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Abstract 

Surrogate models are used to map input data to output data when the actual relationship between the two 

is unknown or computationally expensive to evaluate for sensitivity analysis, uncertainty propagation and 

surrogate based optimization. This work evaluates the performance of eight surrogate modeling techniques 

for design space approximation and surrogate based optimization applications over a set of generated 

datasets with known characteristics. With this work, we aim to provide general rules for selecting an 

appropriate surrogate model form solely based on the characteristics of the data being modeled. The 

computational experiments revealed that, in general, multivariate adaptive regression spline models 

(MARS) and single hidden layer feed forward neural networks (ANN) yielded the most accurate 

predictions over the design space while Random Forest (RF) models most reliably identified the locations 

of the optimums when used for surrogate-based optimization. 
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Introduction

Surrogate models, also known as response surfaces, 

black-box models, metamodels, or emulators, are simplified 

approximations of more complex, higher order models 

(Wang et al., 2014). These models are used to map input 

data to output data when the actual relationship between the 

two is unknown or computationally expensive to evaluate 

(Han and Zhang, 2012). Surrogate models can also be 

constructed for use in surrogate based optimization when a 

closed analytical form of the relationship between input 

data and output data does not exist or is not conducive for 

use in traditional gradient based optimization methods.  

Some recent examples of applications of surrogate 

modeling approaches include several process synthesis 

applications, for example, in optimization of carbon fiber 

production plant energy consumption (Golkaranarenji et al., 
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2018), and process controls applications in the 

pharmaceutical production industry (Icten et al., 2015). 

Construction of a surrogate model is comprised of three 

steps: (1) selection of the sample points, (2) optimization or 

“training” of the model parameters, and (3) evaluation of 

the accuracy of the surrogate model (Wang et al., 2014). 

Although several machine learning and regression 

techniques have been developed for surrogate model 

construction, there has been little work on how to best select 

the appropriate model for a particular application for either 

design space approximation or optimization. For studies 

applying surrogate modeling techniques for process design 

and optimization, models are mostly selected using process 

specific expertise with no systematic basis for the selection. 

The majority of studies comparing surrogate model 

performance only compare a few models on a limited 



  

 

number of functions or applications (Davis et al., 2017; 

Bhosekar and Ierapetritou, 2018). Efforts have been made 

to generalize the process for selecting a surrogate model to 

approximate a design space by using meta-learning 

approaches to build selection frameworks (Garud et al., 

2018; Cui et al., 2016). However, these frameworks provide 

little insight into selecting surrogates for optimization 

purposes. This work aims to address the knowledge gap by 

comparing the performance of eight different surrogate 

modeling techniques for two applications of surrogate 

models: design space approximation, which attempts to 

model the overall behavior of the dataset, and surrogate 

based optimization. Data sets for training surrogate models 

are generated from a large set of test functions with different 

characteristics, such as function shape and number of 

inputs, using two sampling methods. The effects of the 

function characteristics and sampling methods on the 

surrogate model performance are evaluated. The goal of 

performing this analysis is to develop general “rules of 

thumb” for selecting an appropriate surrogate modeling 

form based on the characteristics of the data being modeled 

and the desired application. The following sections contain 

brief descriptions of the surrogate modeling techniques used 

and the test function sets. Then the design of computational 

experiments and the results are presented.  

Surrogate Modeling Techniques  

Multivariate adaptive regression spline models are 

made up of a linear summation of basis functions. The three 

types of possible basis functions are a constant, a hinge 

function (or “spline”), or a product of two or more hinge 

functions. The training of a MARS model starts with an 

initial model that is a basis function equal to the mean of the 

data outputs. On the first pass, the model overfits to the data, 

adding basis functions to reduce the sum of the squared 

errors (SSE) between the given and predicted outputs. Then, 

a backward, pruning pass is performed to remove terms that 

have little effect on the SSE until the best model is identified 

based on cross validation criteria (Friedman, 1991). 

Random forests are machine learning models that make 

output predictions by combining outcomes from a sequence 

of regression decision trees, called forests. Each tree is 

constructed independently and depends on a random vector 

sampled from the input data, with all the trees in the forest 

having the same distribution. The predictions from the 

forests are averaged using bootstrap aggregation and 

random feature selection (Brieman, 2001). 

Single hidden-layer feed forward artificial neural 

networks (ANNs) attempt to mimic the behavior of neurons 

in the brain. The artificial neurons have weights and biases 

that create a network between the layers, with the activation 

function in the hidden layer determining whether or not a 

neuron will ‘fire’ (Haykin, 2009). 

An extreme learning machine is an ANN where the 

weights between the input layer and hidden layer are 

randomly assigned, and the weights between the hidden 

layer and the output layer are fit using linear regression or 

other regression techniques (Huang et al., 2006). 

A radial basis function network (RBFNs) is an ANN 

with a radial basis function as the activation function in the 

hidden layer. The network calculates the Euclidean distance 

between the input weights and input values and passes those 

distances through the radial basis activation function (Jin et 

al. 2001). 

Support vector machines (SVMs) transform input data 

into m-dimensional space and construct a set of hyperplanes 

such that the distance from a hyperplane to the nearest data 

point on each side of the plane is maximized using kernel 

functions (Jin et al., 2001). 

Gaussian process regression (GP) uses a linear 

combination of inputs to predict output values. It uses a 

kernel function as measure of similarity between points to 

predict the value for an unseen point (Mirabagheri, 2001). 

Automated learning of algebraic models (ALAMO) 

uses a linear summation of nonlinear transformations of the 

input data to predict output values. Possible nonlinear 

transformations include polynomial, exponential, 

logarithmic, and trigonometric functions (Cozad et al., 

2014). It should be noted that the adaptive sampling scheme 

of ALAMO is not used in this study.  

Test Functions 

The test functions used are the optimization set from 

Virtual Library of Simulation Experiments (Surjanovic and 

Bingham, 2013). The functions are divided by shape, which 

include the categories: multi-local minima with 31 

functions, bowl-shaped with 31 functions, plate-shaped 

with 9 functions, valley-shaped with 12 functions, and 

other-shaped with 18 functions that do not fit into the other 

four categories. Functions with two, four, six, eight, and 10 

inputs were used in evaluations. 

Computational Experiments 

For evaluating the performances of surrogate 

modelling techniques, 1000 input-output pairs were 

generated from each test function using two different 

sampling methods, and surrogate models were trained using 

these pairs with each of the surrogate modeling technique 

for each function. This resulted in 1616 surrogate models.  

Each of the techniques has unique hyperparameters that 

were optimized in training the models for each dataset. For 

the MARS models, the number of hinge functions that could 

be multiplied together was limited to two. RF models grew 

unpruned without restrictions. The number of ANN and 

ELM nodes was increased until the root mean squared error 

of the validation dataset started to increase. 

The two sampling methods used were Latin Hypercube 

Sampling (LHS) and Sobol Sequence. The LHS splits the 

domain of each input variable into N subsets, where N is the 

number of sampling points. The subsets are then sampled 

randomly to produce the input values (McKay, 1992). The 

Sobol sequence attempts to distribute the sampling points 



  

uniformly across the input space. It is a quasi-random, low-

discrepancy sequence (Joe and Kuo, 2003). 

After the surrogate models were trained for each 

dataset and sampling method, 100,000 input-output pairs 

were generated using the Sobol sequence sampling to test 

the accuracy of the models. The root mean squared error 

(RMSE) and the maximum percent error (MaxAPE) were 

calculated for each dataset-surrogate model combination 

based on the difference between the outputs of the given 

function and the outputs predicted by the surrogate model. 

The Akaike Information Criterion (AIC) and Akaike 

weights were calculated for each modeling technique 

(Akaike, 1973).  

The global minima of each test function was estimated 

using the trained surrogate models. The mathematical 

programs were constructed in Pyomo, a Python based 

optimization language. The estimated minima were 

compared to the actual global minima of the test functions 

for accuracy to provide some insight into the effectiveness 

of the surrogate models for surrogate based optimization. 

The solvers used for optimization are provided in Table 1. 

When local solvers were used for optimization, a multi-start 

approach was used with 25 starts from different locations in 

the domain space. Solvers were chosen for each technique 

based on which provided the best solutions in the shortest 

time. Computations were carried out on the Auburn 

University Hopper HPC Cluster (Lenovo System X HPC 

Cluster) using 12 Intel E5-2650 V3, 2.3 GHz 20 core 

processors and implemented in Python 3.5 and MATLAB 

2017b (for RBFN surrogate models). 

Table 1. Solvers for surrogate based optimization 

Surrogate 

Model 

Resulting Optimization 

Model 
Solver 

MARS MINLP ANTIGONE 

RF MILP CPLEX 

ANN NLP CONOPT 

ELM NLP CONOPT 

GP NLP COUENNE 

SVM NLP COUENNE 

ALAMO NLP BARON 

RBFN NLP BARON 

Performance Metrics 

The RMSE and MaxAPE values for each dataset-

surrogate model combination were normalized by the range 

of output values for easier comparison across datasets with 

a variety of ranges for output values. 

Surrogate Model Selection by AIC 

The formula for AIC is shown in Eq. 1. 

𝐴𝐼𝐶 = 2𝑘 + 𝑛 ln
𝑆𝑆𝐸

𝑛
 (1) 

where k is the number of parameters in the model, n is the 

number of training points and SSE is the sum of the squared 

errors. The AIC is used to calculate the ∆𝐴𝐼𝐶𝑖 (Eq. 2) and 

Akaike weight (𝑤𝑖) (Eq. 3), which is the probability that 

model 𝑖 is the best one over a set of models for a dataset. 

This metric considers the model accuracy and complexity. 

Increased model complexity can lead to both overfitting to 

the dataset and increased computational time requirements.  

∆𝐴𝐼𝐶𝑖 = 𝐴𝐼𝐶𝑖 − 𝑚𝑖𝑛(𝐴𝐼𝐶) (2) 

𝑤𝑖 =
𝑒𝑥𝑝(−0.5∆𝐴𝐼𝐶𝑖)

∑ 𝑒𝑥𝑝(−0.5∆𝐴𝐼𝐶𝑗)𝑗
 (3) 

Surrogate-Based Optimization Performance Metrics 

We define 𝐷𝑜𝑝𝑡  as the Mahalanobis distance, 𝐷𝑀, 

(McLachlan, 1999) between the location of the global 

minimum of the function, 𝑥𝑜𝑝𝑡, and the location estimated 

using the surrogate-based optimization, 𝑥𝑜𝑝𝑡′. This value is 

normalized by the maximum Mahalanobis distance between 

any two points (𝑥𝑖 , 𝑥𝑗) in the dataset (Eq. 4). 

𝐷𝑜𝑝𝑡 =
𝐷𝑀(𝑥𝑜𝑝𝑡,𝑥

𝑜𝑝𝑡′)

𝑚𝑎𝑥
𝑖,𝑗

𝐷𝑀(𝑥𝑖,𝑥𝑗)
 (4) 

where 𝑥𝑖 and 𝑥𝑗 are points in the domain space of the 

dataset. 

We define 𝐺𝑜𝑝𝑡, Eq. 5, as the normalized gap between 

the global minimum value and the estimated one. This value 

is normalized by the range of output values in the dataset. 

𝐺𝑜𝑝𝑡 =
𝑦𝑜𝑝𝑡−𝑦

𝑜𝑝𝑡′

𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛
 (5) 

where 𝑦𝑜𝑝𝑡 is the actual minimum value, 𝑦𝑜𝑝𝑡′  is the one 

calculated by the surrogate model, and 𝑦𝑚𝑎𝑥    and 𝑦𝑚𝑖𝑛 are 

the maximum and minimum output values of the dataset. 

Results and Discussion 

With the training set size of 1000 sample points, there 

was no significant difference in the performance of the 

surrogate models trained using the points generated using 

Sobol sequence and LHS. Therefore, results presented in 

this section only include surrogate models trained with 

datasets generated via LHS. 

Design Space Approximation Performance 

Results obtained based on the Akaike weights are 

summarized in Fig. 1. The weights were used to take into 

account the model size and complexity in addition to its 

accuracy (Akaike, 1973). Akaike weights were calculated 

for all of the surrogate modeling techniques for each 

dataset, and the percentage of the time each surrogate model 



  

 

was selected as the best model by Akaike weight was 

tabulated, which was used to calculate the fraction of a 

surrogate modeling technique being the best among the 

datasets (Fig. 1). The number of datasets included in each 

category is included below the x-axis for Figs. 1b and 1c. 

 

 

Figure 1. (a)  Percentage of datasets for which each model 

has the highest Akaike weight, Percentage of best weights 

grouped by (b )function shape, and (c) input dimension 

Figure 1a shows that GP models were selected as the 

best model the highest percentage of the time for all datasets 

when they are all grouped together. Figure 1b shows 

slightly different results when the datasets are grouped by 

shape, with GP being selected as the best the most often for 

three out of the five shape categories. For bowl-shaped 

functions, ALAMO models were selected as the best most 

frequently, while for plate-shaped functions ANN models 

were selected as the best most frequently. This result 

indicates that there is some dependence of the surrogate 

model performance on the overall shape of the function the 

dataset was generated from. When the datasets are grouped 

by dimension, however, GP models are selected as the best 

most frequently across all of the dimensions tested, 

indicating less of a dependence on AIC performance on 

input dimension of the dataset. While GP models had the 

most robust AIC performance, RF and SVM models did not 

perform the best for any of the datasets considered 

indicating that if AIC is the performance metric of interest, 

these models are not suitable choices. 

The RMSE and MaxAPE were calculated using the 

100,000 sample point test sets to investigate how well the 

surrogate models approximated the actual function 

surfaces. Results for these performance metrics are shown 

in Figs. 2 and 3 in boxplot format. For each box, the bottom, 

middle, and top lines of the box represent the 25th, 50th, and 

75th percentiles, respectively. Outliers are plotted as 

individual points. In contrast to the AIC performance, no 

model was the worst performing for the RMSE and 

MaxAPE for all of the considered datasets.  

 

Figure 2. RMSE for datasets grouped (a) by function 

shape, (b) by input dimension 

The RMSE and MaxAPE exhibit similar trends with 

MARS models having the most robust performance with 

respect to both function shape and input dimension. The 

ANN models also exhibit similarly accurate performance. 

The difference between the suggested models by the Akaike 

weights and these metrics may be due to the differences in 

resulting surrogate model complexities. While MARS and 

ANN models tend to get larger as the function shape 

complexity and input dimension increase, GP model size 

tends to remain constant. Because AIC takes model 

complexity into consideration, it favors GP models more. 

The robust performance of MARS models may be due to 

their effective partitioning of the design space with the 

hinge functions and the accurate modeling of nonlinearities 

in these partitions by products of hinge functions. 

While MARS and ANN models perform well for each 

shape and dimension investigated, the performances of 

other models change with different function characteristics. 

GP and ELM models have performances similar to MARS 

and ANN at low input dimensions, but their performances 

worsen as the dimension increases, for example, further 

 

 

 

 

 

 

 

 



  

illustrating the dependence of model performance on 

dimension. These results suggest that for datasets where 

specific characteristics are not available a MARS or ANN 

model would be appropriate to select as a general guideline. 

However, if characteristics are available, other models 

might provide a better design space approximation. 

 

Figure 3.  MaxAPE for datasets grouped (a) by 

function shape, (b) by input dimension 

Surrogate Based Optimization Performance 

The computational experiments for surrogate-based 

optimization were executed by using each surrogate model 

to estimate the minimum of each function and the location 

of the minimum. Then, these results were compared to the 

global minimum and its true location using two metrics, 

𝐷𝑜𝑝𝑡  (Eq. 4) and 𝐺𝑜𝑝𝑡 (Eq. 5). Results are summarized in 

Figs. 4 and 5, where we define a model as having located 

the optimum when it obtains a 𝐷𝑜𝑝𝑡 or 𝐺𝑜𝑝𝑡 value less than 

1%. The numbers in parentheses (in x-axis) next to the 

number of datasets in each category represent the number 

of datasets for which a solution was obtained using RF 

models because some of the RF models resulted in mixed 

integer linear programs (MILP) that were too large to solve.  

Random forest (RF) models in general locate the 

minima for the highest fraction of the datasets, when 

datasets are grouped by both shape and dimension. 

However, for approximating the design space RF models 

had some of the worst performances, with higher values for 

both RMSE and MaxAPE. While the RF models perform 

well in capturing the overall curvature of the underlying 

function in each dataset, they perform poorly for predicting 

the actual output values. This may be due to the decision 

tree nature of RF models. The ‘rules’ of the decision tree 

that determine movement between nodes provide less 

accurate, more noisy predictions for outputs but may be 

effective in dividing the domain of the dataset in a way that 

allows the solver to accurately pinpoint the location of the 

minimum. GP and RBFN models perform most robustly in 

estimating the actual values of the global minima, in 

general, with respect to both shape and dimension. This 

result is in agreement with results from the Akaike weights. 

 

Figure 4. Fraction of datasets with Dopt less than 

0.1% grouped by (a) function shape, (b) input 

dimension 

Computational Efficiency 

The computational time required for training each 

model, evaluating the test set predictions, and solving the 

optimization problems are shown in Figure 6. MARS 

models had some of the lowest times for all three values, 

which reinforces the suggestion that MARS models would 

be in general an appropriate selection for a variety of 

datasets if specific characteristics are not known for design 

space approximation. RF models have the highest average 

value for optimization solution times. These solution times 

may be reduced by developing algorithms that exploit the 

special structure of RF model MILPs as RF models were 

successful in pinpointing the location of the minimum. 

Conclusions and Future Work 

Selection of the appropriate surrogate modeling 

technique depends on both the desired application of the 

surrogate model and the characteristics of the dataset being 

modeled. However, for general selection rules, MARS and 

ANN models give the most accurate predictions for design 

space approximation, and RF, RBFN and GP models give 

the most accurate estimations for surrogate based 

approximation. Future work will include consideration of 

additional dataset characteristics and investigating the 

 

 

 

 

 

 

 

 



  

 

effect of changing training dataset sizes on surrogate model 

performance. 

 

Figure 5. Fraction of datasets with Gopt less than 

0.1% grouped by (a) function shape, (b) input 

dimension 

 

Figure 6: (a) Average model training time in seconds, 

Average time to (b) evaluate test sets (c) solve optimization 

problem for global minimum 
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