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Abstract

Uncertainty propagation methods are used to estimate the distribution of model outputs resulting from a
set of uncertain model outputs. There are a number of uncertainty propagation methods available in
literature. This paper compares six non-intrusive uncertainty propagation methods, Latin Hypercube
Sampling, Full Factorial Integration, Univariate Dimension Reduction, Halton series, Sobol series, and
Polynomial Chaos Expansion, in terms of their efficiency for estimating the first four moments of the
output distribution using computational experiments. The results suggest employing FFNI if there are few
uncertain inputs, up to three. Uncertainty propagation methods that utilize Halton and Sobol series are
found to be robust for estimating output moments as the number of uncertain inputs increased. In general,
higher order polynomial chaos expansion approximations (3"-5" order) obtained accurate estimates of

model outputs with fewer model evaluations.
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Introduction

The steady increase in computational power enabled
the widespread utilization of simulation models to assist
decision making in chemical and energy process designs.
However, there are many sources of uncertainty in these
models, e.g., in the model inputs and parameters. This leads
to uncertainties in the outputs of the models, which in turn
may influence key decisions on the design and operations of
the processes and associated integrated equipment. Efficient
and effective approaches are required to qualitatively
characterize the uncertainty of model outputs, which, as a
consequence, will increase the confidence in the predictions
of these models, and will enable robust design and operation
of the systems.

In general, uncertainty analysis can be carried out in
three steps: (i) identify sources and types of uncertainty in
the model, (ii) select appropriate mathematical
representations for these uncertainties, and (iii) choose and
apply an appropriate propagation method to quantify the
resulting uncertainty. This paper considers the third
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component, specifically on uncertainty propagation
methods (UPMs).

Uncertainty propagation methods are used where a
function g(X) is needed to predict the value of a dependent
variable y, where g(X) may be an analytical function, or a
black-box model (Lee and Chen, 2009). Here, y is
dependent on X, with X representing a d X 1 vector whose
components contain the values of the independent variables,
and d the number of independent variables. In this case, at
least one of the components of X is a random variable with
a probability density function or marginal distribution
function and correlations (Lee and Chen, 2009). The
propagation of uncertainties in X can be carried out by
intrusive or non-intrusive UPMs. While intrusive UPMs
require the modification of the original model, non-intrusive
UPMs, focus of this paper, treat the model as a black-box
and hence have much wider applicability Simulation-based
UPMs are popular and have been used in many applications
because of their simplicity and robustness (Roy and



Oberkampf, 2011). Examples of these methods include the
Monte Carlo simulation method (Dieck, 2007), Halton
series (Wong et al., 1997), Sobol sequences (Sobol, 1967).
There are also UPMs that use surrogate models, such as
polynomial chaos expansion (Ghanem and Spanos, 1982).
However, little work focuses on systematically comparing
the efficiencies of UPMs for black-box models with
different characteristics. Existing studies generally compare
a limited number of UPMs (e.g., Burhenne and et al., 2011;
Garud and et al., 2017). Lee and Chen (2009) and Fahmi
and Cremaschi (2016) compared a large set of non-intrusive
UPMs in terms of their ability to estimate output distribution
moments. However, these studies fixed the number of
black-box function evaluations in their analysis, and hence,
do not provide any insight on how different UPMs compare
to each other as the number of function evaluations change.
For especially complex black-box models, such as
computational fluid dynamics simulations, a single model
evaluation can be computationally expensive. For such
models, selection of a UPM that provides accurate estimates
of output uncertainty with fewer function evaluations
becomes important.

This paper computationally investigates the
efficiencies of non-intrusive UPMs in terms of their ability
to estimate the moments of the output distributions. We use
a number of functions with varying degrees of nonlinearity
and with different number of uncertain inputs. The methods
considered are Latin Hypercube Sampling (LHS), Full
Factorial Integration (FFNI), Univariate Dimension
Reduction (UDR), Halton series, Sobol series, and
Polynomial Chaos Expansion (PCE). The estimates of the
first four statistical moments are used for comparisons.

Uncertainty propagation methods in the analysis

In Latin Hypercube Sampling (LHS), each uncertain-
parameter range is partitioned into equal probability bins,
where number of bins is equal to the number of required
samples, n. A random sample for each uncertain parameter
is drawn from each of these bins. Then, a random sample is
selected for each uncertain parameter to construct n samples
(McKay et al., 1979). Because of the initial partitioning,
LHS generally provides good coverage of each uncertain
parameter space (McKay et al., 1979). However, because
the pairing of the sample points between parameters are
done randomly, the coverage of multivariable space may
suffer. Furthermore, because the number of required
samples determines the number of initial bins the random
samples are drawn from, LHS cannot be used in a sequential
sampling scheme (Nuchitprasittichai & Cremaschi, 2012).

Full factorial numerical integration (FFNI) and
univariate dimension reduction (UDR) are numerical
integration methods. Thus, they provide an estimate of
output distribution moments via direct numerical
integration. First, each uncertain parameter is discretized
into m number of nodes. Given m, the numerical integration

weights (w; ) and the corresponding sampling points for
each uncertain variable (x; ) are obtained from Gauss-
Hermite, Gauss-Legendre, or Gauss-Laguerre equation
depending on the distribution of the uncertain variable (Lee
& Chen, 2009). The k' statistical moment of the output
distribution, (i.e., E(y*) where y = g(X)) is estimated
using an appropriate quadrature formula as shown in Eq. 1.
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Both FFNI and UDR use Eq. 1 to estimate the output
distribution moments. However, FFNI enumerates all
possible combinations of x; ~and calculates the
corresponding g(X). Assuming there are n uncertain
parameters, the required number of g(X) evaluations is m™
for m nodes. As the number of uncertain parameters
increases, the required number of function evaluations (i.e.,
sample points) increases exponentially even when for a
small number of nodes (e.g., two or three).

UDR approximates the overall multivariate function
output as an addition of many univariate functions prior to
calculating the statistical moments (Lee & Chen, 2009).
This approximation function is given in Eq. 2.
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The g;(X;) in Eq. 2 are computed using the value of
one variable from the sampling pool of the msn-
dimensional X while keeping the rest of the variables at their
mean values (z,) (Eg. 3). One more function evaluation is
required where all uncertain parameters are at their mean
values. With UDR, the required number of function
evaluations is mn + 1. It is worth noting that UDR is
equivalent to FFNI for one dimensional functions.
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Halton series is a low-discrepancy quasi-random
sequence (Wong et al., 1997). Given m as the size of the
sample and n number of uncertain parameters, the
coordinates of the j' sample point is defined as

Oy = 1), @) = 1), e, Py — 1)) where p(n)
is an arbitrarily selected prime number that satisfies p(1) <

p(2) < .. < p(n),and ®,(j) is defined in Eq. 4,
() =3+ 2T+ 4

where each a, is an integer in [0,p — 1] that satisfies: j =
ag+ a;p + ap* + -+ a,p’.

Sobol series are also low-discrepancy quasi-random
sequences. They are designed to sample uniformly from
multi-dimensional spaces (Saltelli et al., 2010). The sample
points using Sobol series are generated such that the
location of each additional sample is related to the location



of the existing sample points, which prevents generations of
clusters and gaps (Burhenne et al., 2011). In order to
produce the j* component of it" point of samples a
primitive polynomial is used (Eq. 5).
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where s; is the degree of the polynomial and the coefficients
g, weey Qg j ATE either 0 or 1 (Joe and Kuo, 2008). The j*
component of i*" point is given in Eq. 6.

xi'j = ilvl'j @ izvz'j @ (6)

where € is the bit-by-bit exclusive-or operator and vy ; are
the direction numbers (Eq. 7),

_ Mkj
Vij = S )

and m,, ; are sequence of positive integers that satisfy Eq. 8.
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Polynomial chaos expansion (PCE) approximates
“well-behaved” random variables as a polynomial series of
standard normal random variables (Crestaux et al., 2009;
Lee & Chen, 2009). The output of PCE is a random variable
expressed as a polynomial series of standard normal random
variables, therefore the statistical moments of the resulting
output distribution are calculated using these polynomial
series (Lee & Chen, 2009). The general form of PCE of a
random variable u(8) € L? can be written as:
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In Eq. 9, I, are the Hermite polynomials of order p as
functions of &;(0) Vi € {1,2,...c0} which are the standard
normal variables that are viewed as a function of the random
event 6, and a;’s are deterministic coefficients (Lee &
Chen, 2009). For practical purposes, PCE should be
truncated to a polynomial degree p. Eq. 9 can be rewritten
in a simpler form and for a polynomial order of p with n
uncertain parameters (inputs) as shown in Eq. 10.
(p+n)!
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where b; and 1;(.) correspond to A, i, and T,
respectively. The deterministic coefficients, b;, can be
calculated based on the orthogonality of Hermite
polynomials as shown in Eq. 11 (Lee & Chen, 2009). The
expected value in the denominator of Eq. 11 can be
evaluated analytically, but the value in the numerator has to

be evaluated numerically.
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If the uncertain parameters are not standard normal
random variables, they should be transformed into standard
normal random variables prior to using PCE as shown in Eq.
12 (Lee & Chen, 2009).

§ = (F(X) (12)

where X; is the original random variable, F(.) denotes the
cumulative distribution function (CDF) of the original
random variable, and @ denotes the CDF of the standard-
normal distribution.

Computational Experiments

In computational experiments, UPMs were used to
propagate the uncertainty of the input(s) to the output(s) of
a set of functions, whose analytical forms are known. The
functions include power function with exponents ranging
from one to five (y(x) = x" vr € {1,2,...,5}), the Ackley
function from one to seven dimensions (d in Eq.13) (Back,
1996), and G function with input dimensions (d in Eq. 14)
from one to five (Marrel et al., 2008). All inputs were
assumed to be uncertain with three different distributions,
Uniform (0, 10), Normal (5, 3), Lognormal (1.5, 0.37)
except for G function, where all input parameters were
uniformly distributed (Uniform (0, 1)) (Marrel et al., 2008).

Ackley,(x) = —20exp <—0.2 /% x X4, xlz) -

exp G 4, cos(27rxi)) + 20 + exp(1) (13)
G, () = ?=1W;—ili+ai' where a; = ? (14)

The computational experiments started with the
minimum number of function evaluations required to
calculate estimates of the first four moments of the output
for each UPM. Then, the number of function evaluations
were increased, and moment estimates were calculated until
the number of function evaluations reached 1 X 10°. The
experiments included PCE polynomials truncated to four
different orders, i.e., p ={2,3,4,5}. We used function
evaluations generated according to Sobol and Halton series,
and FFNI for the numerical integration (denominator of Eq.
11). The performance of the UPMs were assessed based on
the quality of the first four statistical moments of the output
distribution using the minimum number of function
evaluations required for a statistical moment to reach and
remain inside a band whose width is equal to a pre-
determined percentage of the true moment value. The ‘true’
values of the moments were obtained with Monte Carlo
simulation with 5 X 10° function evaluations. Experiments
were coded in Python 3.6, and packages Sobol seq
(Naught101, 2017) and Chaospy (Feinberg and Langtangen,
2015) were utilized for implementing UPMs using Sobol



series and polynomial chaos expansion,

respectively.Results and Discussion

Results for the power function

The results for the power function are summarized in
Fig. 1, where x-axis is the exponent and y-axis is the
minimum number of function evaluations for the statistical
moments to reach and remain within a 2% band of their true
values. In figures, the order of the PCE and method used for
numerical integration in PCE is specified by the following
convention: “PCEorder-integration approach”, where S, H,
and F correspond to Sobol and Halton series, and FFNI.

Comparison of the plots on the first row of Fig. 1
reveals that the minimum numbers of function evaluations
for Sobol and Halton series and LHS for mean estimates
become considerably high as the exponent increases. A
similar trend is observed for PCEs with orders p = {2,3}.
The mean estimates of FFNI and PCE with orders p = {4,5}
settle to the true values quickly with few function
evaluations even for higher exponents. Similar conclusions
can be reached for the minimum number of function
evaluations required for estimation of standard deviation
(second row in Fig. 1), skewness (third row in Fig. 1), and
kurtosis (fourth row in Fig. 1). In general, FFNI and higher
order PCEs require fewer function evaluations than Sobol
and Halton series, LHS, and low order PCE, for which the
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Figure 1. The minimum number of function evaluations for estimating mean, standard deviation, skewness, and kurtosis

within 2% of their true values for the power function, where the input is distributed uniformly, normally, and lognormally
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Figure 2. The minimum number of function evaluations for estimating mean, standard deviation, skewness, and kurtosis within 5%

of their true values for Ackley function, where the input is distributed uniformly, normally, and lognormally

minimum number of function evaluations grow almost
exponentially as the exponent increases.

Results for the Ackley and G functions

Figures 2 and 3 summarize the results for the Ackley
and G functions, respectively. The width of the band is 5%
for the plots. Figures 2 and 3 reveal that the minimum
number of function evaluations increases gradually for all
moment estimations as the number of uncertain inputs
increases for all UPMs. However, in general, Sobol and
Halton series and LHS are more robust compared to the
other methods (Figs. 2 and 3). As the number of uncertain

inputs increases, the minimum number of function
evaluations increases quickly for FFNI and PCE with FFNI
as the numerical integrator. The increase in the minimum
number of function evaluations with the number of
uncertain inputs becomes steeper for higher order moment
estimations.

It is worth noting that UDR generated poor estimates
for the G function due to the characteristics of the function,
product of the input variables with mean value of 0.5, and
hence, the UDR results is not included in Fig. 3.
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Figure 3. The minimum number of function evaluations for
estimating mean, standard deviation, skewness, and kurtosis
within 5% of their true values for G function

Impact of input distributions

The impact of input distributions can be deducted by
column-wise comparison of the plots in Figs. 1 and 2. In
average, the minimum number of function evaluations
increases as the input distribution changes from uniform to
normal and from normal to lognormal. This trend is more
pronounced for higher exponent values and for Sobol and
Halton series, LHS, lower order PCEs, and PCEs that utilize
Sobol and Halton series for numerical integration in Fig. 1.

Conclusions

This paper compared the performance of six
nonintrusive uncertainty propagation methods in estimating
the first four moments of output distribution using
computational experiments. The methods considered are
Latin Hypercube Sampling (LHS), Full Factorial
Integration (FFNI), Univariate Dimension Reduction
(UDR), Halton series, Sobol series, and Polynomial Chaos
Expansion (PCE). The results suggest that Sobol and Halton
series, and LHS may not be appropriate uncertainty
propagation methods for models with uncertain inputs in
highly nonlinear relationships. However, they are quite
robust for high numbers of uncertain inputs. PCEs with low
order polynomials may not be the proper choice for highly
non-linear models, however they are stable as the number of
uncertain inputs increases, and vice versa is true for high
order PCEs. The FFNI and PCE that uses FFNI require
computationally prohibitive number of function evaluations
for more than three or four uncertain inputs.
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