranteed to
be O(s log(max {K,N}) + s log(1/ε)) as long as the sample
size exceedsm � s2 max {K,N}poly log(m). Compared with
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Fig. 3. Numerical example of signal versus perpendicular components.

Wirtinger flow with spectral initialization [27], Wirtinger flow
with random initialization is a model-agnostic and natural for
practitioners to implement. Moreover, we have demonstrated
in Theorem 1 that random initialization works equally well as
spectral initialization from the perspective of both computational
complexity and statistical complexity.

To further illustrate the relationship between the signal
component αhi

(resp. αxi
) and the perpendicular component

βhi
(resp. βxi

) for i = 1, . . . , s, we provide the simulation
results under the setting of K = N = 10, m = 50K, s = 4
and η = 0.1 with ‖h̄i‖2 = ‖x̄i‖2 = 1 for 1 ≤ i ≤ s. In
particular, αhi

, βhi
versus iteration count (resp. αhi

, βhi

versus iteration count) for i = 1, . . . , s is demonstrated in
Fig. 3(a) (resp. Fig. 3(b)). Consider Fig. 1(a), Fig. 3(a) and
Fig. 3(b) collectively, it shows that despite the rare decline of
the estimation error, i.e., error(θt, θ̄), during Stage I, the size of
the signal component, i.e., αhi

and αxi
for each i = 1, . . . , s,

exponentially increase and the signal component becomes
dominant component at the end of Stage I. Furthermore, the
exponential growth of the ratio αhi

/βhi
(resp. αxi

/βxi
) for

each i = 1, . . . , s is illustrated in Fig. 3(c) (resp. Fig. 3(d)).

IV. PROOF OF THEOREM 1

In this section, we prove the main theorem by investigating
the dynamics of the iterates of Wirtinger flow with random
initialization. The steps of proving Theorem 1 are summarized
as follows.

1) Stage I:
� Dynamics of population-level state evolution. Pro-

vide the population-level state evolution of ᾱxi
(28a)

and β̄xi
(28b), ᾱhi

(29a), β̄hi
(29b) respectively, where

the sample size approaches infinity. We then develop
the approximate state evolution (31), which are remark-
ably close to the population-level state evolution, in the
finite-sample regime. See details in Section IV-A.

� Dynamics of approximate state evolution. Show that
there exists some Tγ = O(s log(max {K,N})) such
that error(xTγ , x̄) ≤ γ, if αhi

(18), βhi
(19), αxi

(20)
and βxi

(21) satisfy the approximate state evolution
(31). The exponential growth of the ratio αhi

/βhi

and αxi
/βxi

are further demonstrated under the same
assumption. Please refer to Lemma 1.

� Leave-one-out arguments. Prove that with high prob-
ability αhi

, βhi
, αxi

and βxi
satisfy the approximate

state evolution (31) if the iterates {zi} are indepen-
dent with {aij}. Please refer to Lemma 2. To achieve
this, the “near-independence” between {zi} and {aij}
is established via exploiting leave-one-out arguments
and some variants of the arguments. Specifically, the
leave-one-out sequences and random-sign sequences
are constructed in Section IV-C. The concentrations
between the original and these auxiliary sequences are
then provided in Lemma 4-Lemma 9.

2) Stage II: Local geometry in the region of incoherence
and contraction. We invoke the prior theory provided
in [27] to show local convergence of the random initialized
Wirtinger flow in Stage II.

Claims (22) and (23) are further proven in Section IV-F.

A. Dynamics of Population-Level State Evolution

In this subsection, we investigate the dynamics of population-
level (where we have infinite samples) state evolution of αhi

(18), βhi
(19), αxi

(20) and βxi
(21). Then, we derive the

approximate state evolution in the finite-sample case from the
population-level state evolution. The procedure of derivation is
based on the assumption that the difference between the approx-
imate state evolution and the population-level state evolution is
sufficiently small. This assumption is identified in Appendix B.

Without loss the generality, we assume that x̄i = qie1 for
i = 1, . . . , s, where 0 < qi ≤ 1, i = 1, . . . , s are some constants
and κ = maxi qi

mini qi
, and e1 denotes the first standard basis vector.

This assumption is based on the rotational invariance of Gaussian
distributions. Since the deterministic nature of {bj}, the ground
truth signals {h̄i} (channel vectors) cannot be transferred to a
simple form, which yields more tedious analysis procedure. For
simplification, for i = 1, . . . , s, we denote

xti1 and xt
i⊥ := [xtij ]2≤j≤N (24)

as the first entry and the second through the N -th entries of
xt
i, respectively. Based on the assumption that x̄i = qie1 for

i = 1, . . . , s, (20) and (21) can be reformulated as

αxt
i
:= x̃ti1 and βxt

i
:=

∥
∥x̃t

i⊥
∥
∥
2
. (25)

To study the population-level state evolution, we start with
considering the case where the sequences {zt

i} (refer to (11))
are established via the population gradient, i.e., for i = 1, . . . , s,

[
ht+1
i

xt+1
i

]

=

[
ht
i

xt
i

]

− η

⎡

⎢
⎢
⎣

1

‖xt
i‖22

∇hi
F (zt)

1

‖ht
i‖22

∇xi
F (zt)

⎤

⎥
⎥
⎦ , (26)

where ∇hi
F (z) := E[∇hi

f(h,x)] = ‖xi‖22hi − (x̄H
i xi)h̄i,

∇xi
F (z) :=E[∇xi

f(h,x)]=‖hi‖22xi − (h̄
H
i hi)x̄i. Here, the

population gradients are computed based on the assumption that
{xi} (resp. {hi}) and {aij} (resp. {bj}) are independent with
each other. With simple calculations, the dynamics for both the
signal and the perpendicular components with respect to xt

i,
i = 1, . . . , s are given as

x̃t+1
i1 = (1− η) x̃ti1 + η

q2i

‖h̃t

i‖22
h̄

H
i h̃

t

i, (27a)
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x̃t+1
i⊥ = (1− η) x̃t

i⊥. (27b)

Assuming that η > 0 is sufficiently small and ‖h̄i‖2 = ‖x̄i‖2 =

qi (0 < qi ≤ 1) for i = 1, . . . , s and recognizing that ‖h̃t

i‖22 =
α2
ht

i
+ β2

ht
i
, we arrive at the following population-level state

evolution for both ᾱxt
i

and β̄xt
i
:

ᾱxt+1
i

= (1− η)ᾱxt
i
+ η

qiᾱht
i

ᾱ2
ht

i
+ β2

ht
i

, (28a)

β̄xt+1
i

= (1− η)β̄xt
i
. (28b)

The population-level state evolution for both ᾱht
i

and β̄ht
i
:

ᾱht+1
i

= (1− η)ᾱht
i
+ η

qiᾱxt
i

ᾱ2
xt

i
+ β2

xt
i

, (29a)

β̄ht+1
i

= (1− η)β̄ht
i
. (29b)

In finite-sample case, the dynamics of the randomly initialized
Wirtinger flow iterates can be represented as

zt+1
i =

[
ht+1
i

xt+1
i

]

=

[
ht
i − η/‖xt

i‖22 · ∇hi
F (z)

xt
i − η/‖xt

i‖22 · ∇xi
F (z)

]

−
[
η/‖xt

i‖22 · (∇hi
f (z)−∇hi

F (z))

η/‖ht
i‖22 · (∇xi

f (z)−∇xi
F (z))

]

. (30)

We would derive the state evolution in the finite-sample case
based on the update rule (30). The finite-sample state evolution
is similar to the population-level state evolution (28) and (29)
except for the perturbation terms which come from the last term
in (30). Specifically, under the assumption that the last term in
(30) is well-controlled, which will be justified in Appendix B,
we arrive at the approximate state evolution:

αht+1
i

=

(

1− η +
ηqiψht

i

α2
xt

i
+ β2

xt
i

)

αht
i
+η(1− ρht

i
)

qiαxt
i

α2
xt

i
+ β2

xt
i

,

(31a)

βht+1
i

=

(

1− η +
ηqiϕht

i

α2
xt

i
+ β2

xt
i

)

βht
i
, (31b)

αxt+1
i

=

(

1− η +
ηqiψxt

i

α2
ht

i
+ β2

ht
i

)

αxt
i
+η(1− ρxt

i
)

qiαht
i

α2
ht

i
+ β2

ht
i

,

(31c)

βxt+1
i

=

(

1− η +
ηqiϕxt

i

α2
ht

i
+ β2

ht
i

)

βxt
i
, (31d)

where {ψht
i
}, {ψxt

i
}, {ϕht

i
}, {ϕxt

i
}, {ρht

i
} and {ρxt

i
} represent

the perturbation terms.

B. Dynamics of Approximate State Evolution

To begin with, we define the discrepancy between the estimate
z and the ground truth z̄ as the distance function, given as

dist(z, z̄) =

(
s∑

i=1

dist2(zi, z̄i)

)1/2

, (32)

where dist2(zi, z̄i) = minαi∈ C(‖ 1
αi

∗hi − h̄i‖22 + ‖αixi −
x̄i‖22)/di for i = 1, . . . , s. Here, di = ‖h̄i‖22 + ‖x̄i‖22 and each
αi is the alignment parameter. It is easily seen that if αht

i
(18),

βht
i

(19), αxt
i

(20) and βxt
i

(21) obey

|αht
i
− qi| ≤ γ

2κ
√
s

and βht
i
≤ γ

2κ
√
s

and

|αxt
i
− qi| ≤ γ

2κ
√
s

and βxt
i
≤ γ

2κ
√
s
, (33)

for i = 1, . . . , s, then dist(z, z̄) ≤ γ. Moreover, based triangle
inequality, there is error(θ, θ̄) ≤ dist(z, z̄) ≤ γ.

In this subsection, we shall show that as long as the ap-
proximate state evolution (31) holds, there exists some constant
Tγ = O(s logmax {K,N}) satisfying condition (33). This is
demonstrated in the following Lemma. Prior to that, we first list
several conditions and definitions that contribute to the lemma.
� The initial points obey

αh0
i
≥ qi
K logK

and αx0
i
≥ qi
N logN

, (34a)

√
α2
h0

i
+ β2

h0
i
∈
[

1− 1

logK
, 1 +

1

logK

]

qi, (34b)

√
α2
x0

i
+ β2

x0
i
∈
[

1− 1

logN
, 1 +

1

logN

]

qi, (34c)

for i = 1, . . . , s.
� Define

Tγ := min {t : satifes (33)} , (35)

where γ > 0 is some sufficiently small constant.
� Define

T1 := min

{

t : min
i

αht
i

qi
≥ c7

log5m
,

min
i

αxt
i

qi
≥ c′7

log5m

}

, (36)

T2 := min

{

t : min
i

αht
i

qi
> c8, min

i

αxt
i

qi
> c′8

}

, (37)

for some small absolute positive constants c7, c
′
7, c8,

c′8 > 0.
� For 0 ≤ t ≤ Tγ , it has

1

2
√
K logK

≤ αht
i

qi
≤ 2, c5 ≤ βht

i

qi
≤ 1.5 and

αht+1
i
/αht

i

βht+1
i
/βht

i

≥ 1 + c5η, i = 1, . . . , s, (38)

1

2
√
N logN

≤ αxt
i

qi
≤ 2, c6 ≤ βxt

i

qi
≤ 1.5 and

αxt+1
i
/αxt

i

βxt+1
i
/βxt

i

≥ 1 + c6η, i = 1, . . . , s, (39)

for some constants c5, c6 > 0.
Lemma 1: Assume that the initial points obey condition (34)

and the perturbation terms in the approximate state evolution
(31) obey max{|ψht

i
|, |ψxt

i
|, |ϕht

i
|, |ϕxt

i
|, |ρxt

i
|} ≤ c

logm , for
i = 1, . . . , s, t = 0, 1, . . . and some sufficiently small constant
c > 0.
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1) Then for any sufficiently largeK,N and the stepsizeη > 0
that obeys η � s−1, it follows Tγ � s log(max {K,N})
and (38), (39).

2) Then with the stepsize η > 0 following η � s−1, one
has that T1 ≤ T2 ≤ Tγ � s logmax{K,N}, T2 − T1 �
s log logm, Tγ − T2 � s.

Proof: The proof of Lemma 1 is similar to the proof of
Lemma 1 in [34]. �

Remark 1: The key point of proving this lemma is to deal
with complicated approximate state evolution (31) which in-
volves the relationship between αxt

i
and αht

i
. To address this

issue, we approximate αxt
i

in (31a) with αht
i

by multiplying
proper constant and approximate αht

i
in (31c) with αxt

i
by

multiplying proper constant. The proper constants are derived
by computing the relationship between αht

i
and αht

i
based on

(31a) and (31c).
The random initialization (15) satisfies the condition (34) with
probability at least 1−O(1/

√
logmin{K,N}) [34]. Accord-

ing to this fact, Lemma 1 ensures that under both random
initialization (15) and approximate state evolution (31) with the
stepsize η � s−1, Stage I only lasts a few iterations, i.e., Tγ =
O(s logmax{K,N}). In addition, Lemma 1 demonstrates the
exponential growth of the ratios, i.e., αht+1

i
/αht

i
, βht+1

i
/βht

i
,

which contributes to the short duration of Stage I.
Moreover, Lemma 1 defines the midpoints T1 when the sizes

of the signal component, i.e.,αht
i

andαxt
i
, i = 1, . . . , s, become

sufficiently large, which is crucial to the following analysis. In
particular, when establishing the approximate state evolution
(31) in Stage I, we analyze two subphases of Stage I individually:
� Phase 1: consider the iterations in 0 ≤ t ≤ T1,
� Phase 2: consider the iterations in T1 < t ≤ Tγ ,

where T1 is defined in (36).

C. Leave-One-Out Approach

According to Section IV-A and Lemma 1, the unique
challenge in establishing the approximate state evolution
(31) is to bound the perturbation terms to certain order,
i.e., |ψht

i
|, |ψxt

i
|, |ϕht

i
|, |ϕxt

i
|, |ρht

i
|, |ρxt

i
| � 1/logm for i =

1, . . . , s. To achieve this goal, we exploit some variants of
leave-one-out sequences [27], [34] to establish the “near-
independence” between {zt

i} and {ai}. Hence, some terms
can be approximated by a sum of independent variables with
well-controlled weight, thereby be controlled via central limit
theorem.

In the following, we define three sets of auxiliary sequences
{zt,(l)}, {zt,sgn} and {zt,sgn,(l)}, respectively.
� Leave-one-out sequences {zt,(l)}t≥0: For each 1 ≤ l ≤ m,

the auxiliary sequence {zt,(l)} is established by dropping
the l-th sample and runs randomly initialized Wirtinger
flow with objective function

f (l) (z) =
∑

j:j �=l

∣
∣
∣

s∑

i=1

bH
j hix

H
i aij − yj

∣
∣
∣
2

. (40)

Thus, the sequences {zt,(l)
i } (recall the definition of zi

(11)) are statistically independent of {ail}.
� Random-sign sequences {zt,sgn}t≥0: Define the auxiliary

design vectors {asgn
ij } as

asgn
ij :=

[
ξijaij,1
aij,⊥

]

, (41)

where {ξij} is a set of standard complex uniform ran-

dom variables independent of {aij}, i.e., ξij
i.i.d.
= u/|u|,

whereu ∼ N (0, 12 ) + iN (0, 12 ). Moreover, with the corre-
sponding ξij , the auxiliary design vector {bsgnj } is defined
as bsgnj = ξijbj . With these auxiliary design vectors, the
sequences {zt,sgn} are generated by running randomly
initialized Wirtinger flow with respect to the loss function

f sgn (z) =

m∑

j=1

∣
∣
∣
∣
∣

s∑

i=1

bsgnH
j hix

H
i a

sgn
ij − bsgnH

j h̄ix̄
H
i a

sgn
ij

∣
∣
∣
∣
∣

2

. (42)

Note that these auxiliary design vectors, i.e., {asgn
ij },

{bsgnj } produce the same measurements as {aij}, {bj}:

bsgnH
j h̄ix̄

H
i a

sgn
ij = bH

j h̄ix̄
H
i aij = qiaij,1b

H
j h̄i, for 1 ≤

i ≤ s, 1 ≤ j ≤ m.
Note that all the auxiliary sequences are assumed to have the
same initial point, namely, for 1 ≤ l ≤ m,

{z0} = {z0,(l)} = {z0,sgn} = {z0,sgn,(l)}. (43)

In view of the ambiguities, i.e., h̄ix̄i =
1
ω∗ h̄i(ωx̄i)

H, sev-
eral alignment parameters are further defined for the sequel
analysis. Specifically, the alignment parameter between z

t,(l)
i =

[h
t,(l)�
i x

t,(l)�
i ]� and z̃t

i = [h̃
t�
i x̃t�

i ]�, where h̃t
i =

1
ωt

i
∗ht

i and

x̃t
i = ωt

ix
t
i, are represented as

ω
t,(l)
i,mutual := argmin

ω∈C

∥
∥
∥
∥
1

ω∗h
t,(l)
i − 1

ωt
i
∗h

t
i

∥
∥
∥
∥

2

2

+
∥
∥
∥ωx

t,(l)
i − ωt

ix
t
i

∥
∥
∥
2

2
, (44)

for i = 1, . . . , s. In addition, we denote ẑ
t,(l)
i = [ĥ

t,(l)�
i

x̂
t,(l)�
i ]� where

ĥ
t,(l)

i :=
1

(ω
t,(l)
i,mutual)

∗
h
t,(l)
i and x̂

t,(l)
i := ω

t,(l)
i,mutualx

t,(l)
i .

(45)

Define the alignment parameter between zt,sgn
i = [ht,sgn�

i

xt,sgn�
i ]� and zt

i = [ht�
i xt�

i ]� as

ωt
i,sgn := argmin

ω∈C

∥
∥
∥
∥
1

ω∗h
t,sgn
i − 1

ωt
i
∗h

t
i

∥
∥
∥
∥

2

2

+
∥
∥ωxt,sgn

i − ωt
ix

t
i

∥
∥2
2
, (46)

for i = 1, . . . , s. In addition, we denote žt,sgn
i = [ȟ

t,sgn�
i

x̌t,sgn�
i ]� where

ȟ
t,sgn
i :=

1

(ωt
i,sgn)

∗h
t,sgn
i and x̌t,sgn

i := ωt
i,sgnx

t,sgn
i . (47)

D. Establishing Approximate State Evolution for Phase 1
of Stage I

In this subsection, we will justify that the approximate state
evolution (31) for both the size of the signal component and the
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size of the perpendicular component is satisfied during Phase I.
In particular, we establish a collection of induction hypothe-
ses which are crucial to the justification of approximate state
evolution (31), and then identify these hypotheses via inductive
argument.

To begin with, we list all the induction hypotheses: for 1 ≤
i ≤ s,

max
1≤l≤m

dist
(
z
t,(l)
i , z̃t

i

)

≤ (βht
i
+βxt

i
)

(

1+
1

s logm

)t

C1

sμ2κ
√
max{K,N} log8m

m
(48a)

max
1≤l≤m

dist
(
h̄

H
i h

t,(l)
i , h̄

H
i h̃

t

i

)
· ‖h̄i‖−1

2

≤ αht
i

(

1 +
1

s logm

)t

C2
sμ2κ

√
K log13m

m
(48b)

max
1≤l≤m

dist
(
x
t,(l)
i1 , x̃ti1

)

≤ αxt
i

(

1 +
1

s logm

)t

C2
sμ2κ

√
N log13m

m
(48c)

max
1≤i≤s

dist
(
ht,sgn
i , h̃

t

i

)

≤ αht
i

(

1 +
1

s logm

)t

C3

√

sμ2κ2K log8m

m
(48d)

max
1≤i≤s

dist
(
xt,sgn
i , x̃t

i

)

≤ αxt
i

(

1 +
1

s logm

)t

C3

√

sμ2κ2N log8m

m
(48e)

max
1≤l≤m

∥
∥
∥h̃

t

i − ĥ
t,(l)

i − h̃
t,sgn

i + ĥ
t,sgn,(l)

i

∥
∥
∥
2

≤ αht
i

(

1 +
1

s logm

)t

C4
sμ2

√
K log16m

m
, (48f)

max
1≤l≤m

∥
∥
∥x̃

t
i − x̂

t,(l)
i − x̃t,sgn

i + x̂
t,sgn,(l)
i

∥
∥
∥
2

≤ αxt
i

(

1 +
1

s logm

)t

C4
sμ2

√
N log16m

m
, (48g)

c5 ≤ ∥
∥ht

i

∥
∥
2
,
∥
∥xt

i

∥
∥
2
≤ C5, (48h)

∥
∥ht

i

∥
∥
2
≤ 5αht

i

√

log5 m, (48i)

∥
∥xt

i

∥
∥
2
≤ 5αxt

i

√

log5 m, (48j)

where C1, . . . , C5 and c5 are some absolute positive constants
and x̂i, x̃i, ĥi, h̃i are defined in Section IV-C.

Specifically, (48a), (48c), (48d) and (48e) identify that the
auxiliary sequences {zt,(l)} and {zt,sgn} are extremely close
to the original sequences {zt}. In addition, as claimed in (48f)

and (48g), h̃
t

i − h̃
t,sgn

i (resp. x̃t
i − x̃t,sgn

i ) and ĥ
t,(l)

i − ĥ
t,sgn,(l)

i

(resp. x̂t,(l)
i − x̂

t,sgn,(l)
i ) are also exceedingly close to each other.

The hypotheses (48h) illustrates that the norm of the iterates
{ht

i} (resp. {xt
i}) is well-controlled in Phase 1. Moreover, (48i)

(resp. (48j)) indicates that αht
i

(resp. αxt
i
) is comparable to

‖ht
i‖2 (resp. ‖xt

i‖2).
We are moving to prove that if the induction hypotheses (48)

hold for the t-th iteration, then αhi
, βhi

, αxi
and βxi

obey
the approximate state evolution (31). This is demonstrated in
Lemma 2.

Lemma 2: Suppose m ≥ Cs2μ2 max{K,N} log10m for
some sufficiently large constantC > 0. For any0 ≤ t ≤ T1 (36),
if the t-th iterate satisfies the induction hypotheses (48), then for
i = 1, . . . , s, with probability at least 1− c1m

−ν − c1me
−c2 N

for some constants ν, c1, c2 > 0, the approximate evolution state
(31) holds for some |ψht

i
|, |ψxt

i
|, |ϕht

i
|, |ϕxt

i
|, |ρht

i
|, |ρxt

i
| �

1/ logm, i = 1, . . . , s.
Proof: Please refer to Appendix B for details. �
Remark 2: Due to the “incoherence” between multiple

signals, extra technical arguments are required to be de-
veloped. Take the term Ji1 in (68) as an example,

we present Ji1 = h̄
H
kbjb

H
j h̃

t

iaij,1
∗qkaij,1 +

∑m
j �=i

∑s
k=1 h̄

H
k

bjb
H
j h̃

t

iakj,1
∗qkaij,1. Therein, the i.i.d. random variable aij

ensures the statistical property E(aija
∗
kj) = 0 for k �= i that

facilitates the proof. This technique is also exploited in the
following lemma, which is the cornerstone of the theoretical
analysis in the BlairComp problem.

In the sequel, we will prove the hypotheses (48) hold for
Phase 1 of Stage I via inductive arguments. Before moving
forward, we first investigate the incoherence between {xt

i},
{xt,sgn

i } (resp. {ht
i}, {ht,sgn

i }) and {aij}, {asgn
ij } (resp. {bj},

{bsgnj }).
Lemma 3: Suppose that m ≥ Cs2μ2 max{K,N} log8 m

for some sufficiently large constant C > 0 and the t-th iterate
satisfies the induction hypotheses (48) for t ≤ T0 (36), then with
probability at least 1− c1m

−ν − c1me
−c2 N for some constants

ν, c1, c2 > 0,
max

1≤i≤s,1≤l≤m

∣
∣aH

ilx̃
t
i

∣
∣ · ‖x̃t

i‖−1
2 �

√
logm, | (49a)

max
1≤i≤s,1≤l≤m

∣
∣aH

il,⊥x̃
t
i⊥
∣
∣ · ‖x̃t

i⊥‖−1
2 �

√
logm, (49b)

max
1≤i≤s,1≤l≤m

∣
∣aH

ilx̌
t,sgn
i

∣
∣ · ‖x̌t,sgn

i ‖−1
2 �

√
logm, (49c)

max
1≤i≤s,1≤l≤m

∣
∣aH

il,⊥x̌
t,sgn
i⊥

∣
∣ · ‖x̌t,sgn

i⊥ ‖−1
2 �

√
logm, (49d)

max
1≤i≤s,1≤l≤m

∣
∣
∣a

sgnH
il x̌t,sgn

i

∣
∣
∣ · ‖x̌t,sgn

i ‖−1
2 �

√
logm, (49e)

max
1≤i≤s,1≤l≤m

∣
∣
∣bH

l h̃
t

i

∣
∣
∣ · ‖h̃t

i‖−1
2 � μ√

m
log2 m, (50a)

max
1≤i≤s,1≤l≤m

∣
∣
∣bH

l ȟ
t,sgn
i

∣
∣
∣ · ‖ȟt,sgn

i ‖−1
2 � μ√

m
log2 m, (50b)

max
1≤i≤s,1≤l≤m

∣
∣
∣b

sgnH
l ȟ

t,sgn
i

∣
∣
∣ · ‖ȟt,sgn

i ‖−1
2 � μ√

m
log2 m.

(50c)

Proof: Based on the induction hypotheses (48), we can
prove the claim (49) in Lemma 3 by invoking the tri-
angle inequality, Cauchy-Schwarz inequality and standard
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Gaussian concentration. Furthermore, based on the induction
hypotheses (48), the claim (50) can be identified accord-
ing to the definition of the incoherence parameter in Def-
inition 1 and the fact ‖bj‖2 =

√
K/m. Moreover, to ad-

dress the deterministic property of b� and facilitate the proof
of (50), we divide {bj}1≤j≤m into consecutive bins in or-
der to exploit the random property of ai� within each bin.
Here, we assume each bin contains Δ � poly logm con-
tiguous vectors. For instance, for l = 1, . . . ,m, i = 1, . . . , s,

to bound the term |b�
∑m

j=1

∑s
k=1 bjb

∗
jh̃

t

k(x

∗
k akja

∗
ijx



i −

‖x

k‖22)|, we consider the consecutive vector in individual bins,

given by |bl
∑Δ

j=1

∑s
k=1 bι+jb

∗
ι+jh̃

t

k(x

∗
k ak,ι+ja

∗
i,ι+jx



i −

‖x

k‖22)|, for each 0 ≤ ι ≤ m−Δ, which enables to exploit the

randomness within each bin. �
Now we are ready to specify that the hypotheses (48) hold for

0 ≤ t ≤ T1 (36). We aim to demonstrate that if the hypotheses
(48) hold up to the t-th iteration for some 0 ≤ t ≤ T1, then they
hold for the (t+ 1)-th iteration. Since the case for t = 0 can
be easily justified due to the equivalent initial points (43), we
mainly focus the inductive step.

Lemma 4: Suppose the induction hypotheses (48)
hold true up to the t-th iteration for some t ≤ T1
(36), then for i = 1, . . . , s, with probability at least
1− c1m

−ν − c1me
−c2 N for some constants ν, c1, c2 > 0,

there is max1≤l≤m dist(z
t+1,(l)
i , z̃t+1

i ) ≤ (βht+1
i

+ βxt+1
i

)·
(1 + 1

s logm )t+1C1 · sμ2κ
√

max{K,N} log8 m

m holds m ≥ Csμ2κ
√
max{K,N} log8m with some sufficiently large constant

C > 0 as long as the stepsize η > 0 obeys η � s−1 and C1 > 0
is sufficiently large.

In terms of the difference between xt and x
t,(l)
i (resp. ht

i and

h
t,(l)
i ) along with the signal direction, i.e., (48b) and (48c), we

reach the following lemma.
Lemma 5: Suppose the induction hypotheses (48) hold true

up to the t-th iteration for some t ≤ T1 (36), then with probabil-
ity at least 1− c1m

−ν − c1me
−c2 N for some constants ν, c1,

c2 > 0,

max
1≤l≤m

dist
(
h̄

H
i h

t+1,(l)
i , h̄

H
i h̃

t+1

i

)
· ‖h̄i‖−1

2

≤ αht+1
i

(

1 +
1

s logm

)t+1

C2
sμ2κ

√
K log13m

m
(51)

max
1≤l≤m

dist
(
x
t+1,(l)
i1 , x̃t+1

i1

)

≤ αxt+1
i

(

1 +
1

s logm

)t+1

C2
sμ2κ

√
N log13m

m
(52)

holds for some sufficiently large C2 > 0 with C2 � C4, pro-
vided that m ≥ Csμ2κmax{K,N} log12m for some suffi-
ciently large constant C > 0 and the stepsize η > 0 obeys
η � s−1.

Proof: Please refer to Appendix C for details. �
The next lemma concerns the relation between ht

i and ht,sgn
i ,

i.e., (48d), and the relation between xt
i and xt,sgn

i , i.e., (48e).
Lemma 6: Suppose the induction hypotheses (48) hold true

up to the t-th iteration for some t ≤ T1 (36), then with probabil-
ity at least 1− c1m

−ν − c1me
−c2 N for some constants ν, c1,

c2 > 0,

max
1≤i≤s

dist
(
ht+1,sgn
i , h̃

t+1

i

)

≤ αht+1
i

(

1 +
1

s logm

)t+1

C3

√

sμ2κ2K log8m

m
(53a)

max
1≤i≤s

dist
(
xt+1,sgn
i , x̃t+1

i

)

≤ αxt+1
i

(

1 +
1

s logm

)t+1

C3

√

sμ2κ2N log8m

m
(53b)

holds for some sufficiently large C3 > 0, provided that m ≥
Csμ2κ2 max{K,N} log8m for some sufficiently large con-
stant C > 0 and the stepsize η > 0 obeys η � s−1.

We still need to characterize the difference h̃
t

i − ĥ
t,(l)

i −
h̃
t,sgn

i + ĥ
t,,sgn,(l)

i , i.e., (48f), and the difference x̃t
i − x̂

t,(l)
i −

x̃t,sgn
i + x̂

t,sgn,(l)
i , i.e., (48g), in the following lemma.

Lemma 7: Suppose the induction hypotheses (48) hold true
up to the t-th iteration for some t ≤ T1 (36), then with probabil-
ity at least 1− c1m

−ν − c1me
−c2 N for some constants ν, c1,

c2 > 0,

max
1≤l≤m

∥
∥
∥h̃

t+1

i − ĥ
t+1,(l)

i − h̃
t+1,sgn

i + ĥ
t+1,sgn,(l)

i

∥
∥
∥
2

≤ αht+1
i

(

1 +
1

s logm

)t+1

C4
sμ2

√
K log16m

m
(54a)

max
1≤l≤m

∥
∥
∥x̃

t+1,
i − x̂

t+1,,(l)
i − x̃t+1,sgn

i + x̂
t+1,sgn,(l)
i

∥
∥
∥
2

≤ αxt+1
i

(

1 +
1

s logm

)t+1

C4
sμ2

√
N log16m

m
(54b)

holds for some sufficiently large C4 > 0, provided that m ≥
Csμ2 max{K,N} log8 m for some sufficiently large constant
C > 0 and the stepsize η > 0 obeys η � s−1.

Remark 3: The arguments applied to prove Lemma 4-
Lemma 7 are similar to each other. We thus mainly focus on
the proof of (52) in Lemma 5 in Appendix C.

E. Establishing Approximate State Evolution for Phase 2
of Stage I

In this subsection, we move to prove that the approximate
state evolution (31) holds for T1 < t ≤ Tγ (Tγ and T1 are
defined in (35) and (36) respectively) via inductive argument.
Different from the analysis in Phase 1, only {zt,(l)} is sufficient
to establish the “near-independence” between iterates and design
vectors when the sizes of the signal component follow αht

i
,

αxi
� 1/logm in Phase 2 (according to the definition ofT1). As

in Phase 1, we begin with specifying the induction hypotheses:
for 1 ≤ i ≤ s,

max
1≤l≤m

dist
(
z
t,(l)
i , z̃t

i

)
≤ (βht

i
+ βxt

i
)

(

1 +
1

s logm

)t

× C6

sμ2κ
√
max{K,N} log18m

m
(55a)

c5 ≤ ∥
∥ht

i

∥
∥
2
,
∥
∥xt

i

∥
∥
2
≤ C5, (55b)
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From (55), we can conclude that one has

max
1≤i≤s,1≤l≤m

∣
∣aH

ilx̃
t
i

∣
∣ · ‖x̃t

i‖−1
2 �

√
logm, (56)

max
1≤i≤s,1≤l≤m

∣
∣
∣bH

l h̃
t

i

∣
∣
∣ · ‖h̃t

i‖−1
2 � μ√

m
log2 m, (57)

with probability at least 1− c1m
−ν − c1me

−c2 N for some
constants ν, c1, c2 > 0 during T1 < t ≤ Tγ as long as m�
Csμ2κK log8m.

We then move to prove that if the induction hypotheses (48)
hold for the t-th iteration, then αhi

, βhi
, αxi

and βxi
obey

the approximate state evolution (31). This is demonstrated in
Lemma 8.

Lemma 8: Supposem ≥ Cs2μ2κ4 max{K,N} log12m for
some sufficiently large constant C > 0. For any T1 ≤ t ≤ Tγ
(T1 and Tγ are defined in (35) and (36) respectively), if the
t-th iterate satisfies the induction hypotheses (48), then for
i = 1, . . . , s, with probability at least 1− c1m

−ν − c1me
−c2 N

for some constants ν, c1, c2 > 0, the approximate evolution
state (31) hold for some |ψht

i
|, |ψxt

i
|, |ϕht

i
|, |ϕxt

i
|, |ρht

i
|, |ρxt

i
| �

1/ logm, i = 1, . . . , s.
It remains to proof the induction step on the difference

between leave-one-out sequences {zt,(l)} and the original se-
quences {zt}, which is demonstrated in the following lemma.

Lemma 9: Suppose the induction hypotheses (48) are valid
during Phase 1 and the induction hypotheses (55) hold true from
T1-th to the t-th for some t ≤ Tγ (35), then for i = 1, . . . , s, with
probability at least 1− c1m

−ν − c1me
−c2 N for some constants

ν, c1, c2 > 0,

max
1≤l≤m

dist
(
z
t,(l)
i , z̃t

i

)
≤ (βht+1

i
+ βxt+1

i
)

(

1 +
1

s logm

)t+1

× C6
sμ2κ

√
K log18m

m
(58)

holds m ≥ Csμ2κK log8m with some sufficiently large con-
stant C > 0 as long as the stepsize η > 0 obeys η � s−1 and
C6 > 0 is sufficiently large.

Remark 4: The proof of Lemma 8 and Lemma 9 is inspired
by the arguments used in Section H and Section I in [34].

F. Proof for Claims (22) and (23)

Combining the analyses in Phase 1 and Phase 2, we complete
the proof for claims (22) with 0 ≤ t ≤ Tγ (35). Consider the
definition of Tγ (35) and the incoherence between iterates and
design vectors given in (56) and (57), we arrive at

∥
∥
∥x̃

Tγ

i − x̄i

∥
∥
∥
2
≤ γ√

2 s
(59)

dist(zTγ , z̄) ≤ γ (60)

error(θTγ , θ̄) ≤ γ (61)

max
1≤i≤s,1≤j≤m

∣
∣
∣aH

ijx̃
Tγ

i

∣
∣
∣ · ‖x̃Tγ

i ‖−1
2 �

√
logm, (62)

max
1≤i≤s,1≤j≤m

∣
∣
∣bH

j h̃
Tγ

i

∣
∣
∣ · ‖h̃Tγ

i ‖−1
2 � μ√

m
log2 m, (63)

which implies that max1≤i≤s,1≤j≤m |aH
ij(x̃

Tγ

i − x̄i)| �
γ
√
logm√
2 s

, based on the inductive hypothesis (55a). Based

on these properties, we can exploit the techniques applied
in [36, Section IV] and the triangle inequality to prove that for
t ≥ Tγ + 1,

error(θt, θ̄) ≤ dist
(
xt, x̄

) ≤ γ
(
1− η

16κ

)t−Tγ

, (64)

where the stepsize η > 0 obeys η � s−1 as long as m�
s2μ2κ4 max{K,N} log8 m. It remains to prove the claim (22)
for Stage II. Since we have already demonstrate that the ra-
tio αht

i
/βht

i
increases exponentially fast in Stage I, there is

α
h
T1
i

β
h
T1
i

≥ 1√
2K logK

(1 + c3η)
T1 .By the definition ofT1 (see (36))

and Lemma 1, one has α
h

T1
i

� β
h

T1
i

� 1 and thus

α
h

T1
i

β
h

T1
i

� 1. (65)

When it comes to t > Tγ , based on (64), we have

αht
i

βht
i

≥ 1− dist (zt, z̄)

dist (zt, z̄)
� 1√

K logK
(1 + c3η)

t ,

where (i) is derived from (65) and the fact that γ is a constant,
(ii) arises from Tγ − T1 � s−1 based on Lemma 1, and the last
inequality is satisfied as long as c3 > 0 and η � s−1. Likewise,
we can apply the same arguments to the ratio αxt

i
/βxt

i
, thereby

concluding that
αxt

i

βxt
i

� 1√
N logN

(1 + c4η)
t. Claim (23) can be

further derived via the equationRMSE(xt
i, x̄i) =

βxt
i√

α2
xt
i

+β2
xt
i

<

βxt
i

αxt
i

.

V. CONCLUSION

In this paper, we proposed a blind over-the-air computa-
tion scheme to compute the desired function of distributed
sensing data without the prior knowledge of the channel in-
formation, thereby providing low-overhead data aggregation
in IoT networks. To harness the benefits of computational
efficiency, fast convergence guarantee, regularization-free and
careful initialization-free, the BlairComp problem was solved
by randomly initialized Wirtinger flow with provable guarantees.
Specifically, the statistical guarantee and fast global convergence
guarantee concerning randomly initialized Wirtinger flow for
solving the BlairComp problem were provided. It demonstrated
that with sufficient samples, in the first tens iterations, the
randomly initialized Wirtinger flow enables the iterates to enter
a local region that enjoys strong convexity and strong smooth-
ness, where the estimation error is sufficiently small. At the
second stage of this algorithm, the estimated error experiences
exponential decay.

APPENDIX A
PRELIMINARIES

For aij ∈ C
N , the standard concentration inequality gives

that, for i = 1, . . . , s,

max
1≤j≤m

|aij,1| = max
1≤j≤m

∣
∣aH

ijx̄
∣
∣ ≤ 5

√
logm (66)
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with probability 1−O(m−10) [36]. In addition, by applying the
standard concentration inequality, we arrive at, for i = 1, . . . , s,

max
1≤j≤m

‖aij‖2 ≤ 3
√
N (67)

with probability 1− C ′ exp(me−cK) for some constants,
c, C ′ > 0 [36].

Lemma 10: Fix any constant c0 > 1. Define the population
matrix ∇2

zi
F (z) as

⎡

⎢
⎢
⎢
⎢
⎣

‖xi‖22IK hix
H
i −h̄ix̄

H
i 0 h̄ix̄

�
i

xih
H
i −x̄ih̄

H
i ‖hi‖22IK x̄ih̄

�
i 0

0 (x̄ih̄
�
i )

H ‖xi‖22IK (hix
H
i −h̄ix̄

H
i )H

(h̄ix̄
�
i )

H 0 (xih
H
i −x̄ih̄

H
i )H ‖hi‖22IK

⎤

⎥
⎥
⎥
⎥
⎦

Suppose that m > c1s
2μ2K log3m for some sufficiently

large constant c1 > 0. Then with probability exceeding 1−
O(m−10),

∥
∥
(
I4K − η∇2f (z)

)− (
I4K − η∇2F (z)

)∥
∥

�
√
s2μ2K logm

m
max

{
‖z‖22 , 1

}

and
∥
∥∇2f (z)

∥
∥ ≤ 5‖z‖22 + 2

hold simultaneously for all z obeying max1≤i≤s,1≤l≤m |aH
ilxi| ·∥

∥xi

∥
∥
2

−1 �
√
logm and max1≤i≤s,1≤l≤m |bH

l hi| ·
∥
∥hi

∥
∥
2

−1 �
μ√
m
log2 m, provided that 0 < η < c2

max{‖z‖22,1} for some suf-
ficiently small constant c2 > 0.

APPENDIX B
PROOF OF LEMMA 2

According to the Wirtinger flow gradient update rule (12b),
and the expressionaH

kjx
t
k = xtk‖a

∗
kj,1 + aH

kj,⊥x
t
k⊥ and reformu-

late terms, we arrive at

x̃t+1
i1 = x̃ti1 + η′Ji1 − η′Ji2 − η′Ji3, (68)

where

Ji1 =

m∑

j=1

s∑

k=1

h̄
H
kbjb

H
j h̃

t

iakj,1
∗qkaij,1,

Ji2 =
m∑

j=1

s∑

k=1

h̃
tH

k bjb
H
j h̃

t

iakj,1
∗x̃tk‖aij,1,

Ji3 =

m∑

j=1

s∑

k=1

h̃
tH

k bjb
H
j h̃

t

ia
H
kj,⊥x

t
i⊥aij,1,

η′ = η/‖h̃t

i‖22.
We will control the above three terms Ji1, Ji2 and Ji3 separately
in the following.
� With regard to the first term Ji1, it has

∑m
j=1

∑s
k=1

qkh̄
H
kbjb

H
j h̃

t

iakj,1
∗ aij,1 =

∑s
k=1 qkh̄

H
k · (

∑m
j=1 akj,1

∗

aij,1bjb
H
j )h̃

t

i. According to Lemma 11 and Lemma 12,

there is Ji1 = qih̄
H
i h̃

t

i + r1, where the size of the remain-

ing term r1 satisfies |r1| �
∑s

k=1 qkh̄
H
i h̃

t

i

√
K
m logm �

√
s2 K
m logm · h̄H

i h̃
t

i, based on the fact that ‖h̄k‖2 � 1

and ‖h̃t

k‖2 � 1 for k = 1, . . . , s.
� Similar to the first term, the term Ji2 can be represented as

Ji2 = ‖h̃t

i‖22x̃ti1 + r2, where the term ri2 obeys

|r2| � |x̃ti1|
s∑

k=1

h̃
tH

k h̃
t

i

√
K

m
logm �

√
s2K

m
logm|x̃ti1|.

(69)

� For the last term Ji3, it follows that

m∑

j=1

s∑

k=1

h̃
tH

k bjb
H
j h̃

t

ia
H
kj,⊥x̃

t
i⊥aij,1

=

s∑

k=1

h̃
tH

k

⎛

⎝
m∑

j=1

aij,1a
H
kj,⊥x

t
i⊥bjb

H
j

⎞

⎠ h̃
t

i. (70)

By exploiting the random-sign sequence {xt,sgn
i }, one can

decompose

m∑

j=1

aij,1a
H
kj,⊥x̃

t
i⊥bjb

H
j =

m∑

j=1

aij,1a
H
kj⊥x̌

t,sgn
i⊥ bjb

H
j +

m∑

j=1

aij,1a
H
kj,⊥

(
x̃t
i⊥ − x̌t,sgn

i⊥
)
bjb

H
j . (71)

Note that aij,1aH
kj⊥x̌

t,sgn
i⊥ bjb

H
j in (71) is statistically inde-

pendent of ξij (41) and bsgnj bsgnH
j = bjb

H
j . Hence we can

consider
∑m

j=1 aij,1a
H
kj⊥x̌

t,sgn
i⊥ bjb

H
j as a weighted sum of

the ξij’s and exploit the Bernstein inequality to derive that
∥
∥
∥
∥
∥
∥

m∑

j=1

ξij
(
aij,1a

H
kj⊥x̌

t,sgn
i⊥ bjb

H
j

)
∥
∥
∥
∥
∥
∥

�
√
V1 logm+B1 logm (72)

with probability exceeding 1−O(m−10), where V1 :=∑m
j=1 |aij,1|2|aH

kj⊥x̌
t,sgn
i⊥ |2| bjbH

j |2, B1 := max1≤j≤m

|aij,1||aH
kj⊥x̌

t,sgn
i⊥ ||bjbH

j |. In view of Lemma 17 and
the incoherence condition (49d) to deduce that with
probability at least 1−O(m−10),

V1 �

∥
∥
∥
∥
∥
∥

m∑

j=1

|ai,1|2
∣
∣aH

kj⊥x̌
t,sgn
i⊥

∣
∣2 bjb

H
j

∥
∥
∥
∥
∥
∥

‖bj‖22 � K

m

∥
∥x̌t,sgn

i⊥
∥
∥2
2

with the proviso that m� max{K,N} log3m. Further-
more, the incoherence condition (49d) together with the
fact (66) implies that B1 � K

m logm‖x̌t,sgn
i⊥ ‖2. Substitute
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the bounds on V1 and B1 back to (72) to obtain
∥
∥
∥
∥
∥
∥

m∑

j=1

aij,1a
H
kj⊥x̌

t,sgn
i⊥ bjb

H
j

∥
∥
∥
∥
∥
∥
�
√
K logm

m

∥
∥x̌t,sgn

i⊥
∥
∥
2

(73)
as long as m � K log3m. In addition, we move to the
second term on the right-hand side of (71). Let u =∑m

j=1 aij,1a
H
kjzbjb

H
j , where z ∈ C

N−1 is independent
with {akj} and ‖z‖2 = 1. Hence, we have
∥
∥
∥
∥
∥
∥

m∑

j=1

aij,1a
H
kj,⊥

(
x̃t
i⊥ − x̌t,sgn

i⊥
)
bjb

H
j

∥
∥
∥
∥
∥
∥

≤ ‖u‖2
∥
∥x̃t

i⊥−x̌t,sgn
i⊥

∥
∥
2
�
√
K logm

m

∥
∥x̃t

i⊥−x̌t,sgn
i⊥

∥
∥
2
,

(74)

with probability exceeding 1−O(m−10), as long as that
m� K log3m. Here, the last inequality of (74) comes
from Lemma 13. Substituting the above two bounds (73)
and (74) into (71), it yields

∥
∥
∥
∥
∥
∥

m∑

j=1

aij,1a
H
kj,⊥x̃

t
i⊥bjb

H
j

∥
∥
∥
∥
∥
∥
�
√
K logm

m

∥
∥x̌t,sgn

i⊥
∥
∥
2

+

√
K logm

m

∥
∥x̃t

i⊥ − x̌t,sgn
i⊥

∥
∥
2
. (75)

Combining (70) and (75), we arrive at

|Ji3| �
√
s2K logm

m

∥
∥x̃t

i⊥
∥
∥
2

+

√
s2K logm

m

∥
∥x̃t

i⊥ − x̌t,sgn
i⊥

∥
∥
2
, (76)

by exploiting the fact that ‖h̃t

k‖2 � 1 for k = 1, . . . , s
and the triangle inequality ‖x̌t,sgn

i⊥ ‖2 ≤ ‖x̃t
i⊥‖2 + ‖x̃t

i⊥ −
x̌t,sgn
i⊥ ‖2.

� Collecting the bounds for Ji1, Ji2 and Ji3, we arrive at

x̃t+1
i1 = x̃ti1 + η′Ji1 − η′Ji2 − η′Ji3

= (1− η)xti1 + ηqih̄
H
i h

t
i/‖h̃

t

i‖22 +R, (77)

where the residual term R follows that

|R| � η

‖h̃t

i‖22

√
s2K

m
logm

(
h̄

H
i h

t
i +

∣
∣x̃ti1

∣
∣+

∥
∥x̃t

i⊥
∥
∥
2

+
∥
∥x̃t

i⊥ − x̌t,sgn
i⊥

∥
∥
2

)
.

(78)

Substituting the hypotheses (48) into (77) and in view
of the fact αxt

i
= 〈xt, x̄〉/‖x̄i‖2 and the assumption that

‖h̄i‖2 = ‖x̄i‖2 = qi for i = 1, . . . , s, one has

αxt+1
i

= (1− η)αxt
i
+ η′′qih̄

H
i h̃

t

i +O
(

η′′
√
s2K

m
logmαxt

i

)

+O
(

η′′
√
s2K

m
logmβxt

i

)

+O
(

η′′
√
s2K

m
logm · αht

i

)

+O
⎛

⎝η′′αxt
i

(

1 +
1

s logm

)t

C3

√

sμ2N log8m

m

⎞

⎠

=

(

1− η +
ηqiψxt

i

α2
xt

i
+ β2

xt
i

)

αxt
i
+ η(1− ρxt

i
)

qiαht
i

α2
ht

i
+ β2

ht
i

,

(79)

where η′′ = η/(qi‖ht
i‖22), for some |ψxt

i
|, |ρxt

i
| � 1

logm ,
provided that
√
s2K logm

q2i m
� qi

logm
, (80a)

√
s2K logm

q2i m
βxt

i
� qi

logm
αxt

i
, (80b)

(

1 +
1

s logm

)t

C3

√
sμ2N log8m

q2i m
� qi

logm
, (80c)

where the parameter qi is assumed to be 0 < qi ≤ 1.
Therein, the first condition (80a) naturally holds as long as
m� s2K log3m. In addition, the second condition (80b)
holds true since βxt

i
≤ ‖xt

i‖2 � αxt
i

√
log5 m (based

on (48j)) and m� s2K log8m. For the last condition
(80c), we have for t ≤ T1 = O(s logmax{K,N}),
(1 + 1

s logm )t = O(1), which further implies

(1 + 1
s logm )tC3

√
sμ2N log8 m

q2i m
� C3

√
sμ2N log8 m

q2i m
�

qi
logm as long as the number of samples

obeys m� sμ2N log10m. This concludes the proof.
Despite it turns to be more tedious when proving (31a), similar

arguments used above can be applied to the proof of (31a).
Specifically, according to the Wirtinger flow gradient update
rule (12a), the signal component 〈h̄i, h̃

t
i〉 can be represented as

follows

h̄
H
i h̃

t+1

i = h̄
H
i h̃

t

i −
η

‖x̃t
i‖22

×
m∑

j=1

( s∑

k=1

bH
j h̃

t

kx̃
tH
k akj − yj

)

h̄
H
i bja

H
ijx̃

t
i.

Expanding this expression using aH
kjx

t
k = xtk‖a

∗
kj,1 +

aH
kj,⊥x

t
k⊥ and rearranging terms, we are left with

h̄
H
i h̃

t+1

i = h̄
H
i h̃

t

i − η′iLi1 + η′iLi2 + η′iLi3, (81)

where

Li1 =

m∑

j=1

s∑

k=1

h̄
H
i bjb

H
j h̃

t

kx̃
tH
k akja

H
ijxi,

Li2 =

m∑

j=1

s∑

k=1

h̄
H
i bjb

H
j h̄kakj,1qkaij,1 ∗ t x̃ti1,
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Li3 =

m∑

j=1

s∑

k=1

h̄
H
i bjb

H
j h̄ka

H
ij,⊥x

t
i⊥akj,1qk,

η′i = η/‖x̃t
i‖22.

Here, Li1, Li2 and Li3 can be controlled via the strategies
exploited to control Ji1, Ji2 and Ji3. The proof of (31d) can
be derived based on the same argument.

APPENDIX C
PROOF OF (52) IN LEMMA 5

By applying the arguments in [27, Appendix F], it yields that

dist
(
x
t+1,(l)
i , x̃t+1

i

)

≤ κ

√
∑s

k=1
max

{∣
∣
∣
∣
ωt+1
i

ωt
i

∣
∣
∣
∣ ,

∣
∣
∣
∣
ωt
i

ωt+1
i

∣
∣
∣
∣

}2

‖Jk‖2, (82)

where ωt
i is the alignment parameter and Jk = ωt

kx
t+1
k −

ω
t,(l)
k,mutualx

t+1,(l)
k where ωt,(l)

k,mutual is defined in (45). According
to (17) and (45), we arrive at

ωt
ix

t+1
i1 − ω

t,(l)
i,mutualx

t+1,(l)
i1

= x̃ti1 − x̂
t,(l)
i1 − η′e�1

(
∇xi

f
(
z̃t)−∇xi

f (l)
(
ẑ
t,(l)
i

))

− η′
( s∑

k=1

ĥ
t,(l)H

i bla
H
klx̂

t,(l)
i − h̄

H
kbla

H
klx̄k

)

bH
l ĥ

t,(l)

i ail,1,

where the stepsize η′ = η/‖h̃t

i‖22. It follows from the fundamen-
tal theorem of calculus [37, Theorem 4.2] that

x̃t+1
i1 − x̂

t+1,(l)
i1 =

{

x̃ti1 − x̂
t,(l)
i1 − η′

(∫ 1

0

e�1∇2
xi
f (z (τ)) dτ

)[
x̃t
i − x̂

t,(l)
i

x̃t
i − x̂

t,(l)
i

]}

− η′
[( s∑

k=1

ĥ
t,(l)H

i bla
H
klx̂

t,(l)
i − h̄

H
kbla

H
klx̄k

)

bH
l ĥ

t,(l)

i ail,1

]

,

(83)

where z(τ) = z̃t + τ(ẑt,(l) − z̃t) with 0 ≤ τ ≤ 1 and the
Wirtinger Hessian with respect to xi is

∇2
xi
f (z) =

[
D E

EH (DH)�

]

, (84)

with D =
∑m

j=1 |bH
j hi|2aija

H
ij ,E =

∑m
j=1 bjb

H
j hi· (aija

H
ij

xi)
�.
� We begin by controlling the second term of (83).

Based on (50a) and the hypothesis (48a), we obtain

max1≤i≤s,1≤l≤m |bH
l ĥ

t,(l)

i | · ‖ĥt,(l)

i ‖−1
2 � μ√

m
log2 m.

Along with the standard concentration results
|aH

ilx
t,(l)
i | � √

logm
∥
∥x

t,(l)
i

∥
∥
2
, one has

∣
∣
∣
∣
∣

( s∑

k=1

ĥ
t,(l)H

i bla
H
klx̂

t,(l)
i − h̄

H
kbla

H
klx̄k

)

bH
l ĥ

t,(l)

i ail,1

∣
∣
∣
∣
∣

� sμ2log5 m

m

∥
∥
∥x̂

t,(l)
i

∥
∥
∥
2
. (85)

� It remains to bound the first term in (83). To achieve
this, we first utilize the decomposition aH

ij(x̃
t
i − x̂

t,(l)
i ) =

aij,1
∗(x̃ti1 − x̂

t,(l)
i1 ) + aH

ij,⊥(x̃
t
i⊥ − x̂

t,(l)
i⊥ ) to obtain that

e�1
(∇2

xi
f (z (τ)) dτ

)
[
x̃t
i − x̂

t,(l)
i

x̃t
i − x̂

t,(l)
i

]

= ω1 (τ) + ω2 (τ) + ω3 (τ) ,

where

ω1 (τ) =
m∑

j=1

|bH
j hi(τ)|2aij,1a∗ij,1

(
x̃ti1 − x̂

t,(l)
i1

)
,

ω2 (τ) =

m∑

j=1

|bH
j hi(τ)|2aij,1aH

ij,⊥
(
x̃t
i⊥ − x̂

t,(l)
i⊥

)
,

ω3 (τ) =

m∑

j=1

bH
j hi(τ)a

H
ijxi(τ)bj,1a

�
ij

(
x̃t
i − x̂

t,(l)
i

)
.

Based on Lemma 10, Lemma 14 and the fact ‖bj‖2 =√
K/m, by exploiting the techniques in Appendix B,

ω1(τ), ω2(τ) and ω3(τ) can be bounded as follows:

ω1 (τ) = ‖hi(τ)‖22
(
x̃ti1 − x̂

t,(l)
i1

)

+O
(√

s2μ2K logm

m

(

x̃ti1 − x̂
t,(l)
i1

))

(86)

|ω2(τ)| �
√

Klog2 m

m

(∥
∥
∥x̃

t
i⊥ − x̂

t,(l)
i⊥

∥
∥
∥
2

+
∥
∥
∥x̃

t
i⊥ − x̂

t,(l)
i⊥ − x̃t,sgn

i⊥ − x̂
t,sgn,(l)
i⊥

∥
∥
∥
2

)

(87)

ω3 (τ) = |hi1(τ)|
(
x̃t
i − x̂

t,(l)
i

)H
xi(τ)

+O
(

1

log5 m

∥
∥
∥x̃

t
i − x̂

t,(l)
i

∥
∥
∥
2

)

(88)

with probability at least 1−O(m−10), provided thatm�
μ2K log13m.

� Combining the bounds (85) (86), (87) and (88), one has

x̃t+1
i1 − x̂

t+1,(l)
i1

=

(

1− η

∫ 1

0 ‖hi(τ)‖22dτ
‖h̃t

i‖22
+O

(

η′
√
s2μ2K logm

m

))

·

(
x̃ti1 − x̂

t,(l)
i1

)
+O

(

η′
sμ2log5 m

m

∥
∥
∥x̂

t,(l)
i

∥
∥
∥
2

)

+O
(

η′

√

Klog2 m

m

(∥
∥
∥x̃

t
i⊥ − x̂

t,(l)
i⊥

∥
∥
∥
2
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+
∥
∥
∥x̃

t
i⊥ − x̂

t,(l)
i⊥ − x̃t,sgn

i⊥ − x̂
t,sgn,(l)
i⊥

∥
∥
∥
2

))

+O
(

η′
1

log5 m

∥
∥
∥x̃

t
i − x̂

t,(l)
i

∥
∥
∥
2

)

+ η′ sup
0≤τ≤1

|hi1(τ)|
(
x̃t
i − x̂

t,(l)
i

)H
xi(τ).

By exploiting similar arguments in Appendix E in [34], we
can arrive at

dist
(
x
t+1,(l)
i1 , x̃t+1

i1

)

≤ (1−η+�2)αxt
i

(

1+
1

s logm

)t

C2
sμ2κ

√
N log13m

m

≤ αxt+1
i

(

1 +
1

s logm

)t+1

C2
sμ2κ

√
N log13m

m

for some |�2| � 1
logm provided that m ≥ Csμ2κN

log12m for some sufficiently large constant C > 0.

APPENDIX D
TECHNICAL LEMMAS

Lemma 11: Suppose m� K log3m. With probability ex-
ceeding 1−O(m−10), we have ‖∑m

j=1 a
∗
ij,1aij,1bjb

H
j −

IK‖ �
√

K
m logm.

Lemma 12: Suppose m� K log3m. For k �= i, we

have ‖∑m
j=1 a

∗
kj,1aij,1bjb

H
j ‖ �

√
K
m logm, ‖∑m

j=1 |akj,1
||aij,1|bjbH

j ‖ �
√

K
m logm, with probability exceeding

1−O(m−10).
Lemma 13: Suppose m� K log3m and z ∈ C

N−1 with
‖z‖2 = 1 is independent with {akj}. With probability ex-
ceeding 1−O(m−10), we have ‖∑m

j=1 aij,1a
H
kj,⊥zbjb

H
j ‖ �

√
K
m logm.

Remark 5: Lemma 12, Lemma 13 and Lemma 11 can be
proven by applying the arguments in [36, Section D.3.3].

Lemma 14: Suppose m� (μ2/δ2)N log5m. With prob-
ability exceeding 1−O(m−10), we have ‖∑m

j=1 |bH
j hi|2

aij,⊥aH
ij,⊥ − ‖hi‖22IN−1‖ � δ‖hi‖22, obeying max1≤l≤m |bH

l

hi| ·
∥
∥hi

∥
∥
2

−1 � μ√
m
log2 m. Furthermore, there is ‖∑m

j=1∑s
k=1 bj,1b

H
j hiaija

H
kj − hi1IN‖ � δ‖hi‖2, with probabil-

ity exceeding 1−O(m−10), provided m� (μ/δ2)s2N
log3 m.

Proof: Please refer to Lemma 11 and Lemma 12 in [27]. �
Lemma 15: Suppose the sampling size m� sμ2

√
N log9 m, then with probability exceeding 1−O(m−10),

we have ‖∑m
j=1

∑s
k=1 h

H
kbjb

H
j hiaija

H
kj − ‖hi‖22IN‖

� sμ2
√

K log9 m
m ‖hi‖22, obeying max1≤i≤s,1≤j≤m |bH

j hi| ·
∥
∥hi

∥
∥
2

−1 � μ√
m
log2 m.

Lemma 16: Suppose the sampling size follows that m�
sμ2

√
N log5 m. With probability exceeding 1−O(m−10),

we have ‖∑m
j=1

∑s
k=1 h̄

H
kbjb

H
j hiaija

H
kj − (h̄

H
i hi)IN‖ �

sμ2
√

K log5 m
m |h̄H

i hi|, obeying max1≤l≤m |bH
l h̄i| ·

∥
∥h̄i

∥
∥
2

−1 ≤
μ√
m

and max1≤l≤m |bH
l hi| ·

∥
∥hi

∥
∥
2

−1 � μ√
m
log2 m.

Remark 6: The proof of Lemma 15 and 16 exploits the same
strategy as [34, Section K] does.

Lemma 17: Suppose that aij and bj follows the
definition in Section II. 1 ≤ i ≤ s, 1 ≤ j ≤ m. Consider
any ε > 3/n where n = max{K,N}. Let S := {z ∈
C

N−1|max1≤j≤m |aH
ij,⊥z| ≤ β‖z‖2}, where β is any value

obeying β ≥ c1
√
logm for some sufficiently large constant

c1 > 0. Then with probability exceeding 1−O(m−10), one
has

1) |∑m
j=1 |aij,1|2|aH

kj⊥z|2bjbH
j − ‖z‖2IK | ≤ ε‖z‖2 for

all z ∈ S , provided that m ≥ c0 max{ 1
ε2n log n,

1
ε

β2n log2m}.
2) |∑m

j=1 |aij,1||aH
kj⊥z|bjbH

j | ≤ ε‖z‖2 for all z ∈ S , pro-

vided that m ≥ c0 max{ 1
ε2n log n,

1
εβn log

1
2 m}.

Here, c0 > 0 is some sufficiently large constant.
Proof: Please refer to Lemma 12 in [34]. �
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