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Abstract Overview 

Surrogate models are used to map input data to output data when the actual relationship between the two 

is unknown or computationally expensive to evaluate. We have constructed a tool to recommend the 

appropriate surrogate modelling technique for a given dataset using attributes calculated from the input 

and output values. The tool identifies the appropriate surrogate modeling techniques with an accuracy of 

98% and a precision of 91%. 
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Introduction

Surrogate models, also known as response surfaces or 

black-box models, can be used to reduce computational cost 

by approximating more complex, higher order models 

(Wang et al., 2014). Surrogate modeling techniques are of 

particular interest where high-fidelity, thus expensive, 

simulations are used (Han and Zhang, 2012) or when the 

fundamental relationship between the design variables and 

output variables is not well understood, such as in design of 

cell or tissue manufacturing processes (Machin, M. et al., 

2011). These techniques have been receiving increasing 

attention in a wide range of applications, for example, in 

optimization of process design, scheduling, and control 

(Burnak et al., 2019). 

Several machine learning and regression techniques 

have been developed for constructing surrogate models. 

Current common practices for selecting which surrogate 

model form is appropriate rely on process specific expertise. 

Numerous studies have been comparted the performance of 

surrogate modeling techniques (Davis et al., 2017; 

Bhosekar and Ierapetritou, 2018). The majority of these 

only compare a few models on a limited number of 

functions or applications. Progress has been made in recent 

works in generalizing the process for selecting a surrogate 

model to approximate a design space by using meta-

                                                           

* To whom all correspondence should be addressed 

learning approaches to build selection frameworks (Garud 

et al., 2018; Cui et al., 2016). These frameworks provide 

“best” recommendations for surrogate modeling 

techniques, based on the attributes calculated from the data 

being modeled. In addition, the framework developed by 

Garud et al. (2018) gives a ranking of all the considered 

surrogate models based on the predicted accuracy of the 

model. However, neither framework takes model 

complexity into account, which can lead to overfitting, or 

considers that multiple models might perform similar to the 

one identified as best in terms their accuracies. 

To address the knowledge gap, this work compares the 

performance of eight different surrogate modeling 

techniques on a collection of generated datasets. Using 

information extracted from those datasets and building upon 

previous meta-learning approaches, we construct a tool to 

provide recommendations for the appropriate modeling 

techniques for the datasets based only on the characteristics 

of the data being modeled. The performance metric used to 

evaluate the model performance is the adjusted-R2 value 

(Miles, 2014), which balances the model accuracy with the 

size, or complexity, of the model. Data sets for training 

surrogate models were generated from a large set of test 

functions with different characteristics. The effect both the 



  

 

 

underlying shape of the function used to generate the dataset 

and the number of inputs on the performance of each 

technique is assessed to provide guidance on which 

surrogates provide the best predictions and give general 

“rules of thumb.” Additional characteristics, i.e., attributes, 

were calculated for each dataset with the goal of 

representing its overall behavior. These attributes were used 

as inputs, with the actual adjusted-R2 values as outputs, to 

train random forest models to provide predictions of 

adjusted-R2 values for each technique. Based on the 

predicted adjusted-R2 values, the tool identifies which 

surrogate modeling techniques are recommended for use 

given a set of data. 

Computational Experiments 

Surrogate Model Performance Comparison 

To evaluate the performances of the surrogate 

modeling techniques, 1000 input-output pairs were 

generated from each test function using Sobol sequence 

sampling (Joe and Kuo, 2003). Eight surrogate modeling 

techniques are used for comparison: multivariate adaptive 

regression splines (MARS);(Friedman, 1991), random 

forests (RF);(Brieman, 2001), single hidden layer feed 

forward artificial neural networks (ANN);(Haykin, 2009), 

extreme learning machines (ELM);(Huang et al., 2006), 

Gaussian process regression (GP);(Rasmussen and 

Williams, 2006), support vector machines (SVM);(Drucker 

et al., 1997), Automated Learning of Algebraic Models 

using Optimization (ALAMO);(Cozad et al., 2014), and 

radial basis function networks (RBFN);(Jin et al, 2001). 

Models were trained using the input-output pairs with each 

of the surrogate modeling technique for each function. This 

resulted in 808 surrogate models.  

When necessary, the hyperparameters of each 

surrogate modeling technique (such as the number of 

hidden neurons for ANNs) were optimized prior to training 

the models for each dataset. After the surrogate models 

were trained for each dataset, the adjusted-R2 values were 

calculated for each modeling technique-dataset pair. 

Recommendation Tool Construction 

Cui et al. (2016) and Garud et al. (2018) extract 

information from the datasets for use in their 

recommendation frameworks in the form of attributes. The 

attributes include common statistical measures, such as 

mean and standard deviation, gradient based attributes, and 

attributes related to the extrema of the output values. We 

have defined additional attributes related to both the 

estimated gradients of the datasets and the extreme values 

of the outputs to use as potential inputs for predicting the 

model performance with our recommendation tool, 

resulting a total of 32 attributes. 
A random forest model was trained for each surrogate 

modeling technique to predict its adjusted-R2 value using 

the identified attributes as inputs. Feature reduction was 

performed on the attributes to determine which attributes 

had the most influence on the predicted output value for 

each modeling technique. Each technique had a different set 

of selected attributes for prediction, with the only common 

attribute among all the techniques being the average value 

of the gradient estimates. For each dataset, based on the 

adjusted-R2 values, the surrogate modeling techniques were 

classified as either being recommended or not recommend 

for both the predicted and actual metric values. These 

classifications were compared and used to evaluate the 

quality of the selection recommendations. 

Adjusted-R2 for Surrogate Model Selection 

The formula for calculating adjusted-R2 (𝑅̂2) is shown 

in Eq. (1). 

 (1) 

In Eq. (1), R2 is the R-squared, n is the number of data points 

in the training set, and k is the number of model parameters 

(or hyperparameters). 

Classification Evaluation Metrics 

The metrics used to evaluate the performance of the 

recommendation tool (i.e., the classification of surrogate 

modeling techniques given a dataset) are accuracy, 

precision, recall (Sokolova and Lapalme, 2009), and the 

Matthews correlation coefficient (MCC). The MCC 

(Matthews, 1975) is the correlation between actual and 

predicted classification. It has a value between -1 and 1, 

with one being a perfect correlation, -1 being a completely 

negative correlation, and 0 being no correlation or random 

assignment of classifications. Five-fold cross validation 

was used to evaluate the performance of the 

recommendation tool. 

Results 

Adjusted-R2 Performance 

Adjusted-R2 values were calculated for all the 

modeling techniques for each dataset. The percentage of the 

time each surrogate model had the highest adjusted-R2 

value was used to calculate the fraction of the available 

datasets for which a technique was identified as being the 

most accurate (Fig. 1). The number of datasets included in 

each category is included below the x-axis. 

𝑅̂2 = 1 −  1 − 𝑅2  
𝑛 − 1

𝑛 −  𝑘 + 1 
  



  

 

 

Figure 1. Percentage of datasets for which each model 

had the highest adjusted-R2 when datasets are grouped by 

(a) function shape and (b) input dimension 

When the datasets are grouped by the function shape, 

ANN models have the highest adjusted-R2 values. For bowl 

and plate shaped functions, ALAMO and MARS models, 

respectively, give the highest values for the largest 

percentage of the datasets. When the datasets are grouped 

by input dimension, ANN is the best performing model the 

highest percentage of the time at low input dimension. 

However, as the dimension increases, other models begin to 

perform as well or better than ANN models. This result 

indicates that there is some dependence of the surrogate 

model performance on the overall shape of the function the 

dataset was generated from and on the number of inputs. 

Recommendation Tool Performance 

The surrogate model selection tool identified which 

surrogate modeling techniques should be recommended for 

a dataset with an accuracy of 85%. The precision, or the 

probability that a recommended technique should actually 

be recommended, was 91%. 

Conclusions 

Selection of the appropriate surrogate modeling 

technique depends on the characteristics of the dataset being 

modeled. In general, MARS and ANN models give the most 

accurate predictions for approximating a design space. We 

have identified attributes of datasets that are appropriate for 

use in predicting the adjusted-R2 value for a technique. 

Using these attributes, we have constructed a random forest 

model-based tool that can recommend appropriate surrogate 

modeling techniques for use with a dataset with a 98% 

accuracy. 
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