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A B S T R A C T

Coalescence of water droplets strongly influences dropwise condensation on hydrophobic surfaces. This work
reports a study on experimental data-based statistical modeling to predict the coalescence dynamics of an en-
semble of water droplets under the influence of an electrowetting (EW) field. Previous related studies have
primarily used high speed visualization to characterize coalescence. However, this study uses statistical mod-
eling to analyze the parameter space associated with EW-induced coalescence, noting that physics-based mod-
eling of EW-induced coalescence is challenging. The objective of this study is to quantify the influence of the
applied voltage, frequency of the AC waveform and the geometry of the EW device on two parameters related to
droplet coalescence (droplet radius enhancement and reduction in wetted area). Multiple supervised learning
techniques are used to identify dominant variables and statistically model the influence of these variables on
coalescence. Data for the statistical models is obtained via image analysis from coalescence experiments.

The statistical models lead to a reference tool to predict droplet coalescence-related parameters versus the
applied voltage and electrode geometry. Importantly, data analysis shows that droplet coalescence is in-
dependent of the AC frequency; this conclusion would be challenging to infer from conventional analysis. It is
also seen that an EW field significantly narrows the droplet size distribution. Overall, this study leads to a
detailed understanding of the factors that impact EW-induced coalescence and provides a tool (which matches
experimental data) to predict the change in droplet size distribution. These findings are key to quantifying the
influence of EW on condensation rates and heat transfer. This work leverages the large amount of data from
experiments to develop statistical analysis-based predictive models. This approach can be utilized for predictive
modeling of other data-rich but complex physical phenomena.
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1. Introduction

Condensation of water vapor strongly influences the performance of
equipment utilized in power generation, desalination, atmospheric
water harvesting etc. The default mode of condensation on metal sur-
faces (typically hydrophilic) is filmwise condensation, wherein vapor
condenses as a water film on the surface. The significant thermal re-
sistance associated with this film degrades heat transfer substantially.
Condensing water vapor as droplets (which roll-off on hydrophobic
surfaces) can enhance heat transfer by 5-7X [1], since the thermal re-
sistance associated with the water film is eliminated. The dynamics
associated with dropwise condensation (DWC) is briefly reviewed, as it
is the focus of this work. DWC begins with nucleation, followed by
droplet growth via vapor condensation at the liquid-vapor interface
[2–4]. When droplets grow large enough to contact neighboring dro-
plets, the coalescence stage begins. Coalescence significantly broadens
the droplet size distribution and dominates droplet growth dynamics
[3]. As droplets merge and move around the surface, new droplets
nucleate and grow in the dry area exposed via coalescence [3].
Throughout this process, the mean of the droplet size distribution in-
creases, and the distribution of droplet sizes widens. When droplets
grow (without coalescing), surface coverage increases; however droplet
coalescence and merging will reduce surface coverage [2]. Eventually,
droplets grow large enough to roll-off the surface. During roll-off, the
departing droplet will capture additional fluid along its departure path,
and thereby expose fresh areas for nucleation, continuing the cycle. The
size at which droplets roll off is related to the capillary length, =lc γ

ρg
(γ is surface tension, ρ is density and g is gravity) which measures the
relative importance of surface tension and gravitational forces. Once
gravity-driven shedding begins, the system reaches a pseudo steady-
state where the droplet size distribution and average droplet size re-
main constant [5]. Overall, the entire process of DWC is significantly
influence by droplet coalescence dynamics. Many studies exist on en-
hancing droplet coalescence by modifying the chemistry/texture of the
condensing surface [6–9].

There exist a handful of very recent studies on electrowetting (EW)-
enhanced dropwise condensation. EW is a powerful tool to control
droplet-based microfluidic operations such as droplet motion, genera-
tion and merging [10–14]. EW relies on the electrical modulation of the
solid-liquid interfacial tension to control wettability of water and li-
quids like organic solvents. Application of a potential difference be-
tween a droplet on a dielectric layer and an underlying electrode in-
creases the wettability of droplet. The voltage-dependent contact angle
is modeled using the Young-Lippmann equation as [10]:

= −cosθ cosθ C
γ
V

2eq
lv

2

(1)

where θeq is the equilibrium contact angle (no voltage), γlv is the liquid-
vapor interfacial tension, V is the applied voltage and C is the capaci-
tance of the dielectric layer (under the droplet). In addition to wett-
ability modulation, EW can be used to physically move droplets by the
application of a traveling electric field over an array of electrodes
(buried beneath the dielectric layer). In a recent study by the present
authors [15], EW fields were used to accelerate dropwise condensation
on an array of interdigitated electrodes. Droplets were observed to
move to the minimum energy locations on the surface, resulting in a
coalescence cascade of droplets [15,16].

In general, coalescence of droplets is a complex microfluidic phe-
nomenon governed by various interactions occurring at the three-phase
contact line and various interfaces. When droplets coalesce, initially a
liquid bridge forms between the droplets, followed by the final droplet
forming at the center of mass of the original droplets [2]. Studies show
that during this process, contact line pinning and viscous dissipation
influence the receding contact angle dynamics more strongly than ad-
vancing contact line dynamics [17]. Also, the two merging droplets

leave behind fresh dry area for nucleation to occur. Modeling the physics
associated with all these interactions is very challenging. The challenges are
significantly amplified when condensation is influence by EW, as the
nature of the electric field will also come in play. It is noted that the
electric field distribution will itself be altered (in a transient sense) by
droplet coalescence. Additionally, the penetration of the electric field
lines inside electrically conducting water droplets also depends sig-
nificantly on the frequency of the applied AC EW waveform [14].
Analytical or computational predictions of EW-accelerated coalescence
are challenging and of limited use due to limitations in current un-
derstanding of the underlying physics and lack of knowledge of para-
meters to accurately model phenomena occurring at the three-phase
line.

In view of the above challenges, the present work uses experiments
coupled with statistical modeling to study EW-accelerated droplet
coalescence. In particular, a parametric study is conducted to under-
stand and model the influence of three important parameters on EW-
accelerated droplet coalescence: applied voltage, frequency of the AC
EW field and electrode geometry. We experimentally quantify the
change in droplet size distribution upon the application of an electric
field, and analyze the results using multiple statistical techniques to
quantify the influence of these parameters on droplet coalescence. This
approach thus leverages the large amount of data (via tracking of
multiple droplets) available in condensation experiments, and uses
machine learning-based approaches to develop statistical predictive
models, which are grounded in EW physics.

The novelty and intellectual merit of this work is briefly summar-
ized ahead. As background, there are very few studies on droplet dy-
namics during EW-influenced condensation [15,16,18,19]. These stu-
dies analyze droplet coalescence via high-speed visualization of
condensed droplets. However, we take a different approach, and use
statistical modeling to analyze EW-induced droplet coalescence. We
note that our approach takes advantage of the large quantities of data
available via experiments. We also note that machine learning tools
such as support vector machines, neural networks etc. have been used
in studies on various microfluidic applications [20–22]. Statistical
analysis has also been used to model droplet coalescence in atmospheric
sciences [23,24]. However, there is no prior study on the use of any ma-
chine learning technique to study electrically enhanced coalescence of dro-
plets. This study uses machine learning-based statistical modeling,
which offers the following advantages. Firstly, machine learning tools
are used for parameter shrinkage to reduce the complexity of the
system; direct analysis of data would not enable the same findings as
those obtained in our study. Secondly, we use the predictions from the
statistical models to propose a reference tool to predict changes in
droplet size distribution due to coalescence. It is noted that our mod-
eling is grounded in EW physics, and shows a good match with ex-
perimental data. We note that while the analysis is conducted for a
specific EW configuration, the conclusions and the current approach
(experimental data-based statistical modeling) can be adopted to a wide
variety of configurations.

2. Experimental procedures

Indium Tin Oxide (ITO) coated glass slides were used as the sub-
strates for fabricating EW devices. Standard photolithography and
plasma etching processes were used to pattern an interdigitated elec-
trode layout (Fig. 1a). Details of the fabrication processes are included
in the supplementary information. A co-planar electrode geometry with
interdigitated electrodes stripes was used, with the two sets of elec-
trodes located adjacent to each other (Fig. 1a). The two sets of elec-
trodes were connected to the high voltage and ground ends of a signal
generator and amplifier to generate an electric field in the gap between
adjacent electrodes. Fig. 1b shows the cross section of the condensation
surface. A 5 μm layer of SU-8 2005 was spin-coated on the entire surface
as the EW dielectric. This dielectric layer is critical to the performance

E. Wikramanayake and V. Bahadur Colloids and Surfaces A 599 (2020) 124874

2



of EW systems, as it stores the electrostatic energy for droplet actuation.
Finally, a 100 nm layer of Teflon was spin-coated to act as the hydro-
phobic layer.

Next, the experimental procedure is briefly described. It is noted
that the primary objective of this study is to investigate the influence of
key EW parameters on coalescence of droplets (and not roll-off). The
starting ensemble of droplets (to be coalesced) was obtained by
spraying water using a commercial room humidifier on horizontally
oriented surfaces. Droplet size distributions obtained via this procedure
were remarkably consistent in multiple repetitions, and the mean dro-
plet size of the initial distribution was 79 μm ± 9 μm. It is striking to
observe that the obtained droplet size distribution is similar to that
obtained in classical dropwise condensation experiments [25]. This
finding thus justifies the utility of the present approach for modeling
coalescence in dropwise condensation. This approach also enables the
collection of large data sets for statistical analysis, noting that dropwise
condensation experiments would involve much longer durations.

Post droplet-deposition, the surface was continuously visualized
using the 5× magnification lens of a Nikon Eclipse LV150N optical
microscope. The EW field was then turned on for 15 s, during which
droplet coalescence dynamics were recorded at 100 fps. It is shown
subsequently, that 15 s is long enough for all coalescence events to be
completed. The droplet size distribution before and after the applica-
tion of an EW field was compared to quantify the extent of coalescence.
Post-processing involved using a MATLAB code to count the number
and size of droplets on the surface (circle finder image processing
script). The current software and imaging capabilities allowed the de-
tection of droplets as small as 5 μm. Droplets were assumed to have a
spherical cap geometry, with a contact angle of 120° in the absence of
an EW field. Droplet radii before and after the application of voltage
were calculated and used in the statistical analysis.

Next, the three experimental parameters varied in this study are
briefly described. Firstly, three different electrode geometries were
characterized with electrode widths of 50 μm, 100 μm and 200 μm;
spacing between adjacent electrodes was maintained at 50 μm in all
devices. The electrode:electrode gap ratios were thus 1, 2 and 4. These
geometrical parameters influence the inter-electrode field and the pe-
netration height of the electric field outside the surface. The second
parameter varied was the applied voltage. Experiments were conducted
at three different voltages (100 V, 200 V, 300 V). These voltages were
higher than the threshold voltage for EW actuation, but lesser than the
saturation voltage, as observed from the EW curve. The third parameter

varied was the frequency of the applied AC waveform. Experiments
were conducted at 1 Hz, 10 Hz, 50 Hz, and 1 kHz as they capture var-
ious types of droplet motion (ranging from translation of droplets to
shape variation). It is noted that all experiments were repeated 10
times. Overall, this procedure highlights the experimental rigor in-
volved in this study, and the efforts to get sufficient data for meaningful
statistical analysis.

3. Description of statistical analysis-based modeling approach

The goal of this study is to identify the relative influence of three
input parameters on droplet coalescence; this was achieved by esti-
mating two coalescence-related parameters before and after the appli-
cation of an EW field. The first parameter is the ratio of the area-
averaged radius < > = ∑

∑
R̂ r

r

3

2 , after and before the application of the
EW field. The second parameter is the ratio of the reduction in the
wetted area to the initial wetted area. The wetted area is the fraction of
the surface covered by liquid, and will reduce with increasing coales-
cence. Both these parameters (also referred to as output variables in the
model) were estimated via image analysis after every experiment.

Three statistical techniques (Ridge regression, Lasso regression and
Random Forest) were used to analyze the resulting data sets, and to
identify the relative influence of the three input parameters on droplet
coalescence. We note that the use of three techniques is not an essential
practice; however multiple techniques were used to develop additional
confidence in our findings (by comparing the results obtained from
these techniques). All these three techniques are supervised learning
methods, and are widely used in statistical modeling for feature selec-
tion or shrinkage [26]. Ridge regression is an extension of linear re-
gression analysis and imposes a penalty to the expression that mini-
mizes the sum of least squares (which is the cost function associated
with linear regression), causing variable shrinkage. The penalty is im-
posed to the total size of the coefficients such that more important
predictors will have higher coefficients and less important predictors
will have lower coefficients, based on the magnitude of the applied
penalty [27,28]. Ridge regression minimizes the cost function as:

∑ ∑ ∑− +
= =( )y x β λ β
i

N
i j ij j j

p
j1

2

1
2

(2)

where the first term is the cost function associated with least squares,
and the second term is the additional penalty term. Here, x includes the
set of independent variables and y is the dependent variable to be

Fig. 1. Schematic showing the arrangement of interdigitated electrodes (high voltage electrodes in white and ground electrodes in dark grey). (b) Cross section of
device with droplets on top. (c) Droplet coalescence due to the influence of an EW field applied for 15 s.
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predicted. λ is the applied penalty which can be optimized; the model
solves for the parameter β in order to minimize the cost function .

Another method of variable selection is Lasso regression. Similar to
Ridge regression, Lasso regression imposes a penalty term to the sum of
squares minimization, where the penalty term takes the form of
∑ =λ β| |j

p
j1 . This penalty term shrinks the unimportant variable coeffi-

cients to zero, eliminating them from the model [27,29,30] which is a
significant benefit of Lasso regression over Ridge regression. This makes
Lasso regression an advantageous screening tool to identify the most
correlated variable, creating a more sparse problem with fewer coeffi-
cients [29]. Additionally, in Lasso regression, the variable selection
process is continuous and more stable, making it more computationally
feasible for higher dimensional data.

The Random Forest method is widely used in statistical data science
regression studies. Random Forests consist of several decision trees
which are models that learn to split the dataset into smaller and smaller
subsets to predict the target values. During this process, many hyper
parameters (such as the number of decision tress in the forest and the
number of features considered by each tree when splitting a node) must
be optimized in order to reduce the error between the training and
predicted data [26]. Presently, besides optimizing the Random Forest
model to minimize the error, we also consider the importance of the
input features. Feature importance is calculated as the decrease in node
impurity weighted by the probability of reaching that node. The node
probability is estimated as the ratio of the number of samples that reach
the node to the total number of samples. This method identifies the
input variables which contribute the most to building the decision trees
in the forest; these will also impact the output variables accordingly.

After identifying the significant input parameters (geometry and
voltage, as described ahead), the next step in the present work was to
select a tool to accurately model and predict the relationship between
the significant input parameters and output parameters. Since this
study was about regression analysis, we used the Support Vector
Regression (SVR) and Kernel Ridge Regression (KRR) methods.

SVR is based on Support Vector Machines (SVM) which is a classi-
fication method that uses hyperplanes to best separate the features into
different domains. Alternatively, SVR is a regression method where, like
SVM, bounds are defined within which the error can lie. The goal of
SVR is to find these bounds in the form of a function that at most de-
viates by ε from the target values for all the training data. Here ε is user
specified threshold parameter that determines the threshold within
which the error can exist; the error cannot deviate larger than the set
value. The goal of this method is to ensure the errors do not exceed the
threshold ε value. In SVR, the inputs are first nonlinearly mapped into a
high dimensional feature space wherein they are correlated linearly
with the output [31]. Such a linear regression in high-dimensional
feature space reduces the algorithm complexity, enabling high pre-
dictive capabilities of both training and unseen test examples.

KRR is an extension of least square regression which solves over-
fitting and multicollinearity problems associated with least square
methods by integrating Ridge regression and kernel methods [32]. The
form of the model is very similar to SVR; however, the loss function
uses a squared error. Both SVR and KRR use a kernel function which
maps the non-linear data to a higher dimensional linear space to reduce
the complexity of solving the problem. Several different kernel func-
tions exist, including linear and polynomial. One of the more frequently
used kernel functions is the radial basis function (rbf) described as [33]:

⎜ ⎟= ⎛
⎝
−

− − ⎞
⎠

x x
x x x x

σ
( , ) exp

( ) ( )
2i j

i j
T

i j
2 (3)

where xi and xj represent the two input vectors and σ is a free para-
meter which can be expressed as =γ

σ
1
2 2 such that γ sets the spread of

the kernel.
The methodology adopted in this study involved collecting the

training and testing data and then preparing the data by removing any

obvious outliers. The data was then scaled linearly before using it in
modeling algorithms. For variable selection a model parametric sweep
was conducted to identify the best model hyperparameters to minimize
the error between the training and testing data [31]. Once the opti-
mized hyperparameters were selected, k-fold cross validation (where
k=10) was conducted such that the average absolute error was
minimized and the correlation coefficient was enhanced [30,32]. The
training and testing data were compared so as to minimize the root-
mean-square error (RMSE) and maximize the coefficient of determi-
nation (R2). It is noted that all the statistical analysis conducted in this
work was done in Python.

4. Results

The first step in our analysis involved eliminating the possibility of
multi-collinearity between input descriptors. A Pearson’s coefficient
correlation was used to compare the correlation coefficients between
the input and output variables. The three input variables (voltage V( ),
frequency f( ) and electrode width e( )) can be captured by three non-

dimensional numbers: (i) electrowetting number =ζ Vε
γd2

2
, (ii) di-

mensionless relaxation time =τ ω

σ
ε ( = fω π2 ), and (iii) geometry ratio

= =L ewidth
width g

electrode
electrode gap

. Here =ε ε εd 0, where εd is the electrical permit-
tivity of the dielectric, ε0 is the electrical permittivity of vacuum, γ is
the liquid-vapor surface tension, d is the dielectric layer thickness, σ is
the electrical conductivity, e is the electrode width and g is the spacing
between the electrodes. The two output variables are the area-weighted

radius enhancement ratio = ˆˆR R

R
f

i
and the normalized reduction in

wetted area =
−

A
A A

A
wetted i wetted f

wetted i

, ,

,
. Fig. 2 shows that all the input de-

scriptors have very low statistical correlation coefficients between each
other, indicating that they are independent of each other and that there
is no multicollinearity between these variables. Additionally, higher
correlation coefficients are seen between two input variables (ζ and L)
and the output variables.

The next step in the analysis was parameter selection, where para-
meter shrinkage was used to identify the input parameters which
dominantly influence the output parameters during droplet coales-
cence. This was implemented by employing the variable selection
methods; Ridge regression, Lasso regression and Random Forest im-
portance selection. Such techniques are used to reduce the complexity
of the problem being studied. During this analysis the three non-di-
mensional variables were analyzed against the output variables and the
corresponding coefficients were compared. Fig. 3 shows that coeffi-
cients from both regression methods and the Random Forest importance

Fig. 2. Heat map showing Pearson’s correlation coefficients between the three
input variables (ζ (V ), L e( ), τ ( f )) and the two output variables, R and A.
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assign high significance to ζ V( ) and L e( ), indicating that both these
parameters strongly contribute to the change in radius and wetted area.
The radius ratio is found to be most dependent on ζ (V ) and L e( ), which
have ∼50% and ∼40% Random Forest importance, respectively. Si-
milarly, the reduction in wetted area also shows strong dependence on
ζ (V ) and L e( ). In this case, ζ (V ) has a Random Forest importance of
∼65% indicating the change in wetted area most strongly depends on
the applied voltage, followed by the electrode geometry, L e( ), which
has an importance of ∼35%. Importantly, Fig. 3 shows that the radius
ratio and reduction in wetted area are independent of τ f( ), as the
corresponding correlation coefficients are negligible. The correlation
coefficients for ζ (V ) and L e( ) are ∼10X greater than that of τ f( ) for
change in radius. Lasso regression completely eliminates τ f( ) as a de-
pendent variable for the change in wetted area. Similar results are seen
in the Random Forest classification where frequency dependence is
given<10% of the overall importance for both output parameters. It is
important to note that analyzing raw data alone was insufficient to
deduce these conclusions that were clearly shown in Fig. 3.

A key conclusion from Fig. 3 is that the AC frequency does not in-
fluence coalescence dynamics significantly (at least not in the currently
used frequency range of 1 Hz to 1 kHz, which is widely used in AC EW
experiments). Such conclusions are challenging to arrive at from phy-
sics-based models, which would need to account for complex phe-
nomena such as contact angle hysteresis and the electromechanical
response of a liquid to a time varying electric field. This finding is also
challenging to predict from high speed visualization of droplets. Indeed,
our recent study [15] showed that the AC frequency strongly influences
the nature of droplet motion (translation versus shape oscillation), as
well as the orientation of droplets on the electrodes.

The physics underlying the predicted frequency-invariance of coa-
lescence dynamics can be better inferred by analyzing the temporal
occurrence of coalescence events. Droplet coalescence is not a con-
tinuous process as clearly identified in our previous study on dropwise
condensation [15]. Instead coalescence is observed to occur in bursts
(reported later in this study), with a large number of coalescence events
occurring in a very short time interval. Post coalescence, droplets will
grow via additional condensation (as observed in previous studies
[3,15,16]), leading to another ‘coalescence cascade’ at a later time in-
stant. Such periodic coalescence cascades will not occur in the current
study, and only a single coalescence cascade is observed (Fig. 6).
Coalescence parameters R and A depend on this cascade phenomena,
which in turn depends on the applied voltage and device geometry, but
not significantly on the AC frequency. In summary, the current findings
indicate that while the AC frequency will influence the translation and
oscillatory motion of individual droplets [15,19], it does not influence
the change in the droplet size distribution, before and after the field is
applied.

It is noted that this finding of droplet coalescence being AC fre-
quency-independent, underscores the importance of statistical analysis
for such complex multi-physics problems. The applied voltage and
electrode geometry are two parameters which strongly influence dro-
plet coalescence dynamics. It is noted that this conclusion might not be
applicable to droplet shed-off (which is not the focus of the current
study), but only for coalescence.

Based on the findings of the variable shrinkage analysis, we next
develop a model to predict the radius enhancement ratio R and nor-
malized reduction in wetted area A, as a function of the applied voltage
(V) and geometry (electrode width e). Both these parameters can be
combined into a parameter similar to the EW number [10], but with the
capacitance term modified to incorporate for electrode geometry. The
modified, non-dimensional EW number which includes the voltage and
the electrode geometry takes the form:

=η V e
γ
V( , )

C
w

lv

2

(4)

where C
w is the capacitance per unit width. For the present co-planar

electrode geometry, the capacitance can be estimated as [34]:

⎜ ⎟ ⎜ ⎟=
⎡

⎣
⎢
⎢
⎛
⎝

+ ⎞
⎠
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⎝
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⎠
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⎤
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⎥
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w
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πA

e
g

e
g

2 ln 1 1 1d0
2

(5)

Next, a statistical and data science-based model to predict the re-
lationship between R and A versus η V e( , ), is developed. Since this is a
regression-based analysis, the regression models SVR and KKR are used
to compare the predicted values with experimental data. As an addi-
tional validation, we also consider the mean and standard deviation of
each set of experiments, independent of the frequency, by fitting a
probability density function (PDF) to the respective data sets. This step
is important as the data has scatter, especially at larger values of
η V e( , ). The error associated with the statistical models is detailed in
Tables 1 and 2 for the radius enhancement ratio R( ) and normalized
reduction in wetted area ratio A( ), respectively. The predictive accuracy

Fig. 3. Parameter selection and shrinkage conducted via three different methods: (a) Ridge regression coefficients, (b) Lasso regression coefficients and (c) Random
Forest importance. Blue and purple bars indicate coefficients associated with the radius ratio and change in the wetted area, respectively.

Table 1
Compilation of errors (in the form of RMS and R2 values) for various models
predicting the radius enhancement ratio of coalescing droplets.

Model RMSE R2

Linear Regression 1.14 0.72
Polynomial Regression, degree 2 1.25 0.69
Polynomial Regression, degree 3 1.48 0.63
SVR - Linear 1.12 0.72
SVR - RBF 1.89 0.53
Kernel Ridge - Linear 1.31 0.73
Kernel Ridge - RBF 1.56 0.63
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of each model is evaluated by comparing the RMSE and R2 values be-
tween the predicted and experimental data, with models with low
RMSE and higher R2 values representing a more favorable match. De-
tailed comparisons of these predictive models with the experimental
data are provided in the supplementary information.

Based on the results for radius enhancement ratio as a function of
η V e( , ) (Table 1), the first important observation is that the data follows
a linear trend. This is concluded because the linear regression fit shows
higher accuracy when compared to the polynomial curve fits. Following
this observation, the linear kernel and the rbf kernel are used in the
statistical models. When comparing the predictive accuracy of the two
kernel methods, the linear kernel shows a lower RMSE and higher R2

for both methods, implying that the linear kernel can more accurately
capture the trend between η V e( , ) and R. The rbf kernel models attempt
to follow the highest probability density in the data at each point with
respect to η V e( , ), and can compromise the accuracy with the entire
data set. The lowest RMSE and highest accuracy corresponds to the SVR
model with the linear kernel, which shows the best match with ex-
perimental data.

Based on the results for normalized reduction in wetted area as a
function of η V e( , ) (Table 2), it is seen that 2nd and 3rd degree poly-
nomial curves are a better fit compared to a linear model (based on the
resulting RMSE and R2 values). Polynomial fits with greater than 3rd
order did not show any improvement in accuracy. Hence, the statistical
models compare the rbf kernels with 2nd and 3rd degree polynomial
kernels. When comparing the predictive accuracy of the two statistical
models, Table 2 shows that KRR performs significantly better than the
SVR model. Although the SVR model used with the rbf kernel has a low
RMSE, the two polynomial kernels show poor agreement with the ex-
perimental data. Alternatively, the KRR model shows good accuracy
with low RMSE and high R2 values for all kernel types. The best pre-
dictability is seen with the KRR model using the 2nd degree polynomial
kernel. Overall, the rbf kernels perform well with both models, how-
ever, the KRR model shows the most consistent predictive accuracy for
different kernel types. It is noted that machine learning algorithms with
kernel functions are more accurate (in terms of reducing error between
experimental data and modeling-based prediction) compared to clas-
sical linear or polynomial regression. This highlights the utility of using
statistical machine learning algorithms for the analysis of coalescence,
compared to classical regression methods.

Fig. 4 compares the models having high predictive accuracy with
the corresponding experimental data for R (4a) and A (4b). Fig. 4a
shows that the SVR model with the linear regression kernel predicts the
linear trend in the data reasonably well. Extrapolating the model to

=η V e( , ) 0 (no electric field) yields ∼R 1 implying no change in dro-
plet radii (as expected). Fig. 4b shows the experimental data for nor-
malized reduction in wetted area compared to the KRR with second
order polynomial kernel. A good match between model and data is
seen, as captured by the low RMSE and high R2 values. Again, extra-
polating this model to =η V e( , ) 0 shows that ∼A 0 which is expected.

Details of all other predictive models and comparisons with their op-
timized hyperparameters are included in the supplementary informa-
tion.

The predictions of statistical modeling, as captured in Fig. 4a, in-
dicate that the radius ratio, R linearly increases with η V e( , ) with a
gradient of 2.5. This implies that if an electric field is provided such that

=η V e( , ) 2, the initial average radius in the distribution will increase
by 5× . The reduction in wetted area does not follow a linear trend
(Fig. 4b), and the model can estimate the electric field to maximize the
reduction in wetted area. Fig. 4b shows ∼η V e( , ) 1.75 yields the max-
imum reduction in wetted area of ∼70%. The utility of this model lies
in the ability to predict the electric field, (captured via η V e( , )), re-
quired to yield a desired droplet size distribution from an initial dis-
tribution. As an illustration, a 2X increase in average droplet radius
would require an electric field corresponding to =η V e( , ) 0.75 (based
on the reference given in Fig. 4a).

An examination of Fig. 4 also shows that the data has scatter which
can be attributed to a combination of experimental uncertainty and the
stochastic nature of coalescence dynamics under electric fields. Ad-
ditionally, the scatter increases at higher values of η V e( , ), which can
be attributed to contact angle saturation, whereby the droplet stops
responding to the electric field [10,12]. Even with the scatter in Fig. 4,
there is a clear trend showing the influence of η V e( , ) on the radius
ratio enhancement and the normalized reduction in wetted area. It is
reiterated that both these variables quantify droplet coalescence and
the resulting change in the droplet size distribution upon the applica-
tion of an EW field.

Fig. 4 quantifies the influence of η V e( , ) on R and A, which are
directly related to the droplet size distribution. We can also quantify the
influence of η V e( , ) on droplet size distribution more directly by ana-
lyzing the influence of the EW field on the spread of the droplet size
distribution. The spread is defined as the standard deviation of the
droplet size distribution relative to the area average radius as:

= =S σ
R

standard deviation
area average radiusˆi

i

i (6)

A large value of Si indicates that a wide range of droplet sizes exist
relative to R̂i , whereas a smaller value of Si indicates that most of the
droplets are of similar size to R̂i . The change in Si before and after the
application of the EW field is quantified as:

=S S S/F I (7)

where SF and SI are the final and initial distribution spreads. Fig. 5
shows the change in S as a function of η V e( , ). For small values of
η V e( , ), the change in the distribution spread is negligible ( ∼S 1).
However, after =η V e( , ) 0.75, the change in the spread shrinks by
∼50%, indicating that the distribution of droplets reduces significantly
and many droplets are closer in size to the mean radius. The spread
ratio maintains this trend for larger values of V e( , ). Combining this
information with the results depicted in Fig. 4 makes it clear that an
increase in η V e( , ) will not only increase the droplet size and reduce the
wetted area, but also narrow the droplet size distribution, and reduce
the number of droplets on the surface.

5. Discussions

We now discuss the transients associated with EW-induced droplet
coalescence, noting that the model depicted in Fig. 4 shows the overall
change in droplet coalescence parameters. The time-dependent average
radius after applying the EW voltage was estimated via the image
analysis procedure described previously. Variable selection analysis
shows that the transient change in R is independent of frequency but
strongly dependent on the applied voltage, electrode width and time
(details provided in the supplementary information). Arriving at this
conclusion would not have been possible without the use of variable
selection tools, due to the high dimensionality of the data. Fig. 6 shows

Table 2
Compilation of errors (in the form of RMS and R2 values) for various models
predicting the normalized reduction in wetted area associated with droplet
coalescence.

Model RMSE R2

Linear Regression 0.018 0.65
Polynomial Regression, degree 2 0.014 0.73
Polynomial Regression, degree 3 0.014 0.71
SVR - RBF 0.019 0.61
SVR - Poly deg 2 0.055 0.36
SVR - Poly deg 3 0.055 0.36
Kernel Ridge - RBF 0.014 0.71
Kernel Ridge - Poly deg 2 0.015 0.74
Kernel Ridge - Poly deg 3 0.014 0.72
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the voltage-dependent, transient, radius enhancement ratio for three
different electrode geometries. As expected, the radius increases faster
at higher voltages due to larger electrostatic forces to promote coales-
cence. Additionally, a large jump in radius ratio from 100 V (threshold

voltage) to 200 V is observed. Larger electrode widths also show a
greater radius. The 50 μm electrode width geometry enables a max-
imum radius enhancement ratio of ∼R 3, whereas the 200 μm electrode
width geometry enables an enhancement of =R 5.5–6. It is also noted
that most of the coalescence events occur in the first 5 s after the field,
after which the average radius generally plateaus out. Such a coales-
cence cascade was also reported in other recent studies [15,16]. This
finding also justifies our use of a 15 s interval to quantify the influence
of EW fields on coalescence dynamics.

In the previous section, we highlighted the accuracy of machine
learning-based models in predicting changes in droplet size distribution
during an EW driven coalescence cascade. Next, we discuss the physics
underlying the observed dependence of coalescence parameters on the
applied voltage V( ) and electrode geometry (captured by electrode
width e( )); this can be considered as further validation of the results
obtained by the statistical models. The observed data and the models
show that higher voltages and higher electrode widths enhance droplet
coalescence. This can be explained by considering the electrowetting
curve (contact angle (CA) versus voltage) for sessile water droplets
[10,12]. Fig. 6 shows the electrowetting curves for two different elec-
trode widths as obtained from the Young-Lippman equation (Eq. (1))
and via experiments with sessile water droplets. As expected, droplets
spread with increasing voltage till the onset of CA saturation [12].

Fig. 4. Comparing experimental data (orange), mean values (dark blue) and statistical model predictions (red) for (a) radius enhancement ratio using SVR with linear
kernel (Ɛ=1e-05, C= 1000) and (b) normalized wetted area reduction using KRR with second order polynomial kernel (α: 500, γ: 50,000).

Fig. 5. Change in the spread in droplet size distribution versus η V e( , ).

Fig. 6. Transient change in radius enhancement ratio R for a period of 15 s after the application of EW voltages on devices with electrode widths (a) 50 μm, (b)
100 μm and (c) 200 μm. Most coalescence events occur immediately after the application of an EW field leading to a coalescence cascade.

E. Wikramanayake and V. Bahadur Colloids and Surfaces A 599 (2020) 124874

7



Additionally, Fig. 7 shows that a larger electrode width yields a larger
change in CA for a specified voltage; this is directly related to the in-
creased capacitance associated with the larger electrode width as
quantified in Eq. (5). [34]. Since droplet spreading ultimately leads to
droplet coalescence, the radius enhancement ratio is expected to in-
crease with higher voltages and electrode widths. Similarly, the re-
duction in wetted area also increases with an increase in the voltage
and electrode width. However, the reduction plateaus, as per Fig. 4b,
even though the radius enhancement ratio is increasing. This can be
explained by the CA saturation phenomena, wherein the wetted area
becomes independent of the applied voltage above a certain applied
voltage.

Finally, the utility of this study for condensation heat transfer is
briefly discussed. There are a few recent studies [16,18,35] on EW
enhanced droplet condensation, which involve condensation occurring
under a continuously applied electric field. A continuous electric field is
not a strict requirement; periodically applied electric fields can also
result in significant enhancement in condensation. This study will di-
rectly benefit any such ‘electrical intervention’ strategies to enhance
dropwise condensation. The output parameters tracked in this study are
critical to overall performance. The growth rate of droplets via coa-
lescence is significant since the enhancement mechanism is about re-
organizing the condensate into high volume droplets that can then
shed-off. The droplet size is also a critical parameter in the estimation of
the thermal resistance associated with heat transfer [8]. The reduction
in wetted area determines the rate at which condensation will reoccur
on the surface. Overall, this study represents a new approach to pre-
dicting the performance of EW-enhanced dropwise condensation. This
study can benefit other applications which rely on droplet manipulation
via EW like anti-fouling or self-cleaning [36].

6. Conclusions

This is the first reported study of EW-induced droplet coalescence,
which uses machine learning-based statistical algorithms to develop
experimental data-based predictive models. This approach contrasts
with previous studies, which analyze coalescence patterns via high-
speed visualization. The attractiveness of this approach lies in the
challenges involved in developing accurate physics-based models for
complex microfluidic systems. This approach also leverages the large
(and easily obtained) amount of data available in condensation ex-
periments (via tracking a multitude of droplets). The models developed
predict the change in droplet radius and wetted fractions as a function
of the applied voltage and electrode geometry. Importantly, the results
can provide additional physical insights that would be challenging to
infer from conventional data analysis, such as droplet coalescence being

independent of the AC frequency, and the EW-influenced narrowing of
droplet size distributions. Additionally, machine learning regression
models using kernel methods show better fit with experimental data
than classical regression techniques. We note that while our analysis
involves the use of statistical techniques, it is grounded in the basic
physics associated with EW. More broadly, this study motivates the
application of the current approach for predictive modeling of other
complex multiphysics systems, which lend themselves to large quan-
tities of experimental data.
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