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Abstract

Surrogate models are used to map input data to output data when the actual relationship between the two
is unknown or computationally expensive to evaluate for sensitivity analysis, uncertainty propagation and
surrogate based optimization. This work evaluates the performance of eight surrogate modeling techniques
for design space approximation and surrogate based optimization applications over a set of generated
datasets with known characteristics. With this work, we aim to provide general rules for selecting an
appropriate surrogate model form solely based on the characteristics of the data being modeled. The
computational experiments revealed that, in general, multivariate adaptive regression spline models
(MARS) and single hidden layer feed forward neural networks (ANN) yielded the most accurate
predictions over the design space while Random Forest (RF) models most reliably identified the locations
of the optimums when used for surrogate-based optimization.
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Introduction

Surrogate models, also known as response surfaces,
black-box models, metamodels, or emulators, are simplified
approximations of more complex, higher order models
(Wang et al., 2014). These models are used to map input
data to output data when the actual relationship between the
two is unknown or computationally expensive to evaluate
(Han and Zhang, 2012). Surrogate models can also be
constructed for use in surrogate based optimization when a
closed analytical form of the relationship between input
data and output data does not exist or is not conducive for
use in traditional gradient based optimization methods.
Some recent examples of applications of surrogate
modeling approaches include several process synthesis
applications, for example, in optimization of carbon fiber
production plant energy consumption (Golkaranarenji et al.,
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2018), and process controls applications in the
pharmaceutical production industry (Icten et al., 2015).
Construction of a surrogate model is comprised of three
steps: (1) selection of the sample points, (2) optimization or
“training” of the model parameters, and (3) evaluation of
the accuracy of the surrogate model (Wang et al., 2014).
Although several machine learning and regression
techniques have been developed for surrogate model
construction, there has been little work on how to best select
the appropriate model for a particular application for either
design space approximation or optimization. For studies
applying surrogate modeling techniques for process design
and optimization, models are mostly selected using process
specific expertise with no systematic basis for the selection.
The majority of studies comparing surrogate model
performance only compare a few models on a limited



number of functions or applications (Davis et al., 2017;
Bhosekar and Ierapetritou, 2018). Efforts have been made
to generalize the process for selecting a surrogate model to
approximate a design space by using meta-learning
approaches to build selection frameworks (Garud et al.,
2018; Cui et al., 2016). However, these frameworks provide
little insight into selecting surrogates for optimization
purposes. This work aims to address the knowledge gap by
comparing the performance of eight different surrogate
modeling techniques for two applications of surrogate
models: design space approximation, which attempts to
model the overall behavior of the dataset, and surrogate
based optimization. Data sets for training surrogate models
are generated from a large set of test functions with different
characteristics, such as function shape and number of
inputs, using two sampling methods. The effects of the
function characteristics and sampling methods on the
surrogate model performance are evaluated. The goal of
performing this analysis is to develop general “rules of
thumb” for selecting an appropriate surrogate modeling
form based on the characteristics of the data being modeled
and the desired application. The following sections contain
brief descriptions of the surrogate modeling techniques used
and the test function sets. Then the design of computational
experiments and the results are presented.

Surrogate Modeling Techniques

Multivariate adaptive regression spline models are
made up of a linear summation of basis functions. The three
types of possible basis functions are a constant, a hinge
function (or “spline”), or a product of two or more hinge
functions. The training of a MARS model starts with an
initial model that is a basis function equal to the mean of the
data outputs. On the first pass, the model overfits to the data,
adding basis functions to reduce the sum of the squared
errors (SSE) between the given and predicted outputs. Then,
a backward, pruning pass is performed to remove terms that
have little effect on the SSE until the best model is identified
based on cross validation criteria (Friedman, 1991).

Random forests are machine learning models that make
output predictions by combining outcomes from a sequence
of regression decision trees, called forests. Each tree is
constructed independently and depends on a random vector
sampled from the input data, with all the trees in the forest
having the same distribution. The predictions from the
forests are averaged using bootstrap aggregation and
random feature selection (Brieman, 2001).

Single hidden-layer feed forward artificial neural
networks (ANNs) attempt to mimic the behavior of neurons
in the brain. The artificial neurons have weights and biases
that create a network between the layers, with the activation
function in the hidden layer determining whether or not a
neuron will ‘fire’ (Haykin, 2009).

An extreme learning machine is an ANN where the
weights between the input layer and hidden layer are
randomly assigned, and the weights between the hidden

layer and the output layer are fit using linear regression or
other regression techniques (Huang et al., 2006).

A radial basis function network (RBFNs) is an ANN
with a radial basis function as the activation function in the
hidden layer. The network calculates the Euclidean distance
between the input weights and input values and passes those
distances through the radial basis activation function (Jin et
al. 2001).

Support vector machines (SVMs) transform input data
into m-dimensional space and construct a set of hyperplanes
such that the distance from a hyperplane to the nearest data
point on each side of the plane is maximized using kernel
functions (Jin et al., 2001).

Gaussian process regression (GP) wuses a linear
combination of inputs to predict output values. It uses a
kernel function as measure of similarity between points to
predict the value for an unseen point (Mirabagheri, 2001).

Automated learning of algebraic models (ALAMO)
uses a linear summation of nonlinear transformations of the
input data to predict output values. Possible nonlinear
transformations  include  polynomial,  exponential,
logarithmic, and trigonometric functions (Cozad et al.,
2014). It should be noted that the adaptive sampling scheme
of ALAMO is not used in this study.

Test Functions

The test functions used are the optimization set from
Virtual Library of Simulation Experiments (Surjanovic and
Bingham, 2013). The functions are divided by shape, which
include the categories: multi-local minima with 31
functions, bowl-shaped with 31 functions, plate-shaped
with 9 functions, valley-shaped with 12 functions, and
other-shaped with 18 functions that do not fit into the other
four categories. Functions with two, four, six, eight, and 10
inputs were used in evaluations.

Computational Experiments

For evaluating the performances of surrogate
modelling techniques, 1000 input-output pairs were
generated from each test function using two different
sampling methods, and surrogate models were trained using
these pairs with each of the surrogate modeling technique
for each function. This resulted in 1616 surrogate models.

Each of the techniques has unique hyperparameters that
were optimized in training the models for each dataset. For
the MARS models, the number of hinge functions that could
be multiplied together was limited to two. RF models grew
unpruned without restrictions. The number of ANN and
ELM nodes was increased until the root mean squared error
of the validation dataset started to increase.

The two sampling methods used were Latin Hypercube
Sampling (LHS) and Sobol Sequence. The LHS splits the
domain of each input variable into N subsets, where N is the
number of sampling points. The subsets are then sampled
randomly to produce the input values (McKay, 1992). The
Sobol sequence attempts to distribute the sampling points



uniformly across the input space. It is a quasi-random, low-
discrepancy sequence (Joe and Kuo, 2003).

After the surrogate models were trained for each
dataset and sampling method, 100,000 input-output pairs
were generated using the Sobol sequence sampling to test
the accuracy of the models. The root mean squared error
(RMSE) and the maximum percent error (MaxAPE) were
calculated for each dataset-surrogate model combination
based on the difference between the outputs of the given
function and the outputs predicted by the surrogate model.
The Akaike Information Criterion (AIC) and Akaike
weights were calculated for each modeling technique
(Akaike, 1973).

The global minima of each test function was estimated
using the trained surrogate models. The mathematical
programs were constructed in Pyomo, a Python based
optimization language. The estimated minima were
compared to the actual global minima of the test functions
for accuracy to provide some insight into the effectiveness
of the surrogate models for surrogate based optimization.
The solvers used for optimization are provided in Table 1.
When local solvers were used for optimization, a multi-start
approach was used with 25 starts from different locations in
the domain space. Solvers were chosen for each technique
based on which provided the best solutions in the shortest
time. Computations were carried out on the Auburn
University Hopper HPC Cluster (Lenovo System X HPC
Cluster) using 12 Intel E5-2650 V3, 2.3 GHz 20 core
processors and implemented in Python 3.5 and MATLAB
2017b (for RBFN surrogate models).

Table 1. Solvers for surrogate based optimization

Sllglr(j) dg;te Resultmgﬁ/I (gg:lmlzatlon Solver
MARS MINLP ANTIGONE
RF MILP CPLEX
ANN NLP CONOPT
ELM NLP CONOPT

GP NLP COUENNE

SVM NLP COUENNE
ALAMO NLP BARON
RBFN NLP BARON

Performance Metrics

The RMSE and MaxAPE values for each dataset-
surrogate model combination were normalized by the range
of output values for easier comparison across datasets with
a variety of ranges for output values.

Surrogate Model Selection by AIC
The formula for AIC is shown in Eq. 1.

AIC = 2k +nIn== (1)

where k is the number of parameters in the model, » is the
number of training points and SSE is the sum of the squared
errors. The AIC is used to calculate the AAIC; (Eq. 2) and
Akaike weight (w;) (Eq. 3), which is the probability that
model i is the best one over a set of models for a dataset.
This metric considers the model accuracy and complexity.
Increased model complexity can lead to both overfitting to
the dataset and increased computational time requirements.

AAIC; = AIC; — min(AIC) )
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Surrogate-Based Optimization Performance Metrics

We define D,,, as the Mahalanobis distance, D,
(McLachlan, 1999) between the location of the global
minimum of the function, Xy, and the location estimated

using the surrogate-based optimization, x .. This value is

opt
normalized by the maximum Mahalanobis distance between

any two points (x;, X;) in the dataset (Eq. 4).

_ DM(xopt,xopt,)
Dope = macbu(eus) 4)
where x; and x; are points in the domain space of the
dataset.

We define G, Eq. 5, as the normalized gap between
the global minimum value and the estimated one. This value
is normalized by the range of output values in the dataset.

YOpt—yoptl

Gopt = Q)

Ymax~Ymin

where yp¢ is the actual minimum value, y, ./ is the one

calculated by the surrogate model, and y,,,, and y,,;, are
the maximum and minimum output values of the dataset.

Results and Discussion

With the training set size of 1000 sample points, there
was no significant difference in the performance of the
surrogate models trained using the points generated using
Sobol sequence and LHS. Therefore, results presented in
this section only include surrogate models trained with
datasets generated via LHS.

Design Space Approximation Performance

Results obtained based on the Akaike weights are
summarized in Fig. 1. The weights were used to take into
account the model size and complexity in addition to its
accuracy (Akaike, 1973). Akaike weights were calculated
for all of the surrogate modeling techniques for each
dataset, and the percentage of the time each surrogate model



was selected as the best model by Akaike weight was
tabulated, which was used to calculate the fraction of a
surrogate modeling technique being the best among the
datasets (Fig. 1). The number of datasets included in each
category is included below the x-axis for Figs. 1b and lc.
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Figure 1. (a) Percentage of datasets for which each model
has the highest Akaike weight, Percentage of best weights
grouped by (b )function shape, and (c) input dimension

Figure 1a shows that GP models were selected as the
best model the highest percentage of the time for all datasets
when they are all grouped together. Figure 1b shows
slightly different results when the datasets are grouped by
shape, with GP being selected as the best the most often for
three out of the five shape categories. For bowl-shaped
functions, ALAMO models were selected as the best most
frequently, while for plate-shaped functions ANN models
were selected as the best most frequently. This result
indicates that there is some dependence of the surrogate
model performance on the overall shape of the function the
dataset was generated from. When the datasets are grouped
by dimension, however, GP models are selected as the best
most frequently across all of the dimensions tested,
indicating less of a dependence on AIC performance on
input dimension of the dataset. While GP models had the
most robust AIC performance, RF and SVM models did not

perform the best for any of the datasets considered
indicating that if AIC is the performance metric of interest,
these models are not suitable choices.

The RMSE and MaxAPE were calculated using the
100,000 sample point test sets to investigate how well the
surrogate models approximated the actual function
surfaces. Results for these performance metrics are shown
in Figs. 2 and 3 in boxplot format. For each box, the bottom,
middle, and top lines of the box represent the 25%, 50", and
75% percentiles, respectively. Outliers are plotted as
individual points. In contrast to the AIC performance, no
model was the worst performing for the RMSE and
MaxAPE for all of the considered datasets.
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Figure 2. RMSE for datasets grouped (a) by function
shape, (b) by input dimension

The RMSE and MaxAPE exhibit similar trends with
MARS models having the most robust performance with
respect to both function shape and input dimension. The
ANN models also exhibit similarly accurate performance.
The difference between the suggested models by the Akaike
weights and these metrics may be due to the differences in
resulting surrogate model complexities. While MARS and
ANN models tend to get larger as the function shape
complexity and input dimension increase, GP model size
tends to remain constant. Because AIC takes model
complexity into consideration, it favors GP models more.
The robust performance of MARS models may be due to
their effective partitioning of the design space with the
hinge functions and the accurate modeling of nonlinearities
in these partitions by products of hinge functions.

While MARS and ANN models perform well for each
shape and dimension investigated, the performances of
other models change with different function characteristics.
GP and ELM models have performances similar to MARS
and ANN at low input dimensions, but their performances
worsen as the dimension increases, for example, further



illustrating the dependence of model performance on
dimension. These results suggest that for datasets where
specific characteristics are not available a MARS or ANN
model would be appropriate to select as a general guideline.
However, if characteristics are available, other models
might provide a better design space approximation.
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Figure 3. MaxAPE for datasets grouped (a) by
function shape, (b) by input dimension

Surrogate Based Optimization Performance

The computational experiments for surrogate-based
optimization were executed by using each surrogate model
to estimate the minimum of each function and the location
of the minimum. Then, these results were compared to the
global minimum and its true location using two metrics,
Dype (Eq. 4) and Gope (Eq. 5). Results are summarized in
Figs. 4 and 5, where we define a model as having located
the optimum when it obtains a Dy, or Gy, value less than
1%. The numbers in parentheses (in x-axis) next to the
number of datasets in each category represent the number
of datasets for which a solution was obtained using RF
models because some of the RF models resulted in mixed
integer linear programs (MILP) that were too large to solve.

Random forest (RF) models in general locate the
minima for the highest fraction of the datasets, when
datasets are grouped by both shape and dimension.
However, for approximating the design space RF models
had some of the worst performances, with higher values for
both RMSE and MaxAPE. While the RF models perform
well in capturing the overall curvature of the underlying
function in each dataset, they perform poorly for predicting
the actual output values. This may be due to the decision
tree nature of RF models. The ‘rules’ of the decision tree
that determine movement between nodes provide less
accurate, more noisy predictions for outputs but may be

effective in dividing the domain of the dataset in a way that
allows the solver to accurately pinpoint the location of the
minimum. GP and RBFN models perform most robustly in
estimating the actual values of the global minima, in
general, with respect to both shape and dimension. This
result is in agreement with results from the Akaike weights.
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Figure 4. Fraction of datasets with Dy less than
0.1% grouped by (a) function shape, (b) input
dimension

Computational Efficiency

The computational time required for training each
model, evaluating the test set predictions, and solving the
optimization problems are shown in Figure 6. MARS
models had some of the lowest times for all three values,
which reinforces the suggestion that MARS models would
be in general an appropriate selection for a variety of
datasets if specific characteristics are not known for design
space approximation. RF models have the highest average
value for optimization solution times. These solution times
may be reduced by developing algorithms that exploit the
special structure of RF model MILPs as RF models were
successful in pinpointing the location of the minimum.

Conclusions and Future Work

Selection of the appropriate surrogate modeling
technique depends on both the desired application of the
surrogate model and the characteristics of the dataset being
modeled. However, for general selection rules, MARS and
ANN models give the most accurate predictions for design
space approximation, and RF, RBFN and GP models give
the most accurate estimations for surrogate based
approximation. Future work will include consideration of
additional dataset characteristics and investigating the



effect of changing training dataset sizes on surrogate model
performance.
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