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Abstract 

Uncertainty propagation methods are used to estimate the distribution of model outputs resulting from a 

set of uncertain model outputs. There are a number of uncertainty propagation methods available in 

literature. This paper compares six non-intrusive uncertainty propagation methods, Latin Hypercube 

Sampling, Full Factorial Integration, Univariate Dimension Reduction, Halton series, Sobol series, and 

Polynomial Chaos Expansion, in terms of their efficiency for estimating the first four moments of the 

output distribution using computational experiments. The results suggest employing FFNI if there are few 

uncertain inputs, up to three. Uncertainty propagation methods that utilize Halton and Sobol series are 

found to be robust for estimating output moments as the number of uncertain inputs increased. In general, 

higher order polynomial chaos expansion approximations (3rd-5th order) obtained accurate estimates of 

model outputs with fewer model evaluations. 
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Introduction

The steady increase in computational power enabled 

the widespread utilization of simulation models to assist 

decision making in chemical and energy process designs. 

However, there are many sources of uncertainty in these 

models, e.g., in the model inputs and parameters. This leads 

to uncertainties in the outputs of the models, which in turn 

may influence key decisions on the design and operations of 

the processes and associated integrated equipment. Efficient 

and effective approaches are required to qualitatively 

characterize the uncertainty of model outputs, which, as a 

consequence, will increase the confidence in the predictions 

of these models, and will enable robust design and operation 

of the systems. 

In general, uncertainty analysis can be carried out in 

three steps: (i) identify sources and types of uncertainty in 

the model, (ii) select appropriate mathematical 

representations for these uncertainties, and (iii) choose and 

apply an appropriate propagation method to quantify the 

resulting uncertainty. This paper considers the third 

component, specifically on uncertainty propagation 

methods (UPMs).  

Uncertainty propagation methods are used where a 

function 𝑔(𝑿) is needed to predict the value of a dependent 

variable 𝑦, where 𝑔(𝑿) may be an analytical function, or a 

black-box model (Lee and Chen, 2009). Here, 𝑦 is 

dependent on 𝑿, with 𝑿 representing a 𝑑 × 1 vector whose 

components contain the values of the independent variables, 

and 𝑑 the number of independent variables. In this case, at 

least one of the components of 𝑿 is a random variable with 

a probability density function or marginal distribution 

function and correlations (Lee and Chen, 2009). The 

propagation of uncertainties in 𝑿 can be carried out by 

intrusive or non-intrusive UPMs. While intrusive UPMs 

require the modification of the original model, non-intrusive 

UPMs, focus of this paper, treat the model as a black-box 

and hence have much wider applicability Simulation-based 

UPMs are popular and have been used in many applications 

because of their simplicity and robustness (Roy and 



  

 

 

Oberkampf, 2011). Examples of these methods include the 

Monte Carlo simulation method (Dieck, 2007), Halton 

series (Wong et al., 1997), Sobol sequences (Sobol, 1967). 

There are also UPMs that use surrogate models, such as 

polynomial chaos expansion (Ghanem and Spanos, 1982). 

However, little work focuses on systematically comparing 

the efficiencies of UPMs for black-box models with 

different characteristics. Existing studies generally compare 

a limited number of UPMs (e.g., Burhenne and et al., 2011; 

Garud and et al., 2017). Lee and Chen (2009) and Fahmi 

and Cremaschi (2016) compared a large set of non-intrusive 

UPMs in terms of their ability to estimate output distribution 

moments. However, these studies fixed the number of 

black-box function evaluations in their analysis, and hence, 

do not provide any insight on how different UPMs compare 

to each other as the number of function evaluations change. 

For especially complex black-box models, such as 

computational fluid dynamics simulations, a single model 

evaluation can be computationally expensive. For such 

models, selection of a UPM that provides accurate estimates 

of output uncertainty with fewer function evaluations 

becomes important. 

This paper computationally investigates the 

efficiencies of non-intrusive UPMs in terms of their ability 

to estimate the moments of the output distributions. We use 

a number of functions with varying degrees of nonlinearity 

and with different number of uncertain inputs. The methods 

considered are Latin Hypercube Sampling (LHS), Full 

Factorial Integration (FFNI), Univariate Dimension 

Reduction (UDR), Halton series, Sobol series, and 

Polynomial Chaos Expansion (PCE). The estimates of the 

first four statistical moments are used for comparisons. 

Uncertainty propagation methods in the analysis 

In Latin Hypercube Sampling (LHS), each uncertain-

parameter range is partitioned into equal probability bins, 

where number of bins is equal to the number of required 

samples, 𝑛. A random sample for each uncertain parameter 

is drawn from each of these bins. Then, a random sample is 

selected for each uncertain parameter to construct 𝑛 samples 

(McKay et al., 1979). Because of the initial partitioning, 

LHS generally provides good coverage of each uncertain 

parameter space (McKay et al., 1979). However, because 

the pairing of the sample points between parameters are 

done randomly, the coverage of multivariable space may 

suffer. Furthermore, because the number of required 

samples determines the number of initial bins the random 

samples are drawn from, LHS cannot be used in a sequential 

sampling scheme (Nuchitprasittichai & Cremaschi, 2012). 

Full factorial numerical integration (FFNI) and 

univariate dimension reduction (UDR) are numerical 

integration methods. Thus, they provide an estimate of 

output distribution moments via direct numerical 

integration. First, each uncertain parameter is discretized 

into 𝑚 number of nodes. Given 𝑚, the numerical integration 

weights (𝓌𝑗𝑛
) and the corresponding sampling points for 

each uncertain variable (𝑥𝑗𝑛
) are obtained from Gauss-

Hermite, Gauss-Legendre, or Gauss-Laguerre equation 

depending on the distribution of the uncertain variable (Lee 

& Chen, 2009). The 𝑘𝑡ℎ statistical moment of the output 

distribution, (i.e., 𝐸(𝑦𝑘) where 𝑦 =  𝑔(𝑿)) is estimated 

using an appropriate quadrature formula as shown in Eq. 1. 

𝐸(𝑦𝑘) = ∑ 𝓌𝑗1
𝑚
𝑗1=1 … ∑ 𝓌𝑗𝑛

𝑚
𝑗𝑛=1  × [𝑔(𝑥𝑗1

… 𝑥𝑗𝑛
)]𝑘 (1) 

Both FFNI and UDR use Eq. 1 to estimate the output 

distribution moments. However, FFNI enumerates all 

possible combinations of 𝑥𝑗𝑛
 and calculates the 

corresponding 𝑔(𝑿). Assuming there are 𝑛 uncertain 

parameters, the required number of 𝑔(𝑿) evaluations is 𝑚𝑛 

for 𝑚 nodes. As the number of uncertain parameters 

increases, the required number of function evaluations (i.e., 

sample points) increases exponentially even when for a 

small number of nodes (e.g., two or three).  

UDR approximates the overall multivariate function 

output as an addition of many univariate functions prior to 

calculating the statistical moments (Lee & Chen, 2009). 

This approximation function is given in Eq. 2. 

𝑔(𝑿) ≈ 𝑔(𝑿) = ∑ 𝑔𝑖(𝑿𝒊)
𝑛
𝑖=1 − (𝑛 − 1)𝑔(𝝁𝑿) (2) 

The 𝑔𝑖(𝑿𝒊) in Eq. 2 are computed using the value of 

one variable from the sampling pool of the 𝑚𝑛-

dimensional 𝑿 while keeping the rest of the variables at their 

mean values (
𝑿

) (Eq. 3). One more function evaluation is 

required where all uncertain parameters are at their mean 

values. With UDR, the required number of function 

evaluations is 𝑚𝑛 + 1. It is worth noting that UDR is 

equivalent to FFNI for one dimensional functions. 

𝑔𝑖(𝑿𝒊) = 𝑔 (𝑿𝒊, 𝑿𝒊′ = 𝜇𝑿
𝒊′

)  ∀𝑖, 𝑖′ ∈ {1,2, … , 𝑛}, 𝑖 ≠ 𝑖′ (3) 

Halton series is a low-discrepancy quasi-random 

sequence (Wong et al., 1997). Given 𝑚 as the size of the 

sample and 𝑛 number of uncertain parameters, the 

coordinates of the 𝑗𝑡ℎ sample point is defined as 

(Φ𝑝(1)(𝑗 − 1), Φ𝑝(2)(𝑗 − 1), … , Φ𝑝(𝑛)(𝑗 − 1)) where 𝑝(𝑛) 

is an arbitrarily selected prime number that satisfies 𝑝(1)  <
 𝑝(2)  <  …  <  𝑝(𝑛), and Φ𝑝(𝑗) is defined in Eq. 4, 

𝛷𝑝(𝑗) =
𝑎0

𝑝1 +
𝑎1

𝑝2 +
𝑎2

𝑝3 + ⋯ +
𝑎𝑟

𝑝𝑟+1 (4) 

where each 𝑎𝑘 is an integer in [0, 𝑝 − 1] that satisfies: 𝑗 =
𝑎0 + 𝑎1𝑝 + 𝑎2𝑝2 + ⋯ + 𝑎𝑟𝑝𝑟 . 

Sobol series are also low-discrepancy quasi-random 

sequences. They are designed to sample uniformly from 

multi-dimensional spaces (Saltelli et al., 2010). The sample 

points using Sobol series are generated such that the 

location of each additional sample is related to the location 



  

 

 

of the existing sample points, which prevents generations of 

clusters and gaps (Burhenne et al., 2011). In order to 

produce the 𝑗𝑡ℎ component of 𝑖𝑡ℎ point of samples a 

primitive polynomial is used (Eq. 5). 

𝑥𝑠𝑗 +  𝑎1,𝑗𝑥𝑠𝑗−1 +  𝑎2,𝑗𝑥𝑠𝑗−2 + ⋯ +  𝑎𝑠𝑗−1,𝑗𝑥 + 1 (5) 

where 𝑠𝑗  is the degree of the polynomial and the coefficients 

𝑎1, … , 𝑎𝑠𝑗−1,𝑗 are either 0 or 1 (Joe and Kuo, 2008). The 𝑗𝑡ℎ 

component of 𝑖𝑡ℎ point is given in Eq. 6. 

𝑥𝑖,𝑗 =  𝑖1𝑣1,𝑗 ⊕ 𝑖2𝑣2,𝑗 ⊕ …   (6) 

where ⊕ is the bit-by-bit exclusive-or operator and 𝑣𝑘,𝑗  are 

the direction numbers (Eq. 7), 

𝑣𝑘,𝑗 =  
𝑚𝑘,𝑗

2𝑘  (7) 

and 𝑚𝑘,𝑗  are sequence of positive integers that satisfy Eq. 8. 

𝑚𝑘,𝑗 = 2𝑎1,𝑗𝑚𝑘−1,𝑗 ⊕  22𝑎2,𝑗𝑚𝑘−2,𝑗 ⊕ … ⊕ 𝑚𝑘−𝑠𝑗,𝑗 (8) 

Polynomial chaos expansion (PCE) approximates 

“well-behaved” random variables as a polynomial series of 

standard normal random variables (Crestaux et al., 2009; 

Lee & Chen, 2009). The output of PCE is a random variable 

expressed as a polynomial series of standard normal random 

variables, therefore the statistical moments of the resulting 

output distribution are calculated using these polynomial 

series (Lee & Chen, 2009). The general form of PCE of a 

random variable 𝑢(𝜃) ∈ 𝐿2 can be written as: 

 𝑢(𝜃) = 𝑎0𝛤0 + ∑ 𝑎𝑖1
∞
𝑖=1 𝛤1 (𝜉𝑖1

(𝜃)) +
                     ∑ ∑ 𝑎𝑖1𝑖2

𝛤2 (𝜉𝑖1
(𝜃), 𝜉𝑖2

(𝜃)) + ⋯
𝑖1
𝑖2=1

∞
𝑖=1  (9) 

In Eq. 9, 𝛤𝑝 are the Hermite polynomials of order 𝑝 as 

functions of 𝜉𝑖(𝜃) ∀𝑖 ∈ {1,2, … ∞} which are the standard 

normal variables that are viewed as a function of the random 

event 𝜃, and 𝑎𝑖’s are deterministic coefficients (Lee & 

Chen, 2009). For practical purposes, PCE should be 

truncated to a polynomial degree 𝑝. Eq. 9 can be rewritten 

in a simpler form and for a polynomial order of 𝑝 with 𝑛 

uncertain parameters (inputs) as shown in Eq. 10. 

𝑢(𝜉1, 𝜉2, … , 𝜉𝑛) ≈  ∑ 𝑏𝑖𝜓𝑖(𝜉(𝜃))

(𝑝+𝑛)!

𝑝!𝑛!
−1

𝑖=0
 (10) 

where 𝑏𝑖 and 𝜓𝑖(. ) correspond to 𝑎𝑖1…𝑖𝑝
 and 𝛤𝑝, 

respectively. The deterministic coefficients, 𝑏𝑖, can be 

calculated based on the orthogonality of Hermite 

polynomials as shown in Eq. 11 (Lee & Chen, 2009). The 

expected value in the denominator of Eq. 11 can be 

evaluated analytically, but the value in the numerator has to 

be evaluated numerically. 

𝑏𝑖 =  
𝐸[𝑢𝜓𝑖(𝜉(𝜃))]

𝐸[𝜓𝑖
2(𝜉(𝜃))]

 (11) 

If the uncertain parameters are not standard normal 

random variables, they should be transformed into standard 

normal random variables prior to using PCE as shown in Eq. 

12 (Lee & Chen, 2009). 

𝜉𝑖 = 𝛷−1(𝐹(𝑋𝑖)) (12) 

where 𝑋𝑖 is the original random variable, 𝐹(. ) denotes the 

cumulative distribution function (CDF) of the original 

random variable, and 𝛷 denotes the CDF of the standard-

normal distribution. 

Computational Experiments 

In computational experiments, UPMs were used to 

propagate the uncertainty of the input(s) to the output(s) of 

a set of functions, whose analytical forms are known. The 

functions include power function with exponents ranging 

from one to five ( 𝑦(𝑥) =  𝑥𝑟 ∀𝑟 ∈ {1,2, … ,5}), the Ackley 

function from one to seven dimensions (𝑑 in Eq.13) (Back, 

1996), and G function with input dimensions (𝑑 in Eq. 14) 

from one to five (Marrel et al., 2008). All inputs were 

assumed to be uncertain with three different distributions, 

Uniform (0, 10), Normal (5, 3), Lognormal (1.5, 0.37) 

except for G function, where all input parameters were 

uniformly distributed (Uniform (0, 1)) (Marrel et al., 2008). 

𝐴𝑐𝑘𝑙𝑒𝑦𝑑(𝑥) =  −20 exp (−0.2√
1

𝑑
× ∑ 𝑥𝑖

2𝑑
𝑖=1 ) −

exp (
1

𝑑
∑ cos(2𝜋𝑥𝑖)

𝑑
𝑖=1 ) + 20 + exp (1) (13) 

𝐺𝑑(𝑥) =  ∏
|4𝑥𝑖−2|+𝑎𝑖

1+𝑎𝑖

𝑑
𝑖=1  , 𝑤ℎ𝑒𝑟𝑒 𝑎𝑖 =  

𝑖−2

2
 (14) 

The computational experiments started with the 

minimum number of function evaluations required to 

calculate estimates of the first four moments of the output 

for each UPM. Then, the number of function evaluations 

were increased, and moment estimates were calculated until 

the number of function evaluations reached 1 × 106. The 

experiments included PCE polynomials truncated to four 

different orders, i.e., 𝑝 = {2,3,4,5}. We used function 

evaluations generated according to Sobol and Halton series, 

and FFNI for the numerical integration (denominator of Eq. 

11). The performance of the UPMs were assessed based on 

the quality of the first four statistical moments of the output 

distribution using the minimum number of function 

evaluations required for a statistical moment to reach and 

remain inside a band whose width is equal to a pre-

determined percentage of the true moment value. The ‘true’ 

values of the moments were obtained with Monte Carlo 

simulation with 5 × 106 function evaluations. Experiments 

were coded in Python 3.6, and packages Sobol_seq 

(Naught101, 2017) and Chaospy (Feinberg and Langtangen, 

2015) were utilized for implementing UPMs using Sobol 



  

 

 

series and polynomial chaos expansion, 

respectively.Results and Discussion 

Results for the power function 

The results for the power function are summarized in 

Fig. 1, where 𝑥-axis is the exponent and 𝑦-axis is the 

minimum number of function evaluations for the statistical 

moments to reach and remain within a 2% band of their true 

values. In figures, the order of the PCE and method used for 

numerical integration in PCE is specified by the following 

convention: “PCEorder-integration approach”, where S, H, 

and F correspond to Sobol and Halton series, and FFNI.  

Comparison of the plots on the first row of Fig. 1 

reveals that the minimum numbers of function evaluations 

for Sobol and Halton series and LHS for mean estimates 

become considerably high as the exponent increases. A 

similar trend is observed for PCEs with orders 𝑝 = {2,3}. 

The mean estimates of FFNI and PCE with orders 𝑝 = {4,5} 

settle to the true values quickly with few function 

evaluations even for higher exponents. Similar conclusions 

can be reached for the minimum number of function 

evaluations required for estimation of standard deviation 

(second row in Fig. 1), skewness (third row in Fig. 1), and 

kurtosis (fourth row in Fig. 1). In general, FFNI and higher 

order PCEs require fewer function evaluations than Sobol 

and Halton series, LHS, and low order PCE, for which the 

 Figure 1.   The minimum number of function evaluations for estimating mean, standard deviation, skewness, and kurtosis 

within 2% of their true values for the power function, where the input is distributed uniformly, normally, and lognormally 



  

 

 

minimum number of function evaluations grow almost 

exponentially as the exponent increases. 

Results for the Ackley and G functions 

Figures 2 and 3 summarize the results for the Ackley 

and G functions, respectively. The width of the band is 5% 

for the plots. Figures 2 and 3 reveal that the minimum 

number of function evaluations increases gradually for all 

moment estimations as the number of uncertain inputs 

increases for all UPMs. However, in general, Sobol and 

Halton series and LHS are more robust compared to the 

other methods (Figs. 2 and 3). As the number of uncertain 

inputs increases, the minimum number of function 

evaluations increases quickly for FFNI and PCE with FFNI 

as the numerical integrator. The increase in the minimum 

number of function evaluations with the number of 

uncertain inputs becomes steeper for higher order moment 

estimations. 

It is worth noting that UDR generated poor estimates 

for the G function due to the characteristics of the function, 

product of the input variables with mean value of 0.5, and 

hence, the UDR results is not included in Fig. 3. 

Figure 2.   The minimum number of function evaluations for estimating mean, standard deviation, skewness, and kurtosis within 5% 

of their true values for Ackley function, where the input is distributed uniformly, normally, and lognormally 

 

 



  

 

 

Impact of input distributions 

The impact of input distributions can be deducted by 

column-wise comparison of the plots in Figs. 1 and 2. In 

average, the minimum number of function evaluations 

increases as the input distribution changes from uniform to 

normal and from normal to lognormal. This trend is more 

pronounced for higher exponent values and for Sobol and 

Halton series, LHS, lower order PCEs, and PCEs that utilize 

Sobol and Halton series for numerical integration in Fig. 1. 

Conclusions 

This paper compared the performance of six 

nonintrusive uncertainty propagation methods in estimating 

the first four moments of output distribution using 

computational experiments. The methods considered are 

Latin Hypercube Sampling (LHS), Full Factorial 

Integration (FFNI), Univariate Dimension Reduction 

(UDR), Halton series, Sobol series, and Polynomial Chaos 

Expansion (PCE). The results suggest that Sobol and Halton 

series, and LHS may not be appropriate uncertainty 

propagation methods for models with uncertain inputs in 

highly nonlinear relationships. However, they are quite 

robust for high numbers of uncertain inputs. PCEs with low 

order polynomials may not be the proper choice for highly 

non-linear models, however they are stable as the number of 

uncertain inputs increases, and vice versa is true for high 

order PCEs. The FFNI and PCE that uses FFNI require 

computationally prohibitive number of function evaluations 

for more than three or four uncertain inputs. 

Acknowledgments 

This work was funded by NSF grant #1743445 and 

RAPID Manufacturing Institute, the U.S.A. The work was 

completed in part with resources provided by the Auburn 

University Hopper Cluster. 

References 

Back, T. (1996). Evolutionary Algorithms in Theory and Practice: 
Evolution Strategies, Evolutionary Programming, 
Genetic Algorithms. New York: Oxford University 
Press. 

Burhenne.S., Jacob.D and Henze G.P. (2011), Sampling Based on 

Sobol‟ Sequences for Monte Carlo Techniques Applied 
to Building Simulations, 12th Conference of 
International Building Performance Simulation 
Association, Sydney 

Crestaux, T., Le Maıˆtre, O., & Martinez, J.-M. (2009). Polynomial 
chaos expansion for sensitivity analysis. Reliability 
Engineering & System Safety, 94, 1161-1172. 

Dieck RH. Measurement uncertainty: methods and applications. 

4th edition. 
Fahmi, I. & Cremaschi, S. (2016). Computational Experiments on 

Sampling Methods for Uncertainty Propagation and the 
Implications for Simulation-Based Optimization. 
10.1016/B978-0-444-63428-3.50301-5. 

Feinberg F., Langtangen H.P. (2015). Chaospy: An open source 
tool for designing methods of uncertainty quantification, 
Journal of Computational Science, 11, 46-57. 

Garud, S.S., Karimi, I.A., Kraft, M., 2017. Design of computer 
experiments: a review. 

Ghanem RG, Spanos PD (1991) Stochastic finite elements: a 
spectral approach. Springer, New York 

Herzog M., Gilg A., Paffrath M., Rentrop P., Wever U. (2008) 
Intrusive versus Non-Intrusive Methods for Stochastic 
Finite Elements. In: Breitner M.H., Denk G., Rentrop P. 
(eds) From Nano to Space. Springer, Berlin, Heidelberg 

Joe, S., Kuo, F.Y. 2008. Notes on generating Sobol sequences, 
ACM Transactions on Mathematical Software (TOMS), 
29(1), 49-57. 

Lee, S., & Chen, W. (2009). A comparative study of uncertainty 
propagation methods for black-box-type problems. 
Structural and Multidisciplinary Optimization, 37, 239-
253. 

Marrel, A., Iooss, B., Van Dorpe, F., & Volkova, E. (2008). An 
efficient methodology for modeling complex computer 

codes with Gaussian processes. Computational Statistics 
& Data Analysis, 52(10), 4731-4744. 

McKay, M. D., Beckman, R. J., & Conover, W. J. (1979). 
Comparison of Three Methods for Selecting Values of 
Input Variables in the Analysis of Output from a 
Computer Code. Technometrics, 21, 239-245. 

Naught101. (2017). Sobol sequence implementation. GitHub 
repository. https://github.com/naught101/sobol_seq. 

Nuchitprasittichai, A., & Cremaschi, S. (2012). An algorithm to 
determine sample sizes for optimization with artificial 
neural networks. AIChE Journal. 

Roy, Christopher & L. Oberkampf, William. (2011). A Complete 
Framework for Verification, Validation, and 
Uncertainty Quantification in Scientific Computing 
(Invited). Computer Methods in Applied Mechanics and 
Engineering - COMPUT METHOD APPL MECH 

ENG. 200. 2131-2144. 10.1016/j.cma.2011.03.016. 

 

Figure 3.   The minimum number of function evaluations for 

estimating mean, standard deviation, skewness, and kurtosis 

within 5% of their true values for G function  



  

 

 

Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., and 
Tarantola, S. 2010. Variance based sensitivity analysis 
of model output. Design and estimator for the total 
sensitivity index. Computer Physics Communications, 
181(2):259–270. 

Sobol,I.M. (1967), "Distribution of Points in a Cube and 
Approximate Evaluation of Integrals". Zh. Vych. Mat. 
Mat. Fiz. 7: 784–802 (in Russian); U.S.S.R Comput. 
Maths. Math. Phys. 7: 86–112 Research Triangle Park 
(NC): ISA; 2007. 


