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Abstract

Cardiovascular diseases (CVD) are the leading cause of death worldwide. Engineered
heart tissue produced by differentiation of human induced pluripotent stem cells may
provide an encompassing treatment for heart failure due to CVD. However, considerable
difficulties exist in producing the large number of cardiomyocytes needed for therapeutic
purposes through differentiation protocols. Data-driven modeling with machine learning
techniques has the potential to identify factors that significantly affect the outcomes of
these differentiation experiments. Using data from previous cardiac differentiation
experiments, we have developed data-driven modeling methods for determining which
experimental conditions are most influential on the final cardiomyocyte content of a
differentiation experiment. With those identified conditions, we were able to build
classification models that can predict whether an experiment will have a sufficient
cardiomyocyte content to continue with the experiment on the seventh (out of 10) day of
the differentiation with a 90% accuracy. This early failure prediction will provide cost
and time savings, as each day the differentiation continues requires significant resources.
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1. Introduction

Cardiovascular diseases (CVD) are the leading cause of death worldwide, meaning there
are more deaths annually due to CVD than any other cause. These diseases can lead to
heart attacks, which can result in the loss of more than one billion heart cells, leading to
congestive heart failure (Kempf, Andree, et al., 2016). Patients who suffer from advanced
stages of heart failure have a poor prognosis for survival, and the large disparity between
numbers of donors and recipients leaves few viable treatments. Artificial prosthetic hearts
and heart assist devices have demonstrated some success in prolonging the lives of
patients receiving treatment, but their development is slow and clinical trials have seen
limited. Due to the nature of heart transplants and the stigma surrounding artificial
organs, engineered heart tissue may provide an encompassing treatment for heart failure
(Kempf, Andree, et al., 2016).

Mature cardiomyocytes, the contracting cells in the heart, are some of the least
regenerative cells in the body. This characteristic carries over into the laboratory
environment and thus limits in vitro expansion capabilities of cardiomyocytes.
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Difficulties in direct culture of cardiomyocytes can be overcome by differentiation from
human pluripotent stem cells (hiPSCs) (Kempf, Andree, et al., 2016). The indefinite
turnover potential of pluripotent cells allows for the expansion of large quantities for
differentiation into therapeutic engineered tissues. However, the differentiation of hiPSCs
into specific cell types is a highly complex and costly process that is sensitive to the
impact of a high number of factors (Gaspari et al., 2018), and significant difficulties exist
in reliably and consistently producing the large number of cardiomyocytes needed for
therapeutic purposes (Kempf, Andree, et al., 2016).

Data-driven modeling with machine learning techniques has the potential to identify
factors and patterns that most significantly affect the outcomes of these differentiation
experiments. Previously, machine learning techniques have successfully been used to
identify key factors and assist in optimization for production of several proteins and cell
lines (Sokolov et al., 2017; Zhou et al., 2018). The goal of this work is to use machine
learning techniques to identify key process parameters to be used in predictive modeling
of bioreactor cardiac differentiation outcomes. The high number of experimental factors
that influence the differentiation results in a large set of possible inputs to be considered
for modeling. This high data dimensionality, in addition to the low number of data points
due to the time-consuming nature of these experiments, represent significant challenges
for modeling the differentiation process. Our aim is to use machine learning models to
predict whether or not the cardiomyocyte content at the end of differentiation process will
be sufficiently high. We define insufficient production as having a cardiomyocyte content
on the tenth day of differentiation (dd10) that is less than 90%, meaning less than 90% of
the cells produced at the end of the differentiation are cardiomyocytes. Predicting if the
cardiomyocycte content will be insufficient before the end of the differentiation will
provide cost and time savings, as each day the differentiation continues requires
significant resources.

Using existing data from bioreactor experiments, we have applied feature selection
techniques, including correlations, principal component analysis, and built-in feature
selection in machine learning models, to identify the conditions in the bioreactor, which
we define as bioreactor features, are the most influential on and predictive of the
cardiomyocyte content. Bioreactor features considered include values related to the cell
concentration, size of cell aggregates, pH, dissolved oxygen concentration, and
concentrations and timings of certain nutrients, such as glucose, and small molecules
known to direct the differentiation. We then used the identified features as inputs to build
models to classify the resulting cardiomyocyte content of a particular bioreactor run as
being sufficient or insufficient to justify continuing with the differentiation.

2. Machine Learning Techniques for Cardiomyocyte Content Prediction

2.1. Multivariate Adaptive Regression Splines (MARS)

Multivariate adaptive regression spline (MARS) models are made up of a linear
summation of basis functions. The three types of possible basis functions are a constant,
a hinge function (or “spline”), or a product of two or more hinge functions. The training
of a MARS model starts with an initial model that is a constant value equal to the mean
of the data outputs. On its initial training pass, the model is overfit to the data using a
greedy algorithm, adding basis functions to reduce the sum of the squared errors (SSE)
between the given and predicted outputs. Then, a backward, pruning pass is performed to
remove terms that have little effect on the SSE until the best model is identified based on
generalized cross validation (GCV) criteria (Friedman, 1991). In order to make
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cardiomyocyte content classifications, MARS models were trained to predict the value of
the cardiomyocyte content using the selected bioreactor features as inputs, and a
classification was assigned based on the predicted value.

2.2. Random Forests (RF)

Random forest (RF) models are machine learning models that make output predictions
by combining outcomes from a sequence of regression decision trees. Each tree is
constructed independently and depends on a random vector sampled from the input data,
with all the trees in the forest having the same distribution. The predictions from the
forests are averaged using bootstrap aggregation and random feature selection. RF models
have been demonstrated to be robust predictors for both small sample sizes and high
dimensional data (Biau & Scornet, 2016). RF classification models were constructed that
directly classified bioreactor runs as having sufficient or insufficient cardiomyocyte
content.

2.3. Gaussian Process Regression (GPR)

Gaussian process regression (GPR) is a method of interpolation where interpolated values
are modeled by a Gaussian process governed by prior covariances. Under suitable
assumptions on the priors, GPR gives the best linear unbiased prediction of the
intermediate values (Rasmussen & Williams, 2005). It uses a kernel function as measure
of similarity between points to predict the value for an unseen point from the training
data. This method has been successfully used with small dataset sizes. In order to make
cardiomyocyte content classifications, GPR models trained were similarly to the MARS
models.

3. Data Collection and Feature Selection Methods

3.1. Experimental Data

Experimental data was generated and collected from 58 cardiac differentiation
experiments performed by (Halloin et al., 2019). The differentiation experiments were
carried out in chemically defined conditions in stirred tank bioreactors. Details of the
experiments are described in Halloin et al. (2019). The set of independent variables
include experimental conditions such as the rotation speed in the bioreactor and
measurements such as differentiation day dependent cell densities and aggregate sizes,
and continuous time measurements of dissolved oxygen (DO) concentration and pH. The
set of independent variables measured from the experiments was expanded to include
engineered features such as estimated gradients in cell densities and DO concentrations,
resulting in a total of 101 variables, which we refer to as bioreactor features. The
dependent variable is the percentage of the cells in the bioreactor that have differentiated
into cardiomyocytes, or the cardiomyocyte content, on the last day of the differentiation
experiment, dd10. Data from 42 of the experiments was designated as training data and
used for feature selection and classification model construction. The remaining
experiments were reserved as test data for testing the classification models.

3.2. Feature Selection Methods

We performed feature selection using the training data set in order to discover which of
the bioreactor features were most influential on the cardiomyocyte content. The set of
features considered consists of all the collected bioreactor features measured up until the
seventh day of differentiation (dd7).

3.2.1. Correlations
The Pearson and Spearman correlations (Bonett & Wright, 2000) between the collected
bioreactor features and the cardiomyocyte content were calculated. The Pearson
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correlation measures the strength of the linear relationship between two variables. It has
a value between -1 to 1, with a value of -1 meaning a total negative linear correlation, 0
being no correlation, and +1 meaning a total positive correlation. The Spearman
correlation measures the strength of a monotonic relationship between two variables with
the same scaling as the Pearson correlation.

3.2.2. Principal Component Analysis

Principal component analysis (PCA) converts a set of possibly correlated variables into a
set of linearly uncorrelated ones through an orthogonal transformation (Hotelling, 1933).
The resulting principal components (PCs) are linear combinations of the original set of
variables.

3.2.3. Machine Learning Technique Built-In Feature Selection

Each of the machine learning techniques applied has its own method for selecting features
and ranking their predictive importance. During the MARS model construction, a pruning
pass is performed over the model that removes terms and features based on the level of
their effect on GCV criteria. For RF models, features are selected based on how well they
improve the separation of the data at each decision node. GPR selects features using its
built-in automatic relevance determination method.

4. Classification Performance Metrics

The metrics used to evaluate the performance of the classification models (i.e., the
classification of insufficient/sufficient cardiomyocyte content) are accuracy, precision,
(Sokolova & Lapalme, 2009), and the Matthews correlation coefficient (MCC)
(Matthews, 1975). The accuracy is the proportion of the classifications made by the
models that were correct. Given that the classification model predicts an insufficient
cardiomyocyte content for a bioreactor run, precision is the probability that the
cardiomyocyte content of that run will actually be insufficient. The MCC is the
correlation between actual and predicted classifications. It has the same range and scale
of the Pearson and Spearman correlations. Figure 1 depicts the workflow of the process
taken to construct the models and calculate the performance metrics.

CM Content
Classifications

Classification Classification

101 Original N Selected Model Model
Features Features

Training

Figure 1-Feature selection and model training process (CM = cardiomyocyte)



Data-Driven Model Development for Cardiomyocyte Production Experimetnal Failure
Prediction 5

5. Results and Discussion
5.1. Feature Selection Results

PCA of the collected feature set yielded five principal components that explained 94% of
the variance in the input data. Correlations and PCA did not yield any results for
significant features, with the strongest linear correlation between a feature and the
cardiomyocyte content being -0.51, with the time that the IWP2 molecule remained in the
bioreactor. The strongest linear correlation between the PCs and the cardiomyocyte
content was 0.16. However, we had success in reducing the feature set using the built-in
feature selection methods of each of the machine learning approaches investigated. From
the original 101 features, MARS, RF and GPR identified 12, 12, and 7 significant
features, respectively. Common features that were selected as significant include the cell
densities and their gradients during the first two days of the differentiation protocol (dd0
and dd1). This selection agrees with previous experimental studies concluding that cell
density during early differentiation influences differentiation into specific cell lineages
(Kempf, Olmer, et al., 2016).

5.2. Classification Model Results

Results for classification model performance are summarized in Tables 1 and 2. The
performance metrics in Table 1 were calculated using the leave one out (LOO) cross
validation (Wong, 2015) on the training data. Two classification models were trained for
each method. One model utilized the bioreactor features selected by the built-in feature
selection as the inputs, and the other employed the PCs obtained from PCA as the inputs.

Table 1 — Performance of classification models on training data evaluated using LOO
cross validation

MARS RF GPR
Features PCA Features PCA Features PCA
Accuracy 0.74 0.64 0.90 0.74 0.90 0.67
Precision 0.81 0.66 0.90 0.74 0.93 0.67
MCC 0.55 -0.11 0.78 0.36 0.79 0

For all of the machine learning techniques tested, the classification models using the
model-selected features yielded better performance (Table 1). This suggests that while
the principal components successfully explain the variance in the data, they fail to
accurately characterize the relationship between the features and the cardiomyocyte
content. RF models and GPR had similar performance with an accuracy and precision
both of about 90%, while MARS models did not perform as accurately.

Table 2 — Performance of classification models on test data

RF GPR
Accuracy 0.89 0.89
Precision 0.92 0.87
MCC 0.72 0.72

The performances of the RF and GPR classification models trained using the model-
selected features were evaluated on the test data (Table 2). Both classification models
performed comparably for the test data with an accuracy of 89%, precisions near 90%,
and MCC values of 0.72. The results obtained for the test data are comparable to those
obtained from LOO cross validation on the training data, indicating that the models
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accurately captured the relationship between the features and the cardiomyocyte content,
while avoiding overfitting.

6. Conclusions and Future Directions

Using existing data from previously conducted cardiac differentiation experiments, we
were able to identify on dd7 if an experiment would have an insufficient final
cardiomyocyte content of less than 90% with accuracy and precision of about 90% with
both RF and GPR models. We were able to make these predictions using less than 16%
of the collected features. Future work with this data will focus on predicting the
experimental outcomes at earlier timepoints in the differentiation. This modeling will
enable the early interruption of failing experiments, providing cost and time savings.
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