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Blind Over-the-Air Computation and Data Fusion
via Provable Wirtinger Flow

Jialin Dong, Student Member, IEEE, Yuanming Shi

Abstract—Over-the-air computation (AirComp) shows great
promise to support fast data fusion in Internet-of-Things (IoT)
networks. AirComp typically computes desired functions of dis-
tributed sensing data by exploiting superposed data transmission
in multiple access channels. To overcome its reliance on channel
state information (CSI), this work proposes a novel blind over-
the-air computation (BlairComp) without requiring CSI access,
particularly for low complexity and low latency IoT networks. To
solve the resulting non-convex optimization problem without the
initialization dependency exhibited by the solutions of a number
of recently proposed efficient algorithms, we develop a Wirtinger
flow solution to the BlairComp problem based on random initializa-
tion. We establish the global convergence guarantee of Wirtinger
flow with random initialization for BlairComp problem, which
enjoys a model-agnostic and natural initialization implementation
for practitioners with theoretical guarantees. Specifically, in the
first stage of the algorithm, the iteration of randomly initialized
Wirtinger flow given sufficient data samples can enter a local region
that enjoys strong convexity and strong smoothness within a few
iterations. We also prove the estimation error of BlairComp in the
local region to be sufficiently small. We show that, at the second
stage of the algorithm, its estimation error decays exponentially at
a linear convergence rate.

Index Terms—OQver-the-air computation, data fusion, bilinear
measurements, Wirtinger flow, regularization-free, random
initialization.

I. INTRODUCTION

HE broad range of Internet-of-Things (IoT) applications
T continues to contribute substantially to the economic de-
velopment and the improvement of our lives [1]. In particular, the
wirelessly networked sensors are growing at an unprecedented
rate, making data aggregation highly critical for IoT services [2].
For large scale wireless networking of sensor nodes, orthogonal
multiple access protocols are highly impractical because of their
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low spectrum utilization efficiency for IoT and the excessive
network latency [3]. In response, the concept of over-the-air
computation (AirComp) has recently been considered for com-
puting a class of nomographic functions, such as arithmetic
mean, weighted sum, geometric mean and Euclidean norm of
distributed sensor data via concurrent, instead of the sequential,
node transmissions [4]. AirComp exploits the natural superpo-
sition of co-channel transmissions from multiple data source
nodes [5].

There have already been a number of published works related
to AirComp. Among them, one research thread takes on the
information theoretic view and focuses on achievable computa-
tion rate under structured coding schemes. Specifically, in the
seminal work of [6], linear source coding was designed to reli-
ably compute a function of distributed sensor data transmitted
over the multiple-access channels (MACs). Lattice codes were
adopted in [6], [7] to compute the sum of source signals over
MAC:s efficiently. Leveraging lattice coding, a compute-and-
forward relaying scheme [5] was proposed for relay assisted
networks. On the other hand, a different line of studies [8],
[9] investigates the error of distributed estimation in wireless
sensor networks. In particular, linear decentralized estimation
was investigated in [8] for coherent multiple access channels.
Power control was investigated in [9] to optimize the estimation
distortion. It was shown in [10] that pre- and post-processing
functions enable the optimization of computation performance
by harnessing the interference for function computations. An-
other more recent line of studies focused on designing trans-
mitter and receiver matrices in order to minimize the distor-
tion error when computing desired functions. Among others,
MIMO-AirComp equalization and channel feedback techniques
for spatially multiplexing multi-function computation have been
proposed [3]. Another work developed a novel transmitter de-
sign at the multiple antennas IoT devices with zero-forcing
beamforming [11].

Most recently, the paper [12] integrated wireless power trans-
fer into MIMO AirComp, thereby supporting self-sustainable
AirComp for low-power devices. In addition, [13] proposed
an intelligent reflecting surface (IRS) for AirComp to gen-
erate controllable wireless environments in order to improve
received signal power. The AirComp has also play a vital
role in various applications of wireless sensor networks, such
as enabling low-latency global model aggregation to support
large-scale distributed machine learning for edge Al in 6G [14].
Recently, the papers [15], [16] exploited AirComp in a federated
learning system to support fast global model aggregation for
locally updated model on each device. [17] further investigated
the power control problem for AirComp over fading channels
to adaptively control the devices’ transmit power to combat
channel distortion, thereby improving magnitude alignment of
simultaneous signals.
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Similar to the key idea of AirComp, federated learning (FL)
or the collaborative machine learning usually operates at a
wireless edge network instead of in a data center [18]-[20].
The paper [19] studied wireless collaborative machine learning
(ML), where mobile edge devices operate distributed stochastic
gradient descent (DSGD) over-the-air with the help of a wireless
access server. The channel state information (CSI) is available
only at this wireless access server. Additionally, the paper [20]
investigated machine learning at the wireless edge which con-
tains power and bandwidth-limited devices (workers). The au-
thors first introduced a digital DSGD (D-DSGD) scheme and an
analog scheme, called A-DSGD to solve collaborative machine
learning problem. The work [21] has recently considered a dis-
tributed learning problem over multiple access channel (MAC)
where the objective function is a sum of the nodes’ local loss
functions. A novel Gradient-Based Multiple Access (GBMA)
algorithm is developed to solve this distributed learning problem
over MAC. Furthermore, to address the communication issue
induced by the edge devices under the federated edge learning
scheme, the paper [22] proposed a novel digital version of
broadband over-the-air aggregation, called one-bit broadband
digital aggregation (OBDA).

However, the main limitation of current AirComp is the
dependence on channel-state-information (CSI), which leads to
high latency and significant overhead in the massive Internet-of-
Things networks with a large number of devices. Although in the
works [19], [23] the channel state information is unknown to the
transmitters, the receivers still need to obtain the channel state
information. Recently, blind demixing has become a powerful
tool to exclude channel-state-information (i.e., without channel
estimation at both transmitters and receivers) thereby enabling
low-overhead communications [24]-[26]. Specifically, in blind
demixing, a sequence of source signals can be recovered from the
sum of bilinear measurements without the knowledge of channel
information [27]. Inspired by the recent progress of blind demix-
ing, in this paper, we shall propose a novel blind over-the-air
computation (BlairComp) scheme for low-overhead data aggre-
gation, thereby computing the desired function (e.g., arithmetic
mean) of sensing data vectors without the prior knowledge
of channel information. The advantage of BlairComp is that
without the extra cost of obtaining the CSI, BlairComp can
achieve sufficiently low estimation error, which is illustrated
in Fig. 1. It can also support low-overhead communications
by excluding CSI from data packet transmission. However, the
BlairComp problem turns out to be a highly intractable noncon-
vex optimization problem due to the bilinear signal model.

There is a growing body of recent works to tame the non-
convexity in solving the high-dimensional bilinear systems.
Specifically, semidefinite programming was developed in [25]
to solve the blind demixing problem by lifting the bilinear model
into the matrix space. However, it is computationally prohibitive
for solving large-scale problem due to the high computation and
storage cost. To address this issue, the nonconvex algorithm, e.g.,
regularized gradient descent with spectral initialization [24],
was further developed to optimize the variables in the natural
vector space. Nevertheless, the theoretical guarantees for the
regularized gradient [24] provide a pessimistic convergence
rate and require carefully-designed initialization. The Rieman-
nian trust-region optimization algorithm without regulariza-
tion was further proposed in [26] to improve the convergence
rate. However, the second-order algorithm brings unique chal-
lenges in providing statistical guarantees. Recently, theoretical
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Fig. 1. (a) Linear convergence rate of randomly initialized Wirtinger flow,
plotted semi-logarithmically. (b) Relative error error(8, 0) vs. oy, (dB).

guarantees concerning regularization-free Wirtinger flow with
spectral initialization for blind demixing was provided in [27].
However, this regularization-free method still calls for spectral
initialization. To find a natural implementation for the practition-
ers that works equally well as spectral initialization, in this paper,
we shall propose to solve the BlairComp problem via randomly
initialized Wirtinger flow with provable optimality guarantees.

Based on the random initialization strategy, a line of research
studies the benign global landscapes for the high-dimensional
nonconvex estimation problems, followed by designing generic
saddle-point escaping algorithms, e.g., noisy stochastic gradi-
ent descent [28], trust-region method [29], perturbed gradient
descent [30]. With sufficient samples, these algorithms are
guaranteed to converge globally for phase retrieval [29], matrix
recovery [31], matrix sensing [32], robust PCA [32] and shallow
neural networks [33], where all local minima are provably as
good as global and all the saddle points are strict. However, the
theoretical results developed in [28]—[33] are fairly general and
may yield pessimistic convergence rate guarantees. Moreover,
these saddle-point escaping algorithms are more complicated
for implementation than the natural vanilla gradient descent or
Wirtinger flow. To advance the theoretical analysis for gradient
descent with random initialization, the fast global convergence
guarantee concerning randomly initialized gradient descent for
phase retrieval has been recently provided in [34].

In this paper, our main contribution is to establish the global
convergence guarantee of Wirtinger flow with random initializa-
tion for the BlairComp problem, which enjoys a model-agnostic
and natural initialization implementation for practitioners with
theoretical guarantees. It turns out that, for BlairComp, the
procedure of Wirtinger flow with random initialization can be
separated into two stages:

e Stage I: the estimation error is nearly stable, which takes

only a few iterations,
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e Stage II: the estimation error decays exponentially at a
linear convergence rate.

In addition, we identify the exponential growth of the magni-
tude ratios of the signals to perpendicular components, which
explains why Stage I lasts only for a few iterations. Compared
with the theoretical analysis on the phase retrieval problem [34],
the theoretical analysis on the BlairComp problem is much more
complex and challenging. The primary challenge arises since the
“incoherence” between multiple sources in BlairComp leads
to distortion in the statistical property. Moreover, unlike the
Gaussian designed vector a; concerned in the phase retrieval
problem, the designed vector b; in the BlairComp problem is
deterministic, not random. We will clarify the technical details
exploited to address above issues in our paper in the sequel.

Notations: Throughout this paper, f(n)= O(g(n)) or
f(n) < g(n) denotes that there exists a constant ¢ > 0 such
that |f(n)| < c|g(n)| whereas f(n) 2 g(n) means that there
exists aconstant ¢ > Osuchthat|f(n)| > c|g(n)|. f(n) > g(n)
denotes that there exists some sufficiently large constant ¢ > 0
such that |f(n)| > ¢|g(n)|. In addition, the notation f(n) =
g(n) means that there exists constants c1,ce > 0 such that
c1lg(n)] < |f(n)] < e2|g(n)]. Let superscripts (-)" and (-)M
denote the transpose and conjugate transpose of a matrix/vector,
respectively. Let the superscript (-)* denote the conjugate trans-
pose of a complex number.

II. PROBLEM FORMULATION

Blind over-the-air computation (BlairComp) aims to facilitate
low-overhead data aggregation in IoT networks without a priori
knowledge of CSI. This is achieved by computing the desired
functions of the distributed sensing data based on the natural
signal superposition of transmission over multi-access channels.

A. Blind Over-the-Air Computation

We consider a wireless sensor network consisting of s
active sensor nodes and a single fusion center. Let d; =
[di1 -..,d; n]" € CN denote the sensor data vector collected at
the i-th node. The fusion center, through AirComp, aims to com-
pute nomographic functions of distributed data that can be de-
composed as [10] He(dye, . .., dse) = Fo(3i_i Gie(die)), £ =
1,..., N. Function G;(-) : C — C denotes the pre-processing
function by the sensor nodes and Fy(-): C — C denotes
the post-processing function at the fusion center. Typical
nomographic functions by AirComp include the arithmetic
mean, weighted sum, geometric mean, polynomial, Euclidean
norm [10].

In this work, we focus on a specific nomographic function

-3 =, (1)
=1

where Z; = [Gi1(di1), ..., Gin(din)]T € CV is the prepro-
cessed data vector transmitted by the i-th node. The transmitted
signals over m time slots from the ¢-th node are represented as

fi=Cizy, ()

where C; € C"™*" with m > N is the encoding matrix and is
known at the fusion center. The signals f;’s are transmitted
through individual time-invariant channels denoted by their
respective CSI vectors h;’s where a maximum delay of at most
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K samples is contained in h; € C¥. The zero-padded channel
vector g; € C™ is given as

gi=1[h,0,...,0]". (3)

Hence, based on the cyclic convolution operation, the received
signal is given as

PZZfz'@gH-n, “)

i=1

where m is the additive white complex Gaussian noise. For ease
of algorithm design and theoretical analysis, the blind demixing
model based on cyclic convolution is presented in the Fourier
domain. This is achieved by left multiplying the signals in
the time domain with the unitary discrete Fourier transform
(DFT) matrix, and converting the time domain convolution into
component-wise production operation in the Fourier domain

y=Fp=) (FCix;)® Bh;+ Fn, (5)

where the operation © is the component-wise product. Here, the
first K columns of the unitary discrete Fourier transform (DFT)
matrix F' € C™ ™ satisfying property FF™ = I, form the
known matrix

B :=[by,...,b,|" e CK (6)
with b; € CK for1 < 7 < m. Hence, over m channel access
opportunities (e.g., time slots), the received signals at fusion
center in the frequency domain can be written as [19], [21]

S
Yj = Z bihizfla;; +ej, 1 <j<m, (7
i1

where b; € CK foreach 1 < 7 < 'm is an access vector, which
means that the vector is accessible to the fusion center. Addition-
ally, a;; € C¥ denotes the j-th column of (FC)H, h; e CK
is the CSI vector that contains channel gains, and e; is an inde-
pendent circularly symmetric complex Gaussian measurement
noise.

To compute the desired functions via BlairComp without
knowledge of {h;}, we can consider a precoding scheme with
randomly selected known vectors a;; € CN follows i.i.d. circu-
larly symmetric complex normal distribution N'(0,0.51 x) +
IV (0,0.5I ) for 1 <i<s,1<j<m. The target of Blair-
Comp is to compute the desired function vector 8 via concurrent
transmissions without channel information, thereby providing
low-overhead data aggregation in the IoT networks.

B. Multi-Dimensional Nonconvex Estimation

For each 1 < i < s, h; and h; denote the ground-truth CSI
vector and the corresponding estimate, respectively. &; and x;
denote the ground-truth data vector generated by a node in the
sensor network and the corresponding estimate, respectively.

BlairComp facilitates low-latency data aggregation in the IoT
network, which aims to compute the desired function vector
6 =>"7 | &; via concurrent transmissions. Instead of con-
cerning the sum of individual relative error of data vectors,
e, Do, |l@i — &;||2/||®:]|, the computational performance
of BlairComp is characterized by the estimation error of the
nomographic function 6. To estimate the vector 6 from the
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received signal y, we need to minimize the relative error between
0 and the estimated vector @ = )7, w;x; which is denoted by

120 wimi — 3o Zilly
||Zi=1 Z; ||2 ’
where w; € C alignment parameters that align the estimated

vectors to the ground truth. The alignment parameters can be
estimated via

error(6,0) = (®)

w; = argmm(H( e h;, — h; H2—|— lwiz; — &5 ) 9)

w;e C

To estimate w;, one reference symbol in x; is needed. One
way to address this problem is to develop a bilinear estimation
approach [26]:

m

Z‘Zthm a;j — Y

which estimates {h;} and {x;} from the sum of bilinear mea-
surements y. Even though problem &2 is nonconvex, some
algorithms, e.g., Wirtinger flow with spectral initialization, can
solve it with low statistical and computational guarantees [27].

In this paper, to find a model-agnostic and natural imple-
mentation for practitioners that works equally well as spectral
initialization, we shall propose to solve BlairComp problem &
via Wirtinger flow with random initialization. Our main contri-
bution is to provide the statistical optimality and convergence
guarantee for the randomly initialized Wirtinger flow algorithm
by exploiting the benign geometry of the high-dimensional
BlairComp problem.

& : minimize f(h,x)

, (10)
{hi}{mi}

III. MAIN APPROACH

In this section, we first propose an algorithm based on ran-
domly initialized Wirtinger flow to solve the BlairComp problem
Z2. We shall present a statistical analysis to demonstrate the
optimality of this algorithm for solving the high-dimensional
nonconvex estimation problem.

A. Randomly Initialized Wirtinger Flow Algorithm

Wirtinger flow with random initialization is an iterative algo-
rithm with a simple gradient descent update procedure without
regularization. Specifically, the gradient step of Wirtinger flow
is represented by the notion of Wirtinger derivatives [35], i.e.,
the derivatives of real valued functions over complex variables.

To simplify the notations, we denote f(z) := f(h,x), where

zZ1 h
e C:WVHE) with z; = { ] e CNTEL
€
ZS
For each i =1,...,s, Vp,f(z) and Vg, f(z) denote the

Wirtinger gradient of f(z) withrespect to h; and @; respectively
as:

Vi, f(z Z (Zb hkwka;w )b a;;xi, (12a)
7j=1 k=1
Z(thb allx, — y]>a”bjh (12b)
J=1 Nk=
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In light of the Wirtinger gradient (12), the update rule of
Wirtinger flow uses a stepsize n > 0via

5V, f(2")

lhﬁ“ _[my | T t||2 .
mf&l - xt 1 )
1 : e Vel (2)
AT
(13)

Compared with the paper [27] that solves the blind demixing
problem via Wirtinger flow with spectral initialization, we solve
the BlairComp via Wirtinger flow by utilizing random initial-
ization. Random initialization is a model-agnostic and natural
implementation for practitioners and works equally well as the
spectral initialization strategy. Moreover, different from the sum
of error, i.e., Y o |lwix; — &il|2/> i, [|Zil|2 considered in
blind demixing, this work focuses on the relative error (8) as
the performance metric. This performance metric (8) can be
computed via exploring the superposition property of a wireless
multiple-access channel. Since computing the relative error
(8) of BlairComp does not require to transmit individual data
information to the fusion center, it can address the issue of
communication bandwidth limitation and support fast wireless
data aggregation [16].

Before proceed to theoretical analysis, we first present an
example to illustrate the practical efficiency of Wirtinger flow
with random initialization for solving problem &2 (10). The
ground truth values {h;,Z;} and initial points {h{, 2} are
randomly generated according to

hi ~N(0,K 'Ig), 2; ~N(0,N 'Iy),
h) ~ N(0, K '), ) ~N(0,N 'Iy),

(14)
15)

for e =1,...,s. In all simulations, we set K = N. For each
value of K € {20, 80,160,200}, s =10 and m = 50 K, the
design vectors a;;’s and b;’s for each 1 <i < 5,1 < j<m,
are generated according to the descriptions in Section II. With
the chosen step size 7 = 0.1 in all settings, Fig. 1(a) shows the
relative error, i.e., error(Ot, 0) (8), versus the iteration count. We
observe the convergence of Wirtinger flow with random initial-
ization exhibits two stages: Stage I: within dozens of iterations,
the relative error remains nearly flat, Stage II: the relative error
shows exponential decay despite the different problem size.

In practical scenario, the estimation error of ambiguity align-
ment parameters would have influences on the relative error, i.e.,
error(6%, 0) (8). Hence, we illustrate the relationship between
the estimation error of ambiguity alignment parameters and
the relative error via the following experience. Let K = 10,
m = 100, the step size be n = 0.1 and the number of users
s € {1,5,10}. In each iteration, for i = 1,.. ., the estimated
ambiguity alignment parameter w; is represent by w; = w; +
ew,, where w; is given by (9) and e, ~N(0,0.50,") +
iN(0,0.50,,1). In the experiment, the parameter o, varies from
1 to 10°. Flg 1(b) shows the relative error error(6*, 8) versus
the parameter o,,. Both the relative error and the parameter o,
are shown in the dB scale. As we can see, the relative error scales
linearly with the parameter . ~

We further study the relative error error(6, 8) in noisy sce-
nario and explore the robustness of the Wirtinger flow with
random initialization. We assume that the additive noise in (7)
follows e =¢ - ||y||2 - Tul;» Where e € C™ and w € C™ is a

standard complex Gaussian vector. Here, the constant ¢ equals

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on May 12,2020 at 05:14:00 UTC from IEEE Xplore. Restrictions apply.



1140

—— m =512
—o—m = 1024
m = 1536
2 50
Y
3
£ 100
0 20 40 60 80 100 120
SNR (dB)
Fig.2. Relative error error(, ) vs. SNR (dB).

the signal to noise ratio (SNR). Consider the realistic applica-
tions in wireless communication, we further explore the robust-
ness of Wirtinger flow with random initialization in the setting
of Hadamard-type encoding matrices with s = 5, K = N = 10
and different sample sizes m = 512, 1024, 1536. Here, the en-
coding matrix in (2) is a Hadamard-type matrix. Specifically, for
1 <4 < s, the Hadamard-type matrix is given by [26]

C,=FD;H, (16)
where F' € C™*™ is the DFT matrix, D;’s are diagonal matrices
with independent binary +1 entries, and H € C"™*" is a fixed
partial deterministic Hadamard matrix. For each setting, 100
independent trails are performed and the algorithm stops when
the relative error error (6%, 8) < 1075 or the iterations ¢ > 500.
The relative error error(6, 6) in dB against the signal to noise
ratio (SNR) in the settings of Hadamard-type encoding matrices
isillustrated in Fig. 2. It depicts that the relative error error(6, 6)
of WF with random initialization scales linearly with SNR.

B. Theoretical Analysis

To present the main theorem, we first introduce several funda-
mental definitions. Specifically, the incoherence parameter [24],
which characterizes the incoherence between b; and h; for
1<i<s,1 <7< m.

Definition 1 (Incoherence for BlairComp): Let the incoher-
ence parameter jp be the smallest number such that
maXj<i<s,1<j<m “rhfﬂz‘ = \/17%

The incoherence between b and h;forl <i <s,1 <j5<m
specifies the smoothness of the loss function (10). It is the
smoothness along with the strong convexity of the loss function
in the local region that guarantees Wirtinger flow to linearly
converge to the global optimal, which plays avital role in the the-

oretical analysis in Stage II. Let ht and @ ac , respectively, denote
ht = (wt*

¢ YRt and ZE=wlal, i=1,...,s, (17)

where w!’s are alignment parameters. We further define the
norm of the signal component and the perpendicular component

with respect to hf fori =1,...,s, as
ape = (hi, h) /|2, (18)
7 hmht
g = |t — Pl (19)
| R
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respectively. Here, w;’s are the alignment parameters. Similarly,
the norms of the signal component and the perpendicular com-
ponent with respect to ! fori = 1,. .., s, can be represented as

gt = (20, %;) /|22, (20)
o~
g 1= [l - g @1
' [E21 | AP
respectively. i
Without loss of generality, we assume |[h;|l2 = || &2 =

g 0<q <1 fori=1,.

1,..., s. Define the condition number x := M”%H"’ > 1 with

min; ||&; ]2
max; ||:c7\|2 = 1. Then the main theorem is presented in the
following.

Theorem 1: Assume that the initial points obey (15) for i =
1,...,s and the stepsize 1 > 0 satisfies < s~ 1. Suppose that
the sample size satisfies m > COp? s?x% max{K, N}log'*m
for some sufficiently large constant C' > 0. Then with prob-
ability at least 1 —cym™" — cyme™ N for some constants
v, c1,co > 0, there exists a sufficiently small constant0 < v < 1
and T, < slog(max {K, N'}) such that

1) The randomly initialized Wirtinger flow leads to expo-

nentially decaying estimation error, i.e., error(6%,8) <
V(1- )T > T,

2) The magnitude ratios of the signal component to the

perpendicular component with respect to h! and x! obey

,s and aho,ao>0 for ¢ =

(6%
hf> 1

— ‘ 2
15 B ™ Rhosre L e (222)
max L (14 em) (22b)
N L
1<i<s ﬁ f ~ NlOgN 415

respectively, where ¢t =0,1,... for some constants

c3,cq > 0.
3) The normalized root mean square error RMSE(z!, Z;) =
Byt
Hmf‘l fori=1,...,sobey
RMSE(z!,2;) < /Nlog N(1+cun)™t,  (23)

for some constants c4 > 0.

Theorem 1 provides a precisely statistical analysis on the
computational efficiency of Wirtinger flow with random initial-
ization. In summary, for the BlairComp problem, 8* updated
by the Wirtinger flow with random initialization can linearly
converge to the optimum solution, i.e., 8. The computation
performance is demonstrated in Fig. 1(a) which shows that
the estimation error declines linearly after a few iterations.
0, as long as the sample size is sufficiently large. The com-
putation performance is demonstrated in Fig. 1 which shows
that the estimation error declines linearly after a few iterations.
Specifically, in Stage I, it takes 7, = O(slog(max {K, N}))
iterations for randomly initialized Wirtinger flow to reach suffi-
cient small relative error, i.e., emror(@Tw ,0) < ~ywherey > 0is
some sufficiently small constant. The short duration of Stage I
is own to the exponential growth of the magnitude ratio of
the signal component to the perpendicular components. More-
over, in Stage II, it takes O(slog(1/e)) iterations to reach
e-accurate solution at a linear convergence rate. Thus, the it-
eration complexity of randomly initialized WF is guaranteed to
be O(slog(max {K, N}) + slog(1/e)) as long as the sample
size exceeds m 2> s% max { K, N }poly log(m). Compared with
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Fig. 3. Numerical example of signal versus perpendicular components.

Wirtinger flow with spectral initialization [27], Wirtinger flow
with random initialization is a model-agnostic and natural for
practitioners to implement. Moreover, we have demonstrated
in Theorem 1 that random initialization works equally well as
spectral initialization from the perspective of both computational
complexity and statistical complexity.

To further illustrate the relationship between the signal
component o, (resp. ay,) and the perpendicular component
Bh, (resp. B,) for i =1,...,s, we provide the simulation
results under the setting of K = N =10, m =50K, s =4
and 7 =0.1 with ||hifla=|Zil]2=1 for 1<i<s. In
particular, ap,,, Bn, versus iteration count (resp. o, [Oh,
versus iteration count) for 7 =1,...,s is demonstrated in
Fig. 3(a) (resp. Fig. 3(b)). Consider Fig. 1(a), Fig. 3(a) and
Fig. 3(b) collectively, it shows that despite the rare decline of
the estimation error, i.e., error(8?, ), during Stage I, the size of
the signal component, i.e., ap, and oy, foreachi =1,...,s,
exponentially increase and the signal component becomes
dominant component at the end of Stage I. Furthermore, the
exponential growth of the ratio ap, /B, (tesp. ag,/Bz,) for
eachi =1,..., s isillustrated in Fig. 3(c) (resp. Fig. 3(d)).

IV. PROOF OF THEOREM 1

In this section, we prove the main theorem by investigating
the dynamics of the iterates of Wirtinger flow with random
initialization. The steps of proving Theorem 1 are summarized
as follows.

1) Stage I:

¢ Dynamics of population-level state evolution. Pro-
vide the population-level state evolution of &, (28a)
and 3., (28b), &, (29a), B, (29b) respectively, where
the sample size approaches infinity. We then develop
the approximate state evolution (31), which are remark-
ably close to the population-level state evolution, in the
finite-sample regime. See details in Section IV-A.

¢ Dynamics of approximate state evolution. Show that
there exists some 7., = O(slog(max {K, N})) such
that error(x 7, 2) < v, if an, (18), Bn, (19), g, (20)
and (g, (21) satisfy the approximate state evolution
(31). The exponential growth of the ratio ap,/fh,

1141

and o, / B, are further demonstrated under the same
assumption. Please refer to Lemma 1.

® Leave-one-out arguments. Prove that with high prob-
ability ap,;, Bh,, 0, and [, satisfy the approximate
state evolution (31) if the iterates {z;} are indepen-
dent with {a;; }. Please refer to Lemma 2. To achieve
this, the “near-independence” between {z; } and {a;; }
is established via exploiting leave-one-out arguments
and some variants of the arguments. Specifically, the
leave-one-out sequences and random-sign sequences
are constructed in Section IV-C. The concentrations
between the original and these auxiliary sequences are
then provided in Lemma 4-Lemma 9.

2) Stage II: Local geometry in the region of incoherence
and contraction. We invoke the prior theory provided
in [27] to show local convergence of the random initialized
Wirtinger flow in Stage II.

Claims (22) and (23) are further proven in Section IV-F.

A. Dynamics of Population-Level State Evolution

In this subsection, we investigate the dynamics of population-
level (where we have infinite samples) state evolution of ap,
(18), Bn, (19), ag, (20) and B, (21). Then, we derive the
approximate state evolution in the finite-sample case from the
population-level state evolution. The procedure of derivation is
based on the assumption that the difference between the approx-
imate state evolution and the population-level state evolution is
sufficiently small. This assumption is identified in Appendix B.

Without loss the generality, we assume that x; = ¢;e; for
i=1,...,s,where0 < ¢; < 1,7 =1,...,saresome constants
and kK = i‘li’; gj , and e; denotes the first standard basis vector.
This assumption is based on the rotational invariance of Gaussian
distributions. Since the deterministic nature of {b,}, the ground
truth signals {h;} (channel vectors) cannot be transferred to a
simple form, which yields more tedious analysis procedure. For
simplification, forz = 1, ..., s, we denote

and (24)

as the first entry and the second through the N-th entries of
x!, respectively. Based on the assumption that Z; = ¢;e; for
i=1,...,s,(20) and (21) can be reformulated as

L ~t
Qpt = Ty

$§1 wﬁl = [9C§j]2§j§N

and fge = ||Z7, ||, - (25)

To study the population-level state evolution, we start with
considering the case where the sequences {z!} (refer to (11))

are established via the population gradient, i.e., for¢ = 1,...,s,
t
R e | e )
t+1 | — t| ! ) (26)
i i V. F(2)
T;
1313

where V. F(2) :=E[Vh, f(h, )] = ||2;]3h; — (21x;)hi,
Ve, F(2):=E[Va, f(h,z)]=||h:|2x; — (h}'h;)Z;. Here, the
population gradients are computed based on the assumption that
{z;} (resp. {h;}) and {a;;} (resp. {b;}) are independent with
each other. With simple calculations, the dynamics for both the
signal and the perpendicular components with respect to !,
i=1,...,sare given as

@ e
it =1 —-n)ah +n—=—h;h (27a)
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= (1)l
Assuming thatn > 01is sufficiently small and ||h; |2 = [|Z;]|2 =

¢ (0 < g <1)fori=1,...,s and recognizing that ||ﬁl||§ =
ait_ + ﬁit_, we arrive at the following population-level state

(27b)

evolution for both ar,: and f,::

Chaht

Qgtr = (1= n)lg; + 1 &+

(28a)

Barrr = (1= 1m)By:. (28b)

The population-level state evolution for both &p,: and Bhgi

qlamf

&h;Jrl = (1 — )Oéht +nﬁ (2921)

Bt = (1= 1)Bn:- (29b)
In finite-sample case, the dynamics of the randomly initialized
Wirtinger flow iterates can be represented as

lhﬂ _ {hﬁ —n/nxzavhﬂz)]

t+1
z, =

;™ i = /|3 Va, F (2)

vhiF (Z))

B [n/nwﬂ@ (Vh,f (2) -

n/Ihill3 - (Va, f (2) =

We would derive the state evolution in the finite-sample case
based on the update rule (30). The finite-sample state evolution
is similar to the population-level state evolution (28) and (29)
except for the perturbation terms which come from the last term
in (30). Specifically, under the assumption that the last term in
(30) is well-controlled, which will be justified in Appendix B,
we arrive at the approximate state evolution:

] . (30)

o 1 N4 Vnt api (1 = ppt) qi Qg
41 = - SRR ¢ —Pht) 53
" a2, + B2 ) M2, 1 2,
(31a)
N4 Pht
1= | 1— _ t 31b
Bhiﬂ ( n+ o2, + 5it> Bt (31b)
« Lo B2} (1 — )T
t+1 = — ——5— t — t)—S————5,
mi+ n aif +ﬂif @] n pmi aif +ﬁif
(31c)
Nqi Pyt
Borrt = | L =0+ o | B, (31d)
° ht + ﬁht !

where {¥: }, (gt }. {9ne } (a1, {on: } and {pg: } represent
the perturbation terms.

B. Dynamics of Approximate State Evolution

To begin with, we define the discrepancy between the estimate
z and the ground truth 2z as the distance function, given as

1/2
dist(z, z) (Z d1st (zi, 24 ) ,

(32)

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

where  dist®(z;, Z;) = ming,e c([| 25 hi — hil3 + losm; —
Z;||2)/d; fori =1,...,s. Here, d; = ||| + ||Z;]|2 and each
o is the alignment parameter. It is easily seen that if ay,: (18),
Bt (19), age (20) and Sy (21) obey

r— ) < d t
|Oéhi QZ| - 2:‘4,\/§ an lBh - 25[
Y
 — il < d fp < = 33
fori=1,...,s, then dist(z, Z) < . Moreover, based triangle

inequality, there is error(60, 0) < dist(z, z) < ~.

In this subsection, we shall show that as long as the ap-
proximate state evolution (31) holds, there exists some constant
T, = O(slogmax { K, N}) satisfying condition (33). This is
demonstrated in the following Lemma. Prior to that, we first list
several conditions and definitions that contribute to the lemma.

¢ The initial points obey

4%

d 34
Ry = KlogK and 0zt 2 N log N (342)
\Ja? 2 e |1— 1 i 34b
Ao + Bh? log K T log K log K % (340)
1
2 2 1——71 i 34
gp + Fay € [ ogN | logN N}q’ (34c)
fort=1,...,s
® Define
T, := min {t : satifes (33)}, (35)
where v > 0 is some sufficiently small constant.
® Define
@
T := min{t : min R > c; ,
i g log” m
0% /

i } (36)

g log® m

. . Qnt . Ot ,
T :=min { ¢ : min — > ¢cg, min — > cg o, (37)
L) g i

for some small absolute positive constants cz, ¢, cs,
cg > 0.

e For(0 <t <T,ithas
Qpt Bh
hi <2, £t <1.5 d
2\/K e K = 6, =10 an
Ozht+1/ozht
>1+cm,i=1,. (38)
ht+1/6ht
Ot t
1<2 c6 < B‘””igm and
2 log qi
« t+1/0[ t
>1+C67],'L—1 S, (39)

ﬂ '+1 /59}

for some constants cs, cg > 0.

Lemma 1: Assume that the initial points obey condition (34)
and the perturbation terms in the approximate state evolution
(31) obey maX{W}hﬂv |wwi|7 |90h§|a |<pw§|ﬂ |pwi‘} < bgﬁv for
1=1,...,s5,t=0,1,... and some sufficiently small constant
c> 0.
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1) Then for any sufficiently large K, N and the stepsize ) > 0
that obeys 7 < s~ 1, it follows 7%, < slog(max {K, N})
and (38), (39).

2) Then with the stepsize 1 > 0 following 1 < s™*, one
has that 77 < T, < T, < slogmax{K,N}, To —T1 <
sloglogm, T, —Ts < s.

Proof: The proof of Lemma 1 is similar to the proof of

Lemma 1 in [34]. |
Remark 1: The key point of proving this lemma is to deal
with complicated approximate state evolution (31) which in-
volves the relationship between o: and ayp;:. To address this
issue, we approximate . in (31a) with a,+ by multiplying
proper constant and approximate aj: in (31c) with a,: by
multiplying proper constant. The proper constants are derlved
by computing the relationship between «y,+ and oy, based on
(31a) and (31c). ' '
The random initialization (15) satisfies the condition (34) with
probability at least 1 — O(1//log min{K, N'}) [34]. Accord-
ing to this fact, Lemma 1| ensures that under both random
initialization (15) and approximate state evolution (31) with the
stepsize < s~ 1, Stage I only lasts a few iterations, i.e., T, =
O(slogmax{K, N}). In addition, Lemma 1 demonstrates the
exponential growth of the ratios, i.e., aht+1/ahf7/6ht+l/ﬂht

which contributes to the short duration of Stage L

Moreover, Lemma 1 defines the midpoints 7} when the sizes
of the signal component, i.e., Qpt and o, i =1,..., s, become
sufficiently large, which is crucial to the followmg analy51s In
particular, when establishing the approximate state evolution
(31)in Stage I, we analyze two subphases of Stage I individually:

e Phase 1: consider the iterations in 0 < ¢t < 717,

¢ Phase 2: consider the iterations in 7} <t < T,
where 77 is defined in (36).

1

C. Leave-One-Out Approach

According to Section IV-A and Lemma 1, the unique
challenge in establishing the approximate state evolution
(31) is to bound the perturbation terms to certain order,

o |Untls [at |, [one s [@atl; [one s [Pt | < 1/logm for i =
1 ,s. To achieve this goal, we exploit some variants of
leave one out sequences [27], [34] to establish the “near-
independence” between {z!} and {a;}. Hence, some terms
can be approximated by a sum of independent variables with
well-controlled weight, thereby be controlled via central limit
theorem.

In the following, we define three sets of auxiliary sequences
{2001, {ztsen) and {28521 respectively.

e Leave-one-out sequences {zt’(l)}tzo: Foreachl < <m,
the auxiliary sequence {z"()} is established by dropping
the [-th sample and runs randomly initialized Wirtinger
flow with objective function

IKIOESY ‘Zb“h eHay -

Ju#El =1

(40)

Thus, the sequences {zf’(l)} (recall the definition of z;
(11)) are statistically independent of {a;; }.

® Random-sign sequences {z"*8"},~(: Define the auxiliary
design vectors {a;5"} as

e Fiz‘aij,l } ’

v Qij, 1

(41)
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where {¢;;} is a set of standard complex uniform ran-
dom variables independent of {a;;}, i.e., &; Hid u/|ul,
where u ~ N(0, 1) +1N(0, 3). Moreover, with the corre-
sponding &;;, the auxiliary design vector {b3*"} is defined
as b3*" = &;;b;. With these auxiliary design vectors, the

sequences {z°¢"} are generated by running randomly
initialized Wirtinger flow with respect to the loss function

fE ) =3

2
s
z : bsgn Hh H sgn bsgn Hh H sgn

a;; a;; (42)
i=1
Note that these auxiliary design vectors, i.e., {a;5"},
{b3*"} produce the same measurements as {a;;}, {bJ}:
H - —
b;gn h 5BH Sgn = b]thwlz—ia’l_] = q;’aij,lblj—'{hia 1 S
1<s,1 g J § m.
Note that all the auxiliary sequences are assumed to have the
same initial point, namely, for 1 <1 < m,

{2} = {200} = {208} = (0smm )},

for

(43)

In view of the ambiguities, i.e., h;Z; = %ﬁi(wa’:i)"', sev-
eral alignment parameters are further defined for the sequel

analysis. Specifically, the alignment parameter between z;’ L0 -

~tT ~
Ay (DT x! DN Tandz! = [h, @'7]", where hi = w—,hi and
Z; = wla!, are represented as
2
O e 1 g
wi,mutual arg min PRt tx 10
weC ) 2
t,(1) ¢t
+ wa —wiz;|| 44)
2
. . ~ ()T
for ¢=1,...,s. In addition, we denote zz’(l) = [h;
DT where
() 1 (1) () L) 60
h; == IX0) *hi and ;" = Wi
( 7, mutual
(45)
Define the ahgnment parameter between z!*&" = [pl"E" T
%8 T and 2! = (AT &' T]T as
2
t — ; L t,sgn
Wj sgn ‘= argmin ||—Ah;
weC 4 2
+ [lwmbE — wtat2, (46)
, . lsg - tsgn T
for i=1,...,s. In addition, we denote 2" %" = [h;™*"
&°8" 1T where
y tsgn 1 t,sgn ~t,sgn | t t::g,n
hi = mhl and ZT; = w; ,sgn Z; (47)
i,8gn

D. Establishing Approximate State Evolution for Phase 1
of Stage 1

In this subsection, we will justify that the approximate state
evolution (31) for both the size of the signal component and the
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size of the perpendicular component is satisfied during Phase 1.
In particular, we establish a collection of induction hypothe-
ses which are crucial to the justification of approximate state
evolution (31), and then identify these hypotheses via inductive
argument.

To begin with, we list all the induction hypotheses: for 1 <
1 <s,

max dist ( & (Z),Et»)

1<i<m ¢

1 t s,uQ,%\/lrnax{K7 N}log®m
< (Bht +8zt) (1—|— ) Cy

slogm m
(482)
max dist (h h! 2l h h; ) hall5*
1<i<m
Kl
< an ( ) 0, 2RV I logTm (480)
i slogm
max dist ( L0 T, 1)
1<i<m
Nl
< ay ( ) 0, 212V N log P (480)
i slog
max dist (ht sen :)
1<i<s
2k2K 1
i slogm
max dist(z;**", Z})
1<i<s
t 2,2 N | 8
< o (1 N > Oy | S22 N Togmm (48e)
i slogm m
l ,sgn -~t,sgn, l
. f() hzsg +hzsg ()H
1<i<m 2
1 t 2 K1 16
< ap: <1+ ) 0, VK log T (48)
i slogm m
max ||z} — ﬁ?(l) — &% + a?sgn)(l) H
1<i<m
1 t 2 N1 16
< ag (1 + > 0,20V Nlog . (48)
i slogm m
cs < ||l [l < Cs, (st
1 < S o m. s
£ i '
x|, < 5agey/log® m, (“48)

where C1, ..., (5 and c¢5 are some absolute positive constants

and Z;, x;, h;, h; are defined in Section IV-C.

Specifically, (48a), (48c), (48d) and (48e) identify that the
auxiliary sequences {z“(} and {z"*8"} are extremely close
to the original sequences {z'}. In addition, as claimed in (48f)

and (482), ﬁ: — k" (resp. & — ") and h, &) }Alt sen, (1)

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

(resp. :if’(l) — i:’sgn’(l)) are also exceedingly close to each other.
The hypotheses (48h) illustrates that the norm of the iterates
{h!} (resp. {x!}) is well-controlled in Phase 1. Moreover, (481)
(resp. (48j)) indicates that Qpt (resp. awg) is comparable to
Itz (esp. [[at]l2).

We are moving to prove that if the induction hypotheses (48)
hold for the ¢-th iteration, then ay,,, Bh,, az, and [, obey
the approximate state evolution (31). This is demonstrated in
Lemma 2.

Lemma 2: Suppose m > Cs?p? max{K, N}log'm for
some sufficiently large constant C' > 0.Forany 0 < ¢ < T} (36),
if the ¢-th iterate satisfies the induction hypotheses (48), then for
i=1,...,s, with probability at least 1 — ¢; m™" — cyme~ 2V
for some constants v, c1, co > 0, the approximate evolution state
(31) holds for some |7/}hf|a |ww1|v |90h: ’ §| <
1/logm,i=1,...,s.

Proof: Please refer to Appendix B for details. |

Remark 2: Due to the “incoherence” between multiple
signals, extra technical arguments are required to be de-
veloped. Take the term Jﬂ in (68) as an example,
we present Jn = hkb b h-aijyl*Qk;aij’l + D0 D ke hg
bjbj hiakj,l qra;j,1- Therein, the i.i.d. random variable a;
ensures the statistical property E(aija};j) =0 for k # ¢ that
facilitates the proof. This technique is also exploited in the
following lemma, which is the cornerstone of the theoretical
analysis in the BlairComp problem.

In the sequel, we will prove the hypotheses (48) hold for

Phase 1 of Stage I via inductive arguments. Before moving
forward, we first investigate the incoherence between {z!},

{x!°8"} (resp. {h!}, {h[*®"}) and {a;;}, {a5"} (resp. {b;},
{ngn})

Lemma 3: Suppose that m > Cs?u? max{K, N}log® m
for some sufficiently large constant C' > 0 and the ¢-th iterate
satisfies the induction hypotheses (48) for ¢ < Tp (36), then with
probability atleast 1 — ¢c; m™" — cyme~ 2™ for some constants

v,cq,co > 0,

L max  fan@] - @3 S viogm, | (49a)
L max, e L[S Viegm (49b)
L max  fag@ @yt S Viegm, - @90)
L max fag @@t S Viegm,  (49d)
L nax, a2 S Viogm, - @9e)
s [olh] Il S s tog® m. (502)
e B[R IRE S g 00
e OB IR S

Proof: Based on the induction hypotheses (48), we can
prove the claim (49) in Lemma 3 by invoking the tri-
angle inequality, Cauchy-Schwarz inequality and standard
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Gaussian concentration. Furthermore, based on the induction
hypotheses (48), the claim (50) can be identified accord-
ing to the definition of the incoherence parameter in Def-
inition 1 and the fact ||bj|2 = /K /m. Moreover, to ad-
dress the deterministic property of b, and facilitate the proof
of (50), we divide {b;}i<j<m, into consecutive bins in or-
der to exploit the random property of a;s within each bin.
Here, we assume each bin contains A xpoly logm con-
tiguous vectors. For instance, for [ =1,...,m,i=1,.

to bound the term [by 7", Y5 bjb hk(a:,C ak]a”azf -

||ac,hg 12)|, we consider the consecutive vector in individual bins,

~t
given by |b 35, S Dby sy (2 angai, gl
||a/,',hC 2)], foreach 0 < ¢ < m — A, which enables to exploit the
randomness within each bin. |

Now we are ready to specify that the hypotheses (48) hold for
0 <t < T (36). We aim to demonstrate that if the hypotheses
(48) hold up to the ¢-th iteration for some 0 < ¢ < T7, then they
hold for the (¢ + 1)-th iteration. Since the case for ¢ = 0 can
be easily justified due to the equivalent initial points (43), we
mainly focus the inductive step.

Lemma 4: Suppose the induction hypotheses (48)
hold true up to the ¢-th iteration for some ¢ <7}
(36), then for ¢=1,...,s, with probability at least
1—eym™ —cyme 2N for some constants v,c1,c9 >0,
there is maxj<j<m dlst( s (l),EtH) < By + Bytr)-
(L4 spogm) 101 - 2 maX;K’N}log ™ holds m > Csu’k

\/ max{K, N}log®m with some sufficiently large constant

C > 0 as long as the stepsize > 0 obeys < s~ and C; > 0

is sufficiently large.

In terms of the difference between x! and mtf(l) (resp. h! and

h 4. )) along with the signal direction, i.e., (48b) and (48c), we
reach the following lemma.

Lemma 5: Suppose the induction hypotheses (48) hold true
up to the ¢-th iteration for some ¢ < T3 (36), then with probabil-
ity at least 1 —c; m™" — cyme™ N for some constants v, ¢,

Co > 0,
max dist (h htJrl (l) ) | hill5*

1<i<m
1\ 2ky/K log™®
< oy (1+ ) G, PRV 208 T 5y
i slogm m
max dist ( L ), Eﬁl)
1<i<m
1 t+1 2, /Nlogl3
< Qe (1 + ) Cy " )
i slogm m

holds for some sufficiently large C'y > 0 with Cy > C)4, pro-
vided that m > Csp?kmax{K, N}log'?m for some suffi-
ciently 1large constant C' > 0 and the stepsize 1 > 0 obeys
n=st.

Proof: Please refer to Appendix C for details. |

The next lemma concerns the relation between h! and h'*#",
i.e., (48d), and the relation between x! and scﬁ’sgn, ie., (48e).

Lemma 6: Suppose the induction hypotheses (48) hold true
up to the ¢-th iteration for some ¢ < T3 (36), then with probabil-
ity at least 1 — ¢; m™" — cyme 2 for some constants v, ¢y,

1145

CQ>0,

) ~t41
max dist ht+1 " h, )
1<i<s

t+1 22K ] 8
<apin (1+ ) Cyy | SR og - oa
slogm m

t+1,sgn ~t+1)

max dist ( «;
1<i<s

1o\ 252N log®
<o <1+ ) Oy 2208 T (53
i slogm m

holds for some sufﬁcwntly large C'5 > 0, provided that m >
Csp?k? max{K, N} log®m for some sufficiently large con-
stant C' > 0 and the stepsize 7 > 0 obeys 17 < s~ 1.

~t(0)

We still need to characterize the difference h: —h;

~t,sgn ,sgn, (1
R B0 e (486, and the difference 2 — 201 —
ZoE 4 %E’Sgn’(l), i.e., (48g), in the following lemma.

Lemma 7: Suppose the induction hypotheses (48) hold true
up to the ¢-th iteration for some ¢t < T (36), then with probabil-

v

ity at least 1 —c; m™" — cyme™ N for some constants v, ¢,
Co > 0,
~t+1 ~t+1,( ~t+1,sgn ~t+1,sgn, (I
max |h; —h; —h; +h; ()H
1<i<m 2
1N st Klog®m
<o (14 o Lt it S LT VP
slogm m
max Haﬂ, _ £:+17,(l) _gttlsen -’5§+1’Sgll’(l)H
1<l<m 2
1 L 542 /Nlog®m
< age (1 + ) V08 T (sap,)
i slogm m

holds for some sufficiently large Cy > 0, provided that m >
Csp? max{K, N}log® m for some sufficiently large constant
C > 0 and the stepsize > 0 obeys 77 < s~ L.

Remark 3: The arguments applied to prove Lemma 4-
Lemma 7 are similar to each other. We thus mainly focus on
the proof of (52) in Lemma 5 in Appendix C.

E. Establishing Approximate State Evolution for Phase 2
of Stage 1

In this subsection, we move to prove that the approximate
state evolution (31) holds for 77 <t <71, (T), and T} are
defined in (35) and (36) respectively) via inductive argument.
Different from the analysis in Phase 1, only {z% ()} is sufficient
to establish the “near-independence” between iterates and design
vectors when the sizes of the signal component follow a,
oz, 2 1/logm inPhase 2 (according to the definition of 77). As
in Phase 1, we begin with specifying the induction hypotheses:
forl <i¢<s,

max dist ( (l),zf) < (Brt + Bat) (1 + )

1<l<m slogm

suzn\/max{K, N}log'®m

X CG
(55a)

cs < ||k (55b)

2’|33

S 057
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From (55), we can conclude that one has

B 12t5t <
L max el - @] S Viegm, (56)
H7t . 7t < I 2
e |plR] RS S o (5T

with probability at least 1 — ¢; m™" — cyme 2V for some
constants v,cy,cp > 0 during 77 <t < T, as long as m >
Csp?kK log® m.

We then move to prove that if the induction hypotheses (48)
hold for the ¢-th iteration, then ap,,, Sh,, az, and B, obey
the approximate state evolution (31). This is demonstrated in
Lemma 8.

Lemma 8: Suppose m > Cs?p?k* max{K, N} log"? m for
some sufficiently large constant C' > 0. For any 77 <t < T,
(T1 and T, are defined in (35) and (36) respectively), if the
t-th iterate satisfies the induction hypotheses (48), then for
i=1,...,s, with probability at least 1 — ¢; m™" — ¢;me= 2
for some constants v, ci,ce > 0, the approximate evolution
state (31)h01df0rsome |¢h§ |7 |wmf |: |(th |7 |§0mf |7 ‘phi ‘v ‘pmf | <
1/logm,i=1,...,s.

It remains to proof the induction step on the difference
between leave-one-out sequences {z"()} and the original se-
quences {z'}, which is demonstrated in the following lemma.

Lemma 9: Suppose the induction hypotheses (48) are valid
during Phase 1 and the induction hypotheses (55) hold true from
T'-thto the t-th forsome ¢t < T, (35),thenfori = 1,..., s, with
probability atleast1 — ¢y m™ — cyme™ 2 N for some constants
v,c1,co >0,

t+1
. t,(1) St) < ' t :
max dist (z. ,zl) < (ﬁhiﬂ + ﬂ%“) <1 + slogm)

1<l ‘
spu?ry/ K log'®m

m

XC(;

(58)

holds m > C'sp?kK log® m with some sufficiently large con-
stant C' > 0 as long as the stepsize > 0 obeys n =< s~ ! and
Cg > 0 is sufficiently large.

Remark 4: The proof of Lemma 8 and Lemma 9 is inspired
by the arguments used in Section H and Section I in [34].

F. Proof for Claims (22) and (23)

Combining the analyses in Phase 1 and Phase 2, we complete
the proof for claims (22) with 0 <¢ < T, (35). Consider the
definition of 7', (35) and the incoherence between iterates and
design vectors given in (56) and (57), we arrive at

z —w| <—L 59
&~ =, < e >9)
dist(z77, 2) < v (60)
error(6877,0) < v (61)
HaD @i st < o/
1§i;2?2}§ﬂl(%jml ”mz ”2 ~ IOng, (62)
HE LR 15 < 2P 1002
1§igr2§1i§jgm’bj h; lh; "llz™ < mlog m, (63)

which  implies <i<

“\};Lim, based on the inductive hypothesis (55a). Based
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on these properties, we can exploit the techniques applied
in [36, Section IV] and the triangle inequality to prove that for
t>T,+1,

error(0",0) < dist (iL‘t, :E) <~ (1 — m%)tin , (64)

where the stepsize 7 > 0 obeys 7 < s~1 as long as m >
s2u?k* max{K, N} log® m. It remains to prove the claim (22)
for Stage II. Since we have already demonstrate that the ra-
tio oy / ﬂ,ﬁ increases exponentially fast in Stage I, there is
ahi >__ 1
’8;171 = V2Klog K
an& Lemma 1, one has «

(1 + c3n) ™. By the definition of T} (see (36))

r, < 3,7, < 1 and thus
ml ﬁh”

Oéhrl

Bh?

= 1.

(65)

When it comes to ¢t > T, based on (64), we have

Qpt 1

Brt — ~ VKlog K
where (i) is derived from (65) and the fact that v is a constant,
(ii) arises from T, — T < 57! based on Lemma 1, and the last

inequality is satisfied as long as c3 > 0 and 7 < s~ . Likewise,
we can apply the same arguments to the ratio o, /3¢, thereby

(1 + c4m)t. Claim (23) can be
Bt

T2 2 <
At +ﬂmt

1 —dist(z%, 2)

14 c3n)’
dist (zt, 2) (1+can)’,

Qo t
. ot 1
concluding that Bor P Nea T

further derived via the equation RMSE(z!, ;) =

@
sar\-

Q

V. CONCLUSION

In this paper, we proposed a blind over-the-air computa-
tion scheme to compute the desired function of distributed
sensing data without the prior knowledge of the channel in-
formation, thereby providing low-overhead data aggregation
in IoT networks. To harness the benefits of computational
efficiency, fast convergence guarantee, regularization-free and
careful initialization-free, the BlairComp problem was solved
by randomly initialized Wirtinger flow with provable guarantees.
Specifically, the statistical guarantee and fast global convergence
guarantee concerning randomly initialized Wirtinger flow for
solving the BlairComp problem were provided. It demonstrated
that with sufficient samples, in the first tens iterations, the
randomly initialized Wirtinger flow enables the iterates to enter
a local region that enjoys strong convexity and strong smooth-
ness, where the estimation error is sufficiently small. At the
second stage of this algorithm, the estimated error experiences
exponential decay.

APPENDIX A
PRELIMINARIES

For a;; € CN, the standard concentration inequality gives
that, fori =1,...,s,

la;j1| = max ‘a';ja’c| < 5y/logm (66)
1<j<m

max
1<j<m
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with probability 1 — O(m~19) [36]. In addition, by applying the

standard concentration inequality, we arrive at, fori = 1,...,s,
max [lag;|, < 3VN (67)
1<j<m

with probability 1 — C’exp(me K) for some constants,
¢,C" > 0 [36].

Lemma 10: Fix any constant cg > 1. Define the population
matrix V2 F(z) as

|lzill31x  hizf —hz] 0 hiz]
a b k] ||h)3 z;h, 0
0 @h)H |2k (Rt —Riat)H

(hi] )" 0 (@hl-@h)H  [hi3Ix
Suppose that m > ¢152u? K log® m for some sufficiently
large constant c¢; > 0. Then with probability exceeding 1 —

(9(771710)7
|k~ 0927 (2)) - Tk — aV2F ()]

2 2K1
< ,/wma}({uzng,l}
m

and  [|V2f (2)|| < 5|23 +2

hold simultaneously for all z obeying maxi<;<s,1<i<m |a'i"l x| -

-1 -1
H:EiHQ < Vlogm and maxi<i<s1<j<m |bh;| - thHQ <
£ o2 i ¢ -
NG log® m, provided that 0 < n < max(2TE1] for some suf:
ficiently small constant co > 0.

APPENDIX B
PROOF OF LEMMA 2

According to the Wirtinger flow gradient update rule (12b),
and the expression ajx) = x}aj;, +ajl; @}, andreformu-
late terms, we arrive at

~t+1 ~t / / /
T =xn +ndia —nJie —nJis, (68)
where
m S ‘
_H H~
Jir = § § hkbjbj hiakj,l*Qkaij,l,
j=1k=1
m S tH :
I’ Hz w~t
Jig = E E hy bjbih;ag; "7 a1,
j=1k=1
N ~tH ¢
2 :2 :N Hz® H t
Ji3 = h’k bjb] hiakj}iazuaij’l,
j=1k=1
~t
r_ 2
n = 77/Hhi||2'

We will control the above three terms J;1, J;2 and J;3 separately
in the following.
* With regard to the first term J;, it has 270, 377,

—H HNt s —H m
Qrhy bbb hyag; " aija =5y akhy Q275 akjn”

aij’lbjb;')lni:. According to Lemma 11 and Lemma 12,

. “Ht . :
there is J;; = ¢;h; h; 4+ r1, where the size of the remain-

- . SHot
ing term ry satisfies [r1| < 305 geh; hiy/ Elogm <

2 —Hzt -
\/ X logm - hi'h,, based on the fact that ||As)2 < 1

~t
and |h||? S1fork=1,...,s.
Similar to the first term, the term .J;5 can be represented as
~t -
Jia = ||h;|137%, + ro, where the term r;5 obeys

S
~tH~t |K 2 K ~
ra| S \%I kz_lhk hi\/m logm < \/ logm|xfl|.

m

(69)

e For the last term J;3, it follows that

m S
~tH ~t
Hpt H =t
E hy bjbjh;ay; @ aij,
j=1k=1

frr [ & ~t
= Z h’k Z aij,lagj7La:§Lbjb? h’i' (70)
k=1 7j=1

t,sgn
i

By exploiting the random-sign sequence {x
decompose

}, one can

m

m
y H ~t aH B H stsgng zH
E amlakj#a:ubjbj *E @ij,1Q; T;) bjijr
Jj=1

Jj=1
H ~t ~ t,sgn H
Z Aij,1Qj, | (wu — ;) ) b;bj'. (71)

Note that amlagj lzi:ﬁfgnbj b]"-| in (71) is statistically inde-
pendent of &;; (41) and b5*"b%¥" ' = b;b!. Hence we can
consider Y. | a;j1afl; &7 b;bY as a weighted sum of
the &;;’s and exploit the Bernstein inequality to derive that

m
H t,sgn H
Z &ij (a’ij’lakjLwiL b;b; )

j=1

<V Vilogm 4+ Bylogm (72)

with probability exceeding 1 — O(m~1?), where V; :=
S laija Plall 2702 b0 2, By i= maxi<jom

|aijllal, &;°8"(|b;b%]. In view of Lemma 17 and
the incoherence condition (49d) to deduce that with

probability at least 1 — @(mﬂo),

m
ts 2
Vi S (D laial?|afll; 27" b;b!
j=1

K 2
2 -t
513 5 o &=l

il

with the proviso that 7 > max{K, N} log® m. Further-
more, the incoherence condition (49d) together with the
fact (66) implies that By < £ logm||@] 7" (|. Substitute
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the bounds on V3 and B back to (72) to obtain

Zam 1ak]ﬂ3t b bH S Klogm H tsgn”z
(73)
as long as m > K log® m. In addition, we move to the
second term on the right-hand side of (71). Let u =
Z;n 1 @ij, 1ak zbjb] , where z € CN-1 is independent
with {a; } and ||z||2 = 1. Hence, we have

> aijaall, (® — @7 b,bY
j=1
Klogm
t,sgn ~t,sgn
< ||u||2 szl_ mzlg HQ ~ 7| Z; | m1lg |27
(74)
with probability exceeding 1 — O(m 1Y), as long as that

m > K log® m. Here, the last inequality of (74) comes
from Lemma 13. Substituting the above two bounds (73)
and (74) into (71), it yields

Klogm || t.sgn

H ot H
Zaij,lakj,qubjbj S ||2

j=1
| T - 8, @
Combining (70) and (75), we arrive at
Tl £ TR g,
A T

by exploiting the fact that ||f~1,2||2 <1 for k=1,.
and the triangle inequality ||} " |2 < [|Z}, |2 + ||:cu
P t bg,n ||

Collectmg the bounds for J;1, J;2 and J;3, we arrive at

Tt =3 0T — 0 T — 0 T3

—H ~t
= (1—n)zl +ngh; B/ |h;5+ R, (7

where the residual term R follows that

IR| S —1

K logm (h i+ |7 |+ |20,
713

+ H§ZL vf egn“ )
(78)

Substituting the hypotheses (48) into (77) and in view
of the fact age = (x', &) /||Z;||2 and the assumption that

|hill2 = ||Zi]|2 = q; fori = 1,..., s, one has

Oéw:+1

CHot 2K
=(1—n)ag + n”qih':hi +0 (77"\/ - log mam§>

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

2 K 2 K
o (i) iy v )
m v m i
L\, [N log"m
slogm s m

+0 nat<1+

77%'7%% qiaht
— (1= s , _1Thi
( n+ait+ﬁit>am’+n( pm1)aht+ )
(79)
where 7" = /(g || hi[13), for some [¢ge |, [pat| < 15557
provided that
s2K logm < i (802)
zZm logm’
s2K logm i
T8« I ay, (80b)

am i logm i

1 t su2N log®m i
1+ Cs K 3 & K a
slogm g;im logm

where the parameter ¢; is assumed to be 0 < ¢; < 1.
Therein, the first condition (80a) naturally holds as long as
m > s2K log® m. In addition, the second condition (80b)
holds true since B¢ < [[®![l2 < cgey/log” m (based
on (48j)) and m > 52K log m. For the last condition
(80c), we have for t <T) = O(slogmax{K,N}),
(1+ )t =O(1), which  further  implies

sp,ZNlog m < Cs sp,QNlog m
m

long as number samples

, (80c)

slogm

( s log m
as

logm
obeys m > su® N log'” m. This concludes the proof.
Despite it turns to be more tedious when proving (31a), similar
arguments used above can be applied to the proof of (31a).
Specifically, according to the Wirtinger flow gradient update
rule (12a), the signal component (ﬁi, h!) can be represented as
follows

Ht+1 —H-t
B'h, T =R, -
;13

m S

Hpt ~tH ~t

XZ( E b; hkack akj—yj)h b; a” i
j=1 Nk=1

Expanding this expression using aﬂjw}; :xzuazﬂ +

Ho ot ; ;
ay; @, and rearranging terms, we are left with

_y~t+1 H~
h':h?r = h?h: —n;Liv + 1 Lia + 0 L3, (81)
where
Ly = Z l_l':bjb hkwk akjaH i,
j=1k=1
m S —H _
LiQ = Z hi bjb?hkakj71qkaij71 * t.%;l,

1k=1

J
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29,55
Lis= le ; Rt hal] Lot a1 < I 50| (85)
- e It remains to bound the first term in (83). To achieve
s = /1% 2. this, we first utilize the decomposition aH (@ —zb (l))
Here, L;;, L;> and L;3 can be controlled via the strategies aij,l*(fil -z, ()) + a” l(ih -z L( )) to obtain that

exploited to control J;1, J;2 and J;3. The proof of (31d) can

be derived based on the same argument. ;

el (Va,f(z(r))dr)

7 a?*“)]

~t _ ~t,()
T; — T,
APPENDIX C
PROOF OF (52) IN LEMMA 5 =wy (1) + w2 (1) + w3 (1),
By applying the arguments in [27, Appendix F], it yields that where
t+1,(0) =t+1 m
dis (0. 27) wi (r) = 0 B ha(r) Paggaag, (7 - 300)),
<K | max ‘ i s } lTkl?2,  (82) m N
it wa (1) = [bYhi(7)Pas1alf | (-’Bﬁ - fEEf”) ;
where w! is the alignment parameter and Jj = wka:?rl =t
t,(1) t+1,(1) [ZON : m
W mutual T where w0, 18 defined in (45). According _ bHh, H b al (~¢ B A¢,(1))
to (17) and (45), we arrive at ws (7) ; yhi(r)agei(r)bjaag; (2 - 2 '
t t+1 t,(1) t+1,(1)
Wilip — Wi muwa i1 Based on Lemma 10, Lemma 14 and the fact ||b;||. =
gt st _ el (V f (,th) _ v, fO (,z\;,(l))) \/K/m, by exploiting the techniques in Appendix B,
i LY@ i g w1 (7), wa(7) and w3 (7) can be bounded as follows:
At ,()H ~ t, (1) (1
<Z biafz; " hkblauwk)b% a1, wi (7) = [ha(m)I3 (7 - 74"

- [s2p2 K logm .
where the stepsize ' = n/ Hh:H% It follows from the fundamen- +0 ( — (thl - 951'1( )

tal theorem of calculus [37, Theorem 4.2] that (86)

il il -
Klog? I
o [ T z -z |wa(7)| < W (‘ &t - wfi(l)H
Ty — T =0 (/0 e, Vy f(z(r)) d7-> Ti T m )
~t

%t o at,(l)
i ~t,(1) ~t,sgn At sgn (1) H )
a:l —

~ ~t+1,(1
FHL _ At+L0)

i

mzL
[( Z ~t, (l)Hbl kl/\t (1) h‘k blaklxk> thf (l)aZM] ’ (87)
H

(83) wy (r) = [ha(7)] (3 = 2 ) " @i(r)
where z(7) =Z'+7(2 &) —Z" with 0<7<1 and the Lo ’ Ft_ i?v(l)H (88)

Wirtinger Hessian with respect to x; is log® m I ol
D E with probability atleast 1 — O(m~19), provided that m >>

2 _
Vmif (Z) - [EH (DH)T] ) (84) M2K10g13 m.

¢ Combining the bounds (85) (86), (87) and (88), one has

with D =" [bhi|2aall, E =T biblh;- (ai;al} 1 o410

z;)T. L1 il
e We begin by controlling the second term of (83). f | (7)|2dr s2u2K logm
Based on (50a) and the hypothesis (48a), we obtain =1|1- 0— +0 |7 I :
() A0 h,
maxizicozizm AL IVl S 2 log? m. Il

il

voly Klog* m
K m
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Along with the standaId concentration  results (~t At,(l)> ol sp2log® m‘
I —x 2F e T
lafz! | < logm||at ]|, one has i '

az,(Z)H >
2

-],

~t (VH l
| < ht ® blakl/\t e hkblakzmk) tht‘ ! )all,l
k=1
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~t A1) ~tsgn stosen, (D)
+ ku L, X Xy )

1 ~t (D)
O (g 17 -2

H
1 s Jha(0)] (7 -2 0) @i(r).

0<r<1

By exploiting similar arguments in Appendix E in [34], we
can arrive at

dist ( B %fi”'l)

1 >tC sp?k/ N log' m
2

< (1=n+02) g <1+

slogm m
1 L sp2ky/Nlog™ m
< Qt+1 1+ —- Cy
i slogm m

for some |oo| < 1o provided that m > Csp®kN

log'? m for some sufficiently large constant C' > 0.

APPENDIX D
TECHNICAL LEMMAS

Lemma 11: Suppose m > K log® m. With probability ex-
ceeding 1—O(m ™), we have |Y7%,a;; aij1b;b5 —

Ig| < ,/%logm.

Lemma 12: Suppose m > Klog®m. For k+#i, we

have || Zg 1 0hj1 Qij, 1beHH % logm, || 27:1 | a1

llaij,1 b < /£ logm, with  probability —exceeding
1—0O(m10).

Lemma 13: Suppose m > K log®m and z € CN~1 with
|z|]]2 =1 is independent with {as;}. With probability ex-
ceeding 1 — O(m10), we have || Y7, ajj1af; | zb;b%(| <
\/% logm.

Remark 5: Lemma 12, Lemma 13 and Lemma 11 can be
proven by applying the arguments in [36, Section D.3.3].

Lemma 14: Suppose m > (u?/6%)N log® m. With prob-
ability exceeding 1—0(m™9), we have ||, [b5h|?
aijiaf | — IIh IIEIN 1]l < 8llRi]13, obeying maxi<i<p, [bf
hi| - thH2 <= log? m. Furthermore, there is |7,
ZZ:l bj71b']7'hiaijakj — ilINH 5 (5||hl||2, with probabil-
ity exceeding 1—O(m™1%), provided m > (1u/6%)s*N
log® m.

Proof: Please refer to Lemma 11 and Lemma 12 in [27]. B

Lemma 15: Suppose the sampling size m > su?
/N log? m, then with probability exceeding 1—0(m™1Y),
we have | Y, Y5, Ab b hiayal, — 3Ly

S 2 (0} 9 m .
< HTEE hil)3, obeying  maxi<icai<jem (Bl
(L3 P ~r10g m.

Lemma 16: Suppose the sampling size follows that m >
sp?/ N log® m. With probability exceeding 1 — O(m~19),
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we have ||, i Albbthiagal, — (AFR)Ix] <
MySoe ™ fonlogm|hi h;|, obeying max;<i<,, |bi'h;| - ||’_lZ'H27

\/% and max; <<, [b A - ||h,l-H271 < \/% log? m.

Remark 6: The proof of Lemma 15 and 16 exploits the same
strategy as [34, Section K] does.

Lemma 17: Suppose that a;; and b; follows the
definition in Section II. 1 <i<s,1<j <m. Consider
any €>3/n where n=max{K,N}. Let S:={z¢€
CN ! max)<jom |afi | 2| < B z]2}, where § is any value

obeying [ > c¢1y/logm for some sufficiently large constant
c1 > 0. Then with probability exceeding 1 — O(m 1Y), one

has
D [0 faiaPlag; 2706 — || zl2Ik| <el|z]2  for
all ze€ S, provided that m > ¢g max{s%nlog n, %

B?nlog? m}.
2) |Z;”=1 |aij’1|\a',;'ﬂz|bjb']7'| < €||z||2 for all z € S, pro-

vided that m > ¢o max{Z%nlogn, 1n log? m}.
Here, ¢y > 0 is some sufficiently large constant.
Proof: Please refer to Lemma 12 in [34]. |
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