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ABSTRACT

Connected vehicles leverage wireless interfaces to broadcast their

motion state information for improved tra�c safety and e�ciency.

It is crucial for their motion claims (location and velocity) to be ver-

i�ed at the receivers to detect spoo�ng attacks. Existing approaches

typically require multiple cooperative distributed veri�ers, which

is not applicable to vehicular networks. In this work, we propose

a secure motion veri�cation scheme based on Angle-of-Arrival

and Frequency-of-Arrival that only requires a single veri�er, by

exploiting opportunistic signal re�ection paths in the environment

to create multiple virtual veri�ers. We analyze the security of our

scheme both theoretically and under realistic road topology. We

also carry out real-world experiments with two vehicles in a cam-

pus environment, and results show that our scheme can accurately

detect false motion claims in a low relative speed vehicular network.
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1 INTRODUCTION

Autonomous systems have gained signi�cant research interests

recently, such as connected/autonomous vehicles (CAVs) [40], un-

manned aerial vehicles (UAVs) [2]. In such systems, vehicle-to-

everything (V2X) communication can be adopted to broadcast the

vehicle state information such as position, velocity and acceleration
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(PVA), which can improve the tra�c safety and e�ciency. For exam-

ple, in vehicle platooning applications[10], Vehicle-to-Vehicle (V2V)

communication helps platoon vehicles to maintain proper speed

and inter-vehicle distance to increase the road capacity and enhance

safety. In the air, UAVs typically broadcast their motion states (po-

sition and velocity) to be tracked or controlled by ground stations

[59], for air collision-avoidance and geo-fencing applications [20].

If the PVA information is incorrect (e.g., maliciously falsi�ed

by an adversary at the message source or during transmission),

severe consequences may entail. For example, if a misbehaving

connected vehicle in a platoon broadcasts a false message that it is

running at 10mph but the actual speed is 60mph, it may cause all

following vehicles to enter tra�c congestion while itself may gain

unfair advantage. To carry out such spoo�ng attacks, an adversary

who gains control of the vehicle may alter the communication

interfaces (e.g., via reprogramming electronic control units [49]),

or compromise on-broad sensors [5].

Traditional crypto-primitives, such as digital signatures and mes-

sage authentication codes, can only verify the authenticity and

integrity of messages during their transmission [19], but not the

veracity or truthfulness of the data content as it can be modi�ed at

the source. Approaches that leverage out-of-band sensing modal-

ities have been proposed for vehicle/UAV detection, ranging and

tracking, such as cameras [47], radar [1], lidar [23], etc. However,

these methods require extra hardware which incurs additional cost

(e.g. around one thousand dollars for a usable on-board radar[30] or

lidar[37]). And those sensors can also be compromised remotely [5].

In-band techniques have been proposed for source localization and

tracking, but they are insecure and/or need multiple veri�ers. For

example, received signal strength (RSS) can be easily spoofed by

power control/directional antennas. In addition, Doppler e�ect (DE)

is often used to measure the relative speed for vehicle tracking [38].

However, a malicious source may manipulate the center frequency

of the transmitted signal to deceive the DE-based velocity veri�ers.

Recent work [32] proposed DE-based secure motion veri�cation

for aircraft which can detect such attacks, but it requires multiple

spatially-distributed veri�ers and assumes static adversaries. It is

too costly to install multiple trustworthy veri�ers. Besides, multiple

veri�ers on the same vehicle do not provide additional security

than one veri�er, since they are very close to each other.

In this work, we aim to securely verify a target vehicles’ motion

state information with a single veri�er (e.g., an on-board unit on

a moving car or a ground station), without assuming any restric-

tions on the target vehicle (adversary)’s motion, who is also able

to manipulate both motion claims and its signal carrier frequency.

There are multiple challenges involved. First, the receiver should
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be able to independently verify the target vehicle’s claims with-

out the help of other nearby devices/vehicles since there may not

exist trusted infrastructure in a V2V scenario Also, if we assume

that the veri�er trusts its receiver only, many existing localiza-

tion/tracking approaches become inapplicable. In addition, existing

methods that directly estimate Doppler spread/shift from channel

state information [16] tend to be error-prone in such low relative

speed, fast-changing, multi-path rich channel environments [57].

To deal with the aforementioned challenges, we propose an in-

band secure motion veri�cation framework, which exploits the

Angle-of-Arrival (AOA) and Frequency-of-Arrival (FOA) measured

from the received RF-signal (by a multi-antenna receiver). In con-

trast to previous works in source localization that predominantly

leverage only the line of sight (LOS) path, we �nd that the multi-

path e�ect (e.g., caused by re�ection) can be used as an opportunity

to enhance security, because each signal path results in a di�erent

Doppler shift, due to di�erent radial velocity (related to the AoA).

Our basic idea is to check if the expected FOA (computed from the

motion claim) is close to the measured FOA on each signal path.

Assuming the AoA measurement is unforgeable, an adversary who

falsi�es its claim will be infeasible to simultaneously bypass all the

checks if there are more than three paths. The main challenge is that

the FOA on each path depends on the physical environment, specif-

ically the location and orientation of the re�ectors which may not

be known in advance. To address this, we �rst model the potential

re�ectors based on public maps, then use a Maximum Likelihood

Estimator (MLE) to infer the most probable source location based

on signal re�ection models and the AoA measurement. To handle

the unknown signal frequency o�set between the transmitter and

receiver, a Frequency Di�erence of Arrival approach (FDOA) [32]

is adapted to compare the measured FDOA with the expected ones

on each path. In summary, we make the following contributions:

(1) To the best of our knowledge, we propose the �rst single-

veri�er based in-band secure motion claim veri�cation scheme,

by exploiting the multi-path signal propagation e�ect. Security

analysis shows that it is secure against powerful attackers who can

both spoof the claims and also change the signal carrier frequency,

given enough number of paths.

(2) We resolve several practical challenges in our scheme, includ-

ing modeling and inferring real-world signal re�ectors in a proba-

bilistic manner, which helps locate the signal source and verify its

velocity without knowing the exact re�ectors in advance. In addi-

tion we adopt an FDOA-based approach to eliminate the unknown

carrier frequency o�set, which is signi�cant for low relative-speed

source/receiver pairs.

(3) We carry out extensive real-world experiments on software-

de�ned radio platforms to evaluate the e�ectiveness of the proposed

scheme in a campus environment. We report the receiver-operating

characteristic (ROC) curves for the detection of false claims as well

as errors for location estimation. Results show that we can securely

verify the vehicle claims and approximately track the movement of

a target vehicle within 30 meters.

2 RELATED WORK

In this section, we discuss two areas of related work: wireless signal

localization and vehicle motion claim veri�cation and tracking.

2.1 Wireless Signal Source Localization

Numerous works have studied this topic, and the basic principle

is based on triangulation. For example, RSS [28], Time-of-Flight

(TOF), Time-Di�erence-of-Arrival (TDOA) [4, 33] measurements

were used to estimate the distance from the source to each anchor.

AOAmeasures the LOS signal directions and intersection locates the

source position [12, 43, 52]. However, multiple spatially-separated

anchors (receivers) are required for triangulation (at least three for

3-D), which does not apply to the problem setting in this paper. For

a complete survey of wireless localization methods, readers can

refer to [6].

On the other hand, some recent works proposed to utilize a

single receiver for source localization. For example, Du et. al. [12]

leverages one moving anchor node to estimate the location of a

static signal source based on AoA intersection, which is not ap-

plicable to our setting as the source is mobile. Vasisht et. al. [42]

proposed a single AP based accurate localization method by �nding

the LOS path angle and estimate the distance with RSS. In [43] they

also propose simultaneous localization and channel estimation for

cellular networks, which requires estimating each path’s channel

gain, whereas our approach does not need it. A few works in indoor

mmWave communication [46, 61] do channel prediction based on

the reconstruction of the multi-paths in the environment, however,

they require full and exact knowledge of re�ectors via signi�cant

training. Also, these works are not directly applicable to localiza-

tion. Note that mmWave has much higher frequencies than the

ones considered in our work (sub 6 GHz), and the latter is much

more challenging due to di�erent propagation characteristics.

2.2 Location and Motion Veri�cation

All the above studies were done under a non-adversarial setting.

Capkun et.al. [6, 7] showed that distance estimation based wire-

less positioning techniques are subjected to malicious attacks (for

example, distance spoo�ng with RSS and TOF by changing sig-

nal power and timing). They propose a veri�able multilateration

scheme based on distance bounding. However, distance bounding

is not yet practical and it usually requires out-of-band channels or

special hardware [1, 26].

Other secure positioning or location veri�cation schemes [11, 14,

22, 45] use multiple veri�ers to �lter out the false position claims

and improve the localization accuracy, while cooperation among the

veri�ers is needed which may limit their practicality. More recently,

several works exploit the inherent mobility of the prover [31], or

the veri�er [4], or both [33], to relax the requirements of previous

approaches. However, random [4] or controlled [33] mobility is not

applicable to vehicular networks nor stationary ground stations as

veri�ers. On the contrary, our approach does not assume stationary

provers [31, 33], while we can handle both stationary and mobile

provers and veri�ers.

On the other hand, several works utilize Doppler e�ect for mo-

tion veri�cation, e.g., [16] and [32] focusing on aircraft motion

veri�cation only, while this work considers cars and UAVs that

move slower and in a more complicated (noisy) environment such

as urban areas. A secure vehicle tracking scheme is proposed by

Sun et al. [38], which exploits the implied e�ect of Doppler Shift

(DS) and AoA measurements to verify a target vehicle’s movement
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Figure 1: System model. ' stands for a re�ection point; >8 is

a virtual veri�er for the path 8 (mirroring $).

and uses a modi�ed extended Kalman �lter for secure tracking.

However, they assume that DS can be securely measured without

proposing a concrete design, and require at least one trustworthy

neighboring vehicle to provide extra measurements. In contrast, in

this work we do not make such assumptions and aim at using only

one receiver for in-band motion veri�cation.

For more speci�c applications such as vehicular networks or

platooning, various methods have been proposed for misbehav-

ior detection or position veri�cation/authentication. These works

either detect location spoo�ng or measure spacing between vehi-

cles using other modalities (e.g., radar [55], cameras [26], LiDARs

[10, 61], accelerometers [21]) and use AoA/TDOA/RSS but assume

static provers [9], focus on detecting other attacks such as Sybil

attacks using RSS [56], or assume honest majority of vehicles [58].

However, these works require extra hardware or out-of-band chan-

nels, and these sensors are subject to varying attacks [5, 24]. In

contrast, our approach is in-band and has more general applications.

For in-band location veri�cation approaches, a recent scheme

[36] based on RSS distribution can only roughly verify the distance

of a vehicle since RSS is noisy in reality, and is not secure against

stronger adversaries that can change the transmission power. There

are other methods for location veri�cation using channel signatures

trained from the CSI[60], however they are vulnerable to multipath

camou�age attacks [13], in which a device’s CSI can be forged by

an attacker at a di�erent location using precoding assuming the

CSI is known. Our proposed method is based on AOA, which is not

subjected to the camou�age attack.

3 PROBLEM STATEMENT

Our problem is de�ned as follows: A (stationary or moving) veri�er

V aims to verify whether the motion claim C of a (stationary or

moving) prover T is true or not. The motion claim tuple is de�ned

as C = (?,−!E ), where ? represents the prover’s position claim and
−!E denotes the velocity claim vector. For simplicity, we consider a

2D Cartesian coordinate system in the following. Similar analysis

can also be extended to 3-D.

3.1 System Model and Assumptions

As illustrated in Fig. 1 (a snapshot), the prover periodically broad-

casts its current claim tuple C = (?,−!E ) via wireless messages with

a pre-de�ned signal center frequency 50. For simplicity, we assume

the transmitter uses omnidirectional antennas1. Meanwhile, the

veri�er, which locates within the transmission range of the prover,

moves at a velocity −!E> at position > and receives the signal by a

�xed antenna array. We consider a generic multi-path signal prop-

agation model [41], which can include both the LOS path2 (Path 0)

and re�ection paths (e.g., Paths 1 and 2). Such models are widely

adopted in vehicular networks [25, 39, 44]. However, we do not

assume any knowledge on the statistical parameters of the channel

model (such as path loss exponent etc.). Instead, since our goal is

not to estimate the channel but verify the location and velocity, we

assume there are only one-hop re�ections on each path which is

dominant over multi-hop re�ection in terms of received power for

outdoor applications [34], and there are several potential re�ectors

in the surrounding environment, whose positions and orientations

are known by the veri�er a priori (which can be extracted from

public maps, or deployed by the veri�er in advance). Note that

exact signal re�ectors are not known in advance which must be

inferred in real-time. Besides, we consider imperfect signal re�ec-

tion directions (such as the probabilistic distribution in [18]) due to

non-smooth re�ector surfaces, i.e., V is not necessarily equal to V 0

(Fig. 1). We assume that the veri�er always knows its own location

and velocity (e.g., via GPS).

3.2 Doppler E�ect

As illustrated in Fig. 1, we de�ne E2,0 and E>,0 as the radial speed of

the prover’s and veri�er’s claim along the direction of Path 0:

E2,0 = |−!E | · cos(U0) E$,0 = |−!E$ | · cos(W0) (1)

Because of the Doppler e�ect, the frequency of arrival (FOA) along

Path 0 can be expressed as

5A,0 = 50 ·
2 + E$,0

2 + E2,0
= 50 ·

2 + E> · cos(W0)

2 + E · cos(U0)
(2)

where 2 is the speed of light and 50 is the carrier frequency. We

denote E = |−!E | and E> = |−!E> | for convenience. The above equation

is for the true FOA, thus it does not include the frequency o�sets

and measurement noise.

Meanwhile, signal re�ections in non-line-of-sight (NLOS) paths

lead to di�erent amounts of Doppler shifts on each path. In general,

a re�ector changes the Doppler e�ect by changing the radial speed

of both transmitter and receiver. Take Path 1 for an example, where

the signals transmitted from the prover is re�ected by ' and then

arrives at the veri�er. The Doppler shift of this signal can be divided

into two parts: the �rst is induced between the prover and the

re�ection point ', and the second part appears between ' and the

veri�er. For a stationary re�ection point ', the FOA is computed

by the following two equations:

5<,1 = 50 ·
2

2 + E2,1
, (3)

5A,1 = 5<,1 ·
2 + E$,1

2
= 50 ·

2 + E$,1

2 + E2,1
, (4)

where 5<,1 is the signal FOA at re�ection point', and 5A,1 is the FOA

at the veri�er. Also, E2,1 = E · cos(U1) and E>,1 = E> · cos(W1). We can

1Directional antennas can also be used but it may not result in as many paths needed
for security, as with omnidirectional antennas.
2Existence of the LOS path is not necessary but will enhance performance.
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see that the position and orientation of the re�ection point ' only

changes the radial speed of both the prover and the veri�er, but

it does not cause any additional frequency shifts. The same result

holds even when the re�ector is moving (omitted due to space

limitations). In fact, adding one re�ection path can be regarded

as adding a virtual veri�er located at the mirror position with

respect to the re�ection surface (as shown in Fig. 1). Therefore,

each multi-path can provide an additional virtual veri�er that is

spatially separated from each other, which is leveraged to enhance

security in our scheme.

3.3 Threat Model

We consider an attacker who gains full control of the prover, that

aims to successfully claim a false motion C = (?,−!E ) di�erent from

its real one C0 = (?0,
−!E0) without being detected by the veri�er.

First, the attacker can modify/shift the signal carrier frequency 50.

There can be two types of changes: one is arbitrary shift [32] (which

is stronger but makes sense for unidirectional communication), the

other is restricted within the correctable central frequency o�set

range (CCFOR), which guarantees the successful message decoding

[16, 17] in the wireless system (more suitable for bi-directional com-

munication). However, the transmitted signal frequency remains

the same in all directions3. Second, we assume an arbitrarily mobile

prover whose velocity claim E2 is only constrained by the physical

limitations of the source vehicle. For example, for a signal source

mounted on vehicles or UAVs, the maximum moving speed and

heading are limited by the engine power as well as tra�c rules.

Besides, we assume the prover/adversary is always aware of the

position and velocity of the veri�er (e.g., from the V2V messages),

and also the whereabouts of the re�ectors in the environment (e.g.,

from publicly available maps). The veri�er trusts its own measure-

ments, and the AOA is assumed to be unforgeable [52, 53], because

it is di�cult for attackers to deploy their own or change existing

re�ectors in the physical environment.

4 BASIC IDEA AND CHALLENGES

We introduce our basic idea for motion claim veri�cation with a

single receiver, and analyze its security properties and challenges.

4.1 Basic Idea of Claim Veri�cation

The main idea of our motion claim veri�cation is to measure the

actual FOA measured on each individual path and cross-check its

consistency with the respective expected FOA computed from the

claim. Once the veri�er detects a mismatch on any path, an alarm

will be raised. Speci�cally, let us de�ne a set" containing all the

signal paths (including the LOS and several re�ected ones) that

arrive at the receiver. De�ne 52,< and 50,< as the expected and

actual signal FOA, respectively, for a path< 2 " as follows

52,< = 50 ·
2 + E$,<

2 + E2,<
= 50 ·

2 + E$ cos(W<)

2 + E · cos(U<)
,

50,< = 50 ·
2 + E 0

$,<

2 + E0,<
= 50 ·

2 + E$ cos(W 0<)

2 + E0 cos(U
0
<)

,

(5)

3We assume the attacker cannot use multiple devices to simultaneously transmit
the same signal in di�erent carrier frequencies along di�erent directions (commonly
assumed by previous works [16, 32])

where E$,< and E2,< are the expected radial speed of the veri�er

and prover based on the prover’s claimed motion tuple, respec-

tively; E 0
$,<

and E0,< are the actual radial speed of the verifer and

prover based on the actual prover’s motion tuple; 50 is the expected

(nominal) signal carrier frequency; 50 is the modi�ed (actual) carrier

frequency; W< and U< , W 0< and U 0
< are the projection angles of the

claimed velocity ÆE and actual velocity ÆE0 at Path<, respectively.

The veri�cation criteria: If there exists at least one path< 2 "

that violates the following constraints, an alarm is raised:

|52,< − 50,< |  T ,8< 2 ", (6)

where T is a properly de�ned threshold. In other words, all mea-

sured paths should satisfy Eq. (6) to pass the veri�cation.

4.2 Security Analysis and Challenges

The attacker aims to make 52,< = 50,< for all< 2 " with C < C0 :

50 ·
2 + E$ cos(W<)

2 + E · cos(U<)
= 50 ·

2 + E$ cos(W 0<)

2 + E0 cos(U
0
<)

,8< 2 ", (7)

Since several variables above are related to each other, we re-express

the U< as a function of the motion claim ? and −!E , such as U< =

6< (?,−!E ). For example, U0 in Fig. 1 can be written as

U0 = 60 (?,
−!E ) = ∠−!E ,

−!
>? = |∠−!E ,−!G − ∠

−!
>?,−!G |

where −!G is the G axis direction. Similarly, W< is a function of ? and

we can express it as W< = ⌘< (?). Note that U< and W< are also

related to the re�ection point '< , but since the veri�er’s position

and re�ectors are out of adversary’s control, we omit it for simplicity.

Therefore, (7) can be re-written as:

50 ·
2 + E$ cos(⌘< (?))

2 + E · cos(6< (?,−!E ))
= 50 ·

2 + E$ cos(W 0<)

2 + E0 cos(U
0
<)

,8< 2 ", (8)

where E$ , W
0
< , U 0

< and E0 capture the actual value, which cannot be

modi�ed, and 50 is �xed. The attacker can control −!E , 50 , W< and U<
by manipulating the carrier frequency 50 , position claim ? , velocity

claim −!E (include both heading and speed). In general, if we only

focus on one time step, heading and speed can be independently

claimed. The attacker has 4 variables (degrees of freedom) and

theoretically we need at least 5 independent constraints (paths) to

make the attack fail to �nd a feasible tuple.

One major challenge is that, there may not always exist 5 observ-

able paths in real-world outdoor environments (even if there are

enough re�ectors the received power on a path may be too weak).

Thus, we need to reduce the path requirement. A straight-forward

way is to verify at multiple consecutive time steps. For example,

we can require that the claimed positions and velocity of adjacent

times to be consistent with kinematic equations, which means the

veri�er needs one less path for each time step. But we still need to

minimize the number of free variables that the attacker can control

to make our scheme both secure and practical. In addition, another

challenge is to deal with measurement noise and error. The central

frequency o�set (CFO) of the signal transmitter is unknown which

impacts the measured FOA, and the error incurred by Doppler reso-

lution, which is low when the data sampling rate is low. Moreover,

the receiver needs to infer which re�ectors are actually used in

each path, and obtain their positions and orientations. In a typical

channel environment for sub-6GHz, re�ection and refraction often
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coexist and di�erent surfaces exhibit di�erent re�ection character-

istics. Last but not least, the veri�er needs to correctly match the

frequency peaks in the measured FOA pro�le to their correspond-

ing paths measured by AOA distribution. We will describe our ideas

to address each of them in Sec. 5.

5 SECURE VERIFICATION METHOD

Fig. 2 shows the high-level overview of our claim veri�cation

scheme to examine the motion claim. To further reduce the num-

ber of adversary controlled variables, we decompose the problem

into two sub-problems and sequentially verify position claim ?

and velocity claim −!E . In short, after receiving the RF signal, the

veri�er measures the AOA and FOA distributions and decodes the

motion claim. Then, if multiple paths exist, based on the measured

AOA and prior knowledge of the candidate re�ectors, we employ

an MLE to infer the most probable re�ector on each path. This is

used as input to location claim veri�cation, and also provides an

estimated location as a byproduct. This helps to reduce the number

of controllable variables of the attacker by one for velocity veri-

�cation. Then, an FDOA-based approach is adopted to verify the

velocity claim which eliminates the unknown frequency o�set, as

well as circumvents the complicated path AOA-to-FOA matching.

The detailed algorithms and security analyses are presented next.

5.1 Identify the Signal Directions of Arrival

Our method makes use of the opportunistically re�ected signals

to obtain the AOAs of each path and corresponding frequencies.

The veri�er �rst identi�es the signal paths by estimating the AOA

distribution of the received signal, which is the incoming signal’s

power distribution at di�erent arrival directions. For illustration, we

pick the MUSIC [52] algorithm where the signal power distribution

%AOA (q) is computed as:

%AOA (q) =
1

0(q)⇢# ⇢#0(q)
(9)

Detailed explanations can be found in [52]. Next, the veri�er locates

all the potential paths from the AOA distribution, including both

LOS path and re�ected paths, by �nding peaks in the distribution.

The number of peaks represents the number of potential paths

in the received signal. For example, in Fig 3, the red distribution

around the veri�er represents the AOA distribution, which has 3

peaks. If not blocked, the direction of the LOS path usually exhibits

the highest incoming power. In general, if there are " peaks, we

pick the highest peak as the direct (LOS) path (path 0) and other

" − 1 peaks as re�ection signal paths.

5.2 Position Claim Veri�cation

After we �nd out the number of paths and their arriving directions,

we verify the position claim ? by modeling and inferring the most

likely environmental re�ectors on each path, and subsequently

verifying the source location claim. As a result it also outputs an

estimated location. This is presented in algorithm 1.

5.2.1 Problem Formulation. The basic idea of the position veri�-

cation is to estimate the most probable signal location �rst and

then compare it with the claimed ? . Therefore, it becomes a secure

localization problem which is formulated as follows. We �rst de�ne

a search boundary K , as the possible area that the prover can be

locate in. The basic idea is to go through all the candidate loca-

tions : 2 K (discretized according to a certain resolution), and �nd

the most likely position :∗ which is consistent with the measured

AOA distribution. The likelihood of observing an AOA distribution

%AOA (q) given a candidate source position : , the potential re�ector

set R and the veri�er position > , is de�ned as follows:

!: = %A (%AOA (q) |>,R,:). (10)

The veri�er aims to �nd the best candidate position :∗ which max-

imizes the likelihood of the AOA distribution %AOA (q), i.e.,

:∗ = argmax
:∈ 

!: . (11)

Since %+$+ (q) consists of multiple di�erent peaks, and we can

assume that the probability distribution of each path (direction) is

independent of each other (typical assumption in rich-scattering

channel models [50]), we can express the likelihood !: by multi-

plying the likelihoods of each individual path !<,: :

!: =

÷

<∈"

!<,: =

÷

<∈"

%A (< |>,R,:), (12)

where %A (< |>,R,:) represents the likelihood of the<-th path/peak

appearing in %+$+ (q). The next question is how to calculate !<,: .

5.2.2 Likelihood of the Direct Path. For the direct (LOS) path, since

there is no re�ection, the veri�er can directly calculate the direction

of arrival q<,: of a candidate location : based on the coordinates

of : and veri�er > . The di�erence between the measured AOA q<
and the expected angle q<,: (under mirror re�ection) is q̃<,: =

q<,: −q< . It is caused by AOAmeasurement error, which is usually

modeled as standard Gaussian distribution [18]. Denoting it by

#AOA, the likelihood !<,: can be expressed as

!<,: = #AOA

⇣

q̃<,:

⌘

. (13)

When q<,: approaches to q< , the likelihood increases.

5.2.3 Likelihood of a Reflection Path. Assume the veri�er already

extracted the set of candidate surrounding re�ectors R and their

orientations from a map. Due to the complexity of the environment,

it is di�cult to �nd the exact re�ector and re�ection points that

correspond to each re�ection path. Also, we cannot assume perfect

mirror re�ection because the re�ection surface is not perfectly

smooth. Therefore, we need to �rst infer the most probable re�ector

for each path. The idea is illustrated in Fig. 3 where we show a

re�ection path 1 at direction >'1.

Based on the AOA distribution %+$+ (q), the veri�er draws an

extended line along the AOA peak direction and �nd its intersection

with all known surfaces ' ∈ R. The orientation of each re�ector is

denoted as \',∀' ∈ R. We assume there are #< potential re�ectors

along path<. Then the probability of obtaining this path< from

the candidate position : can be expressed using the total probability

theorem as follows

!<,: = %A (< |:,>,R) =

#<
’

'=1

%A (< |:,',>) · %A (') (14)

Without any knowledge of ', we assume a uniform distribution for

%A ('), thus %A (') = 1/#< . Also, the %A (< |:,',>) can be modeled

by considering the signal re�ection distribution %A4 5 .
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re�ection angle and a higher relative speed at point B (2.7m/s) than

A (2.1m/s). For example, in scenario two, when T = 9.5 Hz, the

corresponding TPR is 0.98, 0.82 and 0.29 for deviation vectors 1, 2,

3 respectively, given the error distribution in Sec.5.4.3. Selecting

di�erent T of 9.1 Hz, 7.3 Hz and 5 Hz for each vector can provide

an equal error rate of 2.6%, 7% and 22% respectively.

Results on Timing: In our experiment, it takes 1.84 s to process

one segment of data (131k data points with AOA analysis and posi-

tion estimation) via Jupiter Notebook on a PC (i7-7700@3.6GHz,

128G SSD and 12G DDR4 RAM) in an o�ine manner for a search

region of (8 × 30m2). While we used Spider, a lower-level pro-

gramming language such as C/C++ or an embedded software can

improve the timing performance to make it suitable for online

processing.

7 DISCUSSION

Limitations. First, our scheme requires the presence of enough num-

ber of re�ectors in the environment. When the veri�er is stationary,

one can �rst do a site survey to �nd a suitable location for deploying

the receiver to let ample re�ectors surround it. Or we can deploy

our own re�ectors (e.g., metal boards) near the veri�er. Note that,

for most vehicle applications, the ground/roadway can always pro-

vide one reliable re�ection path. Thus there are at least two paths

(including LOS) in most cases. Neighboring vehicles can impact

the performance of our algorithm either positively or negatively.

We conducted similar experiments in one parking lot with sparsely

parked vehicles. Results show that, for a non-crowded parking lot,

signal re�ected from vehicle surface is usually not that consistent

and obvious compared with that from nearby buildings/walls. We

hypothesize that on roads without large roadside re�ectors, nearby

parallel vehicles can be used as re�ectors in our method. Besides,

inaccurate re�ector modeling, such as inaccurate re�ector informa-

tion from maps, unexpected pedestrians, bicycles or vehicles, can

deteriorate the system performance. Although our current method

heavily relies on accurate environment modeling and the experi-

ment is still preliminary, it serves as a proof-of-concept.

Formobile veri�ers, our scheme is more opportunistic since there

is less control over the number of re�ectors in the surrounding, thus

it may not detect sporadic false claims (which is not a very e�ective

attack). However, over a longer time span (e.g., a few seconds), as

long as the path requirement is satis�ed for a few time steps, it

can detect persistent liers with high success probability. On-board

re�ectors would make virtual veri�ers too close to the original

veri�er due to the vehicle size limit, therefore is not very helpful.

Besides, in our experiment, we have used a single-frequency

source signal for simplicity. In reality when data packets are sent,

the base-band signal frequency spans a range depending on the

bandwidth (typically on the order of kHz or even MHz). If FFT

is done directly on the received signal, obviously it becomes dif-

�cult to identify frequency shifts of each individual path since

their spectrum superimpose while the DS may be as low as a few

Hz. Fortunately, most wireless standards use OFDM modulation

(e.g., 802.1x, DSRC), which contains hundreds of narrow-band sub-

carriers. Pu et. al. [29] proposed a signal processing technique that

exploits this feature to do gesture recognition using WiFi, e�ec-

tively reducing the bandwidth of the signal to a few Hz in each

sub-band. We can also adopt this method in our scheme.

Performance enhancement. Our scheme performance can be en-

hanced by more re�ectors or resolvable signal paths, more accurate

AOA distribution measurement and smaller FOA resolution error.

For AOA, the number of antennas in the receiver array should be

larger than the number of multipaths. Increasing antenna number

can signi�cantly increase the accuracy and resolution of estimating

AOA [51]. For the signal FOA accuracy, the Gaussian interpolation

method can signi�cantly reduce the FFT resolution error, which we

have already adopted [29]. In addition, using a higher central carrier

frequency can also improve the detection performance because it

increases the Doppler shift and the FDOA.

Applications. The main application scenarios of this work are in

vehicular networks or connected vehicles within short ranges (e.g.,

< 100m). Both the veri�er and prover can either be stationary or

mobile. For stationary veri�ers, this can be applied to intelligent

tra�c lights that verify the claimed positions/speeds of vehicles

approaching an intersection to prevent spoo�ng attacks against

tra�c control systems (where a single malicious vehicle can cause

severe tra�c congestion) [8]. When the veri�er is mobile, this can

be applied to V2V communication, where each vehicle should be

able to verify nearby vehicle’s motion claims from their periodically

broadcast safetymessages [54]. For secure tracking applications, our

scheme may not achieve real-time tracking since it is opportunistic,

and during periods of low re�ection it may not be accurate.

We also postulate applications to UAV geo-fencing [35]with �xed

ground stations, where unauthorized UAVs encroaching restricted

airspace should be detected with their locations/headings veri�ed.

Typically this happens at short to medium ranges, such as a few

hundred meters to kilometers. The main challenge is the longer

range than ground vehicles, and the UAVs travel in 3D space and

we may need more paths/re�ectors for secure veri�cation. But on

the positive side, UAVs can travel in much higher relative speeds to

the ground than the ones among vehicles.

8 CONCLUSION

In this paper, we propose a single receiver based secure motion

claim veri�cation scheme which utilizes the multipath signal re-

�ections from the environment to mimic multiple virtual veri�ers

at di�erent locations. Our scheme uses a maximum likelihood esti-

mator to model potential re�ections and locate the most probable

signal source. Meanwhile, a FDOA-based approach is adopted to

eliminate the unknown frequency o�sets to verify the velocity

claim. Security analysis show that at least �ve unique paths are

needed in theory (for a single time step), and with realistic road

topology it can be reduced to three. Our real-world road vehicle

experiments show that, in a low relative-speed local vehicular net-

work, our scheme can con�dently detect large deviations in the

motion claim, and can approximately track the vehicle within short

ranges. We also discussed the applications of this work and ways

to further enhance the veri�cation performance. Future work will

extend this scheme to verify and track UAVs movements in 3D.
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