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Abstract The spectral abscissa is the largest real part of an eigenvalue of a matrix

and the spectral radius is the largest modulus. Both are examples of spectral max

functions—the maximum of a real-valued function over the spectrum of a matrix.

These mappings arise in the control and stabilization of dynamical systems. In 2001,

Burke and Overton characterized the regular subdifferential of the spectral abscissa

and showed that the spectral abscissa is subdifferentially regular in the sense of Clarke

when all active eigenvalues are nonderogatory. In this paper we develop new techniques

to obtain these results for the more general class of convexly generated spectral max

functions. In particular, we extend the Burke–Overton subdifferential regularity result

to this class. These techniques allow us to obtain new variational results for the spectral

radius.
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1 Introduction

A spectral function maps the space of complex n-by-n matrices, Cn×n , to the extended

reals R := R∪{+∞} and depends only on the eigenvalues of its argument independent

of permutations [12,17]. Given f : C→ R, the spectral max function f : Cn×n → R

generated by f is

f(X) := max{ f (λ) | λ ∈ C and det(λI − X) = 0}. (1)

Spectral max functions are continuous if the underlying function f is continuous;

however, they are generally not Lipschitz continuous. Two important spectral max

functions are the spectral abscissa and spectral radius, obtained by setting f (·) =
Re(·) and f (·) = |·| , respectively. These functions are connected to classical notions

of stability for continuous and discrete dynamical systems. In recent years, much

research has been dedicated to understanding the variational properties of the spectral

abscissa [4–8,11,12,17,18]. Burke and Overton [12] develop a formula for the regular

subdifferential of the spectral abscissa and establish its subdifferential regularity (see

Sect. 2.3) on the set of nonderogatory matrices. Subdifferential regularity allows one

to exploit a powerful subdifferential calculus for such functions in order to describe

their underlying variational properties. A primary goal of this paper is to extend the

Burke–Overton subdifferential regularity result to the class of convexly generated

spectral max functions defined below (see Theorem 11).

The variational analysis of spectral max functions builds on that for polynomial root

max functions developed in [9,10,13]. Let Pn denote the set of complex polynomials

of degree n or less in a single variable over C, and let P[n] be those polynomials of

degree precisely n. The polynomial root max function generated by f is the mapping

f : Pn → R defined by

f(p) := max{ f (λ) | λ ∈ C and p(λ) = 0}. (2)

We say that f is convexly generated if the generating function f is proper, convex, and

lsc, which we assume throughout.

The results in [9,10,13] are extended in [2], where, in particular, the subdifferential

regularity of convexly generated polynomial root max functions is established. Sub-

differential formulas are given when f satisfies one of the following two conditions

(introduced in [10]) at all “active roots” (see Sect. 3.2):

“ f is quadratic, or f is C2 and positive definite at λ” (3)

“rspan (∂ f (λ)) = C” (4)

where f ′′(λ; ·, ·) is defined in (10), ∂ f (λ) is the usual subdifferential from convex

analysis, and, for S ⊂ C, rspan (S) := {τζ | τ ∈ R, ζ ∈ S } is the real linear span
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of the set S. Observe that condition (4) can only hold when f is not differentiable.

Consequently, (3) and (4) are mutually exclusive.

Following [17], the authors of [12] directly derive necessary conditions on the

matrix entries of a subgradient for the spectral max function (see Theorems 7 and

8) using the permutation invariance of spectral max functions and the Arnold form

(see Sect. 4.1). In the case of the spectral abscissa, [12] establishes a formula for the

regular subdifferential using a chain rule applied to the representation f = f ◦ Φn ,

where f (·) = Re(·) and Φn : Cn×n → P[n] is the characteristic polynomial map

Φn(X)(λ) := det(λI − X). (5)

However, since the mapping Φn contains no information on Jordan structure, this

approach does not provide a direct path to showing that the spectral abscissa inherits

the subdifferential regularity of the polynomial abscissa in the nonderogatory case.

Instead, subdifferential regularity is established using a non-constructive argument and

specialized matrix techniques. This approach applies to affinely generated spectral max

functions, but all efforts to extend them to general convexly generated spectral max

functions have been persistently rebuffed. In this paper, we show that an approach

based on a more refined use of Arnold form developed in [6, Theorems 2.2, 2.7] can

succeed when all active eigenvalues are nonderogatory.

Two approaches for extending the variational theory to convexly generated spec-

tral max functions are presented. The first uses the Arnold form (see Theorem 3) to

develop a framework for the application of a standard chain rule [20, Theorem 10.6]

to simultaneously establish both a formula for the subdifferential and subdifferential

regularity when all active eigenvalues are nonderogatory (see Theorem 6). The second

extends the methods in [12] to develop a formula for the set of regular subdifferentials

without a nonderogatory assumption (see Theorem 6). However, we again emphasize

that the second approach does not provide a path toward establishing subdifferential

regularity when f is not affine.

The method of proof for the first approach builds on tools developed in [6,12]. For

ñ ≤ n, we exploit the fact that a polynomial p̃ ∈ Pñ has a local factorization in Pñ

based at its roots [see (17)]. This gives rise to what we call the factorization space

S p̃ and an associated diffeomorphism Fp̃ : S p̃ → Pñ (see Sect. 3.1). The key new

ingredient is our mapping G : C × Cn×n → S p̃ [see (43)], which takes a matrix

X̃ ∈ Cn×n to the “active factor” (of degree ñ ≤ n) associated with its characteristic

polynomial Φn(X̃) [see (28) and (47)]. The resulting framework is described by the

following diagram.

Cn×n

G(0,·)

f

R

S p̃
Fp̃

P[ñ]

f

(6)
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The majority of the paper is devoted to developing the variational properties of the

mappings described in this diagram.

Numerous issues need to be addressed in order to place previous work into a com-

prehensive framework within which modern techniques of nonsmooth analysis apply.

The new framework allows us to extend our knowledge of the variational properties

of the spectral abscissa to convexly generated spectral max functions. Of the several

technical refinements/advances needed for the development of this framework, we

describe three of particular significance. First, specialized notions of differentiability

are required since the fields on the domain and range of f differ (see Sect. 2.2). Second,

inner products are developed that exploit the local geometry of the spaces Cn×n , Pñ ,

and S p̃. These inner products give convenient representations for the derivatives of the

mappings G and Fp̃ and their adjoints (see Sect. 2.1). Finally, and most importantly,

since f locally depends only on those eigenvalues that are “active” (see Sect. 5), the

mapping G is introduced to focus the analysis on the eigenspace determined by the

active eigenvalues alone, thereby preserving the variational structure required for the

application of a standard nonsmooth chain rule.

The paper is organized as follows. In Sect. 2, we build notation and review the nec-

essary background. In Sect. 3 we review the polynomial results from [2,13]. In Sect. 4

we recall the Arnold form and use it to develop a representation for the derivative of

the factors of the characteristic polynomial corresponding to nonderogatory eigenval-

ues. In Sect. 5, we derive formulas for the subdifferential and horizon subdifferential

of f at X̃ when X̃ has nonderogatory active eigenvalues and show the subdifferential

regularity of f at X̃ . In Sect. 6, we derive the regular subdifferential of f at an arbitrary

X̃ ∈ Cn×n and show that f is subdifferentially regular at X̃ if and only if the active

eigenvalues of X̃ are nonderogatory. In Sect. 7 we apply these results to the spectral

radius and illustrate them with two examples.

Sections Notation

1 R, f , f , f, rspan, Φn , P
n , P

[n]
2.1 (L, F, 〈·, ·〉), 〈·, ·〉c, L�, 〈·, ·〉c

C
, 〈·, ·〉c

Cn×n

2.2 F-differentiable, h′(x), ∇h(x), f ′(ζ ; δ), f ′′(ζ ; δ, δ)
2.3 R++, R+, S∞, dh(x), ∂̂h(x), ∂h(x), ∂∞h(x), h′(x; v)

3.1 M
ñ , e(	,λ0), S p̃ , Fp̃ , τ(k,λ0), T p̃ , 〈·, ·〉S p̃

, 〈·, ·〉
(Pñ , p̃)

3.2 Af (p), If (p)

4.1 Ξ̃ , P̃ , B̃, J j , J
(k)
j

, m jk , Im jk
, N jk , q j , m j , ñ, n0, λ js (X)

4.2 g j (X), Ĵ j (X), G(ζ, X), R(v)

2 Background

We review inner product spaces, differentiability with respect to a field, and notation

and definitions from variational analysis.
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2.1 Inner products

A linear space L over the field F with real or complex inner product 〈·, ·〉 is called

an inner product space, denoted by the triple (L, F, 〈·, ·〉). Only the complex C and

real R fields are considered. When it is important to emphasize that the inner product

is complex, we write 〈·, ·〉c. A complex inner product space (L, C, 〈·, ·〉c) can also be

viewed as a real inner product space (L, R, 〈·, ·〉) with real inner product 〈·, ·〉 :=
Re(〈·, ·〉c). This distinction is important when considering linear transformations and

their adjoints, since both depend upon the choice of the underlying field. Recall that

if dim(L, C, 〈·, ·〉c) = n, then dim(L, R, 〈·, ·〉) = 2n.

Let F0, F1, F2 be the fields C or R with F0 a subfield of both F1 and F2. For

i = 1, 2, let (Li , Fi , 〈·, ·〉i ), be finite-dimensional inner product spaces. Note that both

L1 and L2 are inner product spaces over F0 with the appropriate F0 inner product. A

transformation L : L1 → L2 is said to be F0-linear if for all α, β ∈ F0, x, y ∈ L1, we

have L(αx + βy) = αL(x)+ βL(y). The adjoint mapping L� : L2 → L1 [16] is the

unique F0-linear transformation satisfying

Re(〈x, Ly〉2) = Re(
〈
L�x, y

〉
1
) ∀ (y, x) ∈ L1 × L2. (7)

As given, this definition appears insufficient since the F0 inner product is not specified

in (7); however, this is resolved by noting that the imaginary part of a complex inner

product can be obtained from knowledge of only its real part since Re(〈ix, y〉c) =
Im(〈x, y〉c), where i :=

√
−1. That is, the adjoint can be obtained using only the real

part of the F0 inner product.

It is essential to be mindful of the distinction between the adjoint of a linear operator

and the Hermitian adjoint of a matrix. The adjoint of a linear operator L is denoted

by L�, whereas the Hermitian adjoint of a matrix M ∈ Cn×m is denoted by M∗. For

example, the following elementary lemma is key.

Lemma 1 (Adjoint of a linear functional) Let (L, F, 〈·, ·〉) be a finite dimensional

inner product space where F is either C or R. Given y ∈ L, define L : L→ F as the

linear functional Lx := 〈y, x〉 for all x ∈ L. Then L�ζ = ζ y, where the left-hand

side shows the action of the adjoint, and the right-hand side is multiplication of y by

the scalar ζ ∈ F.

The next lemma provides a key tool in our construction of inner products, which

in turn impacts the nature of the adjoint operator.

Lemma 2 (Inner product construction) [2, Lemma 4.1] Let L1 and L2 be finite

dimensional vector spaces over F = C or R, and let L : L1 → L2 be an F-linear

isomorphism.

1. Suppose L2 has inner product 〈·, ·〉2. Then the bilinear form B : L1 × L1 → F

given by B(x, y) := 〈Lx, Ly〉2 for all x, y ∈ L1 is an inner product on L1.

Denote this inner product by 〈·, ·〉1 := B(·, ·). Then the adjoint L� : L2 → L1

with respect to the inner products 〈·, ·〉1 and 〈·, ·〉2 equals L−1.

2. Let (Li , F, 〈·, ·〉i ) be inner product spaces for i = 1, 2. If 〈x, y〉1 = 〈Lx, Ly〉2 for

all x, y ∈ L1, then L� = L−1 with respect to these inner products.
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As a vector space, we endow C with the complex inner product 〈ξ, ζ 〉c
C
:=

ξ̄ ζ . This inner product defines the standard complex inner product on Cn+1 by

〈(a0, a1, . . . , an), (b0, b1, . . . , bn)〉c
Cn+1 :=

∑n
	=0 〈a	, b	〉cC for all a	, b	 ∈ C, 	 =

0, . . . , n. We also work on the space Cn×n of complex n × n matrices with com-

plex inner product 〈X, Y 〉c
Cn×n := tr (X∗Y ). We use Lemma 2 to construct further

inner products as needed. In each case, there is a complex version and an associ-

ated real version obtained by taking the real part of the complex inner product with

〈·, ·〉 := Re(〈·, ·〉c), where the bilinearity of the real inner product is considered to be

over the scalar field R.

2.2 Derivatives

Again let F0, F1, F2 be the fields R or C with F0 ⊂ F1 ∩ F2. For i = 1, 2, let

(Li , Fi , 〈·, ·〉i ), be finite-dimensional inner product spaces with associated inner prod-

uct norms ‖·‖i . Let h : L1 → L2. We say that h is F0-differentiable at x ∈ L1 if there

exists an F0-linear transformation, denoted h′(x) : L1 → L2, such that

h(y) = h(x)+ h′(x)(y − x)+ o(‖y − x‖1),

where limy→x

∥∥o(‖y − x‖1)/ ‖y − x‖1

∥∥
2
= 0. Clearly every C-derivative is an R-

derivative, but the converse is false. If h : L1 → F0, h′(x) defines an linear functional

from L1 into F0 and, since L1 is a vector space over F0, there exists an element of L1,

denoted by ∇h(x), satisfying

h′(x)z =
{

Re 〈∇h(x), z〉1 if F0 = R

〈∇h(x), z〉1 if F0 = C
∀ z ∈ L1. (8)

We call ∇h(x) the gradient of h at x , and recall from our previous discussion that

the vector ∇h(x) is the same element of L1 regardless of whether F0 equals C or R.

Lemma 1 tells us that

h′(x)�ζ = ζ∇h(x). (9)

Since we make extensive use of R-differentiability for real-valued functions on C,

following [12], we show how to construct the R-derivative in this case. Define the

R-linear transformation Θ : R2 → C by Θ(x1, x2) := x1+ ix2. The inverse mapping

is Θ−1(ζ ) = (Re(ζ ), Im(ζ )). Since Re(〈ζ,Θ(x1, x2)〉) =
〈
Θ−1(ζ ), (x1, x2)

〉
for

all ζ ∈ C and (x1, x2) ∈ R2, we have Θ� = Θ−1. Given f : C → R, define

f̃ : R2 → R by f̃ := f ◦ Θ. If f̃ is differentiable over R in the usual sense,

then, by the chain rule, f is R-differentiable with gradient ∇ f (ζ ) = Θ∇ f̃ (Θ−1ζ ),

and this is consistent with the notation in (8). In [10] this is called differentiable in

the real sense. We say that f is twice R-differentiable if f̃ is twice differentiable

over R in the usual sense. In this case, a further application of the chain rule yields

f (ζ + δ) = f (ζ ) + 〈∇ f (ζ ), δ〉 + (1/2)
〈
δ,∇2 f (ζ )δ

〉
+ o(|δ|2), where ∇2 f (ζ ) :=
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Θ∇2 f̃ (Θ−1ζ )Θ−1. Since we only use R-differentiability of functions f : C → R,

we simply say that f is differentiable. We also make use of the following notation:

f ′(ζ ; δ) := 〈∇ f (ζ ), δ〉 and f ′′(ζ ; δ, δ) :=
〈
δ,∇2 f (ζ )δ

〉
, (10)

where it follows that f ′(ζ ; δ) = limt↓0( f (ζ + tδ) − f (ζ ) )/t. We say that ∇2 f (ζ )

is positive definite if
〈
δ,∇2 f (ζ )δ

〉
> 0 for all δ �= 0. We say f is quadratic if ∇2 f (ζ )

is constant in ζ , and we say that f is C2 at λ̃ if the map λ �→ ∇2 f is continuous at

λ̃. For example, the function r2(ζ ) := |ζ |2 /2 used in [2, Sect. 7] and Sect. 7 below is

quadratic with ∇r2(ζ ) = ζ and ∇2r2(ζ ) being the identity map on C. This notation

clarifies the key hypotheses (3) and (4).

2.3 Variational analysis review

We use the techniques of variational analysis from [14,19,20]. Let (L, C, 〈·, ·〉c) be

a finite-dimensional inner product space with associated real inner product 〈·, ·〉 :=
Re 〈·, ·〉c. Let C be a non-empty subset of L. The tangent cone to C at a point x ∈ C

is

TC (x) :={d | ∃{xν}⊂C, {tν}⊂R++ s.t. xν→ x, tν ↓0 and t−1
ν (xν−x)→d}, (11)

where R++ := (0,∞). The tangent cone is a closed subset of L [20, Proposition 6.2].

The regular normal cone to C at a point x ∈ C is

N̂C (x) := {z | 〈z, v〉 ≤ 0 for all v ∈ TC (x)}. (12)

Given S ⊂ L, the horizon cone of S is

S∞ :=
{
z ∈ L

∣∣ ∃ {xν} ⊂ S, {tν} ⊂ R+ s.t. tν ↓ 0 and tνxν → z
}
,

where R+ := [0,∞). The horizon cone is always a nonempty closed cone. If S is

convex, S∞ is the usual recession cone from convex analysis. Let h : L → R. The

essential domain of h is

dom (h) := {x ∈ L | h(x) <∞}.

The function h is said to be proper if dom (h) �= ∅. The epigraph of h is given by

epi(h) := {(x, β) ∈ L× R | h(x) ≤ β}.

The subderivative of h is the map dh(x) : L→ R ∪ {−∞} given by

dh(x)(ṽ) := lim inf
t↓0,v→ṽ

( h(x + tv)− h(x) )/t.
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By [20, Theorem 8.2], the subderivative and the tangent cone to the epigraph are

related by epi(dh(x)) = Tepi(h)(x, h(x)) ∀ x ∈ dom (h). The regular subdifferential

of h at x ∈ dom (h) is the set of regular subgradients:

∂̂h(x) := {z | h(y) ≥ h(x)+ 〈z, y − x〉 + o(‖y − x‖) ∀ y ∈ L}.

The regular subdifferential is a closed, convex subset of L. By [20, Theorem 8.9],

the regular subdifferential and the regular normal cone to the epigraph are related by

∂̂h(x) = {z | (z,−1) ∈ N̂epi(h)(x, h(x))}. The general (or limiting) subdifferential of

h at x is given by

∂h(x) :=
{

z

∣∣∣∣
∃ {(xν, zν)} ⊂ dom (h)× L, with zν ∈ ∂̂h(xν)∀ ν,

(xν, zν)→ (x, z), and h(xν)→ h(x)

}
, (13)

and the horizon subdifferential to h at x is given by

∂∞h(x) :=
{
z

∣∣∣∣
∃ {(xν, zν, βν)}⊂dom (h)×L×R++, withzν ∈ ∂̂h(xν)∀ ν,

βν ↓ 0, (xν, βνzν)→ (x, z), and h(xν)→ h(x)

}
.

The function h is said to be subdifferentially regular at x if ∂h(x) = ∂̂h(x) and

∂∞h(x) = ∂̂h(x)∞. Subdifferential regularity allows the development of a rich sub-

differential calculus.

If h is differentiable at x , then, by [20, Exercise 8.8],

∂̂h(x) = ∂h(x) = {∇h(x)} and dh(x)(v) = 〈∇h(x), v〉 .

If h is proper, convex, and lsc, then, by [20, Proposition 8.12], h is subdifferentially

regular at every x ∈ dom (h), in which case

dh(x)(v) = h′(x; v) := lim
t↓0

( h(x + tv)− h(x) )/t. (14)

Consequently, in this case, the subderivative corresponds to the usual notion of a

directional derivative [20, pp. 257]. This notation is consistent with the usage in (10),

where the function is assumed to be R-differentiable.

3 Polynomials

The focus of study in [2,10,13] is polynomial root functions, a special class of which

is polynomial root max functions (2). The goal is to apply the variational results for f

in [2,9,10,13] to f when f is convexly generated. These functions depend on what will

be called the active factor [see Sect. 3.2 and (47)]. In the discussion of the application

of the polynomial results to the characteristic polynomial, the integer ñ ∈ N is used

to denote either the degree of the active factor of the characteristic polynomial (the

nonderogatory case, Sect. 5) or the degree of the characteristic polynomial itself (the

derogatory case, Sect. 6).
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3.1 Factorization spaces and their inner products on Pñ [13]

Let � denote the lexicographical order on C, where, for zs := xs + iys, xs, ys ∈ R,

s = 1, 2, we have z1 � z2 if and only if either x1 < x2 or (x1 = x2 and y1 ≤ y2). Let

Mñ � P[ñ] be the affine set of monic polynomials of degree n with M0 := {1}. Given

p̃ ∈Mñ , write

p̃ :=
m∏

j=1

e(n j ,λ̃ j )
, (15)

where λ̃1, . . . , λ̃m are the distinct roots of p̃, ordered lexicographically with multi-

plicities n1, . . . , nm , and the monomials e(	,λ̃ j )
∈ Pñ are defined by

e(	,λ0)(λ) := (λ− λ0)
	, for 	 = 0, . . . , ñ, and all λ0 ∈ C. (16)

Note that, for each fixed λ0 ∈ C, the monomials (16) form a basis for the linear space

Pñ . The factorization space S p̃ for p̃ is given by

S p̃ := C× Pn1−1 × Pn2−1 × · · · × Pnm−1,

where the component indexing for elements of S p̃ starts at zero so that the j th com-

ponent is an element of Pn j−1. The spaces Pñ and S p̃ are related through the mapping

Fp̃ : S p̃ → Pñ given by

Fp̃(q0, q1, q2, . . . , qm) := (1+ q0)

m∏

j=1

(e(n j ,λ̃ j )
+ q j ). (17)

We have Fp̃(0) =
∏m

j=1 e(n j ,λ̃ j )
= p̃, and, since the factors in (15) are relatively

prime, there exist neighborhoods U of 0 in S p̃ and V of p̃ in Pñ such that Fp̃|U : U →
V is a diffeomorphism (over C) [13, Lemma 1.4]. The C-derivative F ′

p̃
(0) : S p̃ → Pñ

is invertible and given by

F ′p̃(0)(ω0, w1, w2, . . . , wm) = ω0 p̃ +
m∑

j=1

r jw j , where r j := p̃/e(n j ,λ̃ j )
. (18)

For each λ0 ∈ C, define the scalar Taylor maps τ(k,λ0) : Pñ → C by

τ(k,λ0)(q) := q(k)(λ0)/k! , for k = 0, 1, 2, . . . , ñ, (19)
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where q(	) is the 	th derivative of q. Each mapping τ(k,λ0) takes a polynomial to its

kth Taylor coefficient at λ0. Note that the mapping τ̃k(q, λ) := τ(k,λ)(q) is continuous

in q and λ [13]. Define the C-linear isomorphism T p̃ : S p̃ → Cñ+1 by

T p̃(u) := [μ0, (τ(n1−1,λ̃1)(u1), . . . , τ(0,λ̃1)(u1)), . . . , (τ(nm−1,λ̃m )(um), . . . , τ(0,λ̃m )(um))]T

= [μ0, (μ11, . . . , μ1n j
), . . . , (μm1, . . . , μmnm )]T , (20)

where

u := (μ0, u1, u2, . . . , um) ∈ S p̃, u j :=
n j∑

s=1

μ jse(n j−s,λ̃ j )
, and μ0, μ js ∈ C,

(21)

for all s ∈ {1, 2, . . . n j } and j ∈ {1, 2, . . . m}.
By Lemma 2, T p̃ induces an inner product on S p̃ by setting

〈u, w〉c
S p̃
:=

〈
T p̃(u), T p̃(w)

〉c
Cñ+1 , for all u, w ∈ S p̃, (22)

where u is given in (21),

w = (ω0, w1, w2, . . . , wm), with

w j =
n j∑

s=1

ω jse(n j−s,λ̃ j )
for j ∈ {1, . . . , m} and

ω0, ω js ∈ C for s ∈ {1, . . . , n j }, j ∈ {1, . . . , m}.

(23)

Moreover, again by Lemma 2,

T �
p̃ = T

−1
p̃

with respect to the inner products 〈·, ·〉c
S p̃

and 〈·, ·〉c
Cñ+1 .

We are now ready to construct an inner product on Pñ relative to p̃. Recall that

F ′
p̃
(0) : S p̃ → Pñ given in (18) is a C-linear isomorphism. So for every z, v ∈ Pñ,

there exists u, w ∈ S p̃, having representations (21) and (23), such that

z = F ′p̃(0)u and v = F ′p̃(0)w. (24)

By Lemma 2, F ′
p̃
(0)−1 induces an inner product 〈·, ·〉c

(Pñ , p̃)
on Pñ based on the inner

product 〈·, ·〉c
S p̃

by setting
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〈z, v〉c
(Pñ , p̃)

:=
〈
F ′p̃(0)−1z, F ′p̃(0)−1v

〉c
S p̃

= 〈u, w〉c
S p̃

= 〈(μ0, u1, u2, . . . , um), (ω0, w1, w2, . . . , wm)〉c
S p̃

(25)

= μ̄0ω0 +
m∑

j=1

n j∑

s=1

μ̄ jsω js, (26)

where z and v are given in (24), and u and w are given in (21) and (23), respectively.

With respect to these inner products, (25) (or Lemma 2) gives

(F ′p̃(0))� = F ′p̃(0)−1. (27)

3.2 Active roots and active indices

Let p ∈ P[ñ] and denote by Ξp := {λ1, . . . , λm} the distinct roots of p, ordered

lexicographically. The set of active roots of f at p is given by

Af (p) :=
{
λ j ∈ Ξp

∣∣ f (λ j ) = f(p)
}
. (28)

If λ j ∈ Ξp\Af (p), then f (λ j ) < f(p), and we say that λ j is inactive. The set of

active indices of f at p is given by

If (p) :=
{

j ∈ {1, . . . , m}
∣∣ λ j ∈ Af (p)

}
.

3.3 The subdifferential and subderivative for polynomial root max functions

Again assume that f : C→ R is proper, convex, and lsc. As discussed at the end of

Sect. 2.3, f is subdifferentially regular and so (14) holds.

Theorem 1 [2, Proposition 5.5, Theorem 5.3 and Theorem 6.2] Let p̃ ∈ P[ñ]∩dom (f)

have decomposition (15). Assume that f satisfies either (3) or (4) at λ̃ j

∂ f (λ̃ j ) �= {0} ∀ j ∈ If ( p̃). (29)

Given j ∈ If ( p̃), define

Q(λ̃ j ) := −cone (∂ f (λ̃ j )
2)+ i(rspan (∂ f (λ̃ j )

2)) ⊂ C,

where ∂ f (λ̃ j )
2 := {g2|g ∈ ∂ f (λ̃ j )} and, for S ⊂ C,

cone (S) := {τζ |τ ∈ R+, ζ ∈ S}.

For λ̃ j ∈ Af ( p̃) at which (3) holds, define

D(n j , λ̃ j ) :={θ | 〈θ, (∇ f (λ̃ j ))
2〉C≤〈i∇ f (λ̃ j ),∇2 f (λ̃ j )(i∇ f (λ̃ j ))〉C/n j } ⊂ C.
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Next, set

D p̃ := conv ({0} ×
m

X
j=1

Γ (n j , λ̃ j )) ⊂ Cñ+1,

where, for j /∈ If ( p̃), Γ (n j , λ̃ j ) := {0} ⊂ Cn j and, for j ∈ If ( p̃),

Γ (n j , λ̃ j ) :=
{

(−∂ f (λ̃ j )/n j )×D(n j , λ̃ j )× Cn j−2 if (3) holds at λ̃ j ,

(−∂ f (λ̃ j )/n j )×Q(λ̃ j )× Cn j−2 if (4) holds at λ̃ j

⊂ Cn j .

Then

D∞p̃ = {0} ×
m

X
j=1

Γ (n j , λ̃ j )
∞ with Γ (n j , λ̃ j )

∞={0} ×Q(λ̃ j )× Cn j−1,

and, with respect to the inner product 〈·, ·〉(Pñ , p̃) given in (26),

∂̂f( p̃) = F ′p̃(0) ◦ T
−1
p̃

(D p̃) and ∂̂f( p̃)∞ = F ′p̃(0) ◦ T
−1
p̃

(D∞p̃ ), (30)

where F ′
p̃
(0) and T p̃ are given in (18) and (20), respectively.

If f satisfies (3) for all λ̃ j ∈ Af ( p̃), then f is subdifferentially regular at p̃ and

(30) gives the general and horizon subdifferentials, respectively, for f at p̃.

Theorem 2 [2, Theorem 3.3] Let f and p̃ satisfy the hypotheses of Theorem 1. Let

v = F ′
p̃
(0)(ω0, w1, . . . , wm), where w j =

∑n j

s=1 ω jse(n j−s,λ̃ j )
∈ Pn j−1 for all j ∈

{1, . . . m}, with ω js ∈ C, for s ∈ {1, . . . , n j }. If v satisfies

0 = 〈g,
√
−ω j2〉C for all j ∈ If ( p̃) and g ∈ ∂ f (λ̃ j ), and (31)

0 = ω js for all s ∈ {3, . . . , n j } and j ∈ If ( p̃), (32)

then

df( p̃)(v) = max
j∈If ( p̃)

{( f ′(λ̃ j ;−ω j1)+ κ j }

where, for j ∈ If ( p̃),

κ j :=
{

f ′′(λ̃ j ;
√−ω j2,

√−ω j2) )/n j if (3) holds at λ̃ j ,

0 if (4) holds at λ̃ j ;

otherwise, df( p̃)(v) = +∞. In addition, df( p̃) is proper, lsc, and sublinear.

4 The derivative of the nonderogatory factor

We now recall Arnold form [1] and its application in [6] for describing the local

variational behavior of the Jordan form.
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4.1 Arnold form

Let

Ξ̃ := {λ̃1, . . . , λ̃m} (33)

be a subset of the distinct eigenvalues of X̃ ∈ Cn×n . The Jordan structure of X̃ relative

to these eigenvalues is given by

J := P̃ X̃ P̃−1=Diag (B̃, J1, . . . , Jm), where J j :=Diag (J
(1)
j , . . . , J

(q j )

j ) (34)

and J
(k)
j is an m jk × m jk Jordan block

J
(k)
j := λ̃ j Im jk

+ N jk, k = 1, . . . , q j , j = 1, . . . , m, (35)

where N jk ∈ Cm jk×m jk is the nilpotent matrix given by ones on the superdiagonal

and zeros elsewhere, and Im jk
∈ Cm jk×m jk is the identity matrix. With this notation,

q j is the geometric multiplicity of the eigenvalue λ̃ j . The algebraic multiplicity of λ̃ j

is n j :=
∑q j

k=1 m jk . The size of the largest Jordan block for an eigenvalue is

m j := max
k=1,...,q j

m jk . (36)

Set ñ :=
∑m

j=1 n j and n0 := n − ñ. The matrix B̃ ∈ Cn0×n0 (possibly of size 0)

corresponds to the eigenvalues not included in Ξ̃ . The eigenvalue λ̃ j is nonderoga-

tory if q j = 1 (equivalently m j = n j ). The matrix X̃ is nonderogatory if all of its

eigenvalues are nonderogatory.

Theorem 3 (Arnold Form) [6, Theorems 2.2, 2.7] Suppose that all eigenvalues in

Ξ̃ are nonderogatory. We suppress the index k since q j = 1. Then there exists a

neighborhood Ω of X̃ ∈ Cn×n and smooth maps P : Ω → Cn×n , B : Ω → Cn0×n0

and, for j ∈ {1, . . . , m} and s ∈ {0, 1, . . . , n j − 1}, λ js : Ω → C such that

P(X)X P(X)−1 =Diag (B(X), 0, . . . , 0)+
m∑

j=1

J̌ j (X) ∈ Cn×n,

λ js(X̃) = 0, s = 0, 1, . . . , n j − 1,

P(X̃) = P̃, B(X̃) = B̃, and

P(X̃)X̃ P(X̃)−1 = Diag (B(X̃), J1, . . . , Jm),

where

J̌ j (X) := λ̃ j J j0 + J j1 +
n j−1∑

s=0

λ js(X)J ∗js,

J js := Diag (0, . . . , 0, N s
j , 0, . . . , 0), and

J j0 := Diag (0, . . . , 0, In j
, 0, . . . , 0),
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with N s
j and In j

in the λ̃ j diagonal block [see (34)]. Finally, the functions λ js are

uniquely defined on Ω , though the maps P and B are not unique.

Remark 1 Theorem 3 illustrates a fundamental difference between the symmetric and

nonsymmetric cases. In the symmetric case, the matrices are unitarily diagonalizable

so there are no nilpotent matrices N j and the mappings λ js reduce to the eigenvalue

mapping λ j . In this case, a seminal result due to Lewis [17, Theorem 6] shows that

the variational properties depend on the eigenvalues. On the other hand, in the non-

symmetric case they depend on the entire family of functions λ js .

Lemma 3 [6, Lemma 2.12]. Assume the hypotheses of Theorem 3. Then the gra-

dients [see (8)] of the functions λ js : Cn×n → C are given by ∇λ js(X̃) =
(n j − s)−1 P̃∗ J ∗js P̃−∗, and

(λ′js(X̃))�ζ = ζ(n j − s)−1 P̃∗ J ∗js P̃−∗ ∀ ζ ∈ C

with respect to the inner product 〈·, ·〉c
Cn×n [see (9)].

4.2 The derivative of the nonderogatory characteristic factors

The local factorization of X on Ω described in Theorem 3 can be used to describe

a local factorization of the characteristic polynomial det (λI − X) near X̃ . The fol-

lowing technical lemma allows us to represent the coefficients of the factors of the

characteristic polynomial in terms of the functions λ js in Theorem 3.

Lemma 4 Let J ∈ Cn×n be a Jordan matrix having ones on the superdiagonal and

zeros elsewhere, ξ ∈ C, and λ = (λ0, . . . , λn−1) ∈ Cn . Consider the matrix

ξ In − J −
n−1∑

s=0

λs(J ∗)s = ξ In −

⎡
⎢⎢⎢⎣

λ0 1 0 . . . 0

λ1 λ0 1 . . . 0
...

...
...

. . . 1

λn−1 λn−2 λn−3 . . . λ0

⎤
⎥⎥⎥⎦ .

Then

det(ξ In− J−
n−1∑

s=0

λs(J ∗)s) = ξn−
n−1∑

s=0

(n − s)λsξ
n−s−1+o(λ) (37)

where J 0 := In .

Proof First consider matrices of the form

As :=

⎡
⎢⎢⎢⎢⎢⎣

a0 −1 0 . . . 0

a1 a0 −1 . . . 0

a2 a1 a0 . . . 0
...

...
...

. . . −1

as−1 as−2 as−3 . . . a0

⎤
⎥⎥⎥⎥⎥⎦
∈ Cs×s,
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for s = 1, . . . , n, where a0, a1, . . . , as−1 ∈ C so that for s = 1, . . . , n − 1, As is the

lower right (or upper left) s × s block of As+1. Note that det(An) equals

an−1 + an−2 det(A1)+ an−3 det(A2)+ · · · + a1 det(An−2)+ a0 det(An−1). (38)

To see this, expand the determinant on the first column of An and observe that when

the sth row and first column is deleted from An , the resulting (n−1)× (n−1) matrix

is lower block triangular with only two diagonal blocks, where the upper diagonal

block is an (s − 1)× (s − 1) lower triangular matrix with −1 in every diagonal entry

and the lower diagonal (n − s)× (n − s) block equals An−s .

To establish the lemma, we need to find det(An) with a0 = ξ − λ0 and as = −λs

for s = 1, . . . , n − 1. For n = 1, A1 = (ξ − λ0). For n = 2,

det

[
(ξ − λ0) −1

−λ1 (ξ − λ0)

]
= (ξ − λ0)

2 − λ1 = ξ2 − 2λ0ξ − λ1 + o(λ).

Suppose (37) holds for s = 1, . . . , n − 1. This together with (38) implies

det(An) =− λn−1 − λn−2(ξ − λ0)− λn−3(ξ
2 − 2λ0ξ − λ1) − · · ·

− λ1(ξ
n−2 −

(n−2)−1∑

s=0

((n − 2)− s)λsξ
(n−2)−s−1)

+ (ξ − λ0)(ξ
n−1 −

(n−1)−1∑

s=0

((n − 1)− s)λsξ
(n−1)−s−1)+ o(λ).

Collecting like powers of ξ establishes the result:

det(An) = ξn − λ0ξ
n−1 −

(n−1)−1∑

s=0

((n − 1)− s)λsξ
n−s−1

−
n−1∑

s=1

λsξ
n−s−1 + o(λ)

= ξn − λ0ξ
n−1 − (n − 1)λ0ξ

n−1

−

⎛
⎝

(n−1)−1∑

s=1

(n − s)λsξ
n−s−1

⎞
⎠− λn−1 + o(λ),

= ξn − nλ0ξ
n−1 −

⎛
⎝

(n−1)−1∑

s=1

(n − s)λsξ
n−s−1

⎞
⎠− λn−1 + o(λ),

= ξn −
n−1∑

s=0

(n − s)λsξ
n−s−1 + o(λ).

��
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Lemma 5 Assume the hypotheses of Theorem 3. Let j ∈ {1, . . . , m} and define g j :
Ω → Pn j−1 by

g j (X) := Φn j
( Ĵ j (X)) − e(n j ,λ̃ j )

, (39)

where Φn j
and e(n j ,λ̃ j )

are defined in (5) and (16), respectively, and

Ĵ j (X) := λ̃ j In j
+ J j +

n j−1∑

s=0

λ js(X)(J s
j )
∗. (40)

Then

g j (X)= −
n j−1∑

s=0

(n j−s)λ js(X)e(n j−s−1,λ̃ j )
+ o(λ j0(X), . . . , λ j (n j−1)(X)).

(41)

Moreover, g j (X̃) = 0, and, with respect to the inner products

〈·, ·〉c[n j−1,λ̃ j ]
:=

n j−1∑

s=0

〈
τ(n j−s−1,λ̃ j )

(·), τ(n j−s−1,λ̃ j )
(·)
〉c
C

on Pn j−1 and 〈·, ·〉c
Cn×n on Cn×n ,

(g′j (X̃))� = −
n j−1∑

s=0

P̃∗ J ∗js P̃−∗ τ(n j−s−1,λ̃ j )
, (42)

where the mapping τ(k,λ0) is defined in (19). In particular, (g′j (X̃))� is injective.

Proof Let j ∈ {1, . . . , m} and g j be as given in (39). Combining Theorem 3 with

Lemma 4 where ξ := (λ − λ̃ j ), J := J j and n := n j gives (41). Since λ js(X̃) = 0

for s = 0, 1, . . . , n j − 1, we have g j (X̃) = 0 and

g′j (X) = −
n j−1∑

s=0

(n j − s)e(n j−s−1,λ̃ j )
λ′js(X).

Let M ∈ Cn×n and set h :=
∑n j−1

k=0 cke(n j−k−1,λ̃ j )
∈ Pn j−1. Then

〈
(g′j (X̃))�h, M

〉c
Cn×n

=
〈
h, g′j (X̃)M

〉c
[n j−1,λ̃ j ]
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= −
〈n j−1∑

k=0

cke(n j−k−1,λ̃ j )
,

⎛
⎝

n j−1∑

s=0

(n j − s)e(n j−s−1,λ̃ j )
λ′js(X̃)

⎞
⎠ M

〉c

[n j−1,λ̃ j ]

= −
n j−1∑

s=0

〈
cs, (n j − s)λ′js(X̃)M

〉c
C

= −
n j−1∑

s=0

〈
(λ′js(X̃))�cs, (n j − s)M

〉c
Cn×n

= −
n j−1∑

s=0

〈
(n j − s)−1 P̃∗ J ∗js P̃−∗cs, (n j − s)M

〉c
Cn×n

(by Lemma 3)

= −
n j−1∑

s=0

〈
P̃∗ J ∗js P̃−∗cs, M

〉c
Cn×n

=
〈⎛
⎝−

n j−1∑

s=0

P̃∗ J ∗js P̃−∗τ(n j−s−1,λ̃ j )

⎞
⎠ h, M

〉c

Cn×n

,

which proves (42). Moreover, the matrices {P̃∗ J ∗js P̃−∗}n j−1

s=0 are linearly independent

on Cn×n (over C or R) and τ(n j−s−1,λ̃ j )
(h) = 0 for all s = 0, . . . , n j − 1 only if

h = 0. Hence (g′j (X̃))�h = 0 only if h = 0, implying (g′j (X̃))� is injective. ��

We now combine the functions g j into a single function G : C×Ω → S p̃, where

p̃ ∈ Pñ is the polynomial in (15) with Ξ̃ := {λ̃1, . . . , λ̃m} as in (33):

G(ζ, X) := (ζ, g1(X), . . . , gm(X)). (43)

Note that the mapping G depends on X̃ , is C-linear (the identity on C) in its first

component, and satisfies

G(0, X̃) = (0, 0, . . . , 0) = 0. (44)

Theorem 4 (Nonderogatory Characteristic Factor Derivatives) Let the hypotheses of

Theorem 3 hold. Let G : {ζ : |ζ | < 1} ×Ω → S p̃ be as in (43).

Let R : Cñ+1 → C× Cn×n be the C-linear transformation given by

R(v) :=

⎛
⎝v0, −

m∑

j=1

n j−1∑

s=0

v js P̃∗ J ∗js P̃−∗

⎞
⎠ , (45)

for all v := (v0, v10, . . . , v1(n1−1), . . . , vm0, . . . , vm(nm−1)) ∈ Cñ+1. Then

(G ′(ζ, X̃))� = R ◦ T p̃ (46)
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with respect to the inner products 〈·, ·〉c
S p̃

[see (22)] and 〈(ζ, X), (ω, Y )〉c := 〈ζ, ω〉c
C
+

〈X, Y 〉c
Cn×n on C × Cn×n , where T p̃ is defined in (20). In addition, (G ′(ζ, X̃))� is

injective.

Proof The representation (46) follows immediately from Lemma 5. Injectivity follows

from the linear independence of the matrices J js ∈ Cn×n for s = 0, . . . , n j − 1 and

j = 1, . . . , m, and the fact that T p̃ is a C-linear isomorphism. ��

5 Matrices: chain rule for the nonderogatory case

Let us now suppose that the eigenvalues in Ξ̃ [see (33)] are the active roots [see (28)]

of the characteristic polynomial Φn(X̃). We call Ξ̃ the set of active eigenvalues of f

at X̃ , denoted by Af(X̃). The corresponding active indices are denoted by If(X̃). In

(15), p̃ is called the active factor of the characteristic polynomial

Φn(X̃) = Φñ( Ĵ (X̃))Φn0(B(X̃)) = p̃ Φn0(B(X̃)), (47)

where

Ĵ (X) := Diag ( Ĵ1(X), . . . , Ĵm(X)),

with Ĵ j defined in (40). If all active eigenvalues are nonderogatory, we have

f(X) = (f ◦ Fp̃ ◦ G)(ζ, X)

for all X near X̃ and |ζ | < 1. By (44), Fp̃(G(0, X̃)) = Fp̃(0) = p̃. The regular and

general subdifferentials of f near X̃ can be obtained by computing the corresponding

objects for the mapping f ◦ Fp̃ ◦ G. The diagram in (6) illustrates the relationship

between the mappings f , Fp̃, G, and f, defined in (2), (17), (43), and (1), respectively.

We apply a nonsmooth chain rule to the representation f ◦ Fp̃ ◦G to obtain a formula

for the subdifferential of f.

Theorem 5 (Nonsmooth Chain Rule) [20, Theorem 10.6] Suppose h(x) := g(H(x))

for a proper, lsc function g : Rm → R and a smooth mapping H : Rn → Rm . Then,

at any point x̃ ∈ dom (h) = H−1(dom (g)),

∂̂h(x̃) ⊃ H ′(x̃)�∂̂g(H(x̃)).

If

(
y ∈ ∂∞g(H(x̃)) and (H ′(x̃))�y = 0

)
�⇒ y = 0,

then

∂h(x̃) ⊂ (H ′(x̃))�∂g(H(x̃)) and ∂∞h(x̃) ⊂ (H ′(x̃))�∂∞g(H(x̃)).
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If, in addition, g is regular at H(x̃), then h is regular at x̃ ,

∂h(x̃) = (H ′(x̃))�∂g(H(x̃)) and ∂∞h(x̃) = (H ′(x̃))�∂∞g(H(x̃)).

Theorem 6 (Chain Rule for f) Let f : C→ R be proper, convex, lsc and let f be as

in (1). Suppose that X̃ ∈ Cn×n is such that the notation of Sect. 4 holds, f satisfies

either (3) or (4) at λ̃ j for each j ∈ {1, . . . , m}, and Φn(X̃) has active factor p̃ given

by (15) and satisfying (29). If λ̃ j is nonderogatory for all j ∈ {1, . . . , m}, then

∂̂f(X̃) ⊃
{
Y ∈ Cn×n

∣∣ (0, Y ) ∈ R(D p̃)
}
,

where D p̃ and R are as defined in Theorem 1 and (45), respectively. If f satisfies (3)

at λ̃ j for all j ∈ {1, . . . , m}, then f is subdifferentially regular at X̃ with

∂f(X̃) =
{
Y ∈ Cn×n

∣∣ (0, Y ) ∈ R(D p̃)
}
, and

∂∞f(X̃) =
{

Y ∈ Cn×n
∣∣∣ (0, Y ) ∈ R(D∞p̃ )

}
,

where D∞
p̃

is as defined in Theorem 1.

Proof We prove only the second statement since the proof of the first statement is

similar. Define H : {ζ : |ζ | < 1} ×Ω → Pñ by H := Fp̃ ◦ G so that, in particular,

H(0, X̃) = Fp̃(G(0, X̃)) = Fp̃(0) = p̃. By Theorem 4, the adjoint of the derivative

of H at (0, X̃) is given by

(H ′(ζ, X̃))� = (G ′(ζ, X̃))� ◦ (F ′p̃(G(ζ, X̃)))�

= R ◦ T p̃ ◦ (F ′p̃(G(ζ, X̃)))� by (46).

Therefore,

(H ′(0, X̃))� = R ◦ T p̃ ◦ (F ′p̃(0))� by (44)

= R ◦ T p̃ ◦ (F ′p̃(0))−1 by (27).
(48)

Since T p̃, R and F ′
p̃
(0) are injective, so is (H ′(0, X̃))�.

Define f̂ : {ζ : |ζ | < 1} ×Ω → R by

f̂(ζ, X) := (f ◦ H)(ζ, X) ∀ (ζ, X) ∈ {ζ : |ζ | < 1} ×Ω,

so that

f(X)= f̂(0, X)= f̂(ζ, X)=(f ◦ H)(ζ, X) ∀ (ζ, X) ∈ {ζ : |ζ | < 1} ×Ω. (49)
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Take g := f and h := f̂ in Theorem 5. Then by Theorems 1 and 5, f̂ is subdifferentially

regular at (ζ, X̃) and

∂ f̂(ζ, X̃) = ∂ f̂(0, X̃) by (49)

= (H ′(0, X̃))�∂f(H(0, X̃))

= R ◦ T p̃ ◦ (F ′p̃(0))−1∂f(H(0, X̃)) by (48)

= R ◦ T p̃ ◦ (F ′p̃(0))−1 F ′p̃(0) ◦ T
−1
p̃

(D p̃) by (30)

= R(D p̃).

Similarly, ∂∞ f̂(ζ, X̃) = R(D∞
p̃

). By (49), f̂(ζ, X̃) is constant on {ζ : |ζ | < 1} so [20,

Corollary 10.11] on partial subdifferentiation tells us that the first component of every

element of ∂ f̂(0, X̃) is zero. Hence, the final result also follows from [20, Corollary

10.11]. ��

Remark 2 This result recovers the subdifferential regularity of the spectral abscissa

[12, Theorem 8.1] and the formula for its subdifferential in [12, Theorem 7.2] in the

case of nonderogatory active eigenvalues.

Corollary 1 (Explicit Subdifferential Representation) Assume the hypotheses of The-

orem 6 with (3) holding. Then Y ∈ ∂f(X̃) if and only if there exists U j ∈ Cn j×n j for

j ∈ {1, . . . , m} such that

P̃−∗Y P̃ = Diag (0n0×n0 , U1 . . . , Um),

where U j is lower triangular Toeplitz with diagonal entries−μ j1, subdiagonal entries

−μ j2, and parameters γ j ≥ 0 satisfying
∑m

j=1 γ j = 1,

μ j1=γ j (∇ f (λ̃ j )/n j ) and 〈−μ j2,∇ f (λ̃ j )
2〉C≤(γ j/n j ) f ′′(λ̃ j ; i∇ f (λ̃ j ), i∇ f (λ̃ j )).

6 Matrices: the general case

In Sect. 5, we use the Arnold form (see Theorem 3) to simultaneously derive a repre-

sentation for the subdifferential and establish the subdifferential regularity of convexly

generated spectral max functions at matrices with nonderogatory active eigenvalues.

In this section, we extend techniques developed in [12, Theorem 7.2] for the spectral

abscissa to derive a representation for the regular subdifferential of spectral max func-

tions even when some active eigenvalues are derogatory. We do not derive formulas

for the general (limiting) subdifferential [see (13)]. Formulas in the derogatory case

are, for the most part, unknown even for the spectral abscissa.1

1 Grundel and Overton derive the general subdifferential in the simplest derogatory, defective case when

n = 3 for the spectral abscissa in [15]. The nondefective (or semisimple) case is treated in [12, Theorem

8.3].
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6.1 Review of results from [12]

Define � : Cn×n → Cn to be the mapping that takes a matrix X to its vector of eigen-

values, repeated according to algebraic multiplicity and ordered lexicographically (see

Sect. 3.1). Any function of the form ψ := h ◦�, where h : Cn → R is invariant under

permutations of its arguments, is a spectral function (see Sect. 1).

Now assume that the set Ξ̃ = {λ̃1, . . . , λ̃m} in (33) is the complete set of dis-

tinct eigenvalues of X̃ ∈ Cn×n with algebraic multiplicities n1, . . . , nm (so that

n =
∑m

j=1 n j ) and geometric multiplicities q1, . . . , qm . We use the Jordan form

notation described in (34) and (35), where the matrix B̃ is no longer present. Recall

the following results from [12].

Theorem 7 [12, Theorems 4.1 and 4.2] Let X̃ be as given above and let ψ be a

spectral function. If Y is a subgradient or horizon subgradient of ψ at X̃ , then

W := P̃−∗Y P̃∗ (50)

satisfies

W = Diag (W1, . . . , Wm), (51)

where

W j :=

⎡
⎢⎢⎣

W
(11)
j . . . W

(1q j )

j

...
. . .

...

W
(q j 1)

j . . . W
(q j q j )

j

⎤
⎥⎥⎦ . (52)

with W
(rs)
j a rectangular m jr×m js lower triangular Toeplitz matrix for r = 1, . . . , q j ,

s = 1, . . . , q j , j = 1, . . . , m.

If Y is further assumed to be a regular subgradient of ψ at X̃ , then

W j = Diag (W
(11)
j , . . . , W

(q j q j )

j ), (53)

where W
(kk)
j is an m jk ×m jk lower triangluar Toeplitz matrix with diagonal θ j1 and

subdiagonals θ js, s = 2, . . . , m jk, k = 1, . . . , q j , j = 1, . . . , m, and
∑q j

k=1 m jk =
n j .

Remark 3 By lower triangular Toeplitz, we mean that the value of the k, 	 entry of

W
(rs)
j depends only on the difference k − 	 (is constant along the diagonals), and is

zero if k < 	 or m jr − k > m js − 	 (is zero above the main diagonal, drawn from

either the top left or bottom right of the block).

Observe that Φn [see (5)] is smooth since each coefficient is a polynomial in the

entries of X . The next result provides an expression for one-sided C-derivatives of Φn

with respect to a given direction.
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Lemma 6 [12, Lemma 7.1] Let X̃ ∈ Cn×n and Z ∈ Cn×n be given, and assume X̃

has Jordan form (34). Define p ∈Mn by

p := Φn(X̃) =
m∏

j=1

e(n j ,λ̃ j )
,

where Φn and e(	,λ0) are defined in (5) and (16), respectively. Set

V := P̃ Z P̃−1, (54)

and let V j j be the n j ×n j diagonal block of V corresponding to block J j of the matrix

J defined in (34). Then the action of the C-derivative Φ ′n(X̃) is

Φ ′n(X̃)Z = −
m∑

j=1

⎛
⎝

m∏

k=1, k �= j

e(nk ,λ̃k )

⎞
⎠
( m j∑

	=1

tr
(

N 	−1
[ j] V j j

)
e(n j−	,λ̃ j )

)
(55)

for all Z ∈ Cn×n , where N[ j] := Diag (N j1, . . . , N jq j
) with N jk defined in (35).

Theorem 8 Suppose f is as in (1), where

∇ f is continuous at λ̃ j with ∇ f (λ̃ j ) �= 0 ∀ j ∈ If(X̃). (56)

Define

σ j :=
{

θ j1/∇ f (λ̃ j ), j ∈ If(X̃)

0, j /∈ If(X̃),
(57)

where θ j1 is given in (53), and set σ := [σ1, . . . , σ1, . . . , σm, . . . , σm]T ∈ Cn, where

each σ j is repeated n j times. Let X̃ have Jordan form (34), set

"n−1 := {γ ∈ Rn | 0 ≤ γi , i = 1, . . . , n,

n∑

i=1

γi = 1},

and assume that Y is a regular subgradient for f at X̃ . Then Y satisfies (52) and (53),

and we have the following:

(a) [12, Theorem 6.1] For all j ∈ {1, . . . , m},

j /∈ If(X̃) �⇒ W j = 0, (58)

where W j is given in (53).
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(b) [12, Theorem 5.2, Equations 6.5, 6.6] We have σ ∈ "n−1 with σ j = 0 if j /∈
If(X̃). In particular, this implies that

σ j ≥ 0 and
∑

j∈If(X̃)

n jσ j = 1. (59)

(c) [12, Theorem 5.3] If, in addition, the second R-derivative of f is continuous at

each λ̃ j for j ∈ If(X̃), then

〈θ j2, (∇ f (λ̃ j ))
2〉C ≥ −σ jη j whenever m j ≥ 2, (60)

where σ j is given in (57), θ j2 is given in (53), m j is given in (36), and

η j := f ′′(λ̃ j ; i∇ f (λ̃ j ), i∇ f (λ̃ j )). (61)

6.2 The regular subdifferential and its recession cone

The main result of Sect. 6 now follows.

Theorem 9 (Regular subdifferential formula) Let X̃ have Jordan form (34) with the

distinct eigenvalues Ξ̃ having geometric multiplicities q1, . . . , qm . Suppose f satisfies

(3) at each λ̃ j for j ∈ If(X̃) and (56) holds. Then Y ∈ ∂̂f(X̃) if and only if Y satisfies

(50)–(53) and (58)–(60).

Proof We follow the pattern of proof established in [12, Theorem 7.2] for the spectral

abscissa. Let Y ∈ ∂̂f(X̃). By Theorems 7 and 8, Y satisfies (50)–(53) and (58)–(60),

respectively.

Next suppose that Y ∈ Cn×n satisfies conditions (50)–(53) and (58)–(60). We prove

that Y is a regular subgradient, that is,

〈Y, Z〉Cn×n ≤ df(X̃)(Z), for all Z ∈ Cn×n . (62)

By applying the chain rule (see Theorem 5), we obtain

df(X̃)(Z) = d(f ◦Φn)(X̃)(Z) ≥ df(Φn(X̃))(Φ ′n(X̃)Z), (63)

where the action Φ ′n(X̃)Z is given in (55) and f is defined in (2). Set p := Φn(X̃) in

(63) to obtain

df(X̃)(Z) ≥ df(p)(Φ ′n(X̃)Z). (64)

By (50)–(53) and (58),

〈Y, Z〉Cn×n = 〈W, V 〉Cn×n =
∑

j∈If(X̃)

m j∑

	=1

Re(θ j	tr (N 	−1
[ j] V j j )),
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where V is defined in (54). Set ω j	 := −tr (N 	−1
[ j] V j j ) for 	 = 1, . . . , m j , j ∈ If(X̃).

Then

〈W, V 〉Cn×n =
∑

j∈If(X̃)

m j∑

	=1

Re(θ j	(−ω j	)).

If either (31) or (32) in Theorem 2 fails for some j ∈ If(X̃), then the subderivative

df(p)(Φ ′n(X̃)Z) is infinite, in which case (62) is trivially satisfied. If (31) and (32) in

Theorem 2 hold for all j ∈ If(X̃), then

〈Y, Z〉Cn×n =
∑

j∈If(X̃)

( Re(θ j1(−ω j1))+Re(θ j2(−ω j2)) ),

=
∑

j∈If(X̃)
Re(σ j∇ f (λ̃ j )(−ω j1))−Re(θ j2 ω j2) by (57),

=
∑

j∈If(X̃)
σ j Re(∇ f (λ̃ j )(−ω j1))−Re(θ j2 ω j2) by (59),

=
∑

j∈If(X̃)
σ j f ′(λ̃ j ;−ω j1)−Re

(
θ j2 ω j2

)
by (14),

(65)

where the second term in each line does not appear if m j = 1 [see (36)]. Recall that

for all j ∈ If(X̃), ω j2 satisfies (31), which, since f satisfies (3) at λ̃ j , is equivalent to

ω j2 = t j (∇ f (λ̃ j ))
2 for some t j ≥ 0 (66)

by [10, Lemma 4]. Therefore,

〈θ j2, f ′(λ̃ j )
2〉C ≥ −σ jη j by (60), which implies

Re(θ j2 ω j2) ≥ −t jσ jη j by (66), which implies

−Re(θ j2 ω j2) ≤ t jσ j f ′′(λ̃ j ; i f ′(λ̃ j ), i f ′(λ̃ j )), by (61), which implies

−Re(θ j2 ω j2) ≤ σ j f ′′(λ̃ j ;
√
−ω j2,

√
−ω j2 ). (67)

Plugging (67) into (65) yields

〈Y, Z〉Cn×n=
∑

j∈If(X̃)
(σ j f ′(λ̃ j ;−ω j1)− Re(θ j2ω j2))

≤
∑

j∈If(X̃)
(σ j f ′(λ̃ j ;−ω j1)+ σ j f ′′(λ̃ j ;

√
−ω j2,

√
−ω j2))

=
∑

j∈If(X̃)
σ j n j ( f ′(λ̃ j ;−ω j1)+ f ′′(λ̃ j ;

√
−ω j2,

√
−ω j2))/n j

≤ max
j∈If(X̃)

{
( f ′(λ̃ j ;−ω j1)+ f ′′(λ̃ j ;

√
−ω j2,

√
−ω j2))/n j

}
by (59)

= df(p)(Φ ′n(X̃)Z),

where the last equality holds by Theorem 2. Combining this with (64) gives (62). ��
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Remark 4 Theorem 9 establishes the formula for the regular subdifferential of f at

a matrix with any number of derogatory or nonderogatory active eigenvalues. The

theorem recovers the formula for the regular subdifferential in the case where all

active eigenvalues are nonderogatory (see Corollary 1). In Sect. 7, it is shown that

although Theorem 9 does not directly apply to the spectral radius, it can still be used

to derive its regular subdifferential.

Theorem 10 (Recession cone of the regular subdifferential) Assume the hypotheses

of Theorem 9. Then Y ∈ ∂̂f(X̃)∞ if and only if Y satisfies (50)–(53), (58), and, for

j ∈ If(X̃), the diagonal entries θ j1 in (53) satisfy

θ j1 = 0, (68)

and, if in addition m j ≥ 2 [see (36)], the subdiagonal entries θ j2 in (53) satisfy

〈θ j2, (∇ f (λ̃ j ))
2〉C ≥ 0. (69)

Proof First suppose Y ∈ ∂̂f(X̃)∞. Since ∂̂f(X̃) is convex, Z + tY ∈ ∂̂f(X̃) for all

Z ∈ ∂̂f(X̃) and t ≥ 0 by the definition of recession cone. By Theorem 7, both P̃−∗Z P̃∗

and P̃−∗(Z + tY )P̃∗ satisfy (50)–(53) for all Z ∈ ∂̂f(X̃) and t ≥ 0. In particular, both

P̃−∗Z P̃∗ and P̃−∗(Z + tY )P̃∗ are block diagonal matrices, with each block a lower

triangular Toeplitz matrix where the blocks corresponding to the same eigenvalue

have the same diagonal entries. Therefore, P̃−∗Y P̃∗ has the block structure specified

in (50)–(53). By Theorem 8, Y also satisfies (58).

For Z ∈ ∂̂f(X̃), denote the diagonal entries of the j th block of P̃−∗Z P̃∗ by z j1.

By Theorem 8, Z + tY satisfies (59) for all t ≥ 0, that is,

∑

j∈If(X̃)

n j (z j1 + tθ j1)/∇ f (λ̃ j ) = 1

and (z j1 + tθ j1)/∇ f (λ̃ j ) ≥ 0 for all j ∈ If(X̃) and t ≥ 0. Therefore, θ j1 = 0 for all

j ∈ If(X̃), proving (68). If, in addition, m j ≥ 2 [see (36)], denote the subdiagonal

entries of P̃−∗Z P̃∗ by z j2. By Theorem 8, Z + tY satisfies (60), that is,

〈(z j2 + tθ j2), (∇ f (λ̃ j ))
2〉C ≥ −(z j1 + tθ j1)η j/∇ f (λ̃ j )

for all j ∈ If(X̃) and t ≥ 0. Since θ j1 = 0, this becomes

〈z j2, (∇ f (λ̃ j ))
2〉C + t〈θ j2, (∇ f (λ̃ j ))

2〉C ≥ −z j1η j/∇ f (λ̃ j )

for all t ≥ 0 and Z ∈ ∂̂f(X̃). Since, by (60),

〈z j2, (∇ f (λ̃ j ))
2〉C ≥ −z j1η j/∇ f (λ̃ j )

for all j ∈ If(X̃) with m j ≥ 2, (69) follows.
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Now suppose Y ∈ Cn×n satisfies (50)–(53), (58), (68), and, for j ∈ If(X̃) with

m j ≥ 2, (69). Then for any t ≥ 0 and Z ∈ ∂̂f(X̃), the matrix Z + tY satisfies the

conditions of Theorem 9, which implies that Z + tY ∈ ∂̂f(X̃), proving the reverse

inclusion. ��

6.3 Nonderogatory active eigenvalues are necessary for regularity

Theorem 6 shows that nonderogatory active eigenvalues are sufficient for the subdif-

ferential regularity of f. We now show this condition is also necessary.

Lemma 7 In (33), let Ξ̃ be the complete set of distinct eigenvalues of X̃ ∈ Cn×n , and

suppose f satisfies (56). If λ̃ j is derogatory for some j ∈ If(X̃), then ∂f(X̃) � ∂̂f(X̃).

Proof We follow the method of proof in [12, Theorem 8.2] for the spectral abscissa.

Let j ∈ If(X̃) be such that λ̃ j is derogatory. Then the geometric multiplicity of λ̃ j is

at least 2. Since f is differentiable at λ̃ j , λ̃ j ∈ int (dom ( f )). This together with the

fact that ∇ f (λ̃ j ) �= 0 implies λ̃ j is not a local maximizer of f . Therefore, there exists

λν → λ̃ j with f (λν) > f (λ̃ j ). Set βν := λν− λ̃ j and define Xν := P̃−1(J+βν E)P̃

where P̃ and J are defined in (34), and the entries of E are one in the m j1 diago-

nal positions corresponding to the Jordan sub-block J
(1)
j with all other entries zero.

Clearly Xν → X̃ . The only active eigenvalue of Xν is λν , with multiplicity m j1, and

J + βν E is the Jordan form of Xν, up to re-ordering of the Jordan blocks. By The-

orem 9, ∂̂f(Xν) includes the matrix (∇ f (λν)/m j1)P̃∗E P̃−∗ for all ν, which implies

(∇ f (λ̃ j )/m j1)P̃∗E P̃−∗ ∈ ∂f(X̃). However, (∇ f (λ̃ j )/m j1)P̃∗E P̃−∗ /∈ ∂̂f(X̃) since

(∇ f (λ̃ j )/m j1)P̃∗E P̃−∗ does not satisfy the conditions in Theorem 9 because the

diagonal entries of W j are 0 for blocks m j2 to m jq j
but are nonzero for block m j1.

Therefore, ∂f(X̃) � ∂̂f(X̃). ��

The following result follows as an immediate consequence of Theorem 6 and the

preceding lemma.

Theorem 11 Let f : C → R be proper, convex, lsc, and let f be the associated

spectral max function as in (1). Suppose that X̃ ∈ Cn×n and f satisfies (3) at all active

eigenvalues of X̃ . Then f is subdifferentially regular at X̃ if and only if the active

eigenvalues of X̃ are nonderogatory.

7 Application to the spectral radius

Let r : C → R be the complex modulus map r(ζ ) := |ζ |. The polynomial

radius r : Pn → R and the spectral radius ρ : Cn×n → R are given by

r(p) = max{r(λ) | p(λ) = 0} and ρ(X) = max{r(λ) | det(λI − X) = 0}, respec-

tively. The results of the previous sections do not directly apply to ρ as (3) is not

satisfied, since, for t ∈ R, r ′′(λ; tλ, tλ) = 0 for λ �= 0, and since r ′(0) does not exist

(see Sect. 2.2). As in [10], we overcome these hurdles by introducing the function

r2(ζ ) := |ζ |2 /2. Since ∇2r2(λ) is the identity map on C, r2 satisfies (3) on all of C.
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Set ρ2(X̃) := max{|λ|2 /2 | det(λI− X̃) = 0}. The strategy is to first consider the case

ρ(X̃) > 0 using ρ2 and then to directly consider the case ρ(X̃) = 0. When ρ(X̃) > 0,

the relationship between the regular subdifferentials of ρ and ρ2 is a consequence of

the following result.

Lemma 8 Let X̃ ∈ Cn×n be such that ρ(X̃) > 0. Then

Tepi(ρ)(X̃ , μ) = {(V, η/μ)|(V, η) ∈ Tepi(ρ2)(X̃ , μ2/2)}, and

N̂epi(ρ)(X̃ , μ) = {(W, μτ)|(W, τ ) ∈ N̂epi(ρ2)(X̃ , μ2/2)}.

Proof Recall the definitions of the tangent and regular normal cones given in (11)

and (12), respectively. The elementary proof of the tangent cone equality is identical

to that in [10, Lemma 7] with polynomials replaced by matrices and the root max

function replaced by the spectral max function. The regular normal cone expression

follows by taking polars (12). ��

Proofs of the following results can be found in an expanded version of the paper

[3].

Theorem 12 (ρ(X̃) > 0) Let X̃ have Jordan form (34) with ρ(X̃) > 0. Then Y ∈
∂̂ρ(X̃) if and only if Y satisfies (50)–(53), (58), and, for j ∈ Iρ(X̃), the diagonal

entries θ j1 of W j satisfy

θ j1/λ̃ j ∈ R, θ j1/λ̃ j ≥ 0, and
∑

j∈Iρ (X̃)

n jθ j1|λ̃ j |/λ̃ j = 1,

and, if in addition m j ≥ 2 [see (36)], the subdiagonal entries θ j2 of W j satisfy

Re
(
θ j2λ̃

2
j

)
≥ −θ j1|λ̃ j |2/λ̃ j .

Moreover, Y ∈ ∂̂ρ(X̃)∞ if and only if Y satisfies (50)–(53), θ j1 = 0 for all j ∈
{1, . . . m}, and, for j ∈Iρ(X̃) with m j ≥2, Re(θ j2λ̃

2
j )≥0. Finally, ρ is subdifferentially

regular at X̃ if and only if all active eigenvalues are nonderogatory.

Remark 5 The proof uses the following formula for the subderivative of the polyno-

mial radius when p ∈Mn and r(p) > 0, which has independent interest:

dr( p̃)(v) = max
j∈Ir( p̃)

{( ∣∣ω j2

∣∣− Re(λ̃ jω j1)
)

/(|λ̃ j |n j )
}

,

where v =
∑m

j=1

∏
k �= j e(nk ,λ̃k )

∑n j

s=1 ω jse(n j−s,λ̃ j )
, provided that ω j2 ∈ cone (λ̃2

j )

and ω js = 0 for s = 3, . . . , n j and j ∈ Ir( p̃). Otherwise, dr( p̃)(v) = +∞.

When ρ(X̃) = 0, X̃ has a single eigenvalue, 0, with algebraic multiplicity n. For

this reason, we suppress the index “ j” in (50)–(53).
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Theorem 13 (ρ(X̃) = 0) Let X̃ ∈ Cn×n be such that ρ(X̃) = 0. Then Y ∈ ∂̂ρ(X̃)

if and only if Y satisfies (50)–(53) and |θ1| ≤ 1/n, where θ1 is the diagonal entry of

P−∗Y P̃∗. Moreover, Y ∈ ∂̂ρ(X̃)∞ if and only if Y satisfies (50)–(53) and θ1 = 0.

Finally, ρ is subdifferentially regular at X̃ if and only if X̃ is nonderogatory.

7.1 Examples

We consider two 3× 3 matrices:

A =

⎡
⎣

1 1 0

0 1 0

0 0 −1

⎤
⎦ and B =

⎡
⎣

1 1 0

0 1 0

0 0 1

⎤
⎦ .

The matrix A has two nonderogatory active eigenvalues, 1 and −1; the matrix B is

derogatory and defective.2 By Theorem 12, Y ∈ ∂ρ(A) if and only if there exist

θ11, θ12, θ21 ∈ C such that

Y =

⎡
⎣

θ11 0 0

θ12 θ11 0

0 0 θ21

⎤
⎦ ,

where Re(θ12) ≥ −θ11 , θ11 ∈ [0,∞), θ21 ∈ (−∞, 0], and 2θ11 − θ21 = 1. By

Theorem 12, Y ∈ ∂̂ρ(B) if and only if

Y = 1

3
I +

⎡
⎣

0 0 0

θ 0 0

0 0 0

⎤
⎦ , (70)

where Re(θ) ≥ −1/3. Consider the sequence of matrices Bν := B+Diag (0, 0, 1/ν)

for ν ∈ N. The only active eigenvalue of Bν is (1+ 1/ν), which is nonderogatory. By

Theorem 12, M := Diag (0, 0, 1) ∈ ∂̂ρ(Bν) for all ν, which implies M ∈ ∂ρ(B), yet

M /∈ ∂̂ρ(B) since it does not satisfy the form given in (70), i.e. the diagonal entries

are not equal.

8 Summary

This paper extends the variational results for the spectral abscissa mapping in [12] to

convexly generated spectral max functions. Two very different methods of analysis

are applied. The first uses the Arnold form (Sect. 4.1) and tools from [6]. A nonsmooth

chain rule is applied to the composition of the characteristic polynomial mapping and

a max root function for polynomials (6). The subdifferential theory for polynomial

max root functions is developed in [2], which in turn builds on the work in [9,10].

The key technical breakthroughs for the first approach appear in Sect. 4.2 culminating

2 The matrix B − I is in the family of matrices considered in [15] for the spectral abscissa.
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in Theorem 4, which describes the variational behavior of the mapping G taking a

matrix to its distinct active monomial factors on the space S p̃. This yields our first

main result, Theorem 6, which gives a formula for the subdifferential and establishes

subdifferential regularity when all active eigenvalues are nonderogatory.

The major drawback to Theorem 6 is the requirement that all of the active eigen-

values be nonderogatory. It is this hypothesis that gives access to our polynomial

results through Theorem 4. Our second line of attack avoids the polynomial results by

appealing directly to underlying matrix structures. This approach extends results in

[12] to convexly generated spectral max functions when possible. In Theorem 9, we

characterize the regular subgradients of a convexly generated spectral max function

without assuming nonderogatory active eigenvalues. In addition, Lemma 7 shows that

nonderogatory active eigenvalues are necessary for subdifferential regularity. Com-

bined with our earlier results, we obtain Theorem 11, which shows that subdifferential

regularity occurs if and only if all active eigenvalues are nonderogatory. This neatly

extends the 2001 result of Burke and Overton for the spectral abscissa [12] to the class

of convexly generated spectral max functions satisfying (3).

The results are applied in Sect. 7 to obtain new variational properties for the spectral

radius mapping.
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