SVM: Secure Vehicle Motion Verification with a Single Wireless
Receiver

Mingshun Sun, Yanmao Man, Ming Li
Department of ECE, University of Arizona
Tucson, Arizona
{mingshunsun,yman,lim}@email.arizona.edu

ABSTRACT

Connected vehicles leverage wireless interfaces to broadcast their
motion state information for improved traffic safety and efficiency.
It is crucial for their motion claims (location and velocity) to be ver-
ified at the receivers to detect spoofing attacks. Existing approaches
typically require multiple cooperative distributed verifiers, which
is not applicable to vehicular networks. In this work, we propose
a secure motion verification scheme based on Angle-of-Arrival
and Frequency-of-Arrival that only requires a single verifier, by
exploiting opportunistic signal reflection paths in the environment
to create multiple virtual verifiers. We analyze the security of our
scheme both theoretically and under realistic road topology. We
also carry out real-world experiments with two vehicles in a cam-
pus environment, and results show that our scheme can accurately
detect false motion claims in a low relative speed vehicular network.
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1 INTRODUCTION

Autonomous systems have gained significant research interests
recently, such as connected/autonomous vehicles (CAVs) [40], un-
manned aerial vehicles (UAVs) [2]. In such systems, vehicle-to-
everything (V2X) communication can be adopted to broadcast the
vehicle state information such as position, velocity and acceleration
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(PVA), which can improve the traffic safety and efficiency. For exam-
ple, in vehicle platooning applications[10], Vehicle-to-Vehicle (V2V)
communication helps platoon vehicles to maintain proper speed
and inter-vehicle distance to increase the road capacity and enhance
safety. In the air, UAVs typically broadcast their motion states (po-
sition and velocity) to be tracked or controlled by ground stations
[59], for air collision-avoidance and geo-fencing applications [20].

If the PVA information is incorrect (e.g., maliciously falsified
by an adversary at the message source or during transmission),
severe consequences may entail. For example, if a misbehaving
connected vehicle in a platoon broadcasts a false message that it is
running at 10 mph but the actual speed is 60 mph, it may cause all
following vehicles to enter traffic congestion while itself may gain
unfair advantage. To carry out such spoofing attacks, an adversary
who gains control of the vehicle may alter the communication
interfaces (e.g., via reprogramming electronic control units [49]),
or compromise on-broad sensors [5].

Traditional crypto-primitives, such as digital signatures and mes-
sage authentication codes, can only verify the authenticity and
integrity of messages during their transmission [19], but not the
veracity or truthfulness of the data content as it can be modified at
the source. Approaches that leverage out-of-band sensing modal-
ities have been proposed for vehicle/UAV detection, ranging and
tracking, such as cameras [47], radar [1], lidar [23], etc. However,
these methods require extra hardware which incurs additional cost
(e.g. around one thousand dollars for a usable on-board radar[30] or
lidar[37]). And those sensors can also be compromised remotely [5].
In-band techniques have been proposed for source localization and
tracking, but they are insecure and/or need multiple verifiers. For
example, received signal strength (RSS) can be easily spoofed by
power control/directional antennas. In addition, Doppler effect (DE)
is often used to measure the relative speed for vehicle tracking [38].
However, a malicious source may manipulate the center frequency
of the transmitted signal to deceive the DE-based velocity verifiers.
Recent work [32] proposed DE-based secure motion verification
for aircraft which can detect such attacks, but it requires multiple
spatially-distributed verifiers and assumes static adversaries. It is
too costly to install multiple trustworthy verifiers. Besides, multiple
verifiers on the same vehicle do not provide additional security
than one verifier, since they are very close to each other.

In this work, we aim to securely verify a target vehicles’ motion
state information with a single verifier (e.g., an on-board unit on
a moving car or a ground station), without assuming any restric-
tions on the target vehicle (adversary)’s motion, who is also able
to manipulate both motion claims and its signal carrier frequency.
There are multiple challenges involved. First, the receiver should
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be able to independently verify the target vehicle’s claims with-
out the help of other nearby devices/vehicles since there may not
exist trusted infrastructure in a V2V scenario Also, if we assume
that the verifier trusts its receiver only, many existing localiza-
tion/tracking approaches become inapplicable. In addition, existing
methods that directly estimate Doppler spread/shift from channel
state information [16] tend to be error-prone in such low relative
speed, fast-changing, multi-path rich channel environments [57].

To deal with the aforementioned challenges, we propose an in-
band secure motion verification framework, which exploits the
Angle-of-Arrival (AOA) and Frequency-of-Arrival (FOA) measured
from the received RF-signal (by a multi-antenna receiver). In con-
trast to previous works in source localization that predominantly
leverage only the line of sight (LOS) path, we find that the multi-
path effect (e.g., caused by reflection) can be used as an opportunity
to enhance security, because each signal path results in a different
Doppler shift, due to different radial velocity (related to the AoA).
Our basic idea is to check if the expected FOA (computed from the
motion claim) is close to the measured FOA on each signal path.
Assuming the AoA measurement is unforgeable, an adversary who
falsifies its claim will be infeasible to simultaneously bypass all the
checks if there are more than three paths. The main challenge is that
the FOA on each path depends on the physical environment, specif-
ically the location and orientation of the reflectors which may not
be known in advance. To address this, we first model the potential
reflectors based on public maps, then use a Maximum Likelihood
Estimator (MLE) to infer the most probable source location based
on signal reflection models and the AoA measurement. To handle
the unknown signal frequency offset between the transmitter and
receiver, a Frequency Difference of Arrival approach (FDOA) [32]
is adapted to compare the measured FDOA with the expected ones
on each path. In summary, we make the following contributions:

(1) To the best of our knowledge, we propose the first single-
verifier based in-band secure motion claim verification scheme,
by exploiting the multi-path signal propagation effect. Security
analysis shows that it is secure against powerful attackers who can
both spoof the claims and also change the signal carrier frequency,
given enough number of paths.

(2) We resolve several practical challenges in our scheme, includ-
ing modeling and inferring real-world signal reflectors in a proba-
bilistic manner, which helps locate the signal source and verify its
velocity without knowing the exact reflectors in advance. In addi-
tion we adopt an FDOA-based approach to eliminate the unknown
carrier frequency offset, which is significant for low relative-speed
source/receiver pairs.

(3) We carry out extensive real-world experiments on software-
defined radio platforms to evaluate the effectiveness of the proposed
scheme in a campus environment. We report the receiver-operating
characteristic (ROC) curves for the detection of false claims as well
as errors for location estimation. Results show that we can securely
verify the vehicle claims and approximately track the movement of
a target vehicle within 30 meters.

2 RELATED WORK

In this section, we discuss two areas of related work: wireless signal
localization and vehicle motion claim verification and tracking.
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2.1 Wireless Signal Source Localization

Numerous works have studied this topic, and the basic principle
is based on triangulation. For example, RSS [28], Time-of-Flight
(TOF), Time-Difference-of-Arrival (TDOA) [4, 33] measurements
were used to estimate the distance from the source to each anchor.
AOA measures the LOS signal directions and intersection locates the
source position [12, 43, 52]. However, multiple spatially-separated
anchors (receivers) are required for triangulation (at least three for
3-D), which does not apply to the problem setting in this paper. For
a complete survey of wireless localization methods, readers can
refer to [6].

On the other hand, some recent works proposed to utilize a
single receiver for source localization. For example, Du et. al. [12]
leverages one moving anchor node to estimate the location of a
static signal source based on AoA intersection, which is not ap-
plicable to our setting as the source is mobile. Vasisht et. al. [42]
proposed a single AP based accurate localization method by finding
the LOS path angle and estimate the distance with RSS. In [43] they
also propose simultaneous localization and channel estimation for
cellular networks, which requires estimating each path’s channel
gain, whereas our approach does not need it. A few works in indoor
mmWave communication [46, 61] do channel prediction based on
the reconstruction of the multi-paths in the environment, however,
they require full and exact knowledge of reflectors via significant
training. Also, these works are not directly applicable to localiza-
tion. Note that mmWave has much higher frequencies than the
ones considered in our work (sub 6 GHz), and the latter is much
more challenging due to different propagation characteristics.

2.2 Location and Motion Verification

All the above studies were done under a non-adversarial setting.
Capkun et.al. [6, 7] showed that distance estimation based wire-
less positioning techniques are subjected to malicious attacks (for
example, distance spoofing with RSS and TOF by changing sig-
nal power and timing). They propose a verifiable multilateration
scheme based on distance bounding. However, distance bounding
is not yet practical and it usually requires out-of-band channels or
special hardware [1, 26].

Other secure positioning or location verification schemes [11, 14,
22, 45] use multiple verifiers to filter out the false position claims
and improve the localization accuracy, while cooperation among the
verifiers is needed which may limit their practicality. More recently,
several works exploit the inherent mobility of the prover [31], or
the verifier [4], or both [33], to relax the requirements of previous
approaches. However, random [4] or controlled [33] mobility is not
applicable to vehicular networks nor stationary ground stations as
verifiers. On the contrary, our approach does not assume stationary
provers [31, 33], while we can handle both stationary and mobile
provers and verifiers.

On the other hand, several works utilize Doppler effect for mo-
tion verification, e.g., [16] and [32] focusing on aircraft motion
verification only, while this work considers cars and UAVs that
move slower and in a more complicated (noisy) environment such
as urban areas. A secure vehicle tracking scheme is proposed by
Sun et al. [38], which exploits the implied effect of Doppler Shift
(DS) and AoA measurements to verify a target vehicle’s movement
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Figure 1: System model. R stands for a reflection point; o; is
a virtual verifier for the path i (mirroring O).

and uses a modified extended Kalman filter for secure tracking.
However, they assume that DS can be securely measured without
proposing a concrete design, and require at least one trustworthy
neighboring vehicle to provide extra measurements. In contrast, in
this work we do not make such assumptions and aim at using only
one receiver for in-band motion verification.

For more specific applications such as vehicular networks or
platooning, various methods have been proposed for misbehav-
ior detection or position verification/authentication. These works
either detect location spoofing or measure spacing between vehi-
cles using other modalities (e.g., radar [55], cameras [26], LIDARs
[10, 61], accelerometers [21]) and use AoA/TDOA/RSS but assume
static provers [9], focus on detecting other attacks such as Sybil
attacks using RSS [56], or assume honest majority of vehicles [58].
However, these works require extra hardware or out-of-band chan-
nels, and these sensors are subject to varying attacks [5, 24]. In
contrast, our approach is in-band and has more general applications.

For in-band location verification approaches, a recent scheme
[36] based on RSS distribution can only roughly verify the distance
of a vehicle since RSS is noisy in reality, and is not secure against
stronger adversaries that can change the transmission power. There
are other methods for location verification using channel signatures
trained from the CSI[60], however they are vulnerable to multipath
camouflage attacks [13], in which a device’s CSI can be forged by
an attacker at a different location using precoding assuming the
CSI is known. Our proposed method is based on AOA, which is not
subjected to the camouflage attack.

3 PROBLEM STATEMENT

Our problem is defined as follows: A (stationary or moving) verifier
V aims to verify whether the motion claim C of a (stationary or
moving) prover 7 is true or not. The motion claim tuple is defined
as C = (p, @), where p represents the prover’s position claim and
v denotes the velocity claim vector. For simplicity, we consider a
2D Cartesian coordinate system in the following. Similar analysis
can also be extended to 3-D.

3.1 System Model and Assumptions

As illustrated in Fig. 1 (a snapshot), the prover periodically broad-
casts its current claim tuple C = (p, ) via wireless messages with
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a pre-defined signal center frequency fo. For simplicity, we assume
the transmitter uses omnidirectional antennas!. Meanwhile, the
verifier, which locates within the transmission range of the prover,
moves at a velocity g at position o and receives the signal by a
fixed antenna array. We consider a generic multi-path signal prop-
agation model [41], which can include both the LOS path? (Path 0)
and reflection paths (e.g., Paths 1 and 2). Such models are widely
adopted in vehicular networks [25, 39, 44]. However, we do not
assume any knowledge on the statistical parameters of the channel
model (such as path loss exponent etc.). Instead, since our goal is
not to estimate the channel but verify the location and velocity, we
assume there are only one-hop reflections on each path which is
dominant over multi-hop reflection in terms of received power for
outdoor applications [34], and there are several potential reflectors
in the surrounding environment, whose positions and orientations
are known by the verifier a priori (which can be extracted from
public maps, or deployed by the verifier in advance). Note that
exact signal reflectors are not known in advance which must be
inferred in real-time. Besides, we consider imperfect signal reflec-
tion directions (such as the probabilistic distribution in [18]) due to
non-smooth reflector surfaces, i.e.,  is not necessarily equal to
(Fig. 1). We assume that the verifier always knows its own location
and velocity (e.g., via GPS).

3.2 Doppler Effect

As illustrated in Fig. 1, we define v o and v, o as the radial speed of
the prover’s and verifier’s claim along the direction of Path 0:

1)
Because of the Doppler effect, the frequency of arrival (FOA) along
Path 0 can be expressed as

fro=fo- =fo

where c is the speed of light and f; is the carrier frequency. We
denote v = [¥'| and v, = [vg| for convenience. The above equation
is for the true FOA, thus it does not include the frequency offsets
and measurement noise.

Meanwhile, signal reflections in non-line-of-sight (NLOS) paths
lead to different amounts of Doppler shifts on each path. In general,
a reflector changes the Doppler effect by changing the radial speed
of both transmitter and receiver. Take Path 1 for an example, where
the signals transmitted from the prover is reflected by R and then
arrives at the verifier. The Doppler shift of this signal can be divided
into two parts: the first is induced between the prover and the
reflection point R, and the second part appears between R and the
verifier. For a stationary reflection point R, the FOA is computed
by the following two equations:

N
ve0 = [0] - cos(ag) 00,0 = [00] - cos(yo)

c+00y ¢+ 0, - cos(yo)

@

c+0cp c+0-cos(a)

C
fm,l :f() . s (3)
c+0c1
c+001 c+001
= . = = f - = 4
fra = fma fo o+t 4)

where f7,, 1 is the signal FOA at reflection point R, and f; 1 is the FOA
at the verifier. Also, v¢1 = v-cos(a1) and v, 1 = v, - cos(y1). We can
!Directional antennas can also be used but it may not result in as many paths needed

for security, as with omnidirectional antennas.
ZExistence of the LOS path is not necessary but will enhance performance.



WiSec *20, July 8-10, 2020, Linz (Virtual Event), Austria

see that the position and orientation of the reflection point R only
changes the radial speed of both the prover and the verifier, but
it does not cause any additional frequency shifts. The same result
holds even when the reflector is moving (omitted due to space
limitations). In fact, adding one reflection path can be regarded
as adding a virtual verifier located at the mirror position with
respect to the reflection surface (as shown in Fig. 1). Therefore,
each multi-path can provide an additional virtual verifier that is
spatially separated from each other, which is leveraged to enhance
security in our scheme.

3.3 Threat Model

We consider an attacker who gains full control of the prover, that
aims to successfully claim a false motion C = (p,_v)) different from
its real one C; = (pg, 0g) without being detected by the verifier.
First, the attacker can modify/shift the signal carrier frequency f5.
There can be two types of changes: one is arbitrary shift [32] (which
is stronger but makes sense for unidirectional communication), the
other is restricted within the correctable central frequency offset
range (CCFOR), which guarantees the successful message decoding
[16, 17] in the wireless system (more suitable for bi-directional com-
munication). However, the transmitted signal frequency remains
the same in all directions®. Second, we assume an arbitrarily mobile
prover whose velocity claim v, is only constrained by the physical
limitations of the source vehicle. For example, for a signal source
mounted on vehicles or UAVs, the maximum moving speed and
heading are limited by the engine power as well as traffic rules.
Besides, we assume the prover/adversary is always aware of the
position and velocity of the verifier (e.g., from the V2V messages),
and also the whereabouts of the reflectors in the environment (e.g.,
from publicly available maps). The verifier trusts its own measure-
ments, and the AOA is assumed to be unforgeable [52, 53], because
it is difficult for attackers to deploy their own or change existing
reflectors in the physical environment.

4 BASIC IDEA AND CHALLENGES

We introduce our basic idea for motion claim verification with a
single receiver, and analyze its security properties and challenges.

4.1 Basic Idea of Claim Verification

The main idea of our motion claim verification is to measure the
actual FOA measured on each individual path and cross-check its
consistency with the respective expected FOA computed from the
claim. Once the verifier detects a mismatch on any path, an alarm
will be raised. Specifically, let us define a set M containing all the
signal paths (including the LOS and several reflected ones) that
arrive at the receiver. Define f;, and f; ., as the expected and
actual signal FOA, respectively, for a path m € M as follows

3 c+toom ¢+ 00 cos(yYm)
Jem = 1o c+vem =fo c+v-cos(am)’ )
5
’
Fm = 1 tP%m f _c+00 cos(yp)
am —Ja c+ougm @ ¢ +ogcos(aly)’

3We assume the attacker cannot use multiple devices to simultaneously transmit
the same signal in different carrier frequencies along different directions (commonly
assumed by previous works [16, 32])
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where 00 , and v¢ , are the expected radial speed of the verifier
and prover based on the prover’s claimed motion tuple, respec-
tively; U’O,m and v, are the actual radial speed of the verifer and
prover based on the actual prover’s motion tuple; fj is the expected
(nominal) signal carrier frequency; f; is the modified (actual) carrier
frequency; ym and am, y,, and a;, are the projection angles of the
claimed velocity 4 and actual velocity g, at Path m, respectively.

The verification criteria: If there exists at least one path m € M
that violates the following constraints, an alarm is raised:

|fem = fam| < T.¥Vm e M, (6)

where 7™ is a properly defined threshold. In other words, all mea-
sured paths should satisfy Eq. (6) to pass the verification.

4.2 Security Analysis and Challenges
The attacker aims to make fo m = fom for all m € M with C # C,:

c+0p cos(ym) _

¢+ 00 cos(yy,)
=f-
c+o-cos(am)

c+uvgcos(aj,)’

fo Ym e M,

™)
Since several variables above are related to each other, we re-express
the a;, as a function of the motion claim p and 7, such as ay, =
gm(p, ). For example, e in Fig. 1 can be written as

a0 =go(p.T) = (T, 0p =10, % - L0p, %]

where % is the x axis direction. Similarly, y,, is a function of p and
we can express it as y; = hm(p). Note that a;, and y, are also
related to the reflection point R, but since the verifier’s position
and reflectors are out of adversary’s control, we omit it for simplicity.
Therefore, (7) can be re-written as:

¢ + 0o cos(hm (p)) - f .c+vocos(y,’n)
c+0-cos(gm(p, D)) “ c+vgcos(ap,)’

where 00, y/,, &, and v, capture the actual value, which cannot be
modified, and fj is fixed. The attacker can control 7, fa. Yym and o,
by manipulating the carrier frequency f, position claim p, velocity
claim @ (include both heading and speed). In general, if we only
focus on one time step, heading and speed can be independently
claimed. The attacker has 4 variables (degrees of freedom) and
theoretically we need at least 5 independent constraints (paths) to
make the attack fail to find a feasible tuple.

One major challenge is that, there may not always exist 5 observ-
able paths in real-world outdoor environments (even if there are
enough reflectors the received power on a path may be too weak).
Thus, we need to reduce the path requirement. A straight-forward
way is to verify at multiple consecutive time steps. For example,
we can require that the claimed positions and velocity of adjacent
times to be consistent with kinematic equations, which means the
verifier needs one less path for each time step. But we still need to
minimize the number of free variables that the attacker can control
to make our scheme both secure and practical. In addition, another
challenge is to deal with measurement noise and error. The central
frequency offset (CFO) of the signal transmitter is unknown which
impacts the measured FOA, and the error incurred by Doppler reso-
lution, which is low when the data sampling rate is low. Moreover,
the receiver needs to infer which reflectors are actually used in
each path, and obtain their positions and orientations. In a typical
channel environment for sub-6GHz, reflection and refraction often

VmeM, (8)
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coexist and different surfaces exhibit different reflection character-
istics. Last but not least, the verifier needs to correctly match the
frequency peaks in the measured FOA profile to their correspond-
ing paths measured by AOA distribution. We will describe our ideas
to address each of them in Sec. 5.

5 SECURE VERIFICATION METHOD

Fig. 2 shows the high-level overview of our claim verification
scheme to examine the motion claim. To further reduce the num-
ber of adversary controlled variables, we decompose the problem
into two sub-problems and sequentially verify position claim p
and velocity claim . In short, after receiving the RF signal, the
verifier measures the AOA and FOA distributions and decodes the
motion claim. Then, if multiple paths exist, based on the measured
AOA and prior knowledge of the candidate reflectors, we employ
an MLE to infer the most probable reflector on each path. This is
used as input to location claim verification, and also provides an
estimated location as a byproduct. This helps to reduce the number
of controllable variables of the attacker by one for velocity veri-
fication. Then, an FDOA-based approach is adopted to verify the
velocity claim which eliminates the unknown frequency offset, as
well as circumvents the complicated path AOA-to-FOA matching.
The detailed algorithms and security analyses are presented next.

5.1 Identify the Signal Directions of Arrival

Our method makes use of the opportunistically reflected signals
to obtain the AOAs of each path and corresponding frequencies.
The verifier first identifies the signal paths by estimating the AOA
distribution of the received signal, which is the incoming signal’s
power distribution at different arrival directions. For illustration, we
pick the MUSIC [52] algorithm where the signal power distribution
Paoa(¢) is computed as:

Ppoa(¢) = :

a(¢)ENEna(9)
Detailed explanations can be found in [52]. Next, the verifier locates
all the potential paths from the AOA distribution, including both
LOS path and reflected paths, by finding peaks in the distribution.
The number of peaks represents the number of potential paths
in the received signal. For example, in Fig 3, the red distribution
around the verifier represents the AOA distribution, which has 3
peaks. If not blocked, the direction of the LOS path usually exhibits
the highest incoming power. In general, if there are M peaks, we
pick the highest peak as the direct (LOS) path (path 0) and other
M — 1 peaks as reflection signal paths.

©

5.2 Position Claim Verification

After we find out the number of paths and their arriving directions,
we verify the position claim p by modeling and inferring the most
likely environmental reflectors on each path, and subsequently
verifying the source location claim. As a result it also outputs an
estimated location. This is presented in algorithm 1.

5.2.1  Problem Formulation. The basic idea of the position verifi-
cation is to estimate the most probable signal location first and
then compare it with the claimed p. Therefore, it becomes a secure
localization problem which is formulated as follows. We first define
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a search boundary K, as the possible area that the prover can be
locate in. The basic idea is to go through all the candidate loca-
tions k € K (discretized according to a certain resolution), and find
the most likely position k* which is consistent with the measured
AOA distribution. The likelihood of observing an AOA distribution
Paoa(¢) given a candidate source position k, the potential reflector
set R and the verifier position o, is defined as follows:

Ly = Pr(Paoa(@)o, R, k).

The verifier aims to find the best candidate position k* which max-
imizes the likelihood of the AOA distribution Paoa (¢), i.e.,

(10)

(11)

k* = arg max L.
gkeK k

Since P4p(¢) consists of multiple different peaks, and we can
assume that the probability distribution of each path (direction) is
independent of each other (typical assumption in rich-scattering
channel models [50]), we can express the likelihood L; by multi-
plying the likelihoods of each individual path L,,, :

Ly = l_[ Lok = l_[ Pr(mlo, R, k),
meM meM

where Pr(ml|o, R, k) represents the likelihood of the m-th path/peak
appearing in P40 (¢). The next question is how to calculate L, .

(12)

5.2.2  Likelihood of the Direct Path. For the direct (LOS) path, since
there is no reflection, the verifier can directly calculate the direction
of arrival ¢,, ;. of a candidate location k based on the coordinates
of k and verifier o. The difference between the measured AOA ¢,
and the expected angle ¢, . (under mirror reflection) is ¢§m,k =
O m.k —Pm- It is caused by AOA measurement error, which is usually
modeled as standard Gaussian distribution [18]. Denoting it by
Naoa, the likelihood L,, . can be expressed as

Lk = Naoa (¢m,k) .

When ¢, . approaches to ¢, the likelihood increases.

(13)

5.2.3 Likelihood of a Reflection Path. Assume the verifier already
extracted the set of candidate surrounding reflectors R and their
orientations from a map. Due to the complexity of the environment,
it is difficult to find the exact reflector and reflection points that
correspond to each reflection path. Also, we cannot assume perfect
mirror reflection because the reflection surface is not perfectly
smooth. Therefore, we need to first infer the most probable reflector
for each path. The idea is illustrated in Fig. 3 where we show a
reflection path 1 at direction oR;.

Based on the AOA distribution P4o4 (¢), the verifier draws an
extended line along the AOA peak direction and find its intersection
with all known surfaces R € R. The orientation of each reflector is
denoted as Og, VR € R. We assume there are Ny, potential reflectors
along path m. Then the probability of obtaining this path m from
the candidate position k can be expressed using the total probability
theorem as follows

Nm
Lk = Pr(mlk,0,R) = ZPr(m|k,R, 0) - Pr(R)
R=1

(14)

Without any knowledge of R, we assume a uniform distribution for
Pr(R), thus Pr(R) = 1/Np,. Also, the Pr(m|k, R, 0) can be modeled
by considering the signal reflection distribution Py f.
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Figure 2: Overview of SVM, our Secure Motion Verification Scheme

Since the mirror reflection cannot always be assumed due to
the non-smoothness of the reflection surface, the incident and exit
angles of a reflector are not necessarily equal. For example, we
can see that the reflector R is more likely than Ry to be the actual
reflector on Path 1 since it is closer to mirror reflection (Fig. 3).
We model it in a probabilistic manner as follows. For reflector Ry,
the incident ray is kR;. Then, the likelihood of R; being the actual
reflector of Path 1 for candidate position k is equal to the conditional
probability that the signal reflects according to the exit angle '
given an incident angle f. This conditional distribution, denoted as
P, can be expressed as

Pr(mlk,R,0) = Pret (Bg|PR) . (15)

where fr and ﬁé are the incident and exit angle of reflector The
above assumes that the measured AOA is on a perfect line. How-
ever, the AOA is a distribution around a peak angle and we need
to account for AOA estimation error. Thus, we can relax the AOA
directions to a range/cone of angles (determined by the error dis-
tribution), which changes the intersection with each reflector R,
from a point to a segment. It is illustrated in Fig. 3 using path 2
on the left. We denote this range as Cg for the reflector R. Then,
integrating Pp.r over all reflection points within this range, for a
givenk € K andR € R:

Pr(mlk.R.0) = / Pt (BR(MIBR(D) dr  (16)

reC
Here r is a point in segment Cg. Br(r) and fi(r) are both a function
of r, k, and o. After we get Pr(m|k, R, 0) for any R € R, we calculate
Ly, i using Eq. 14.

Verifier

Figure 3: Position verification method
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5.2.4  Position Estimation Using Combined Likelihood. After the
verifier computes the likelihoods of the direct path and reflection
paths from Egs. (16) and (13) for each candidate location k, it mul-
tiplies the likelihoods Ly, x, Vm € M to obtain the total likelihood
Ly by Eq. (12). Finally, the estimated position k* can be derived by
solving (11). More explicitly, we cannot accept a very low-likelihood
k* even though it is relatively larger than other positions in the
feasible region. More detailed discussion is in Sec. 6.2.

5.2.5 Position claim verification. After the verifier obtains the es-
timated position k*, it computes the distance between k* and the
claimed position p. If the distance is larger than a threshold Q, an
alarm will be raised. Otherwise, it accepts the position claim p and
uses it as input to the velocity claim estimation. We discuss how
to choose @ in Sec 5.4.3. However, if there is no multipath in the
environment (only LOS path available), the k* becomes a line along
the direction of LOS path because points on this line share the same
highest likelihood. If the LOS path is not available, two reflection
paths are required to provide an intersection in the estimated area.
Therefore, our position estimation framework requires at least two
signal paths for position estimation.

5.3 Velocity Claim Verification

After estimating the source position, we adapt the FDOA approach
from [32] into our problem to verify the velocity claim @', mean-
while eliminate the unknown frequency offset and avoid the com-
plicated signal FOA-path matching. First we revisit our system
equations in (5) and add the frequency offset and errors in the
measured FOA:

¢ + 0o cos(yYm)

Jem = fo- c+v-cos(am)
¢+ 0o cos(yp,)
¢ +vg cos(ayy,)

(17)
fa,m = fa :

where €m, accounts for FOA resolution error, €, and €, denote
the frequency offset in the prover and verifier, respectively. The
measured (actual) FDOA between two paths m and n is defined as
famn = fam — fan, where the unknown frequency offset €, and ¢,
are canceled, the only remaining error term becomes €n = € — €n.
Similarly, the expected FDOA is computed as femn = fe.m — fen
The idea of our proposed FDOA-based velocity verification scheme

is to verify the FDOA between pairs of paths instead of FOA from
a single path. Specifically, for each pair of paths m and n in M, the
verifier checks the following conditions:

|fa,mn —fc,mn| <T.VmneM,m#n.

+epteotem

(18)
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Figure 4: A corner case (a), and error distribution (b).

If there exists one pair of m and n that violates the above criterion,
the verifier will raise an alarm. We refer to |fa mn — fe,mn| as FDOA
deviation, where we also let fo mn — femn = fdmn + €mn for future
security analysis. If the motion claim is true (i.e., ym = Y. &m = o,
fa = fo), fa,mn will be zero and only the FOA resolution error emn
is left. Thus, the threshold 7~ should be large enough to bound €,
while small enough to increase false claim detection probability
(discussed later).

5.4 Security Analysis

5.4.1 Security of Position Verification. Our position verification
algorithm only uses the measured AOA distribution, and the public
maps to infer the reflector likelihoods. In general, as long as the
AOA cannot be forged and the adversary has no control over envi-
ronmental reflectors, we need at least two paths to achieve secure
location verification and estimation. For the attacker to succeed it
needs to find another plausible location p different from the actual
one p, yielding higher likelihood than the actual one. Apart from
the false acceptances that depend on measurement error distribu-
tions, this is only possible when p and p, both lead to the same
AOA distribution, but with a different set of reflectors.

For example, in Fig. 4a, the prover is actually at position p, but
claims to be at p, and coincidentally, there are two reflectors (other
than the actual ones) on both sides, our scheme may output two
positions with high likelihood which may make the wrong decision.
In this case, we can utilize multiple measurements to improve secu-
rity and performance. Basically, it is increasingly unlikely for the
adversary to find such plausible locations in a continuous manner,
since such alternative reflector sets may not always exist.

5.4.2  Security of Velocity Verification. Once the position claim p
is verified, for every path, yp, = y/,, and the difference between
the claimed projection angle « and the actual angle a’ w.r.t. the
prover’s radial speed also becomes the same. Also, the radial speed
angle cannot be changed. As a result, Eq. (17) becomes:

fam=fa- ¢+ 0o cos(Ym)
am = Ja

¢ +vgcos(am + 1)
where 7 is the difference between the claimed velocity heading and
actual heading, which is the same for every path. The attacker’s
objective is to make the deviation between f; mpn and fc mn as small
as possible in order to bypass the detection. There are three variables
that the attacker can control: f, 1 and v, which we group together
as an attacking tuple A = {fz, n,v}. Theoretically, because the
degree of freedom of the attacker is three, the verifier needs at
least 4 different pairs of m and n € M to form a system of linearly-
independent equations of the FDOA deviation, in order to prevent

(19)

+€p+eoteEm,
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(b) Urban

(a) Highway
Figure 5: Maps and Reflector Extraction

the attacker from finding any A that makes all deviations zero even
if it can arbitrarily change its A. In other words, at least 5 different
signal paths are required to form 4 linearly-independent equations.

However, when the attacker’s claim A is constrained by the
signal decoding requirement and physical limitation of the source
vehicle traffic regulations (giving a feasible region 7), the number
of paths that are required to detect false claims can be reduced. In
this case, we formulate the optimal attack strategy as a min-max
problem:

min max - =min max + € R
fa mneM |fa,mn ﬁ:,mnl fa mneM,m#n |f;1,mn mn| (20)

sit. {fan o} eF, Y(n,0) € F # (0,0q)

where the attacker aims to find a modified frequency f; that min-
imizes the maximum FDOA deviation among all possible pairs
m,n € M, given any false motion claim. However, since the ¢y, is
a non-controllable error, the actual attack strategy becomes mini-
mizing the maximum |fj ,,,,,| regarding all possible pairs m,n € M.
If the attacker fails to find any claim within the feasible region that
gives a min-max FDOA less than the threshold 77, then it achieves
practical security. Next we will show that under realistic error distri-
butions and proper thresholds, our scheme can reduce the number
of needed paths to three under certain environmental topology.

5.4.3  Error Distribution and Threshold Selection. In our scheme,
there are two types of error/noise, i.e. signal reflection noise and
FOA resolution error, which dominates the error in the position
and velocity claim verification. The FOA resolution error €, exists
when doing FFT over arrived signal samples. This resolution error
can be significantly reduced by Gaussian interpolation with Gauss-
ian window [15]. We use experiments to show the resolution error
distribution, which is measured with a stationary prover/verifier
vehicle pair (same for mobile case). When the sampling duration is
0.128s, we use FFT interpolation and approximate the resolution
error distribution as a zero-mean Gaussian with a variance of 0.8
as shown in Fig 4b. Therefore, €, becomes a zero-mean Gaussian
distribution with variance 1.6. Based on [3], different surface mate-
rials have different signal reflection angle distributions. Generally,
the exit angle distribution Pyef can be approximated as a Gaussian
N(B, ofe f)‘ where f is the incident angle and Ufe f is variance. For
real-world surfaces and walls in urban buildings, we use 4° as the
variance (for metal, this is as low as 1°).

For the selection of thresholds 7 and Q, they should be larger
than the error of location estimation/FDOA measurement for legiti-
mate provers to reduce false positive rates (FPR). Larger thresholds
yield lower FPR but also lower attack detection rate (true positive).
Since we use Gaussian error distributions, standard methods can
be used to compute thresholds for given FPR, e.g., [27]. Next, we
demonstrate the detection performance by simulations.
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(a) Real-world experiment in an urban campus area

(b) Prover

©

(d

Figure 6: (a) Real-world experiment setup. (b) Prover setup. (c) In Scenario One, Kerberos SDR is the verifier placed on the
ground (a street car station in the middle of a street). (d) In Scenario Two, the verifier is on the hood of the following vehicle.

5.4.4  Attack Detection Performance. We demonstrate that security
guarantee can be achieved under 3 available paths by evaluating
the detection performance via simulation using two representative
cases: highway and urban, shown in Figs. 5a and 5b along with
the reflector position, orientation (using automatic edge extraction
from Google maps). In both figures, the red car denotes the prover,
and the verifier (blue car) is at the origin. Detailed parameters are
shown as follows: (a) Highway: The actual state is p,=(0,20 m),
vg =(30m/s, {z = m/2(going straight up) ). All reflectors are verti-
cal to the horizontal axis, of which distance to the y axis are 40 m,
36m, 52m, 50 m, and 57 m for reflectors 1, 2, 3, 4, and 5, respec-
tively. (b) Urban: The actual vehicle state is po=(0,8 m), o5 =(10 m/s,
{a = 7/2). Reflector’s distance to the y axis are 4.5m, 2m, 4.5m,
and 3.5m for 1, 2, 3, and 4, respectively. The verifier runs straight
up with the same speed as the prover. Besides, we use same error
parameters as described in Sec 5.4.3. We search a 20 X 50 m rectan-
gular area for highway, and a 10 X 50 m rectangle for urban, which
is discretized with a resolution 0.1 m, in front of the verifier.

We first present the position estimation error. The average error
is 1.38 m and 0.79 m for case 1 and 2, and the variance is 0.79
and 0.62 respectively. For the highway case, we can confidently
detect position deviations larger than 4.3 m with TPR> 0.99 and
FPR< 0.01 . If we choose 3 Hz as threshold, the FPR is around 4.6%.
Besides, the reflector sets does not lead to the corner cases such as
Fig. 4a in both cases.

Then we use the verified position claim to verify the velocity
claim. We bound the attacker’s claims by realistic constraints. In
vehicular networks, DSRC protocol [54] sets fy = 5.9 GHZ and f,
should be within from fy — 37.5 MHz to fp +37.5 MHz. The claimed
speed v should be less than the maximum speed vmax. We define the
speed deviation and heading deviation as §, = v—vg and 5 = {¢—{q,
respectively. We examine the minimum FDOA deviation given every
possible combination of §, and 5 by searching through all possible
fa € [fo — 37.5MHz, fy + 37.5 MHz] to solve (20), where |5,| <
20m/s and || < 10 m/s for highway and urban case respectively

\E/ 1500 1000 &
= g 600
2 1000 | 80 &
£ 500, 600 T a0 g
< <
8 0 ‘0 g 200
m 20 200 & 10 '2
0 ) (]
|6, (mfs) 00 n()| 6] (m/s) 00 nC)l
(a) Highway (b) Urban

Figure 7: FDOA deviations under optimal A
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due to speed limitation. The heading |n| < 180° contains all possible
driving directions. From Fig. 7, we can see that, no velocity deviation
leads to zero |f; 1] and |fz 20| values. The red segment in color bar
represents the deviation threshold 7~ = 10 Hz, that can achieve a
TPR>0.999 and FPR<0.001 simultaneously. In other words, the claim
region which can deceive our scheme only leads to tiny amount of
deviations. In summary, if there are less than 5 paths, the practical
security of our proposed scheme depends on the topology and we
can reduce to three paths in the cases we studied.

6 EXPERIMENTAL EVALUATION

We conducted experiments in an urban street to evaluate the per-
formance of our proposed motion verification scheme (Fig. 6a). In
the first scenario, the prover is moving and the verifier is stationary
at o; for the second, both the prover and verifier are moving in
the same direction but with varying relative speed with an initial
relative distance of 3m and a maximum distance of 19.5m. The
experiment is conducted for multiple runs (3 and 4 runs for scenario
one and two respectively) to illustrate our scheme’s performance.

6.1 Experimental Setup

6.1.1  Wireless nodes setup. In the prover’s vehicle, a signal trans-
mitter, consisting of a USRP N200, constantly broadcasts a single
frequency sinusoidal signal at 915 MHz using an omnidirectional
antenna (VERT900) attached on the vehicle trunk. The verifier is
a Kerberos SDR, which is either located on the ground (Scenario
One), or on the front hood of the following vehicle (Scenario Two).
The Kerberos SDR works in the frequency range of 24 MHz to 1.7
GHz. We selected a 915 MHz carrier frequency, fy, as it is in the un-
licensed ISM band and this band less congested than Wi-Fi bands*.
Four antennas were used in a uniform circular array, with an inter-
antenna distance d = A/2 = 16.4 cm. The sampling frequency is
1.024 MHz. We divide the signal into equal length segments, each
containing 32768 X 4 data points, with about 8 segments per second.

6.1.2  Ground truth and synchronization. A PCAN-USB device was
used to collect the vehicle ground-truth speed via the OBD-II port
at 50 Hz. A GPS-equipped smartphone running GPS2IP was used
to collect ground-truth location data at 1 Hz for both vehicles. The
actual heading direction is straight to the right. The true trajectory is
from the location (0,2 ) m to (0,123 ) m. Data from two vehicles was
synchronized by having the smartphone transmit, via a common
WLAN, the same GPS coordinates to both the prover and verifier.

4The DSRC standard for V2V communications adopts the 5.9 GHz band. We note that
the larger f; the better our scheme will perform as it amplifies the Doppler shift (and
FDOA deviation |f sy |) while maintaining the same frequency resolution error €.
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Computers at each (a laptop and Raspberry Pi 3, respectively) noted
the time at which the messages were received; the clock offset
between the two is approximately the difference in the timestamps.
GPS data is processed by pynema? to get actual positions.

6.1.3  Environmental Description. InFig. 6a, the prover runs straightly
along the green dashed line from the left end (dot) to the right end
(arrow) for both scenarios. We focus on the AOA on the right hand
side of the x axis from 0° to 180°. Besides, the potential reflector
set is marked via blue bars in Fig 6a, which include walls, building
and stone surfaces, etc. We obtain these surfaces by first extracting
them from google map and then observing it in-person to proofread
it real material, location and orientation. Fortunately, most of the
potential reflectors are parallel to the road. We number some of the
reflectors for later illustration. The distances from Reflector 1 to 5
to the y axis are 4.1m, 4.1m, 4.2m, 7.7m and 5.8 m, respectively.
The road width is about 8 meters with one lane on each direction.
No other vehicles appeared during the duration of the experiment.

6.2 Results for Position

Data Processing: We adopt a 10 s and 17.5 s time horizon (80 and 140
raw data segments) for scenarios one and two respectively. Then,
we apply the AOA analysis for each raw data segments and pick
all data segments which have more than 2 peaks (called valid data)
because our scheme needs at least two paths. We find peaks by
identifying local maximums in the AOA profile. Since the number
of antennas of one Kerberos SDR is limited to 4, the maximum
number of signal peaks (paths) that it can resolve is 3. Our scheme
can output one position estimate for each valid data segment with
a likelihood. In order to filter the position estimates with a low
likelihood (usually less accurate), a likelihood threshold 77 is used
in the evaluation. We plot the GPS data and position estimates of
all runs using our algorithm in Figs. 12a and 12b for both scenarios,
where the latitude and longitude are converted to meters plotted
as x and y coordinate respectively. We use GPS data of run 1 to
approximately represent the GPS position of vehicles since the
prover runs the same route every run in both scenarios respectively.
We also plot the raw estimates (that are inside the plausible region).

When the prover runs beyond 30 m, the verifier can barely detect
paths other than LOS because the reflection paths are too weak
(more antennas will enable verification at longer ranges). Therefore,
we only consider a possible search area of 8 x 30 m? rectangle, such
as K4 and Kp (i.e. a dashed rectangle) in Figs. 12a and 12b. Position
estimates of valid data are plotted as square, circle, star and triangle,
which represent different runs in Figs. 12a and 12b. Black points
represent estimates with a likelihood larger than 0.5. Blue points
denote those whose likelihood is less than 0.5. We can see higher

73

WiSec ’20, July 8-10, 2020, Linz (Virtual Event), Austria

likelihood estimates locate closer to the ground truth (red line).
Most of the low likelihood estimates locate on the edge of the
search area. Moreover, Fig. 12a (Scenario One) shows that a larger
distance between the prover and verifier leads to a larger estimation
error because it increases the impact of the signal reflection error
which scales with distance. Similarly, in scenario Two (Fig. 12b),
position estimates on the left are closer to the GPS compared with
the right part because inter-vehicle distance at the beginning is
shorter than that at the end. The average estimation error and
corresponding 95% confidence interval are shown in Figs.8a and
8b. The percentage of remaining data after applying each threshold
are scenario one: (62%, 29%,28%, 24%, 18%) and scenario two: (91%,
55%,51%, 41%, 27%) for 7] = (0, 0.5, 0.6, 0.7, 0.8) respectively. When
77 changes from 0 (no threshold) to 0.5, the overall average error
across all runs decreases from 3.4 m to 3.04 m for scenario one and
from 3.5m to 3.31m for scenario two. Similarly, when 77 = 0.8,
the average error reduces to 2.88 m and 3.19 m for scenario one
and two respectively, which is comparable to the consumer-grade
GPS systems with an accuracy of around 2 m in open sky [48]. In
summary, as 7] increases, the estimation error decreases for most
runs. Also, the error in scenario two is slightly larger than scenario
one, we postulate this can be due to both vehicles’ mobility.

We use point A = (0.1m,13.7m) from run 2 in Fig. 12a and
Point B = (0.4 m, 77.9m) from run 2 in Fig. 12b to demonstrate the
position estimation for the two scenarios. Note that the verifier
was at 0 = (0m,0m) or C = (0.11 m, 68.7 m), respectively. We plot
the measured signal AOA distributions at points A and B in Figs.
11a and 11b in Appendix. Then, we use our position estimator to
output the position likelihoods in the searched area K and K> in
Figs 10a and 10b, from which we can see that the positions with
the highest likelihoods are around the true location of A and B.

6.3 Results for Velocity

We first plot the prover and verifier speed profile of both scenarios
in Fig. 11e and 11f in Appendix. The FFT of the signals is plotted
in Fig. 11c and 11d. In the measured FOA, the highest peak (Peak
0) represents the FOA of LOS path in Fig. 11a in Appendix. How-
ever, due to the low speeds of vehicles, the signal FOA of the two
reflection paths differs in a very small amount for both scenarios.
In scenario one, the actual FDOA |f7 10| between path 1 (right hand
side path) and 0 should be 5.22 Hz, and the actual | fz 20| should be
4.67 Hz. We obtain the signal frequency peaks by identifying the
three largest local maximums. Also, we treat the largest maximum
peak as the LOS signal FOA. The actual FDOA is around 10 Hz for
scenario one and 15 Hz scenario two, which is larger than actual
signal FOA due to the resolution error. Then, we evaluate the veri-
fication performance using the same attack strategy formulation as
in (20), where fy = 915 MHz. We evaluate three different deviation
vectors (Jy, 17) by the ROC curve. They are: (1): (6, = 10,5 = 10);
(2): (6 = 10,p = 5) and (3): (6 = 5,5 = 5), and the unit is (m/s)
and (°) respectively. The results are shown in Figs. 9a and 9b in
Appendix. Our scheme can only confidently detect large deviation
vectors (e.g. vector 1) because of the low relative speed between
vehicles. Also, a larger speed deviation is easier to detect because
the surrounding environment restricts the reflection angles. The de-
tection performance of point B is better than point A, due to a larger
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reflection angle and a higher relative speed at point B (2.7 m/s) than
A (2.1m/s). For example, in scenario two, when 7~ = 9.5 Hz, the
corresponding TPR is 0.98, 0.82 and 0.29 for deviation vectors 1, 2,
3 respectively, given the error distribution in Sec.5.4.3. Selecting
different 7~ of 9.1 Hz, 7.3 Hz and 5 Hz for each vector can provide
an equal error rate of 2.6%, 7% and 22% respectively.

Results on Timing: In our experiment, it takes 1.84 s to process
one segment of data (131k data points with AOA analysis and posi-
tion estimation) via Jupiter Notebook on a PC (i7-7700@3.6GHz,
128G SSD and 12G DDR4 RAM) in an offline manner for a search
region of (8 x 30 m?). While we used Spider, a lower-level pro-
gramming language such as C/C++ or an embedded software can
improve the timing performance to make it suitable for online
processing.

7 DISCUSSION

Limitations. First, our scheme requires the presence of enough num-
ber of reflectors in the environment. When the verifier is stationary,
one can first do a site survey to find a suitable location for deploying
the receiver to let ample reflectors surround it. Or we can deploy
our own reflectors (e.g., metal boards) near the verifier. Note that,
for most vehicle applications, the ground/roadway can always pro-
vide one reliable reflection path. Thus there are at least two paths
(including LOS) in most cases. Neighboring vehicles can impact
the performance of our algorithm either positively or negatively.
We conducted similar experiments in one parking lot with sparsely
parked vehicles. Results show that, for a non-crowded parking lot,
signal reflected from vehicle surface is usually not that consistent
and obvious compared with that from nearby buildings/walls. We
hypothesize that on roads without large roadside reflectors, nearby
parallel vehicles can be used as reflectors in our method. Besides,
inaccurate reflector modeling, such as inaccurate reflector informa-
tion from maps, unexpected pedestrians, bicycles or vehicles, can
deteriorate the system performance. Although our current method
heavily relies on accurate environment modeling and the experi-
ment is still preliminary, it serves as a proof-of-concept.

For mobile verifiers, our scheme is more opportunistic since there
is less control over the number of reflectors in the surrounding, thus
it may not detect sporadic false claims (which is not a very effective
attack). However, over a longer time span (e.g., a few seconds), as
long as the path requirement is satisfied for a few time steps, it
can detect persistent liers with high success probability. On-board
reflectors would make virtual verifiers too close to the original
verifier due to the vehicle size limit, therefore is not very helpful.

Besides, in our experiment, we have used a single-frequency
source signal for simplicity. In reality when data packets are sent,
the base-band signal frequency spans a range depending on the
bandwidth (typically on the order of kHz or even MHz). If FFT
is done directly on the received signal, obviously it becomes dif-
ficult to identify frequency shifts of each individual path since
their spectrum superimpose while the DS may be as low as a few
Hz. Fortunately, most wireless standards use OFDM modulation
(e.g., 802.1x, DSRC), which contains hundreds of narrow-band sub-
carriers. Pu et. al. [29] proposed a signal processing technique that
exploits this feature to do gesture recognition using WiFi, effec-
tively reducing the bandwidth of the signal to a few Hz in each
sub-band. We can also adopt this method in our scheme.
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Performance enhancement. Our scheme performance can be en-
hanced by more reflectors or resolvable signal paths, more accurate
AOA distribution measurement and smaller FOA resolution error.
For AOA, the number of antennas in the receiver array should be
larger than the number of multipaths. Increasing antenna number
can significantly increase the accuracy and resolution of estimating
AOA [51]. For the signal FOA accuracy, the Gaussian interpolation
method can significantly reduce the FFT resolution error, which we
have already adopted [29]. In addition, using a higher central carrier
frequency can also improve the detection performance because it
increases the Doppler shift and the FDOA.

Applications. The main application scenarios of this work are in
vehicular networks or connected vehicles within short ranges (e.g.,
< 100m). Both the verifier and prover can either be stationary or
mobile. For stationary verifiers, this can be applied to intelligent
traffic lights that verify the claimed positions/speeds of vehicles
approaching an intersection to prevent spoofing attacks against
traffic control systems (where a single malicious vehicle can cause
severe traffic congestion) [8]. When the verifier is mobile, this can
be applied to V2V communication, where each vehicle should be
able to verify nearby vehicle’s motion claims from their periodically
broadcast safety messages [54]. For secure tracking applications, our
scheme may not achieve real-time tracking since it is opportunistic,
and during periods of low reflection it may not be accurate.

We also postulate applications to UAV geo-fencing [35] with fixed
ground stations, where unauthorized UAVs encroaching restricted
airspace should be detected with their locations/headings verified.
Typically this happens at short to medium ranges, such as a few
hundred meters to kilometers. The main challenge is the longer
range than ground vehicles, and the UAVs travel in 3D space and
we may need more paths/reflectors for secure verification. But on
the positive side, UAVs can travel in much higher relative speeds to
the ground than the ones among vehicles.

8 CONCLUSION

In this paper, we propose a single receiver based secure motion
claim verification scheme which utilizes the multipath signal re-
flections from the environment to mimic multiple virtual verifiers
at different locations. Our scheme uses a maximum likelihood esti-
mator to model potential reflections and locate the most probable
signal source. Meanwhile, a FDOA-based approach is adopted to
eliminate the unknown frequency offsets to verify the velocity
claim. Security analysis show that at least five unique paths are
needed in theory (for a single time step), and with realistic road
topology it can be reduced to three. Our real-world road vehicle
experiments show that, in a low relative-speed local vehicular net-
work, our scheme can confidently detect large deviations in the
motion claim, and can approximately track the vehicle within short
ranges. We also discussed the applications of this work and ways
to further enhance the verification performance. Future work will
extend this scheme to verify and track UAVs movements in 3D.
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APPENDIX

Algorithm 1: Position Claim Verification & Estimation

Input: 0, Paoa (¢) and all possible reflectors set R
1: Determine the number of paths M and search region K
2VkeXk:
Find most probable reflector of each path from R & Paoa (¢)
Calculate the posterior likelihood of every path
Combine above likelihood and get total likelihood of k
3: Find k* with the largest total likelihood
4: Compare k* with p, get distance d = |[k* — p||
5:ifd > Q
Report Alarm
Output: the estimated position k*
else
Output: verified p, the inferred reflector of each path
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Figure 9: Velocity claim detection performance
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