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Abstract. Smoothing methods have become part of the standard tool set for the study and
solution of nondifferentiable and constrained optimization problems as well as a range of other vari-
ational and equilibrium problems. In this note we synthesize and extend recent results due to Beck
and Teboulle on infimal convolution smoothing for convex functions with those of X. Chen on gra-
dient consistency for nonconvex functions. We use epi-convergence techniques to define a notion of
epi-smoothing that allows us to tap into the rich variational structure of the subdifferential calculus
for nonsmooth, nonconvex, and nonfinite-valued functions. As an illustration of the versatility and
range of epi-smoothing techniques, the results are applied to the general constrained optimization
for which nonlinear programming is a special case.
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1. Introduction. A standard approach to solving nonsmooth and constrained
optimization problems is to solve a related sequence of unconstrained smooth ap-
proximations [7, 8, 9, 21, 29, 33, 37, 49, 54]. The approximations are constructed so
that cluster points of the solutions or stationary points of the approximating smooth
problems are solutions or stationary points for the limiting nonsmooth or constrained
optimization problem. In the setting of convex programming, there is now great in-
terest in these methods in the very large-scale setting (e.g., see [26, 44, 49, 50]), where
first-order methods for convex nonsmooth optimization have been very successful. At
the same time, there are many recent applications of smoothing methods to general
nonlinear programming, equilibrium, and mathematical programs with equilibrium
constraints, e.g., see [10, 18, 19, 20, 22, 23, 31, 34, 35, 36]. This paper is concerned
with synthesizing and expanding the ideas presented in two important recent papers
on smoothing. The first is by Beck and Teboulle [7] which develops a smoothing
framework for nonsmooth convex functions based on infimal convolution. The second
is by Chen [21] which, among other things, studies the notion of gradient consistency
for smoothing sequences. Our goal is to extend the ideas presented in [7] for con-
vex functions to the class of convex composite functions and provide conditions under
which this extension preserves the gradient consistency. Our primary tool in this
analysis is the notion of variational convergence called epi-convergence [4, 5, 54]. Epi-
convergence is ideally suited to the study of the variational properties of parametrized
families of functions allowing, for example, the development of a calculus of smoothing
functions which is essential for the applications to the nonlinear inverse problems that
we have in mind [1, 2, 3]. Epi-smoothing is a weaker notion of smoothing than those
considered in [7, Definition 2.1] where complexity results are one of the key contribu-
tions [7, Theorem 3.1]. It is the complexity results that require stronger notions of
smoothing. On the other hand, our goal is to establish limiting variational properties
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in nonconvex applications, in particular, gradient consistency (see [21, Theorem 1]
and [15, Theorem 4.5]).
We begin in Section 2 by introducing the notions of epigraphical and set-valued con-
vergence upon which our analysis rests. We also introduce the tools from subdiffer-
ential calculus [54] that we use to establish gradient consistency. In Section 3, we
define epi-smoothing functions and develop a calculus for these smoothing functions
that includes basic arithmetic operations as well as composition. In Section 4, we
give conditions under which the Beck and Teboulle [7] approach to smoothing via
infimal convolution also gives rise to epi-smoothing functions that satisfy gradient
consistency. These results are then applied to Moreau envelopes (e.g., see [54]) and
extended piecewise linear-quadratic functions. In Section 5, we introduce convex com-
posite functions and give conditions under which the epi-smoothing results of Section
4 can be extended to this class of functions. In Section 6, we conclude by applying the
smoothing results for convex composite functions to general nonlinear programming
problems.

Notation: Most of the notation used is standard. An element x ∈ R
n is under-

stood as a column vector, and R := [−∞,+∞] is the extended real-line. The space of
all real m× n-matrices is denoted by R

m×n, and for A ∈ R
m×n, AT is its transpose.

The null space of A is the set

nulA := {x ∈ R
n | Ax = 0}.

By In×n we mean the n× n identity matrix and by ones(n,m) the n×m matrix each
of whose entries is the number 1.
Unless otherwise stated, ‖ · ‖ denotes the Euclidean norm on R

n and ‖·‖1 denotes the
1-norm. If C ⊂ R

n is nonempty and closed, the Euclidean distance function for C is
given by

dist(y | C) := inf
z∈C

‖y − z‖ . (1.1)

When C is convex it is easily established that the distance function is a convex func-
tion, and the optimization (1.1) has a unique solution ΠC(y) which is called the
projection of y onto C.
For a sequence {xk} ⊂ R

n and a (nonempty) set X ⊂ R
n we abbreviate the fact that

xk converges to x̄ ∈ R
n and xk ∈ X for all k ∈ N by

xk →X x̄.

Moreover, for a function f : Rn → R, define

xk →f x̄ :⇐⇒ xk → x̄ and f(xk) → f(x̄).

This type of convergence coincides with ordinary convergence when f is continuous.
For a real-valued function f : R

n → R differentiable at x̄, the gradient is given
by ∇f(x̄) which is understood as a column vector. For a function F : Rn → R

m

differentiable at x̄, the Jacobian of F at x̄ is denoted by F ′(x̄), i.e.,

F ′(x̄) =







∇F1(x̄)
T

...
∇Fm(x̄)T






∈ R

m×n.
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In order to distinguish between single- and set-valued maps, we write S : Rn
⇒ R

m

to indicate that S maps vectors from R
n to subsets of Rm. The graph of S is the set

gphS := {(x, y) | y ∈ S(x)},

which is equivalent to the classical notion when S is single-valued.

2. Preliminaries. In this section we review certain concepts from variational
and nonsmooth analysis employed in the subsequent analysis. The notation is pri-
marily based on [54].
For an extended real-valued function f : Rn → R ∪ {+∞} its epigraph is given by

epi f := {(x, α) ∈ R
n × R | f(x) ≤ α},

and its domain is the set

dom f := {x ∈ R
n | f(x) < +∞}.

The notion of the epigraph allows for very handy definitions of a number of properties
for extended real-valued functions (see [41, 53, 54]).

Definition 2.1 (Closed, proper, convex functions). A function f : Rn → R ∪
{+∞} is called lower semicontinuous (lsc) (or closed) if epi f is a closed set. f is
called convex if epi f is a convex set. A convex function f is said to be proper if
dom f 6= ∅.
Note that these definitions coincide with the usual concepts for ordinary real-valued
functions. Moreover, it holds that a convex function is always (locally Lipschitz)
continuous on the (relative) interior of its domain [53, Theorem 10.4].
Furthermore, we point out that, in what follows, for an lsc, convex function f : Rn →
R ∪ {+∞}, we always exclude the case f ≡ +∞, which means that we deal with
proper functions.
An important function in this context is the indicator function of a set C ⊂ R

n given
by δ(· | C) : Rn → R ∪ {+∞} with

δ(x | C) =

{

0 if x ∈ C,
+∞ if x /∈ C.

The indicator function δ(· | C) is convex if and only if C is convex, and δ(· | C) is lsc
if and only if C is closed.

A crucial role in our upcoming analysis is played by the concept of epi-convergence.
In order to define epi-convergence, we first need to introduce the notion of set-
convergence in the sense of Painlevé-Kuratowski: For a sequence of sets {Ck} with
Ck ⊂ R

n for all k ∈ N, we define the outer limit as

Lim sup
k→∞

Ck :=
{

x | ∃K ⊂ N(infinite), {xk} →K x : xk ∈ Ck ∀k ∈ K
}

and the inner limit as

Lim inf
k→∞

Ck :=
{

x | ∃k0 ∈ N, {xk} → x : xk ∈ Ck ∀k ≥ k0
}

.

From the definitions it is clear that always Lim infk→∞ Ck ⊂ Lim supk→∞ Ck. We
say that {Ck} converges if the outer and inner limit are equal, i.e.:

Lim
k→∞

Ck := Lim sup
k→∞

Ck = Lim inf
k→∞

Ck.
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Definition 2.2 (Epi-convergence). We say that a sequence {fk} of functions
fk : Rn → R epi-converges to f : Rn → R if

Lim
k→∞

epi fk = epi f,

In this case we write

e− lim fk = f or fk
e
→ f.

Epi-convergence for sequences of convex functions goes back to Wijsman [59, 60],
where it is called infimal convergence. The term epi-convergence arguably is due to
Wets [58].

A crucial feature of epi-convergence is the following property due to Wijsman,
see [54, Theorem 11.34]: If the functions fk, f : Rn → R ∪ {+∞} are proper, lsc, and
convex, one has

e− lim fk = f ⇐⇒ e− lim f∗k = f∗,

where f∗(y) := supu{u
T y − f(u)} is the Legendre-Fenchel transform, see, e.g., [54,

Eq. 11(1)], of f . A handy characterization of epi-convergence is given by

fk
e
→ f ⇐⇒ ∀x̄ ∈ R

n

{

∀{xk} → x̄ : lim inf fk(x
k) ≥ f(x̄),

∃{xk} → x̄ : lim sup fk(x
k) ≤ f(x̄),

(2.1)

see [54, Proposition 7.2], which we invoke in several places. For extensive surveys of
epi-convergence we refer the reader to [4] or [54, Chapter 7].

We make use of the regular and limiting subdifferentials to describe the variational
behavior of nonsmooth functions. In constructing the limiting subdifferential, we em-
ploy the outer limit for a set-valued mapping, which we now define along with the
inner limit. Both definitions are based on the respective notions for set-convergence
from above:
For S : Rn

⇒ R
m and X ⊂ R

n the outer limit of S at x̄ relative to X is given by

Lim sup
x→X x̄

S(x) :=
⋃

{xk}→x̄

Lim sup
k→∞

S(xk)

=
{

v | ∃{xk} →X x̄, {vk} → v : vk ∈ S(xk) ∀k ∈ N
}

,

and the inner limit of S at x̄ relative to X is defined by

Lim inf
x→X x̄

S(x) :=
⋂

{xk}→x̄

Lim inf
k→∞

S(xk)

=
{

v | ∀{xk} →X x̄, ∃{vk} → v, k0 ∈ N : vk ∈ S(xk) ∀k ≥ k0
}

.

We say that S is outer semicontinuous (osc) at x̄ relative to X if

Lim sup
x→X x̄

S(x) ⊂ S(x̄).

In case that outer and inner limit coincide, we write

Lim
x→X x̄

S(x) := Lim sup
x→X x̄

S(x),
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and say that S is continuous at x̄ relative to X.
Definition 2.3 (Regular and limiting subdifferential). Let f : Rn → R ∪ {+∞}

and x̄ ∈ dom f .
a) The regular subdifferential of f at x̄ is the set given by

∂̂f(x̄) :=
{

v | f(x) ≥ f(x̄) + vT (x− x̄) + o(‖x− x̄‖)
}

.

b) The limiting subdifferential of f at x̄ is the set given by

∂f(x̄) := Lim sup
x→f x̄

∂̂f(x).

There are other ways to obtain the limiting subdifferential than the one described
above, which goes back to Mordukhovich, e.g., cf. [46]. See [17] or [43] for a construc-
tion of the limiting subdifferential via Dini-derivatives.
It is a well-known fact, see [54, Proposition 8.12], that if f : Rn → R ∪ {+∞} is con-
vex, both the limiting and the regular subdifferential coincide with the subdifferential
of convex analysis, i.e.,

∂f(x̄) =
{

v | f(x) ≥ f(x̄) + vT (x− x̄) ∀x ∈ R
n
}

= ∂̂f(x̄) ∀ x̄ ∈ dom f.

The above subdifferentials are closely tied to normal cones, in fact the regular and
the limiting normal cone, see [54, Definition 6.3], of a closed set C ⊂ R

n at x̄ ∈ C can
be expressed as

N̂(x̄ | C) = ∂̂δ(x̄ | C) and N(x̄ | C) = ∂δ(x̄ | C),

see [54, Exercise 8.14].
An important concept in the context of subdifferentiation is (subdifferential) regular-
ity. We say that f : Rn → R ∪ {+∞} is (subdifferentially) regular at x̄ ∈ dom f
if

N((x̄, f(x̄)) | epi f) = N̂((x̄, f(x̄)) | epi f).

Note that this regularity notion coincides with the one used in [24], see the discussion
on page 61 in [24] in combination with [54, Corollary 6.29].

3. Epi-Smoothing Functions. In this section we lay out the general framework
for the smoothing functions studied in this paper. Let f : Rn → R ∪ {+∞} be lsc.
We say sf : Rn × R+ → R is an epi-smoothing function for f if the following two
conditions are satisfied:

(i) sf (·, µk) epi-converges to f for all {µk} ↓ 0, written

e− lim
µ↓0

sf (·, µ) = f, (3.1)

(ii) sf (·, µ) is continuously differentiable for all µ > 0.
We point out that (3.1) is satisfied if and only if

Lim
µ↓0

epi sf (·, µ) = epi f,

a characterization which we invoke in several places without referring to it explicitly.
Moreover, note that (3.1) is always fulfilled, see [54, Theorem 7.11], under the following
condition

lim
µ↓0,x→x̄

sf (x, µ) = f(x̄) ∀x̄ ∈ R
n, (3.2)
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which is called continuous convergence in [54]. As we will see in Section 4, however,
continuous convergence can be an excessively strong assumption, especially when
dealing with non-finite valued functions.
The following result provides an elementary calculus for epi-smoothing functions.

Proposition 3.1. Let g, h : R
m → R ∪ {+∞} be lsc and let sg and sh be

epi-smoothing functions for g and h, respectively.
a) If sg converges continuously to g, then sf := sg + sh is an epi-smoothing

function for f := g + h.
b) If g is continuously differentiable, then sf := g + sh is an epi-smoothing

function f := g + h.
c) If λ > 0, then λsg is an epi-smoothing function for λg.
d) If A ∈ R

m×n has rank m and b ∈ R
m, then sg(·, ·) := sg(A(·) + b, ·) is an

epi-smoothing function for f := g(A(·) + b).
Proof. Item a) follows from [54, Theorem 7.46], while b) follows from a) and the

fact that g is a continuously convergent epi-smoothing function for itself. Item c) is
provided by [54, Exercise 7.8 d)]. Item d) is an immediate consequence of Theorem
3.2 and the discussion up front.
To obtain a more powerful chain rule than the one given in item d) above, we need to
invoke more refined tools from variational analysis. One such tool is metric regularity
(e.g., see [17, 48, 54]), originally defined for set-valued mappings. For a single-valued
mapping F : Rn → R

m we say that F is metrically regular at x̄ ∈ R
n if there exists

γ > 0 and neighborhoods W of x̄ and V of F (x̄) such that

dist(x, F−1(y)) ≤ γ‖F (x)− y‖ ∀x ∈W, y ∈ V.

We say that F is metrically regular, if it is metrically regular at every x̄ ∈ R
n. In par-

ticular, F is metrically regular if it is a locally Lipschitz homeomorphism (e.g., see [54,
Corollary 9.55]). Mordukhovich has shown that metric regularity can be fully charac-
terized via the coderivative criterion, e.g., see [48, 54]. In the case of a single-valued,
continuously differentiable map F : Rn → R

m the coderivative criterion reduces to
the condition that rankF ′(x̄) = m, that is,

F is metrically regular at x̄ ⇐⇒ rankF ′(x̄) = m.

Theorem 3.2. Let g : Rm → R∪ {+∞} and let sg be an epi-smoothing function
for g. Furthermore, let F : Rn → R

m be continuously differentiable and metrically
regular. Then sf := sg(F (·), ·) is an epi-smoothing function for f := g ◦ F .

Proof. The smoothness properties are obvious from the assumptions. Next, let
{µk} ↓ be given and put gk := sg(·, µk) and fk := gk◦F . We need to show that fk

e
→ f .

For this purpose, we invoke the characterization of epi-convergence as provided by
(2.1). To this end, let x̄ ∈ R

n and {xk} → x̄ be given. Then it follows from the fact

that gk
e
→ g and (2.1) that

lim inf
k

fk(x
k) = lim inf

k
gk(F (x

k)) ≥ g(F (x̄)) = f(x̄). (3.3)

Moreover, as gk
e
→ g, (2.1) yields a sequence {yk} → ȳ := F (x̄) such that

lim sup
k

gk(y
k) ≤ g(ȳ).
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Since F is metrically regular at x̄, we obtain a sequence {xk} → x̄ such that F (xk) =
yk for all k ∈ N. This, in turn, gives

lim sup
k

fk(x
k) = lim sup

k

gk(y
k) ≤ g(ȳ) = f(x̄).

This, together with (3.3) proves (2.1) for fk with respect to f , and this concludes the
proof.
Although epi-convergence is arguably a mild condition, it still provides desirable con-
vergence behavior for minimization in the following sense:

Theorem 3.3. [54, Theorem 7.33] Suppose the sequence {fk} is eventually level-

bounded (see [54, p. 266]), and fk
e
→ f with fk and f lsc and proper. Then

inf fk → inf f (finite).

Now, suppose a numerical algorithm produces sequences {xk} → x̄ and {µk} ↓ 0 such
that

lim
k→∞

∇xsf (x
k, µk) → 0.

A natural question to ask in this context is whether x̄ is a critical point of f in the
sense that 0 ∈ ∂f(x̄). A sufficient condition is, clearly, provided by

Lim sup
x→x̄,µ↓0

∇xsf (x, µ) ⊂ ∂f(x̄).

The next result shows that the converse inclusion is always valid if sf (·, µ)
e
→ f .

Lemma 3.4. Let f : Rn → R ∪ {+∞} be lsc and sf an epi-smoothing function
for f . Then for x̄ ∈ dom f we have

∂f(x̄) ⊂ Lim sup
x→x̄,µ↓0

∇xsf (x, µ).

Proof. Let v ∈ ∂f(x̄) be given. Since by assumption e− limµ↓0 sf (·, µ) = f we
may invoke [54, Corollary 8.47] in order to obtain sequences {µk} ↓ 0, {xk} → x̄ and
{vk} with vk ∈ ∂xsf (x

k, µk) such that vk → v. Now, since sf (·, µk) is continuously
differentiable by assumption, we have

vk = ∇xf(x
k, µk),

which identifies v as an element of Lim supx→x̄,µ↓0 ∇xsf (x, µ) and thus, the assertion
follows.
A major contribution of this paper is the construction of smoothing functions having
the property that

Lim sup
x→x̄,µ↓0

∇xsf (x, µ) = ∂f(x̄) (3.4)

at any point x̄ ∈ dom f . This condition implies the notion of gradient consistency
defined in [21, Equation (4)] which is obtained by taking the convex hull on both sides
of this equation. However, since all of the functions we consider are subdifferentially
regular, Lemma 3.4 implies that (3.4) is equivalent to gradient consistency.
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4. Epi-Smoothing via Infimal Convolution. In this section we show that
the class of smoothing functions for nonsmooth, convex and lsc functions introduced
in [7] fits into the framework layed out in Section 3. As a by-product, we show that
Moreau envelopes fulfill the requirements of our smoothing setup.
The approach taken in [7] is based on infimal convolution [6, 41, 42, 53, 54]. Given
two (extended real-valued) functions f1, f2 : Rn → R the inf-convolution (or epi-sum,
see Lemma 4.2 b) in this context) is the function f1#f2 : Rn → R defined by

(f1#f2)(x) := inf
u∈Rn

{f1(u) + f2(x− u)}.

It should be noted that the idea of using infimal convolution for smoothing convex
functions is well known and due to Moreau, see [45]. For a modern account of these
techniques in Hilbert spaces, see [6] and the references therein.

In what follows we assume that

(A) g : Rn → R ∪ {+∞} is proper, lsc, and convex, and
(B) ω : Rn → R is convex and continuously differentiable with Lipschitz gradient.

Moreover, for µ > 0, define the function ωµ : Rn → R ∪ {+∞} by

ωµ(y) := µω
( y

µ

)

.

Obviously, ωµ is also convex and continuously differentiable with Lipschitz gradient.
Moreover, it is easily seen that

epiωµ = µ epiω.

In [7], the authors consider the (convex) function

(g#ωµ)(x) = inf
u∈Rn

{

g(u) + µω
(x− u

µ

)}

(µ > 0)

as a smoothing function for g. We now investigate conditions on ω for which the
inf-convolution g#ωµ serves as an epi-smoothing function in the sense of Section 3.
In this context, the notion of coercivity plays a key role where it arises as a natural
assumption on the function ω. Several different notions of coercivity occur in the
literature. We now define those useful to our study.

Definition 4.1 (Coercive functions). Let f : Rn → R∪{+∞} be lsc and convex.

a) f is called 0-coercive if

lim
‖x‖→∞

f(x) = +∞.

b) f is called 1-coercive if

lim
‖x‖→∞

f(x)

‖x‖
= +∞.

The first result establishes important properties of the function g#ωµ.

Lemma 4.2. If ω is 1-coercive (or 0-coercive and g bounded from below) the
following holds:
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a) g#ωµ is finite-valued, i.e., g#ωµ : Rn → R, and for all x ∈ R
n we have

(g#ωµ)(x) = min
u∈Rn

{

g(u) + µω
(x− u

µ

)}

i.e.,

argmin
u∈Rn

{

g(u) + µω
(x− u

µ

)}

6= ∅.

b) We have

epi g#ωµ = epi g + epiωµ.

c) g#ωµ is continuously differentiable with

∇(g#ωµ)(x) = ∇ω
(x− uµ(x)

µ

)

= ∇ωµ(x− uµ(x)) ∀x ∈ R
n,

where uµ(x) ∈ argminu∈Rn

{

g(u) + µω
(

x−u
µ

)}

.

Proof. The assertion that

(g#ωµ)(x) < +∞ ∀x ∈ R
n

is due to the fact that ω is finite-valued and g 6≡ +∞. Moreover, ωµ obviously
inherits the respective coercivity properties from ω. Hence, the remainder of a) follows
immediately from [6, Proposition 12.14].
In turn, b) follows from a) and [6, Proposition 12.8 (ii)].
Item c) is an immediate consequence of a) together with [7, Theorem 4.2 (c)].
The following auxiliary result, which is key for establishing epigraphical limit behavior
of g#ωµ, states that the epigraphical limit of ωµ for µ ↓ 0 is δ(· | {0}) if and only if
ω is 1-coercive.

Lemma 4.3. ω is 1-coercive if and only if

e− lim
µ↓0

ωµ = δ(· | {0}).

Proof. First, let ω be 1-coercive:
We start by showing that Lim supµ↓0 epiωµ ⊂ {0} × R+ = epi δ(· | {0}).

To this end, let (z̄, ᾱ) ∈ Lim supµ↓0 epiωµ. Then there exist sequences {zk} → z̄,
{αk} → ᾱ and {µk} ↓ 0 such that

µkω
( zk

µk

)

≤ αk ∀k ∈ N. (4.1)

This can be written as

ω
( zk

µk

)

≤
αk

µk

∀k ∈ N.

It is immediately clear from this representation, that ᾱ ≥ 0, since otherwise the right-
hand side would tend to −∞, while the left-hand side remains either convergent on a
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subsequence (if { zk

µk
} is bounded) or tends to +∞ (if { zk

µk
} is unbounded).

Now, suppose that z̄ 6= 0. Then { zk

µk
} is unbounded and (4.1) can be rewritten as

ω
(

zk

µk

)

‖ zk

µk ‖
≤

αk

‖zk‖
∀k ∈ N.

By the 1-coercivity of ω the left-hand side tends to +∞, while the right-hand side
is bounded, which is a contradiction. Hence, we have proven that z̄ = 0 and ᾱ ≥ 0,
which shows that, in fact, Lim supµ↓0 epiωµ ⊂ {0} × R+.
We now show that Lim infµ↓0 epiωµ ⊇ {0} × R+. For these purposes, let ᾱ ≥ 0
and {µk} ↓ 0 be given. Then choose zk := 0 and αk := ᾱ + µkω(0) ≥ ωµk

(zk).
Then (zk, αk) ∈ epiωµk

for all k ∈ N and (zk, αk) → (0, ᾱ). This shows that
Lim infµ↓0 epiωµ ⊇ {0} × R+.
Putting together all the pieces of information, we see that

Lim
µ↓0

epiωµ = epi δ(· | {0}),

i.e.,

e− lim
µ↓0

ωµ = δ(· | {0}).

Now, suppose that ω is not 1-coercive. Then there exists an unbounded sequence
{xk} such that either

ω(xk)

‖xk‖
→ −∞

or
{

ω(xk)
‖xk‖

}

is bounded. Put µk := 1
‖xk‖

→ 0. Then

ωµk

( xk

‖xk‖

)

=
ω(xk)

‖xk‖
,

and we have

( xk

‖xk‖
, ωµk

( xk

‖xk‖

))

∈ epiωµk
∀k ∈ N. (4.2)

If ω(xk)
‖xk‖

→ −∞, we infer that ωuk
does not converge epigraphically at all (in particular

not to δ(· | {0})) from (2.1), since we have lim infk→∞ ωµk

(

xk

‖xk‖

)

→ −∞.

In case that
{

ω(xk)
‖xk‖

}

is bounded, we may assume w.l.g. that

ω(xk)

‖xk‖
→ ω̄

for some ω̄ ∈ R. Then we infer from (4.2) that

(x̄, ω̄) ∈ Lim sup
k→∞

epiωµk
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with x̄ 6= 0 being an accumulation point of
{

xk

‖xk‖

}

. But (x̄, ω̄) /∈ epi δ(· | {0}), which

concludes the proof.
The following lemma establishes simple monotonicity and boundedness properties for
the family of functions g#ωµ.

Lemma 4.4. If ω(0) ≤ 0, then for all y ∈ R
n the function µ 7→ (g#ωµ)(y) is

bounded by g(y) from above and we have

(g#ωµ1
)(y) ≤ (g#ωµ2

)(y) whenever µ1 > µ2 > 0.

.
Proof. Let y ∈ R

n. Then it holds that

(g#ωµ)(y) = inf
u∈Rn

{

g(u) + µω

(

y − u

µ

)}

≤ g(y) + µω(0) ≤ g(y).

Now let µ1 > µ2 > 0. Then we have

ω
( y

µ1

)

= ω
(µ2

µ1

y

µ2
+
(

1−
µ2

µ1

)

0
)

≤
µ2

µ1
ω
( y

µ2

)

+
(

1−
µ2

µ1

)

ω(0)

≤
µ2

µ1
ω
( y

µ2

)

.

Multiplying by µ1 yields

ωµ1
(y) ≤ ωµ2

(y) ∀y ∈ R
n,

and hence, we have

g(u) + ωµ1(y − u) ≤ g(u) + ωµ2(y − u) ∀u ∈ R
n.

Taking the infimum over all u ∈ R
n gives

(g#ωµ1
)(y) ≤ (g#ωµ2

)(y),

which concludes the proof due the choice of µ1 and µ2.
The following result establishes the desired epi-convergence properties of the inf-
convolutions. Note that, to our knowledge, we cannot deduce it from known results
such as [54, Proposition 7.56] or [5, Theorem 4.2], since our assumptions do not meet
the requirements for the application of these results. In particular, we do not assume
g to be bounded from below.

Proposition 4.5. If ω is 1-coercive, then

e− lim
µ↓0

g#ωµ = g.

Proof. The fact that Lim infµ↓0 epi g#ωµ ⊇ epi g follows immediately from [54,
Theorem 4.29 a)] when applied to the respective epigraphs.
Therefore, it is enough to show that Lim supµ↓0 epi g#ωµ ⊂ epi g.
To this end, pick (x̄, ᾱ) ∈ Lim supµ↓0 epi g#ωµ arbitrarily. Then there exist sequences

{µk} ↓ 0, {xk} → x̄ and αk → ᾱ such that

(g#ωµk
)(xk) ≤ αk ∀k ∈ N. (4.3)
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With

uk ∈ argmin
u∈Rn

{

g(u) + µkω
(xk − u

µk

)}

,

(4.3) can be written as

g(uk) + µkω
(xk − uk

µk

)

≤ αk ∀k ∈ N. (4.4)

Using the fact, cf. [6, Theorem 9.19], that the convex, lsc function g is minorized by
an affine function, say x 7→ bTx+ β, this leads to

bTuk + β + µkω
(xk − uk

µk

)

≤ αk ∀k ∈ N.

If we assume that {uk} does not convergence to x̄, we can rewrite this (for k sufficiently
large) as

ω
(

xk−uk

µk

)

‖xk−uk

µk
‖

≤
αk − bTuk − β

‖xk − uk‖
.

Whether {uk} is unbounded or not, we obtain a contradiction, since the left-hand
side tends to +∞, as ω is 1-coercive, while the right-hand side remains bounded.

Hence, {uk} → x̄. We now claim that g(uk) 6→ +∞, and hence, in particular,
x̄ ∈ dom g. If this were not the case, we invoke [6, Theorem 9.19] again to get an
affine minorant of ω, say x 7→ cTx+ γ, and infer from (4.4) that

g(uk) + cT (uk − xk) + µkγ ≤ αk ∀k ∈ N.

This, however, leads to a contradiction if g(uk) → +∞ since cT (uk − xk) + µkγ → 0
and αk → ᾱ < +∞. Thus, we have shown that {g(uk)} is bounded from above. Since
g is lsc and uk → x̄, we also know that lim infk→∞ g(uk) ≥ g(x̄). Hence, we may as
well assume that g(uk) → ĝ ≥ g(x̄) and, in particular, we have x̄ ∈ dom g.
We now infer from (4.4) that

(xk − uk, αk − g(uk)) ∈ epiωµk
∀k ∈ N.

Since xk − uk → 0 and αk − g(uk) → α− ĝ, Lemma 4.3 implies

(0, ᾱ− ĝ) ∈ Lim sup
µ↓0

epiωµ ⊂ epi δ(· | {0}).

This immediately gives

g(x̄) ≤ ĝ ≤ ᾱ,

i.e., (x̄, ᾱ) ∈ epi g, which concludes the proof.
We are now in a position to state the main result of this section.

Theorem 4.6. If ω is 1-coercive then the function sg : (x, µ) 7→ (g#ωµ)(x) is an
epi-smoothing function for g with

gph∇xsg(·, µ) →
µ↓0

gph ∂g,
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and hence, in particular,

Lim sup
µ↓0, x→x̄

∇xsg(x, µ) = ∂g(x̄) ∀x̄ ∈ dom g.

Proof. Due to Propostion 4.5, we have e− limµ↓0 sg(·, µ) = e− limµ↓0 g#ωµ = g.
The smoothness properties of ∇xsg(·, µ) = ∇g#ωµ follow from Lemma 4.2. The
remaining assertion is an immediate consequence of Attouch’s Theorem, see [54, The-
orem 12.35]. This concludes the proof.

Moreau Envelopes. The most prominent choice for ω is given by

ω :=
1

2
‖ · ‖2.

The resulting inf-convolution of ωµ with an lsc function g : Rn → R∪ {+∞} is called
the Moreau envelope or Moreau-Yosida regularization of g and is denoted by eµg, i.e.,

eµg(x) = inf
w

{

g(w) +
1

2µ
‖w − x‖2

}

.

The set-valued map Pµg : Rn
⇒ R

n given by

Pµg(x) := argmin
w

{

g(w) +
1

2µ
‖w − x‖2

}

is called the proximal mapping for g.

The following properties of Moreau envelopes and proximal mappings of convex func-
tions are well known, see [53, 54] or [41].

Proposition 4.7. Let f : Rn → R ∪ {+∞} be lsc and convex and µ > 0. Then
the following holds:

a) Pµf is single-valued and Lipschitz continuous.
b) eµf is convex and smooth with Lipschitz gradient ∇eµf given by

∇eµf(x) =
1

µ
[x− Pµf(x)].

c) argmin f = argmin eµf .

In view of item c) it is possible to recover the minimzers of a (possibly nonsmooth)
convex function by those of its Moreau envelope. Hence, it is not even necessary to
drive the smoothing parameter to zero.
Since the function x 7→ 1

2‖x‖
2 is 1-coercive, the following result can be formulated as

a corollary of Theorem 4.6.

Corollary 4.8. Let g : Rn → R ∪ {+∞} be lsc and convex. Then sg : (x, µ) 7→
eµg(x) is an epi-smoothing function for g with

Lim sup
µ↓0, x→x̄

∇xsg(x, µ) = ∂g(x̄) ∀x̄ ∈ dom g.

When g is lsc and convex, the fact that eµg epi-converges to g as µ ↓ 0 is well known
(cf. the discussion in [54] after Proposition 7.4).
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Extended Piecewise Linear-Quadratic Functions (EPLQ) [54]. EPLQ
functions play a key role in a wide variety of applications, e.g., signal denoising [25, 26],
model selection [56], compressed sensing [27, 28, 38], robust statistics [40], Kalman
filtering [1, 2, ?], and support vector classifiers [30, 52, 55]. Examples include arbitrary
gauge functionals [54] (e.g., norms), the Huber penalty [7, 40], the hinge loss function
[30, 52, 55], and the Vapnik penalty [39, 57]. For an overview of these functions
and their statistical properties see [3, 54] (in [3] EPLQ functions are referred to as
quadratic support functions). In this section, we show that the Moreau envelope
mapping g 7→ eµg maps the class of EPLQ functions to itself in a very natural way.

Definition 4.9. The convex function g : Rn → R is said to be extended piecewise
linear-quadratic if for some positive integer m there exists a nonempty closed convex
set U ⊂ R

m (typically polyhedral), an injective matrix R ∈ R
n×m, a symmetric and

positive semi-definite matrix B ∈ R
m×m, and a vector b ∈ R

m such that

g(x) := θ(U,B,R,b)(x) := sup
u∈U

〈u, Rx− b〉 −
1

2
uTBu. (4.5)

If m = n, R = I, and b = 0, then g is said to be piecewise linear-quadratic (PLQ).
Example 1 (Examples of EPLQ functions).
1. Norms: Let ‖·‖∗ be a norm with closed unit ball B∗. Then ‖·‖∗ = θ(B◦∗,0,I,0),

where B
◦
∗ := {v | 〈v, u〉 ≤ 1 ∀u ∈ B∗ }.

2. The Huber penalty: Let κ > 0. Then θ([−κ,κ]n,I,I,0) is the Huber penalty with
threshold κ.

3. The Vapnik penalty: Let ε > 0 and define U = [0, 1]2n, R = [In×n, −In×n]
T ,

and b = ε ones(2n, 1), then θ(U,0,T,b) is the Vapnik penalty with threshold ε.
Proposition 4.10. Let θ(U,B,R,b) be an extended piecewise linear-quadratic func-

tion. If B is positive definite or U is bounded, then

eµθ(U,B,R,b) = θ(U,B̂,R,b),

where B̂ = B+µRRT . Moreover, for each x ∈ R
n there exists a saddle-point (ū, v̄) ∈

U × R
n for the closed proper concave-convex saddle-function [53, Section 33]

K(u, v) := 〈Rv − b, u〉 −
1

2
uTBu+

1

2µ
‖x− v‖2 − δ(u | U)

satisfying eµg(x) = K(ū, v̄).
Proof. Regardless of the choice of x, K is coercive in v for each u ∈ U , and if

B is positive definite or U is bounded, then −K is coercive in u for each v ∈ R
n.

Hence, by [53, Theorem 37.6], for every x ∈ R
n, K has a saddle-point (ū, v̄) ∈ U ×R

n

satisfying

eµg(x) = inf
v∈Rn

sup
u∈U

K(u, v)

= K(ū, v̄)

= sup
u∈U

inf
v∈Rn

K(u, v).

To complete the proof observe that the problem

inf
v∈Rn

K(u, v) = −

[

〈b, u〉+
1

2
uTBu

]

+ inf
v∈Rn

[

〈

v, RTu
〉

+
1

2µ
‖x− v‖2

]
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has a unique solution at v(x, u) = x − µRTu. Plugging this solution into K gives
eµg(x) = supu∈U K(u, v(x, u)) = θ(U,B̂,R,b)(x).

Example 2 (Lasso-Problem). Given A ∈ R
m×n and b ∈ R

m with m << n,
consider the nonsmooth optimization problem

min
x
f(x) :=

1

2
‖Ax− b‖2 + λ‖x‖1, (4.6)

where λ > 0. This problem is known in the literature as the Lasso-Problem, see
[28, 56].

The objective function f is the sum of two convex functions, one is smooth and the
other is a nonsmooth PLQ function. By Proposition 3.1, an epi-smoothing function
for f can be obtained by computing the Moreau envelope for the 1-norm. This envelope
is obtained from the proximal mapping which in this case is commonly referred to in
the literature as soft thresholding [25, 26]. An easy computation shows that

Pµ‖ · ‖1(x) =







xi + µ if xi < −µ,
xi − µ if xi > µ,

0 if |xi| ≤ µ.

5. Convex Composite Functions. An important and powerful class of nons-
mooth, nonconvex functions f : Rn → R ∪ {+∞} is given by

f(x) := g(H(x)) ∀x ∈ R
n, (5.1)

where g : Rm → R ∪ {+∞} is a closed, proper, convex function and H : Rn → R
m

(twice) continuously differentiable. These functions go by the name convex compos-
ite, see, e.g., [11, 12] or [16], and are closely related to amenable functions, see [54,
Definition 10.32].
Suppose one has an epi-smoothing function sg of g, then it is a natural question to
ask whether sf (·, ·) := sg(H(·), ·) is an epi-smoothing function of f . That is, do the
smoothing properties of sg (with respect to g) carry over to smoothing properties of
sf (with respect to f)? In particular, does the epi-convergence of sg(·, µ) to g imply
the epi-convergence of sf (·, µ) to f ? To clarify this connection, we start with an
easy observation for which we give a self-contained proof (an alternative proof can be
obtained by applying [54, Formula 4(8)] to the respective epigraphs and the function
F (x, α) := (H(x), α) satisfying epi f = F−1(epi g)).

Lemma 5.1. Let sg be an epi-smoothing function for g, and define sf (·, ·) :=
sg(H(·), ·). Then

Lim sup
µ↓0

epi sf (·, µ) ⊂ epi f.

Proof. Let (x̄, ᾱ) ∈ Lim supµ↓0 epi sf (·, µ). Then there exist sequences {xk} →
x̄, {αk} → ᾱ and {µk} ↓ 0 such that

sg(H(xk), µk) ≤ αk ∀k ∈ N,

i.e.,

(H(xk), αk) ∈ epi sg(·, µk) ∀k ∈ N.
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Since (H(xk), αk) → (H(x̄), ᾱ) we get from the epi-convergence of sg(·, µ) to g that

(H(x̄), ᾱ) ∈ epi g,

which immediately yields

(x̄, ᾱ) ∈ epi f.

This proves the result.
We point out that in the previous result, as well as in the following two results, only
continuity of H and no smoothness assumption is needed.

Proposition 5.2. Let sg be an epi-smoothing function for g such that for all
y ∈ R

m the term sg(y, µ) is bounded by g(y) from above for all µ > 0. Then for
sf (·, ·) := sg(H(·), ·) we have

e− lim
µ↓0

sf (·, µ) = f.

Proof. Due to Lemma 5.1, it suffices to show that

Lim inf
µ↓0

epi sf (·, µ) ⊇ epi f.

To this end, let (x̄, ᾱ) ∈ epi f and {µk} ↓ 0. By the boundedness assumption we have

(x̄, ᾱ) ∈ epi sf (·, µk) ∀k ∈ N.

With the choice xk := x̄ and αk := ᾱ it follows immediately that

(x̄, ᾱ) ∈ Lim inf
µ↓0

epi sf (·, µ),

which concludes the proof.
Corollary 5.3. If, in the setting of Section 4, ω is 1-coercive with ω(0) ≤ 0,

then for sg(·, µ) := g#ωµ we have

e− lim
µ↓0

sg(H(·), µ) = g ◦H.

Proof. The assertion follows immediately from Lemma 4.4 and Proposition 5.2.
In the following result we employ the limiting normal cone for a (nonempty) convex
set C ⊂ R

n at x̄ ∈ C, which is given by, cf. [54, Theorem 6.9],

N(x̄ | C) = {v ∈ R
n | vT (x− x̄) ≤ 0 ∀x ∈ C}.

In our setting, C is the domain of an lsc, convex function g : Rn → R∪ {+∞}, which
is closed and convex.

Lemma 5.4. Let {gk} be a sequence of lsc, convex functions gk : Rm → R∪{+∞}
converging epi-graphically to g : R

m → R ∪ {+∞}. Furthermore, let {zk} be an
unbounded sequence such that zk ∈ ∂gk(y

k) for all k ∈ N for some {yk} → ȳ ∈ dom g.

Then every accumulation point of
{

zk

‖zk‖

}

lies in N(ȳ | dom g).

Proof. Let z̄ be an accumulation point of
{

zk

‖zk‖

}

. W.l.g. we can assume that

zk

‖zk‖
→ z̄. Moreover, let y ∈ dom g be given. Since e− limk→∞ gk = g, we may invoke
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(2.1) to obtain a sequence {ŷk} → y such that lim supk→∞ gk(ŷ
k) ≤ g(y). Since, by

assumption, zk ∈ ∂g(yk) for all k ∈ N, we infer

gk(ŷ
k)− gk(y

k) ≥ (zk)T (ŷk − yk) ∀k ∈ N.

Dividing by ‖zk‖ yields

gk(ŷ
k)− gk(y

k)

‖zk‖
≥

(zk)T

‖zk‖
(ŷk − yk) → z̄T (y − ȳ).

To prove the assertion it suffices to see that the numerator of the left-hand side of the
above inequality is bounded from above at least on a subsequence. This, however, is
true due to the choice of {ŷk} and (2.1).
A standard assumption in the context of convex composite functions, cf. [16], is the
basic contstraint qualification which is formally stated in the following definition.

Definition 5.5 (Basic constraint qualification). Let f be given as in (5.1). Then
f is said to satisfy the basic constraint qualification (BCQ) at a point x̄ ∈ dom f if

N(H(x̄) | dom g) ∩ nulH ′(x̄)T = {0}.

Note that, in the setting of (5.1), BCQ always holds at a point x̄ ∈ dom f where
H ′(x̄)T has full column rank. Moreover, BCQ is always fulfilled when g is finite-
valued, since then dom g = R

m and thus, N(H(x̄) | dom g) = {0} for all x̄ ∈ R
n.

The BCQ is important since it guarantees a rich subdifferential calculus for the com-
position f = g ◦H.

Lemma 5.6. [54, Theorem 10.6] Let f be given as in (5.1). If BCQ is satisfied
at x̄ ∈ dom f , then f is (subdifferentially) regular at x̄ and we have

∂f(x̄) = H ′(x̄)T∂g(H(x̄)).

Theorem 5.7. Let sg be an epi-smoothing function for g. If sf (·, ·) := sg(H(·), ·)
is an epi-smoothing function for f := g ◦H, then

Lim sup
µ↓0,x→x̄

∇xsf (x, µ) = ∂f(x̄)

for all x̄ ∈ dom f at which the BCQ holds.
Proof. We need only show that Lim supµ↓0,x→x̄ ∇xsf (H(x), µ) ⊂ ∂f(x̄), since the

Lim inf-inclusion is clear from Lemma 3.4.
To this end, let v ∈ Lim supµ↓0,x→x̄ ∇xsf (H(x), µ) be given. Then there exist

sequences {xk} → x̄ and {µk} ↓ 0 such that

H ′(xk)T∇xsg(H(xk), µk) = ∇xsf (x
k, µk) → v. (5.2)

Put zk := sg(H(xk), µk) (k ∈ N). If {zk} were unbounded, then w.l.g. { zk

‖zk‖
} → z̄ 6=

0, and we infer from (5.2) that

z̄ ∈ nulH ′(x̄)T .

On the other hand, Lemma 5.4 tells us that z̄ ∈ N(H(x̄) | dom g), thus,

0 6= z̄ ∈ N(H(x̄) | dom g) ∩ nulH ′(x̄)T ,
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which contradicts BCQ. Hence, {zk} is bounded and converges at least on a subse-
quence, and due to Attouch’s theorem [54, Theorem 12.35] the limit (accumulation
point) lies in ∂g(H(x̄)). Using this and the fact that H ′ is continuous, we get

v ∈ H ′(x̄)T∂g(H(x̄)) = ∂f(x̄),

where the equality is due to Lemma 5.6. This concludes the proof.
Corollary 5.8. Let sg be an epi-smoothing function for g, and suppose ω is

1-coercive with ω(0) ≤ 0. Then sf (·, ·) := sg(H(·), ·) is an epi-smoothing function for
f := g ◦H and

Lim sup
µ↓0,x→x̄

∇xsf (x, µ) = ∂f(x̄).

for all x̄ ∈ dom f at which the BCQ holds.
Proof. The result follows immediately from Corollary 5.3 and Theorem 5.7.

In Theorem 4.6, we used convexity to obtain the gradient consistency condition di-
rectly via Attouch’s theorem. However, the corresponding result in Corollary 5.8
does not follow from the generalized version of Attouch’s theorem for convex compos-
ite functions given in [51, Theorem 2.1], since our assumptions are too weak for the
application of this result. Specifically, we do not require the equi primal-lower nice
property. The equi primal-lower nice property follows, for example, by assuming H
to be C2 instead of only C1, cf. [51, Proposition 2.3].

6. Constrained Optimization. We now apply the results of the previous sec-
tion the constrained optimization problem

minimize φ(x)
subject to h(x) ∈ C,

(6.1)

where φ : Rn → R and h : Rn → R
m are smooth mappings and C ⊂ R

m is a nonempty
closed convex set. This is an example of a convex composite optimization problem
[11, 12, 16] where the composite function f = g ◦H is given by

g(γ, y) := γ + δ(y | C) and H(x) :=

[

φ(x)
h(x)

]

.

In this case, g is the sum of a smooth convex function, g1(γ, y) := γ, and a nonsmooth
convex function g2(γ, y) := δ(y | C). Hence, by Proposition 3.1, we can obtain
an epi-smoothing function for g by only smoothing the g2 term. A straightforward
computation shows that

eµg2(y) =
1

2µ
dist2(y | C).

Therefore, by Corollary 5.3,

sf (x, µ) = φ(x) +
1

2µ
dist2(h(x) | C) (6.2)

is an epi-smoothing function for f . This is one of the classical smoothing functions
for constrained optimization [33]. The BCQ becomes the condition

nulh′(x)T ∩N(h(x) | C) = {0}. (6.3)
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In the case where C = {0}s × R
m−s
− , the function (6.2) is the classical least-squares

smoothing function for nonlinear programming, and (6.3) reduces to theMangasarian-
Fromovitz constraint qualification (e.g., see [54, Example 6.40]).

Corollary 5.8 tells us that at every point x̄ with h(x̄) ∈ C we have

Lim sup
µ↓0,x→x̄

∇xsf (x, µ) = ∇φ(x̄) + h′(x̄)TN(h(x̄) | C),

whenever condition (6.3) holds at x̄, where, by Proposition 4.7,

∇xsf (x, µ) = ∇φ(x) + h′(x)T
(

h(x)−ΠC(h(x))

µ

)

.

The results of Section 5 allow us to make powerful statements about algorithms that
use the epi-smoothing function (6.2) to solve the optimization problem (6.1). We
begin by studying the case of cluster points that are feasible for (6.1).

Theorem 6.1. Let sf be as in (6.2) with φ, h, and C satisfying the hypotheses
specified in (6.1). Let {xk} ⊂ R

n and {µk} ↓ 0 satisfy
∥

∥∇xsf (x
k, µk)

∥

∥ ↓ 0. Then every
feasible cluster point x̄ of {xk} at which (6.3) is satisfied, is a Karush-Kuhn-Tucker
point for (6.1), i.e.,

0 ∈ ∂f(x̄) = ∇φ(x̄) + h′(x̄)TN (h(x̄) |C ) .

Proof. Lemma 5.6 implies that ∂f(x̄) = ∇φ(x̄) + h′(x̄)TN (h(x̄) |C ). Hence, by
Corollary 5.8, x̄ is a KKT point for (6.1).
Theorem 6.1 tells us that the feasible cluster points of sequences of approximate sta-
tionary points of sf are KKT points, but, from and algorithmic perspective, this does
not give us a mechanism for testing proximity to optimality via standard optimality
conditions. That is, it does not show how to approximate the multiplier vector. This
is addressed by the following corollary.

Corollary 6.2. Let sf , φ, h, C, {xk}, and {µk} be as in Theorem 6.1, and
let x̄ be a cluster point of {xk} at which h(x̄) ∈ C and (6.3) is satisfied. If J ⊂ N is
a subsequence for which xk →J x̄, then the associated subsequence {yk}J , where

yk :=
h(xk)−ΠC(h(x

k))

µk

∀k ∈ N,

remains bounded and every cluster point ȳ is such that (x̄, ȳ) is a Karush-Kuhn-Tucker
pair for (6.1), i.e.,

0 = ∇φ(x̄) + h′(x̄)T ȳ with ȳ ∈ N(h(x̄) | C).

Proof. Let J ⊂ N and x̄ be as in the statement of the corollary. Theorem 6.1 tells
us that x̄ is a KKT point for (6.1), i.e., 0 ∈ ∂f(x̄) = ∇φ(x̄)+h′(x̄)TN (h(x̄) |C ). We
first show that the subsequence {yk}J given above is necessarily bounded.

Suppose, to the contrary, that the sequence is not bounded. Then there is a
further subsequence Ĵ ⊂ J such that

∥

∥yk
∥

∥ ↑Ĵ +∞. With no loss in generality we

may assume that there is a unit vector ỹ such that yk/
∥

∥yk
∥

∥ →Ĵ ỹ. Since yk ∈

N
(

ΠC(h(x
k)) |C

)

for all k, the outer semicontinuity of the normal cone operator
z 7→ N (z |C ) relative to C, cf. [54, Proposition 6.6], implies that ỹ ∈ N (h(x̄) |C ).
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Dividing
∥

∥∇xsf (x
k, µk)

∥

∥ by
∥

∥yk
∥

∥ and taking the limit over Ĵ gives h′(x̄)T ỹ = 0. But
this contradicts the BCQ (6.3) since ỹ is a unit vector. Therefore, the sequence {yk}J
is bounded.

Let ȳ be any cluster point of the sequence {yk}J (at least one such cluster point
must exist since this sequence is bounded). As above, ȳ ∈ N (h(x̄) |C ), and by the
hypotheses, 0 = ∇φ(x̄) + h′(x̄)T ȳ. Hence, x̄ is a KKT point for (6.1) and ȳ is an
associated KKT multiplier.
We now address the case of infeasible cluster points, i.e., cluster points x̄ for which
h(x̄) /∈ C. To understand this case, we must first review the subdifferential properties
of the distance function dist(· | C) and the associated convex composite function

ψ(x) := dist(h(x) | C).

First, recall from [14, Proposition 3.1] that

∂dist(y | C) =

{

N (y |C ) ∩ B if y ∈ C,
N (y |C + dist(y | C)B ) ∩ bdry(B) if y /∈ C,

(6.4)

where bdry(B) is the boundary of the unit ball, and, by [54, Example 8.53], we also
have

∂dist(y | C) = N (y |C + dist(y | C)B ) ∩ bdry(B) =

{

y −ΠC(y)

dist(y | C)

}

∀ y /∈ C. (6.5)

In addition, from [12, Equation 2.4], ψ is subdifferentially regular on R
n with

∂ψ(x) = h′(x)T∂dist(h(x) | C). (6.6)

These formulas yield the following result.
Theorem 6.3. Let sf , φ, h, C, {xk}, and {µk} be as in Theorem 6.1, and let

x̄ be a cluster point of {xk} at which h(x̄) /∈ C. Then 0 ∈ ∂ψ(x̄).
Proof. Let J ⊂ N be such that xk →J x̄. Since

∥

∥∇xsf (x
k, µk)

∥

∥ ↓ 0, we have

µk

∥

∥∇xsf (x
k, µk)

∥

∥ ↓ 0, and consequently

h′(xk)T (h(xk)−ΠC(h(x
k))) → 0.

Hence, by the continuity of ΠC and (6.5), 0 ∈ ∂ψ(x̄).
Theorem 6.3 shows that any algorithm that drives ∇xsf (x

k, µk) to zero as µk ↓ 0
performs admirably even when the problem (6.1) is itself infeasible. That is, in the
absence of feasibility, it naturally tries to locate a nonfeasible stationary point for (6.1)
as defined in [13]. It may happen that the original problem is feasible while all cluster
points are nonfeasible stationary points. This can be rectified by placing a further
restriction on how the iterates {xk} are generated.

Proposition 6.4. Let C, φ, h, and sf be as in (6.1) and (6.2), and let {µk} ↓ 0.
Suppose that there is a known feasible point x̃ for (6.1). If {xk} is a sequence for which

sf (x
k, µk) ≤ sf (x̃, µk) = φ(x̃) for all k = 1, 2, . . . , (6.7)

then every cluster point of {xk} must be feasible for (6.1).
Proof. Let x̄ be a cluster point of {xk} and let J ⊂ N be such that xk →J x̄.

If x̄ is not feasible, then 1
2µk

dist2(h(xk) | C) →J +∞. But sf (x
k, µk) = φ(xk) +

1
2µk

dist2(h(xk) | C) ≤ φ(x̃) giving the contradiction φ(xk) →J −∞.
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The additional condition (6.7) in Proposition 6.4 is easily achieved in the context of
a descent algorithm designed to attain the required property

∥

∥∇xsf (x
k, µk)

∥

∥ ↓ 0. In
practice, for each µk+1, one initiates an inner descent algorithm to locate xk+1 with
∥

∥∇xsf (x
k+1, µk+1)

∥

∥ ≤
∥

∥∇xsf (x
k, µk)

∥

∥. Typically, this inner algorithm is initiated
at xk. However, if the inner descent algorithm is initiated at x̃ whenever φ(x̃) =
sf (x̃, µk+1) < sf (x

k, µk+1), then (6.7) is satisfied.
In general, without further hypotheses, feasibility might not be attained in the limit.
This is true even in the prototypical example of convex composite optimization, the
Gauss-Newton method for solving nonlinear systems of equations. It is often the case
that the additional hypotheses employed are related to the BCQ (6.3). One way to
understand the role of nonfeasible stationary points and their effect on computation
is through constraint qualifications that apply to nonfeasible points. These constraint
qualifications extend (6.3) to points on the whole space. Among the many possible
extensions one might consider, we use one from the geometry of the subdifferential
(6.4) first explored in [13]. We say that the extended constraint qualification (ECQ)
for (6.1) is satisfied if

nulh′(x)T ∩N (h(x) |C + dist(h(x) | C)B ) = {0}. (6.8)

Note that this condition is well defined on all of Rn and reduces to (6.3) when h(x) ∈
C. When h(x) /∈ C, it is easily seen that 0 ∈ ∂ψ(x) if and only if (6.8) is not satisfied.
Hence, if one assumes that ECQ is satisfied at all iterates, then nonfeasible cluster
points cannot exist. For example, if C = {0}, then a standard global constraint
qualification is to assume that h′(x) is everywhere surjective, i.e., nulh′(x)T = {0}
for all x. This implies (6.8) which simply says that h′(x)Th(x) 6= 0 whenever h(x) 6= 0
and h′(x) is surjective whenever h(x) = 0.

7. Final Remarks. In this paper we have synthesized the infimal convolution
smoothing ideas proposed by Beck and Teboulle in [7] with the notion of gradient con-
sistency defined by Chen in [21]. To achieve this we make use of epi-convergence tech-
niques that are well suited to the study of the variational properties of parametrized
families of functions. Using epi-convergence, we defined the notion of epi-smoothing
for which we established a rudimentary calculus. Epi-smoothing is a weakening of the
kinds of smoothing studied in [7] where the focus is on convex optimization and the
derivation of complexity results which necessitate stronger forms of smoothing. We
then applied the epi-smoothing ideas to study the epi-smoothing properties of convex
composite functions, a very broad and important class of nonconvex functions. In
particular, we showed that general constrained optimization falls within this class.
Using the epi-smoothing calculus, we easily derived the convergence properties of a
classical smoothing approach to constrained optimization establishing the convergence
properties even in the case when the underlying optimization problem is not feasible.
This application demonstrates the power of these ideas as well as their ease of use.
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