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Abstract Overview

Surrogate models are used to map input data to output data when the actual relationship between the two
is unknown or computationally expensive to evaluate. We have constructed a tool to recommend the
appropriate surrogate modelling technique for a given dataset using attributes calculated from the input
and output values. The tool identifies the appropriate surrogate modeling techniques with an accuracy of

98% and a precision of 91%.
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Introduction

Surrogate models, also known as response surfaces or
black-box models, can be used to reduce computational cost
by approximating more complex, higher order models
(Wang et al., 2014). Surrogate modeling techniques are of
particular interest where high-fidelity, thus expensive,
simulations are used (Han and Zhang, 2012) or when the
fundamental relationship between the design variables and
output variables is not well understood, such as in design of
cell or tissue manufacturing processes (Machin, M. et al.,
2011). These techniques have been receiving increasing
attention in a wide range of applications, for example, in
optimization of process design, scheduling, and control
(Burnak et al., 2019).

Several machine learning and regression techniques
have been developed for constructing surrogate models.
Current common practices for selecting which surrogate
model form is appropriate rely on process specific expertise.
Numerous studies have been comparted the performance of
surrogate modeling techniques (Davis et al., 2017;
Bhosekar and lerapetritou, 2018). The majority of these
only compare a few models on a limited number of
functions or applications. Progress has been made in recent
works in generalizing the process for selecting a surrogate
model to approximate a design space by using meta-
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learning approaches to build selection frameworks (Garud
et al., 2018; Cui et al., 2016). These frameworks provide
“best” recommendations for surrogate modeling
techniques, based on the attributes calculated from the data
being modeled. In addition, the framework developed by
Garud et al. (2018) gives a ranking of all the considered
surrogate models based on the predicted accuracy of the
model. However, neither framework takes model
complexity into account, which can lead to overfitting, or
considers that multiple models might perform similar to the
one identified as best in terms their accuracies.

To address the knowledge gap, this work compares the
performance of eight different surrogate modeling
techniques on a collection of generated datasets. Using
information extracted from those datasets and building upon
previous meta-learning approaches, we construct a tool to
provide recommendations for the appropriate modeling
techniques for the datasets based only on the characteristics
of the data being modeled. The performance metric used to
evaluate the model performance is the adjusted-R? value
(Miles, 2014), which balances the model accuracy with the
size, or complexity, of the model. Data sets for training
surrogate models were generated from a large set of test
functions with different characteristics. The effect both the



underlying shape of the function used to generate the dataset
and the number of inputs on the performance of each
technique is assessed to provide guidance on which
surrogates provide the best predictions and give general
“rules of thumb.” Additional characteristics, i.e., attributes,
were calculated for each dataset with the goal of
representing its overall behavior. These attributes were used
as inputs, with the actual adjusted-R? values as outputs, to
train random forest models to provide predictions of
adjusted-R? values for each technique. Based on the
predicted adjusted-R> values, the tool identifies which
surrogate modeling techniques are recommended for use
given a set of data.

Computational Experiments
Surrogate Model Performance Comparison

To evaluate the performances of the surrogate
modeling techniques, 1000 input-output pairs were
generated from each test function using Sobol sequence
sampling (Joe and Kuo, 2003). Eight surrogate modeling
techniques are used for comparison: multivariate adaptive
regression splines (MARS);(Friedman, 1991), random
forests (RF);(Brieman, 2001), single hidden layer feed
forward artificial neural networks (ANN);(Haykin, 2009),
extreme learning machines (ELM);(Huang et al., 2006),
Gaussian process regression (GP);(Rasmussen and
Williams, 2006), support vector machines (SVM);(Drucker
et al., 1997), Automated Learning of Algebraic Models
using Optimization (ALAMO);(Cozad et al., 2014), and
radial basis function networks (RBFN);(Jin et al, 2001).
Models were trained using the input-output pairs with each
of the surrogate modeling technique for each function. This
resulted in 808 surrogate models.

When necessary, the hyperparameters of each
surrogate modeling technique (such as the number of
hidden neurons for ANNs) were optimized prior to training
the models for each dataset. After the surrogate models
were trained for each dataset, the adjusted-R? values were
calculated for each modeling technique-dataset pair.

Recommendation Tool Construction

Cui et al. (2016) and Garud et al. (2018) extract
information from the datasets for wuse in their
recommendation frameworks in the form of attributes. The
attributes include common statistical measures, such as
mean and standard deviation, gradient based attributes, and
attributes related to the extrema of the output values. We
have defined additional attributes related to both the
estimated gradients of the datasets and the extreme values
of the outputs to use as potential inputs for predicting the
model performance with our recommendation tool,
resulting a total of 32 attributes.

A random forest model was trained for each surrogate
modeling technique to predict its adjusted-R? value using

the identified attributes as inputs. Feature reduction was
performed on the attributes to determine which attributes
had the most influence on the predicted output value for
each modeling technique. Each technique had a different set
of selected attributes for prediction, with the only common
attribute among all the techniques being the average value
of the gradient estimates. For each dataset, based on the
adjusted-R? values, the surrogate modeling techniques were
classified as either being recommended or not recommend
for both the predicted and actual metric values. These
classifications were compared and used to evaluate the
quality of the selection recommendations.

Adjusted-R? for Surrogate Model Selection

The formula for calculating adjusted-R? (R?) is shown
in Eq. (1).
R? =1—(1—R2)["7_1
n—(k+1) (1)
In Eq. (1), R?is the R-squared, » is the number of data points
in the training set, and k is the number of model parameters
(or hyperparameters).

Classification Evaluation Metrics

The metrics used to evaluate the performance of the
recommendation tool (i.e., the classification of surrogate
modeling techniques given a dataset) are accuracy,
precision, recall (Sokolova and Lapalme, 2009), and the
Matthews correlation coefficient (MCC). The MCC
(Matthews, 1975) is the correlation between actual and
predicted classification. It has a value between -1 and 1,
with one being a perfect correlation, -1 being a completely
negative correlation, and 0 being no correlation or random
assignment of classifications. Five-fold cross validation
was used to evaluate the performance of the
recommendation tool.

Results
Adjusted-R2 Performance

Adjusted-R? values were calculated for all the
modeling techniques for each dataset. The percentage of the
time each surrogate model had the highest adjusted-R?
value was used to calculate the fraction of the available
datasets for which a technique was identified as being the
most accurate (Fig. 1). The number of datasets included in
each category is included below the x-axis.
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Figure 1. Percentage of datasets for which each model
had the highest adjusted-R2 when datasets are grouped by
(a) function shape and (b) input dimension

When the datasets are grouped by the function shape,
ANN models have the highest adjusted-R? values. For bowl
and plate shaped functions, ALAMO and MARS models,
respectively, give the highest values for the largest
percentage of the datasets. When the datasets are grouped
by input dimension, ANN is the best performing model the
highest percentage of the time at low input dimension.
However, as the dimension increases, other models begin to
perform as well or better than ANN models. This result
indicates that there is some dependence of the surrogate
model performance on the overall shape of the function the
dataset was generated from and on the number of inputs.

Recommendation Tool Performance

The surrogate model selection tool identified which
surrogate modeling techniques should be recommended for
a dataset with an accuracy of 85%. The precision, or the
probability that a recommended technique should actually
be recommended, was 91%.

Conclusions

Selection of the appropriate surrogate modeling
technique depends on the characteristics of the dataset being
modeled. In general, MARS and ANN models give the most
accurate predictions for approximating a design space. We
have identified attributes of datasets that are appropriate for
use in predicting the adjusted-R? value for a technique.
Using these attributes, we have constructed a random forest
model-based tool that can recommend appropriate surrogate
modeling techniques for use with a dataset with a 98%
accuracy.
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