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Abstract 

Cardiovascular diseases (CVD) are the leading cause of death worldwide. Engineered 

heart tissue produced by differentiation of human induced pluripotent stem cells may 

provide an encompassing treatment for heart failure due to CVD. However, considerable 

difficulties exist in producing the large number of cardiomyocytes needed for therapeutic 

purposes through differentiation protocols. Data-driven modeling with machine learning 

techniques has the potential to identify factors that significantly affect the outcomes of 

these differentiation experiments. Using data from previous cardiac differentiation 

experiments, we have developed data-driven modeling methods for determining which 

experimental conditions are most influential on the final cardiomyocyte content of a 

differentiation experiment. With those identified conditions, we were able to build 

classification models that can predict whether an experiment will have a sufficient 

cardiomyocyte content to continue with the experiment on the seventh (out of 10) day of 

the differentiation with a 90% accuracy. This early failure prediction will provide cost 

and time savings, as each day the differentiation continues requires significant resources. 
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1. Introduction 

Cardiovascular diseases (CVD) are the leading cause of death worldwide, meaning there 

are more deaths annually due to CVD than any other cause. These diseases can lead to 

heart attacks, which can result in the loss of more than one billion heart cells, leading to 

congestive heart failure (Kempf, Andree, et al., 2016). Patients who suffer from advanced 

stages of heart failure have a poor prognosis for survival, and the large disparity between 

numbers of donors and recipients leaves few viable treatments.  Artificial prosthetic hearts 

and heart assist devices have demonstrated some success in prolonging the lives of 

patients receiving treatment, but their development is slow and clinical trials have seen 

limited.  Due to the nature of heart transplants and the stigma surrounding artificial 

organs, engineered heart tissue may provide an encompassing treatment for heart failure 

(Kempf, Andree, et al., 2016).   

Mature cardiomyocytes, the contracting cells in the heart, are some of the least 

regenerative cells in the body. This characteristic carries over into the laboratory 

environment and thus limits in vitro expansion capabilities of cardiomyocytes. 
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Difficulties in direct culture of cardiomyocytes can be overcome by differentiation from 

human pluripotent stem cells (hiPSCs) (Kempf, Andree, et al., 2016). The indefinite 

turnover potential of pluripotent cells allows for the expansion of large quantities for 

differentiation into therapeutic engineered tissues. However, the differentiation of hiPSCs 

into specific cell types is a highly complex and costly process that is sensitive to the 

impact of a high number of factors (Gaspari et al., 2018), and significant difficulties exist 

in reliably and consistently producing the large number of cardiomyocytes needed for 

therapeutic purposes (Kempf, Andree, et al., 2016). 

Data-driven modeling with machine learning techniques has the potential to identify 

factors and patterns that most significantly affect the outcomes of these differentiation 

experiments. Previously, machine learning techniques have successfully been used to 

identify key factors and assist in optimization for production of several proteins and cell 

lines (Sokolov et al., 2017; Zhou et al., 2018). The goal of this work is to use machine 

learning techniques to identify key process parameters to be used in predictive modeling 

of bioreactor cardiac differentiation outcomes. The high number of experimental factors 

that influence the differentiation results in a large set of possible inputs to be considered 

for modeling. This high data dimensionality, in addition to the low number of data points 

due to the time-consuming nature of these experiments, represent significant challenges 

for modeling the differentiation process. Our aim is to use machine learning models to 

predict whether or not the cardiomyocyte content at the end of differentiation process will 

be sufficiently high. We define insufficient production as having a cardiomyocyte content 

on the tenth day of differentiation (dd10) that is less than 90%, meaning less than 90% of 

the cells produced at the end of the differentiation are cardiomyocytes. Predicting if the 

cardiomyocycte content will be insufficient before the end of the differentiation will 

provide cost and time savings, as each day the differentiation continues requires 

significant resources. 

Using existing data from bioreactor experiments, we have applied feature selection 

techniques, including correlations, principal component analysis, and built-in feature 

selection in machine learning models, to identify the conditions in the bioreactor, which 

we define as bioreactor features, are the most influential on and predictive of the 

cardiomyocyte content. Bioreactor features considered include values related to the cell 

concentration, size of cell aggregates, pH, dissolved oxygen concentration, and 

concentrations and timings of certain nutrients, such as glucose, and small molecules 

known to direct the differentiation. We then used the identified features as inputs to build 

models to classify the resulting cardiomyocyte content of a particular bioreactor run as 

being sufficient or insufficient to justify continuing with the differentiation. 

2. Machine Learning Techniques for Cardiomyocyte Content Prediction 

2.1. Multivariate Adaptive Regression Splines (MARS) 

Multivariate adaptive regression spline (MARS) models are made up of a linear 

summation of basis functions. The three types of possible basis functions are a constant, 

a hinge function (or “spline”), or a product of two or more hinge functions. The training 

of a MARS model starts with an initial model that is a constant value equal to the mean 

of the data outputs. On its initial training pass, the model is overfit to the data using a 

greedy algorithm, adding basis functions to reduce the sum of the squared errors (SSE) 

between the given and predicted outputs. Then, a backward, pruning pass is performed to 

remove terms that have little effect on the SSE until the best model is identified based on 

generalized cross validation (GCV) criteria (Friedman, 1991). In order to make 
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cardiomyocyte content classifications, MARS models were trained to predict the value of 

the cardiomyocyte content using the selected bioreactor features as inputs, and a 

classification was assigned based on the predicted value. 

2.2. Random Forests (RF) 

Random forest (RF) models are machine learning models that make output predictions 

by combining outcomes from a sequence of regression decision trees. Each tree is 

constructed independently and depends on a random vector sampled from the input data, 

with all the trees in the forest having the same distribution. The predictions from the 

forests are averaged using bootstrap aggregation and random feature selection. RF models 

have been demonstrated to be robust predictors for both small sample sizes and high 

dimensional data (Biau & Scornet, 2016). RF classification models were constructed that 

directly classified bioreactor runs as having sufficient or insufficient cardiomyocyte 

content. 

2.3. Gaussian Process Regression (GPR) 

Gaussian process regression (GPR) is a method of interpolation where interpolated values 

are modeled by a Gaussian process governed by prior covariances. Under suitable 

assumptions on the priors, GPR gives the best linear unbiased prediction of the 

intermediate values (Rasmussen & Williams, 2005). It uses a kernel function as measure 

of similarity between points to predict the value for an unseen point from the training 

data. This method has been successfully used with small dataset sizes. In order to make 

cardiomyocyte content classifications, GPR models trained were similarly to the MARS 

models. 

3. Data Collection and Feature Selection Methods 

3.1. Experimental Data 

Experimental data was generated and collected from 58 cardiac differentiation 

experiments performed by (Halloin et al., 2019). The differentiation experiments were 

carried out in chemically defined conditions in stirred tank bioreactors. Details of the 

experiments are described in Halloin et al. (2019). The set of independent variables 

include experimental conditions such as the rotation speed in the bioreactor and 

measurements such as differentiation day dependent cell densities and aggregate sizes, 

and continuous time measurements of dissolved oxygen (DO) concentration and pH.   The 

set of independent variables measured from the experiments was expanded to include 

engineered features such as estimated gradients in cell densities and DO concentrations, 

resulting in a total of 101 variables, which we refer to as bioreactor features. The 

dependent variable is the percentage of the cells in the bioreactor that have differentiated 

into cardiomyocytes, or the cardiomyocyte content, on the last day of the differentiation 

experiment, dd10. Data from 42 of the experiments was designated as training data and 

used for feature selection and classification model construction. The remaining 

experiments were reserved as test data for testing the classification models. 

3.2. Feature Selection Methods 

We performed feature selection using the training data set in order to discover which of 

the bioreactor features were most influential on the cardiomyocyte content. The set of 

features considered consists of all the collected bioreactor features measured up until the 

seventh day of differentiation (dd7).  

3.2.1. Correlations 

The Pearson and Spearman correlations (Bonett & Wright, 2000) between the collected 

bioreactor features and the cardiomyocyte content were calculated. The Pearson 
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correlation measures the strength of the linear relationship between two variables. It has 

a value between -1 to 1, with a value of -1 meaning a total negative linear correlation, 0 

being no correlation, and +1 meaning a total positive correlation. The Spearman 

correlation measures the strength of a monotonic relationship between two variables with 

the same scaling as the Pearson correlation. 

3.2.2. Principal Component Analysis 

Principal component analysis (PCA) converts a set of possibly correlated variables into a 

set of linearly uncorrelated ones through an orthogonal transformation (Hotelling, 1933). 

The resulting principal components (PCs) are linear combinations of the original set of 

variables.  

3.2.3. Machine Learning Technique Built-In Feature Selection 

Each of the machine learning techniques applied has its own method for selecting features 

and ranking their predictive importance. During the MARS model construction, a pruning 

pass is performed over the model that removes terms and features based on the level of 

their effect on GCV criteria. For RF models, features are selected based on how well they 

improve the separation of the data at each decision node. GPR selects features using its 

built-in automatic relevance determination method. 

4. Classification Performance Metrics 

The metrics used to evaluate the performance of the classification models (i.e., the 

classification of insufficient/sufficient cardiomyocyte content) are accuracy, precision, 

(Sokolova & Lapalme, 2009), and the Matthews correlation coefficient (MCC) 

(Matthews, 1975). The accuracy is the proportion of the classifications made by the 

models that were correct. Given that the classification model predicts an insufficient 

cardiomyocyte content for a bioreactor run, precision is the probability that the 

cardiomyocyte content of that run will actually be insufficient. The MCC is the 

correlation between actual and predicted classifications. It has the same range and scale 

of the Pearson and Spearman correlations. Figure 1 depicts the workflow of the process 

taken to construct the models and calculate the performance metrics. 

 

Figure 1-Feature selection and model training process (CM = cardiomyocyte) 
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5. Results and Discussion 

5.1. Feature Selection Results 

PCA of the collected feature set yielded five principal components that explained 94% of 

the variance in the input data. Correlations and PCA did not yield any results for 

significant features, with the strongest linear correlation between a feature and the 

cardiomyocyte content being -0.51, with the time that the IWP2 molecule remained in the 

bioreactor. The strongest linear correlation between the PCs and the cardiomyocyte 

content was 0.16. However, we had success in reducing the feature set using the built-in 

feature selection methods of each of the machine learning approaches investigated. From 

the original 101 features, MARS, RF and GPR identified 12, 12, and 7 significant 

features, respectively. Common features that were selected as significant include the cell 

densities and their gradients during the first two days of the differentiation protocol (dd0 

and dd1). This selection agrees with previous experimental studies concluding that cell 

density during early differentiation influences differentiation into specific cell lineages 

(Kempf, Olmer, et al., 2016). 

5.2. Classification Model Results 

Results for classification model performance are summarized in Tables 1 and 2. The 

performance metrics in Table 1 were calculated using the leave one out (LOO) cross 

validation (Wong, 2015) on the training data. Two classification models were trained for 

each method. One model utilized the bioreactor features selected by the built-in feature 

selection as the inputs, and the other employed the PCs obtained from PCA as the inputs.  

Table 1 – Performance of classification models on training data evaluated using LOO 

cross validation 

 MARS RF GPR 

 Features PCA Features PCA Features PCA 

Accuracy 0.74 0.64 0.90 0.74 0.90 0.67 

Precision 0.81 0.66 0.90 0.74 0.93 0.67 

MCC 0.55 -0.11 0.78 0.36 0.79 0 

For all of the machine learning techniques tested, the classification models using the 

model-selected features yielded better performance (Table 1). This suggests that while 

the principal components successfully explain the variance in the data, they fail to 

accurately characterize the relationship between the features and the cardiomyocyte 

content. RF models and GPR had similar performance with an accuracy and precision 

both of about 90%, while MARS models did not perform as accurately. 

Table 2 – Performance of classification models on test data 

 RF GPR 
Accuracy 0.89 0.89 
Precision 0.92 0.87 
MCC 0.72 0.72 

The performances of the RF and GPR classification models trained using the model-

selected features were evaluated on the test data (Table 2). Both classification models 

performed comparably for the test data with an accuracy of 89%, precisions near 90%, 

and MCC values of 0.72. The results obtained for the test data are comparable to those 

obtained from LOO cross validation on the training data, indicating that the models 
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accurately captured the relationship between the features and the cardiomyocyte content, 

while avoiding overfitting. 

6. Conclusions and Future Directions 

Using existing data from previously conducted cardiac differentiation experiments, we 

were able to identify on dd7 if an experiment would have an insufficient final 

cardiomyocyte content of less than 90% with accuracy and precision of about 90% with 

both RF and GPR models. We were able to make these predictions using less than 16% 

of the collected features. Future work with this data will focus on predicting the 

experimental outcomes at earlier timepoints in the differentiation. This modeling will 

enable the early interruption of failing experiments, providing cost and time savings. 
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