
Tiny but Accurate: A Pruned, Quantized and Optimized Memristor
Crossbar Framework for Ultra Efficient DNN Implementation

Xiaolong Ma†1, Geng Yuan†1, Sheng Lin1, Caiwen Ding2, Fuxun Yu3, Tao Liu4, Wujie Wen5, Xiang Chen3, Yanzhi Wang1

1Northeastern University, 2University of Connecticut, 3George Mason University,
4Florida International University, 5Lehigh University

E-mail: 1{ma.xiaol, yuan.geng, lin.sheng,}@husky.neu.edu, 1yanz.wang@northeastern.edu,
2caiwen.ding@uconn.edu, 3{fyu2, xchen26}@gmu.edu, 4tliu023@fiu.edu, 5wuw219@lehigh.edu

Abstract— The memristor crossbar array has

emerged as an intrinsically suitable matrix computation

and low-power acceleration framework for DNN ap-

plications. Many techniques such as memristor-based

weight pruning and memristor-based quantization have

been studied. However, the high accuracy solution for

the above techniques is still waiting for unraveling. In

this paper, we propose a memristor-based DNN frame-

work which combines both structured weight pruning

and quantization by incorporating ADMM algorithm

for better pruning and quantization performance. We

also discover the non-optimality of the ADMM solution

in weight pruning and the unused data path in a struc-

tured pruned model. We design a software-hardware

co-optimization framework which contains the first pro-

posed Network Purification and Unused Path Removal

algorithms targeting on post-processing a structured

pruned model after ADMM steps. By taking mem-

ristor hardware constraints into our whole framework,

we achieve extreme high compression rate with mini-

mum accuracy loss. For quantizing structured pruned

model, our framework achieves nearly no accuracy loss

after quantizing weights to 8-bit memristor weight rep-

resentation. We share our models at anonymous link

https://bit.ly/2VnMUy0.

1 Introduction

Structured weight pruning [1–3] and weight quantiza-
tion [4,5] techniques are developed to facilitate weight com-
pression and computation acceleration to solve the high de-
mand for parallel computation and storage resources [6–8].
However, Even with compressed models, computation com-
plexity still burden the overall performance of the state-of-
the-art CMOS hardware applications.

To mitigate the bottleneck caused by CMOS-based DNN
architectures [9, 10], the next-generation device/circuit
technologies [11, 12] emerge with their highlighted non-
volatility, high energy efficiency, in-memory computing ca-
pability and high scalability. Memristor crossbar device
has shown its potential for bearing all these characteristic
which makes it intrinsically suitable for large DNN hard-
ware architecture design. Motivated by the fact that there
is no precedent model that is structured pruned and quan-
tized as well as satisfying memristor hardware constraints,

978-1-7281-4123-7/20/$31.00 ©2020 IEEE
†These authors contributed equally.

in this work, a memristor-based ADMM regularized opti-
mization method is utilized both on structured pruning
and weight quantization in order to mitigate the accu-
racy degradation during extreme model compression. A
structured pruned model can potentially benefit for high-
parallelism implementation in crossbar architecture. Fur-
ther more, quantized weights can reduce hardware impreci-
sion during read/write procedure, and save more hardware
footprint due to less peripheral circuits are needed to sup-
port fewer bits.

However, an ADMM pruning method [3] cannot fully
exploit all redundancy in a neural network model. There-
fore, we design a hardware-software co-optimization frame-
work in which we investigate Network Purification and Un-
used Path Removal after the procedure of structured weight
pruning with ADMM. Moreover, we utilize distilled knowl-
edge from software model to guide quantization with mem-
ristor hardware constraint. To the best of our knowledge,
we are the first to combine extreme structured weight prun-
ing and weight quantization in a unified and systematic
memristor-based framework. Also, we are the first to dis-
cover the redundant weights and unused path in a struc-
tured pruned DNN model and design a sophisticate co-
optimization framework to boost higher model compression
rate as well as maintain high network accuracy. By incor-
porating memristor hardware constraints in our model, our
frameworks are guaranteed feasible for a real memristor
crossbar device. Our contributions are as follows:

• We adopt ADMM for efficiently optimizing the non-
convex problem and utilized this method on structured
weight pruning.

• We systematically investigate the weight quantization
on a pruned model with memristor hardware con-
straints.

• We design a software-hardware co-optimization frame-
work in which Network Purification and Unused Path
Removal are first proposed.

We evaluate our proposed memristor framework on dif-
ferent networks. We conclude that structured pruning
method with memristor-based ADMM regularized opti-
mization achieves high compression rate and desirable high
accuracy. Hardware experimental results shows our mem-
ristor framework is very energy efficient and saves great
amount of hardware footprint.

2 Background

2.1 Model Compression techniques for Crossbar

Architecture

Heuristic weight pruning methods [15] are widely used in
neuromorphic computing designs to reduce the weight stor-
age and computing delay. [16] implemented weight prun-
ing techniques on a neuromorphic computing system us-
ing irregular pruning caused unbalanced workload, greater
circuits overheads and extra memory requirement on in-
dices. To overcome the limitations, [17] proposed group
connection deletion, which structually prunes connections
to reduce routing congestion between memristor crossbar
arrays.

Weight quantization can mitigate hardware imperfec-
tion of memristor including state drift and process vari-
ations, caused by the imperfect fabrication process or by
the device feature itself [4]. [18] presented a technique
to reduce the overhead of Digital-to-Analog Converters
(DACs)/Analog-to-Digital Converters (ADCs) in resistive
random-access memory (ReRAM) neuromorphic comput-
ing systems. They first normalized the data, and then
quantized intermediary data to 1-bit value. This can be
directly used as the analog input for ReRAM crossbar and,
hence, avoids the need of DACs.

2.2 Memristor Crossbar Model

Memristor [11] crossbar is an array structure consists of
memristors, horizontal Word-lines and Vertical Bit-lines,
as shown in Figure 1. Due to its outstanding performance
on computing matrix-vector multiplications (MVM), mem-
ristor crossbars are widely used as dot-product accelerator
in recent neuromorphic computing designs [19]. By pro-
gramming the conductance state (which is also known as
“memristance”) of each memristor, the weight matrix W
can be mapped onto the memristor crossbar. Given the
input voltage vector Vi, the MVM output current vector
Ij can be obtained in time complexity of O(1).

2.3 Challenges in Memristor Crossbars Imple-

mentation and Mitigation Techniques

Different from the software-based designs, hardware im-
perfection is one of the key issues that causes the hard-
ware non-ideal behaviors and needs to be considered in
memristor-based designs. They are:

Process Variation mainly comes from the line-
edge roughness, oxide thickness fluctuations, and random
dopant variations [20]. Inevitably, process variation plays
an increasingly significant role as the process technology
scales down to nanometer level. In a DNN hardware de-
sign, the non-ideal behaviors caused by process variations
may lead to an accuracy degradation.

State Drift is the phenomenon that the memristance
would change after several reading opertions [21]. It is
known that memristor is a thin-film device constructed by
a region highly doped with oxygen vacancies and an un-
doped region. By nature, applying an electric field across
the memristor over a period of time, the oxygen vacan-
cies would migrate to the direction along with the electric

WL

BL

Vi
i,j

I1 I2 I3 I j

V1

V2

V3

Horizontal
World Line

Vertical
Bit Line

W

undoped

doped

Figure 1: memristor and memristor crossbar

field, which leads to the (memristance) state drift. Con-
sequently, an error will incur when the state of memristor
drifts to another state level.

It has been proved that applying quantization on
memristor-based designs can mitigate the undesired im-
pacts caused by hardware imperfections [22].

3 A Memristor-Based Highly Compressed
DNN Framework

The memristor crossbar structure has shown its poten-
tial for neuromorphic computing system compared to the
CMOS technologies [16]. Due to great amount of weights
and computations that involved in networks, an efficient
and highly performed framework is needed to conquer the
memory storage and energy consumption problems.

3.1 Problem Formulation

ADMM [23] is an advanced optimization technique which
decompose an original problem into subproblems that
can be solved separately and iteratively. By adopt-
ing memristor-based ADMM regularized optimization, the
framework can guarantee the solution satisfying memristor
hardware constraints while maintain high accuracy after
pruning.

The memristor-based ADMM regularized optimization
starts from a pre-trained full size DNN model without com-
pression. Consider an N -layer DNNs, sets of weights of
the i-th (CONV or FC) layer are denoted by Wi. And
the loss function associated with the DNN is denoted by
f
(
{Wi}Ni=1

)
. The overall problem is defined by

minimize
{Wi}

f
(
{Wi}Ni=1

)
,

subject to Wi ∈ Pi, Wi ∈ Qi, i = 1, . . . , N.
(1)

Given the value of αi, the memristor-based constraint set
Pi = {Wi|

∑
(structured Wi 6= 0) ≤ αi} and Qi={the

weights in the i-th layer are mapped to the quantization
values}, where αi is predefined hyper parameters. The gen-
eral constraint can be extended in structured pruning such
as filter pruning, channel pruning and column pruning,
which facilitate high-parallelism implementation in hard-
ware.

Similarly, for weight quantization, elements in Qi are
the solutions of Wi. Assume set of qi,1, qi,2, · · · , qi,Mi is
the available memristor state value which is the elements
in Wi, where Mi denotes the number of available quan-
tization level in layer i. Suppose qi,j indicates the j-th
quantization level in layer i, which gives

qi,j ∈ [−memrmax,−memrmin] ∪ [memrmin,memrmax] (2)

where memrmin, memrmax are the minimum and maxi-
mum memristance value of a specified memristor device.

Filter Pruning Channel Pruning Filter Shape Pruning

Filter 1

Filter 2

Filter A

Filter 1

Filter 2

Filter 1

Filter 2

...

i Filter Ai Filter Ai

... ...

Figure 2: Illustration of filter-wise, channel-wise and shape-
wise structured sparsities.

3.2 Memristor-based ADMM regularized opti-

mization step

Corresponding to every memristor-based constraint set of
Pi and Qi, a indicator functions is utilized to incorporate
Pi and Qi into objective functions, which are

gi(Wi) =

{
0 if Wi ∈ Pi,
+∞ otherwise,

hi(Wi) =

{
0 if Wi ∈ Qi,
+∞ otherwise,

for i = 1, . . . , N . Substituting into (1) and we get

minimize
{Wi}

f
(
{Wi}Ni=1

)
+

N∑
i=1

gi(Yi) +

N∑
i=1

hi(Zi),

subject to Wi = Yi = Zi, i = 1, . . . , N,

(3)

We incorporate auxiliary variables Yi and Zi, dual vari-
ables Ui and Vi, and the augmented Lagrangian formation
Lρ{·} of problem (3) is

minimize
{Wi}

f
(
{Wi}Ni=1

)
+

N∑
i=1

ρi
2
‖Wi −Yi + Ui‖2F

+

N∑
i=1

ρi
2
‖Wi − Zi + Vi‖2F ,

(4)

The first term in problem (4) is the original DNN loss
function, and the second and third term are differentiable
and convex. As a result, subproblem (4) can be solved
by stochastic gradient descent [24] similar to training the
original DNN.

The standard ADMM algorithm [23] steps proceed by
repeating, for k = 0, 1, . . ., the following subproblems iter-
ations:

Wk+1
i := minimize

{Wi}
Lρ({Wi}, {Yk

i }, {Uk
i })

+ Lρ({Wi}, {Zk
i }, {Vk

i })
(5)

Yk+1
i ,Zk+1

i := minimize
{Yi,Zi}

Lρ({Wk+1
i }, {Yi}, {Uk

i })

+ Lρ({Wk+1
i }, {Zi}, {Vk

i })
(6)

Uk+1
i := Uk

i +Wk+1
i −Yk+1

i ; Vk+1
i := Vk

i +Wk+1
i −Zk+1

i (7)

which (5) is the proximal step, (6) is projection step and
(7) is dual variables update.

The optimal solution is the Euclidean projection of
Wk+1

i + Uk
i and Wk+1

i + Vk
i onto Pi and Qi. Namely,

elements in solution that less than αi will be set to zero.
In the meantime, those kept elements are quantized to the
closest valid memristor state value.

3.3 Memristor-Based Structured Weight Pruning

In order to accommodate high-parallelism implementation
in hardware, we use structured pruning method [1] instead
of the irregular pruning method [15] to reduce the size
of the weight matrix while avoid extra memory storage
requirement for indices. Figure 2 shows different types
of structured sparsity which include filter-wise sparsity,
channel-wise sparsity and shape-wise sparsity.

Figure 3 (a) shows the general matrix multiplication
(GEMM) view of the DNN weight matrix and the different
structured weight pruning methods. The structured prun-
ing corresponds to removing rows (filters-wise) or columns
(shape-wise) or the combination of them. We can see that
after structured weight pruning, the remaining weight ma-
trix is still regular and without extra indices.

Figure 3 (b) illustrate the memristor crossbar schematic
size reduction from corresponding structured weight prun-
ing and Figure 3 (c) shows physical view of the mem-
ristor crossbar blocks. A CONV layer has n filters, m
channels which include total k columns, and is denoted
as W ∈ Rn×k. Due to the increasing reading/writing er-
rors caused by expanding the memristor crossbar size, we
limited our design by using multiple 128×64 [25] crossbars
for all DNN layers. In Figure 3 (c), i, j denote columns
and rows for each crossbar, X represent inputs and c is the
column number which is also shown in Figure 3 (a). By
easy calculation, one can derived that there’s k/j different
crossbars to store one filter’s weights as a block unit. So
there’s total p = n/j blocks to store W ∈ Rn×k. Within
each block, the outputs of each crossbar will be propagated
through an ADC. Then We column-wisely sum the inter-
mediate results of all crossbars.

4 Software-hardware Co-optimization

Due to the existence of the non-optimality of ADMM pro-
cess and the accuracy degradation problem of quantizing
sparse DNN, a software-hardware co-optimization frame-
work is desired. In this section we propose: (i) network
purification and unused path removal to efficiently remove
redundant channels or filters, (ii) memristor model quanti-
zation by using distilled knowledge from helper models.

4.1 Network Purification and Unused Path Re-

moval (P-RM)

Weight pruning with memristor-based ADMM regularized
optimization can significantly reduce the number of weights
while maintaining high accuracy. However, does the prun-
ing process really remove all unnecessary weights?

From our analysis on the computing paradigm of DNN,
we find that if a whole filter is pruned, then the gener-
ated feature maps by this filter will be “blank” (i.e., all
zeros). If those “blank” features input to the next layer,
then the corresponding channel weights in the next layer
will become useless. By the same token, a pruned chan-
nel also causes the corresponding filter in previous layer a
useless one. Figure 4 gives a clear illustration on the re-
lationship between pruned filters/channels and correspond
unused channels/filters.

filter 1
filter 2
filter 3
filter n

filter 1*

filter n*

filter 1*

filter n*

filter prune
column prune

 may not be the same filter
 with original weight matrix

full size memristor block

size shrinked
memristor block

smallest
memristor block

GEMM view of weight reduction Memristor block size view

size shrink
original size

channel 1 channel 2 channel m

channel 1 channel 2 channel m

channel 1channel 2 channel m*

SUM SUM

ADC

ADC

SUM

ADC

ADC

Data / Control

SUM SUM

ADC

ADC

SUM

ADC

ADC

Schematic View Physical View

(a) (b)
(c)

C1 Ci Ci+1 C2i Ck

filter 1*

filter n*

channel 1 channel m*

x1 x2 x3 xk

C1 Ci Ck

filter j

xi

Block 1

Block p

ADC

D
ec

od
er

D
ec

od
er

Se
ns

e A
m

pl
ifi

er

DAC Column Decoder

Se
ns

e A
m

pl
ifi

er
Se

ns
e A

m
pl

ifi
er

Figure 3: Structured weight pruning and reduction of hardware resources

To better optimize the unused path removal effect we
discuss above, we derive an emptiness ratio parameter η to
define what can be treated as an empty channel. Suppose
Λi is the number of columns per channel in layer i, and j
is channel index. We have

ηi,j =
[δ∑
k=1

(columnk! = 0)
]
/δ δ ∈ Λi (8)

If ηi,j lower than a pre-defined threshold, we can assume
that this channel is empty and thus prune every column
in it even there are non-zero columns in it. However, if
we remove every column in this circumstance, dramatic
accuracy drop will occur and it will be hard to recover
by retraining because some relatively “important” weights
might be removed. So we design Network Purification al-
gorithm dealing with the non-optimality problem of the
ADMM process. We set-up a criterion parameter σi,j to
represent importance score of channel j, which is:

σi,j =

δ∑
k=1

‖columnk‖2F δ ∈ Λi (9)

One can think of this process as if collection evidence for
whether channel j that contains one or several columns
need to be removed. A channel can only be treated as empty
when both η and σ are under thresholds. Network Purifi-
cation also works on purifying remaining filters and thus
remove more unused path in the network. Algorithm 1
shows our generalized method of the P-RM method where
Th1 . . . Th4 are hyper-parameter thresholds values.

Feature maps from
previous layer

-0.4 0.3 0.1

0.6

1.2 0.60.8

-2.11.1

Weight kernel

Layer i weight matrix

Feature maps to
next layer

Layer i+1 weight matrix

...
Filter

Channel
Filter

Channel

Figure 4: Unused data path caused by structured pruning

4.2 Memristor Weight Quantization

Traditionally, DNN in software is composed by 32-bit
weights. But on a memristor device, the weights of a neural

Algorithm 1: Network purification & Unused path removal

Result: Redundant weights and unused paths removed
Load ADMM pruned model
δ = numbers of columns per channel
for i← 1 until last layer do

for j ← 1 until last channel in layeri do
for each: k ∈ δ and ‖columnk‖2F < Th1 do

calculate: equation (8), (9);
end
if ηi,j < Th2 and σi,j < Th3 then

prune(channeli,j)
prune(filteri−1,j) when i 6= 1;

end

end
for m← 1 until last filter in layeri do

if filterm is empty or ‖filterm‖2F < Th4 then
prune(filteri,m)
prune(channeli+1,m) when i 6= last layer index;

end

end

end

network are represented by the memristance of the mem-
ristor (i.e. the memristance range constraint Qi in ADMM
process). Due to the limited memristance range of the
memristor devices, the weight values exceeding memris-
tance range cannot be represented precisely. Meanwhile,
the write-on value and the exact value mismatch when
mapping weights on memristor crossbar will also cause the
reading mismatch if the amount of the value shift exceeds
state level range.

In order to mitigate the memristance range limitation
and the mapping mismatch, larger range between state
level (qi,1, qi,2, · · · , qi,Mi

) is needed which means fewer bits
are representing weights. To better maintain accuracy, we
use a pretrained high-accuracy teacher model to provide
distillation loss to add on our memristor model (referred
as student model) loss to provide better training perfor-
mance. The loss of the student model is defined as

lstudent = (1− γ)L(ps, pr) + γT 2L(ps, pt) (10)

The L in first term in (10) is the memristor model (stu-
dent) loss, and in second term is distillation loss between
student and teacher. ps and pt are outputs of student and

Table 1: Structured weight pruning results on multi-layer network on MNIST, CIFAR-10 and ImageNet datasets. (P-RM:
Network Purification and Unused Path Removal). Accuracies in ImageNet results are reported in Top-5 accuracy.

Method
Original model

Accuracy
Compression Rate

Without P-RM
Accuracy

Without P-RM
Prune Ratio
With P-RM

Accuracy
With P-RM

Weight Quantization
Accuracy (8-bit)

MNIST
Group Scissor [17] 99.15% 4.16× 99.14% N/A N/A N/A

our
LeNet-5

99.17%
23.18× 99.20% 39.23× 99.20% 99.16%
34.46× 99.06% *87.93× 99.06% 99.04%
45.54× 98.48% 231.82× 98.48% 98.05%

*numbers of parameter reduced: 25.2K
CIFAR-10

Group Scissor [17] 82.01% 2.35× 82.09% N/A N/A N/A

our
ConvNet

84.41%
2.35× 84.55% N/A N/A 84.33%
*2.93× 84.53% N/A N/A 83.93%
5.88× 83.58% N/A N/A 83.01%

our
VGG-16

93.70% 20.16× 93.36%
44.67× 93.36% 93.04%
*50.02× 92.73% 92.46%

our
ResNet-18

94.14%
5.83× 93.79% 52.07× 93.79% 93.71%
15.14× 93.20% *59.84× 93.22% 93.27%

*numbers of parameter reduced on ConvNet: 102.30K, VGG-16 : 14.42M, ResNet-18 : 10.97M
ImageNet ILSVRC-2012

SSL [1] AlexNet 80.40% 1.40× 80.40% N/A N/A N/A
our AlexNet 82.40% 4.69× 81.76% 5.13× 81.76% 80.45%

our ResNet-18 89.07% 3.02× 88.41% 3.33× 88.36% 88.47%
our ResNet-50 92.86% 2.00× 92.26% 2.70× 92.27% 92.20%

numbers of parameter reduced on AlexNet: 1.66M, ResNet-18 : 7.81M, ResNet-50 : 14.77M

Algorithm 2: Distillation Quantization
Result: distillation quantization with memristor hardware

constraints
student ← model pruned and ready to apply quantization;
teacher ← model with a deeper structure and higher accuracy;
for step← 1 until lstudent converge do

studentq = apply quantization(ws, Q);

calculate T 2L(ps, pt) of studentq & teacher;

back propagate on student← ∂(T 2L(ps,pt))
∂(studentq)

;

end

teacher and pr is the ground-truth label. γ is a balancing
parameter, and T is the temperature parameter.

5 Experimental Results
In this section, we show the experimental results of our
proposed memristor-based DNN framework in which struc-
tured weight pruning and quantization with memristor-
based ADMM regularized optimization are included. Our
software-hardware co-optimization framework (i.e., Net-
work Purification and Unused Path Removal (P-RM)) are
also thoroughly compared. We test MNIST dataset on
LeNet-5 and CIFAR-10 dataset using ConvNet (4 CONV
layers and 1 FC layer), VGG-16 and ResNet-18, and we
also show our ImageNet results on AlexNet, ResNet-18 and
ResNet-50. The accuracy of pruned and quantized model
results are tested based on our software models that incor-
porated with memristor hardware constraints. Models are
trained on an eight NVIDIA GTX-2080Ti GPUs server us-
ing PyTorch API. Our memristor model on MATLAB and
the NVSim [26] is used to calculate power consumption
and area cost of the memristors and memristor crossbars.
The 1R crossbar structure is used in our design. And we
choose the memristor device that has Ron = 1MΩ and
Roff = 10MΩ. The memristor precision is 4-bit, which
indicates that 16 state-levels can be represented by a sin-
gle memristor device, and two memristors are combined to
represent 8-bit weight in our framework. For the peripheral
circuits, the power and area is calculated based on 45nm
technology. And H-tree distribution networks are used to

Figure 5: Effect of removing redundant weights and unused
paths. (dataset: CIFAR-10; Accuracy: VGG-16-93.36%,
ResNet-18-93.79%)

access all the memristor crossbars.

As shown in Table 1, we show groups of different prune
ratios and 8-bits quantization with accuracies on each net-
work structure. Figure 5 proves our previous arguments
that ADMM’s non-optimality exists in a structured pruned
model. P-RM can further optimize the loss function.
Please note all of the results are based on non-retraining
process. Below are some results highlights on different
dataset with different network structures.

MNIST. With LeNet-5 network, comparing to original
accuracy (99.17%), our proposed P-RM framework achieve
231.82× compression with minor accuracy loss while other
state-of-art compression rates are lossless. And no accu-
racy losses are observed after quantization on 40× and 88×
models and only 0.4% accuracy drop on 231.82× model.
On the other hand, Group Scissor [17] only has 4.16× com-
pression rate.

CIFAR-10. Convnet structure are relative shallow so
ADMM reaches a relative optimal local minimum, so post-
processing is not necessary. But we still outperform Group
Scissor [17] in accuracy (84.55% to 82.09%) when compres-
sion rate is same (2.35×). For larger networks, when a mi-
nor accuracy loss is allowed, our proposed P-RM method
improves the prune ratio to 50.02× and 59.84× on VGG-16
and ResNet-18 respectively, and no obvious accuracy loss
after quantization on pruned models.

ImageNet. AlexNet model outperform SSL [1] both

Table 2: Area/power comparison between models with and
without P-RM on ResNet-18 and VGG-16 on CIFAR-10

in compression rate (4.69× to 1.40×) and network ac-
curacy (81.76% to 80.40%), with or without P-RM. Our
ResNet-18 and ResNet-50 models also achieve unprece-
dented 3.33× with 88.36% accuracy and 2.70× with 92.27%
respectively. No accuracy losses are observed after quan-
tization on pruned ResNet-18/50 models and around 1%
accuracy loss on 5.13× compressed AlexNet model.

Table 2 shows our highlighted memristor crossbar power
and area comparisons of ResNet-18 and VGG-16 mod-
els. By using our proposed P-RM method, the area
and power of the 5.83× (15.14×) ResNet-18 model is re-
duced from 0.235mm2 (0.117mm2) and 3.359W (1.622W)
to 0.042mm2 (0.041mm2) and 0.585W (0.556W), with-
out any accuracy loss. For VGG-16 20.16× model, after
using our P-RM method, the area and power is reduced
from 0.113mm2 and 1.611W to 0.056mm2 (0.053mm2) and
0.824W (0.754W), where the compression rate is achieved
44.67× (50.02×) with 0% (0.63%) accuracy degradation.

6 Conclusion

In this paper, we designed an unified memristor-based
DNN framework which is tiny in overall hardware footprint
and accurate in test performance. We incorporate ADMM
in weight structured pruning and quantization to reduce
model size in order to fit our designed tiny framework.
We find the non-optimality of the ADMM solution and
design Network Purification and Unused Path Removal in
our software-hardware co-optimization framework, which
achieve better results comparing to Gourp Scissor [17] and
SSL [1]. On AlexNet, VGG-16 and ResNet-18/50, after
structured weight pruning and 8-bit quantization, model
size, power and area are significant reduced with negligible
accuracy loss.

Acknowledgment

This work is funded by National Science Foundation CCF-
1637559. We thank all anonymous reviewers for their feed-
back.

References
[1] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured

sparsity in deep neural networks,” in NeurIPS, 2016, pp. 2074–2082.

[2] X. Ma, G. Yuan, S. Lin, Z. Li, H. Sun, and Y. Wang, “Resnet
can be pruned 60x: Introducing network purification and un-
used path removal (p-rm) after weight pruning,” arXiv preprint
arXiv:1905.00136, 2019.

[3] T. Zhang, K. Zhang, S. Ye, J. Li, J. Tang, W. Wen, X. Lin,
M. Fardad, and Y. Wang, “Adam-admm: A unified, systematic
framework of structured weight pruning for dnns,” arXiv preprint
arXiv:1807.11091, 2018.

[4] E. Park, J. Ahn, and S. Yoo, “Weighted-entropy-based quantization
for deep neural networks,” in CVPR, 2017.

[5] S. Lin, X. Ma, S. Ye, G. Yuan, K. Ma, and Y. Wang, “Toward
extremely low bit and lossless accuracy in dnns with progressive
admm,” arXiv preprint arXiv:1905.00789, 2019.

[6] W. Niu, X. Ma, Y. Wang, and B. Ren, “26ms inference time for
resnet-50: Towards real-time execution of all dnns on smartphone,”
arXiv preprint arXiv:1905.00571, 2019.

[7] H. Li, N. Liu, X. Ma, S. Lin, S. Ye, T. Zhang, X. Lin, W. Xu, and
Y. Wang, “Admm-based weight pruning for real-time deep learning
acceleration on mobile devices,” in Proceedings of the 2019 on Great
Lakes Symposium on VLSI, 2019.

[8] C. Ding, A. Ren, G. Yuan, X. Ma, J. Li, N. Liu, B. Yuan, and
Y. Wang, “Structured weight matrices-based hardware accelerators
in deep neural networks: Fpgas and asics,” in GLSVLSI, 2018.

[9] C. Ding, S. Liao, Y. Wang, Z. Li, N. Liu, Y. Zhuo, C. Wang, X. Qian,
Y. Bai, G. Yuan, X. Ma, etc. , “Circnn: accelerating and compress-
ing deep neural networks using block-circulant weight matrices,” MI-
CRO. ACM.

[10] Y. Wang, C. Ding, Z. Li, G. Yuan S. Liao, X. Ma, B. Yuan, X. Qian,
J. Tang, Q. Qiu, X. Lin, “Towards ultra-high performance and en-
ergy efficiency of deep learning systems: an algorithm-hardware co-
optimization framework,” Thirty-Second AAAI Conference on Ar-
tificial Intelligence (AAAI). 2018.

[11] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The
missing memristor found,” nature, vol. 453, no. 7191, p. 80, 2008.

[12] X. Ma, Y. Zhang, G. Yuan, A. Ren, Z. Li, J. Han, J. Hu, and
Y. Wang, “An area and energy efficient design of domain-wall
memory-based deep convolutional neural networks using stochastic
computing,” in ISQED. IEEE, 2018.

[13] L. Chua, “Memristor-the missing circuit element,” IEEE Transac-
tions on circuit theory, vol. 18, no. 5, pp. 507–519, 1971.

[14] G. Yuan, C. Ding, R. Cai, X. Ma, Z. Zhao, A. Ren, B. Yuan, and
Y. Wang, “Memristor crossbar-based ultra-efficient next-generation
baseband processors,” in MWSCAS, 2017.

[15] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and
connections for efficient neural network,” in NeurIPS, 2015.

[16] A. Ankit, A. Sengupta, and K. Roy, “Trannsformer: Neural network
transformation for memristive crossbar based neuromorphic system
design,” in Proceedings of ICCD, 2017.

[17] Y. Wang, W. Wen, B. Liu, D. Chiarulli, and H. Li, “Group scissor:
Scaling neuromorphic computing design to large neural networks,”
in DAC. IEEE, 2017.

[18] L. Xia, T. Tang, W. Huangfu, M. Cheng, X. Yin, B. Li, Y. Wang,
and H. Yang, “Switched by input: power efficient structure for rram-
based convolutional neural network,” in DAC. ACM, 2016, p. 125.

[19] A. Shafiee, A. Nag, N. Muralimanohar, and et.al, “ISAAC: A Convo-
lutional Neural Network Accelerator with In-Situ Analog Arithmetic
in Crossbars,” in ISCA 2016.

[20] S. Kaya, A. R. Brown, A. Asenov, D. Magot, e. D. LintonI, T.”,
and C. Tsamis, “Analysis of statistical fluctuations due to line edge
roughness in sub-0.1µm mosfets,” 2001.

[21] J. J. Yang, M. D. Pickett, X. Li, D. A. Ohlberg, D. R. Stew-
art, and R. S. Williams, “Memristive switching mechanism for
metal/oxide/metal nanodevices,” Nature Nanotechnology, 2008.

[22] C. Song, B. Liu, W. Wen, H. Li, and Y. Chen, “A quantization-aware
regularized learning method in multilevel memristor-based neuro-
morphic computing system,” in 2017 NVMSA. IEEE, 2017.

[23] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein et al., “Dis-
tributed optimization and statistical learning via the alternating di-
rection method of multipliers,” Foundations and Trends® in Ma-
chine learning, 2011.

[24] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[25] M. Hu, C. E. Graves, C. Li, and e. Li, Yunning, “Memristor-Based
Analog Computation and Neural Network Classification with a Dot
Product Engine,” Advanced Materials, 2018.

[26] X. Dong, C. Xu, S. Member, Y. Xie, S. Member, and N. P.
Jouppi, “Nvsim: A circuit-level performance, energy, and area model
for emerging nonvolatile memory,” IEEE TRANSACTIONS ON
COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS
AND SYSTEMS.

