CONVEX GEOMETRY OF THE GENERALIZED
MATRIX-FRACTIONAL FUNCTION
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Abstract. Generalized matrix-fractional (GMF) functions are a class of matrix support func-
tions introduced by Burke and Hoheisel as a tool for unifying a range of seemingly divergent matrix
optimization problems associated with inverse problems, regularization and learning. In this paper
we dramatically simplify the support function representation for GMF functions as well as the rep-
resentation of their subdifferentials. These new representations allow the ready computation of a
range of important related geometric objects whose formulations were previously unavailable.
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1. Introduction. Generalized matrix-fractional (GMF) functions were intro-
duced in [3] as a means to unify a range of seemingly divergent tools in matrix opti-
mization related to inverse problems, regularization and machine learning. Somewhat
surprisingly GMF functions coincide with the negative of the optimal value function
for affinely constrained quadratic programs, and are representable as support func-
tions on the matrix space E := R™*" x §", where R™*"™ and S™ are the vector spaces
of real n x m and symmetric n X n matrices, respectively. The most significant chal-
lenge in [3] is the derivation of an expression for the closed convex set associated with
the support function representation. Unfortunately, the representation given in [3] is
exceedingly complicated. The main contribution of this paper is to provide a simple,
elegant, and intuitive representation for this set. We then use this representation
to provide a simplified expression for the subdifferential of a GMF function and to
compute various related geometric objects that were previously unavailable. Before
proceeding, we review the definition of a GMF function.

Given (A4, B) € RP*™ x RP*™ with rge B C rge A, the graph of the matrix valued
mapping Y — —1YY7T over an affine manifold {Y € R"*™ | AY = B} is given by

(1.1) D(A,B) = {(Y,—;YYT) EE|Y eR™™: AY = B} ,

The associated GMF function is the support function of the set D(A, B):
op(aB)(X,V):= O . (X, V), (¥, W)),
where we use the Frobenius inner product on E,
(Y, W), (X, V) i=tr (YTX) + tr WV = tr (XYT + WV).

In [3, Theorem 4.1], it is shown that
(1.2)

opa,p) (X, V) = 3tr ((E)TM(V)T(E)) if rge (i) CrgeM(V), V €Ka,

400 else,
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where K4 = {V €S" |u"Vu >0 (u€ker A)} and M(V)! is the Moore-Penrose
pseudo inverse of the matrix
v AT
MV):= <A 0 ) .

In particular, this implies that

domopa,py = domdopa,p)

X
rge (B) CrgeM(V), Ve ICA}

(see [3, Theorem 4.1] for this formula). Note that domop(4, p) is not closed. To see
this consider the case A = B =0 and V = 5l so that any X # 0 has rge X C rge V.
But as i | 0 it is not the case that rge X C rge0. This example requires two of the
authors of this paper to regretfully report that the claim made in [3, Theorem 4.1]
that dom op(a,p) is closed is false. Fortunately, this error does not affect the validity
of any other result in [3] since none of them use the closedness the set dom op(a, ).

The representation (1.2) is the basis for the name generalized matriz-fractional
function since the matrix-fractional functions [2, 4, 8, 9] are obtained when the ma-
trices A and B are both taken to be zero.

The paper is organized as follows: Section 2 begins with a study of the cones K 4
defined in (2.1) and their polars. This is immediately followed by deriving our new
representation of the set Q(A, B) := conv D(A, B) in Theorem 2.2. With this repre-
sentation in hand, we derive new simplified descriptions for the normal cone Ng(4, p)
and the subdifferential dog(4 gy in Section 3. In Section 4 we explore the convex
geometry of the set (A, B), and conclude in Section 5 with the important special
case where B = 0 and 0g4,0) is a gauge function.

Notation: Let £ be a finite dimensional Euclidean space with inner product de-
noted by (-, -) and the induced norm || - || := 1/(-, -) with the closed e-ball about a
point x € £ denoted by B(x). Let S C & be nonempty. The (topological) closure
and interior of S are denoted by cl S and int S, respectively. The (linear) span of S
will be denoted by span S.

The convex hull of S is the set of all convex combinations of elements of S and is
denoted by conv S. Its closure (the closed conver hull) is ¢onv S := cl (conv S). The
conical hull of S is the set

RiS:={dz|zeS A>0}.
The convex conical hull of S is
cone S := {Zx\le |reN, x;, €8, N\ >0}.
i=1

It is easily seen that cone S = R, (conv.S) = conv (RyS). The closure of the latter
is cone S := cl(cone S). The affine hull of S, denoted by aff S, is the smallest affine
space that contains S.

The relative interior of a convex set C' C £ is its interior in the relative topology
with respect to the affine hull, i.e.

riC:={zxeC|3F>0: B(x)naff C Cc C}.
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It is well known, see e.g. [1, Section 6.2], that the points x € riC are characterized
through

(1.4) R, (C —z) =span (C — ),

where the latter is the (unique) subspace parallel to aff C. In particular, we have
R, C =aff C =spanC if and only if 0 € ri C.
The polar set of S is defined by

Sei={vel|{vz)<l(zel)}.

Moreover, we define the bipolar set of S by S°° := (5°)°. It is well known that
S°° =tcone (S U{0}) (e.g. see [10, page 125]). If K C £ is a cone (i.e. R1 K C K) it
can be seen by a homogeneity argument that

Koz{v65|(v,w>§0($€K)}v

and if S C £ is a subspace, S° is the orthogonal subspace S*. The horizon cone of S
is the set
S = {’U c& | H{Ak} 40, {:Ck € S} D ATk —)’U}

which is always a closed cone. For a convex set C' C £, C* coincides with the recession
cone of the closure of C| i.e.

C¥={v|z+tvecdC(t>0,z2eC)}={y|C+ycC}.
For f: & - RU {400} its domain and epigraph are given by
dom f:={z €| f(x) <+oo} and epif:={(z,0) e EXR| f(z) <a}.

We call f convex if its epigraph epi f is a convex set.
For a convex function f : & — R U {+o0} its subdifferential at a point Z € dom f
is given by

of(@)={vel|flz)=f@)+{v,z—-2)}.
Given a nonempty set S C &, its indicator function g : € — RU {+o0} is given by

0 if ze€b8
55(33)'{4—00 it =¢S5

The indicator of S is convex if and only if S is a convex set, in which case the normal
cone of S at T € S is given by

Ng (z) = 065(z) ={v e |(v,2—1)<0(zeS)}.

The support function og : € = RU{+00} and the gauge function vs : € = RU {400}
of a nonempty set S C & are given by

os(x) :=sup (v, z) and g (z):=inf{t>0|zectS},
vES

respectively. Here we use the standard convention that inf ) = +oco. Since S C conv S
and, for all u,v € S and X € [0, 1],

(T=Nu+ v, z) = (1= A) {u, z) + A v, ) <max{(u, x), (v, )},
we have 0g = 0conv 5, and so, by [10, page 112],

(1.5) 0S5 = Oconv §-
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2. New Representation of conv D(A, B). In view of (1.5), in order to obtain
a complete understanding of the variational properties of og, it is useful to have a
simple description of the closed convex hull conv S. This is often a non-trivial task.
In [3, Proposition 4.3], a representation for conv D(A, B) is obtained after great effort,
and this representation is arduous. Although it is successfully used in [3, Section 5] in
several situations, the representation is an obstacle to a deeper understanding of the
function op(4,p) as well as its ease of use in applications. The focus of this section is
to provide a new and intuitively appealing representation that dramatically facilitates
the use of op(4 ). The key to this new representation is the class of cones

(2.1) Ks := {VES" | uI'Vu >0, (ueS)},

where S is a subspace of R™, that is, g is the set of all symmetric matrices that are
positive definite with respect to the given subspace S. Observe that if P € S™ is the
orthogonal projection onto S, then

(2.2) Ks={Ves"|0=PVP}.

Clearly, Ks is a convex cone. If S = R", then Ks = S7, and if S = {0}, then £s = S™.
Given a matrix A € RP*™ the cones Ky 4 play a special role in our analysis. For
this reason, we simply write 4 to denote Kyer 4, i.6. Ka := Kier a-

PROPOSITION 2.1 (Kgs and its polar). Let S be a nonempty subspace of R™ and
let P be the orthogonal projection onto S. Then the following hold:

a) K& =cone {—wT |[veS}={WeS"|W=PWP=0}.

b) intKs ={Ves" |[u"Vu>0(ueS\{0})}.

c) aff (Kg) =span {vv? [ve S} ={W eS" [rgeW C S}.

d) ri(Kg)={W eKg |u"Wu<0 (ueS\{0})} when S # {0} and

ri (Kgg,) = {0} (since Kyop =S").
Proof.

a) Put B:={—ss” | s € S} C S" and observe that

coneB:{—ZAisisiT |r€N7siES,)\iEO(i:L...,T)}.

i=1

We have cone B = {W esr | W= PWP} To see this, first note that for
W= -7 Nisis! withr € N;s; €S, \ >0wehaveWES”and

PWP=— Z)\ (Ps;)(Ps;)T ZA& =

=1

so that cone B C {W es” |W=PWP } The reverse inclusion invokes the
spectral decomposition of W = "7 | Nigigl for Ay, ..., A\, <0. In particular,
this representation of cone B shows that it is closed. We now prove the first
equality in a): To this end, observe that

Ks={Ves"|s'Vs>0(se8)}

={Ves"|(V,-ss")<0(s€8)}
= (cone B)°,
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where the third equality uses simply the linearity of the inner product in the
second argument. Polarization then gives

K3 = (cone B)°° = cone B = cone B.

b) Set K := {Ves" [uVu>0(ueS\{0})} and k = dim(S). If k& = 0,
then Ks = intKs = S = K so the result trivially holds. Therefore, we
assume that k > 1, and begin by showing that § # K C intKs. Let U €
R™** be a matrix whose columns form an orthonormal basis for S. Then
UUT € K so that K is non-empty subset of Ks. For V € K, let Apin =
min {u’Vu |u €S, |Jul, =1} > 0. Recall that on S™ the spectral norm is
given by the spectral radius p. Given any W € S™ with p(W) < Anpin/2 and
u € 8 with ||ull, = 1, we have u” (V + W)u = uTVu+ " Wu > A\pin/2 > 0.
Hence the set K is a non-empty open subset of ICs and is therefore contained
in int Cg. If there is a V € int Ks \ K, then there is a u € S\ {0} such that
uTVu = 0. But then V — tuu” # Ks for all t > 0 which contradicts the
assumption that V € int Kg. Therefore, int Ks = K.

¢) With B as defined above, observe that

aff £5 = span g = span B,

since 0 € Kg, which shows the first equality. Consequently, aff K is a subset
of {WeS™|rgeW CS}. On the other hand, every W € S™ such that
rgeW C S has a decomposition W = Ziinlkw)\iqiq? where \; # 0 and
gicrgeW CSforalli=1,...,rank W, i.e. W € span B = aff £S.

d) Set R:={W eKZ |u"Wu<0 (ueS\{0})} and let W € ri(Kg)\ R C
K%. Then there exists u € S with |lu|| = 1 such that u"Wu = 0. Then
for every ¢ > 0 we have u” (W + euu™)u = ¢ > 0. Therefore W + cuu” €
(Be(W)Naft (Kg))\Kg for alle > 0, and hence W ¢ ri (K%), which contradicts
our assumption. Hence, ri (K%) C R.

To see the reverse implication assume there were W € R\ i (Kg), i.e. for all
k € N there exists W, € B1 (W) Naff (K3) \ Kg. In particular, there exists
{ur, € S| |lug| =1} such that u] Wyuy, > 0 for all k € N. W.Lo.g. we can

assume that ux, — u € S\ {0}. Letting k — oo, we find that u” Wu > 0 since
Wy — W. This contradicts the fact that W € R. 0

We are now in a position to prove the main result of this paper which gives a new,
simplified description of the closed convex hull of Q(A, B).

THEOREM 2.2. Let D(A, B) be as given by (1.1), then conv D(A4, B) = Q(A, B),
where

1
(2.3) Q(A,B) := {(Y,W) cE ‘ AY = B and 2YYT+We/c;}.

Proof. We first show that (A, B) is itself a closed convex set. Obviously, (A, B)
is closed since K is closed and the mappings ¥ — AY and (Y, W) — %YYT + W
are continuous.

So we need only show that Q(A, B) is convex: To this end, let (Y;,W;) €
QA,B), i =1,2 and 0 < XA < 1. Then there exist M; € K9, ¢ = 1,2 such that
W; = —2Y;YT 4+ M;. Observe that A((1 — \)Y; + AY2) = B. Moreover, we compute
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(1= NY1 + AYa)((1 = A1 + AY2)" + (1 — )Wy + AWha)
:2((1—>\)Y1+>\Y2)((1—)\)Y1+)\Y2)T+<(1—A)(—;Y1Y1T+M1)+)\(—;Y2Y2T+M2)>
:%m (YT Y+ VY = VoY) (1 — A) My + MM,

=A1-)) <;(Y1 — Ya)(Y; — YQ)T> + (1 = N M + AMs.

Since rge (Y1 —Y3) C ker A, this shows A(1—X) (=4 (Y1 — Y2) (Y1 — Y2))+(1—-A) My +
AM; € K. Consequently, Q(A, B) is a closed convex set.

Next note that if (Y,—1YY7T) € D(A, B), then (Y,—-1YYT) € Q(A, B) since
0 € K. Hence, conv D(A, B) C Q(A, B).

It therefore remains to establish the reverse inclusion: For these purposes, let
(Y, W) € Q(A, B). By Carathéodory’s theorem, there exist u; > 0,v; € ker A (i =

1,...,N) such that
1 N
—_ T AAT
W = —QYY —;uszi,
where N = ") 41 Let 0 <e< 1. Set \j :=1—cand Ay = ... = Ay = A=

¢/N. Denote Y7 := Y/y/1 —e. Take Z; € R"*™ ¢ =1,...,N such that AZ; = B.
Finally, set

[0

%Ui, 07 o ,0
Observe that

N+1 N+1 p N
Z)\Y \/1er+—ZY \/1eY+NZZ+\/;;V1,

Vi = ER™™ and Yj1=2;4+V;, (i=1,...,N).

where V; = [v/21;v;,0,...,0], i=1,..., N, and
L N 1 1N .
T _ T T 1T T
—— E AYLY, ——fYY —55 —N(ZZ + Z;V, -I-VZ E ,uﬂ}Z

=W — ﬁ:;( ZZT + [ZVT \/7VZT>

=1

Therefore
al € N al 1/ ¢ € €
VI—ey + & ZZ /e D Ve W= (ZiZlT+,/Z¢\7iT+1/VZ~ZiT)>
< i=1 N i=1 i=1 2\N N N
N+1 1 N+1
(2.4) = (; AYi =3 > oAV, ) .

Set x := dimE. By Carathéodory’s theorem,

r+1 K-‘rl Kk+1 K+l
T’ /\ER++ 721’:1 A =1, Y, e Rnxm
convD(A, B) = {<§ Y, — E,WYY )‘ AY; =B (i=1,...,5k+1) '

By letting € | 0in (2.4), we find (Y, W) € conv D(A, B) thereby concluding the proof.0



CONVEX GEOMETRY OF THE GENERALIZED MATRIX-FRACTIONAL FUNCTION 7

3. Normal cone of (A, B) and the subdifferential of op(4,p). The new
representation for conv D(A, B) allows us to dramatically simplify the representation
for the subdifferential of op(a,py given in [3, Theorem 4.8]. For this we use the
well-established relation

(31) 8UC($) = 80@0(17) = {Z € conv C' | T e ch (Z)}7

for any nonempty C' C E, where the first equivalence follows from (1.5) and the second
from [10, Theorem 23.5].

PROPOSITION 3.1 (The normal cone to Q(A, B)). Let Q(A, B) be as given by
(2.3) and let (Y,W) € Q(A, B). Then

1
V € Kua, <V, YYT+W> =0
NQ(A,B) (Ya W) = (X7 V) ck 2
and 1ge (X —VY) C (ker A)*
Proof. Observe that Q(A, B) = C; N Cy C E where
Cr={Y eR"™|AY =B} xS" and Cp:={(Y,W)|F(Y,W)eKy},

with F(Y, W) := %YYT + W. Clearly, C; is affine, hence convex, and Cs is also
convex, which can be seen by an analogous reasoning as for the convexity of Q(A, B)
(cf. the proof of Theorem 2.2). Therefore, [10, Corollary 23.8.1] tells us that

(3.2) NQ(A,B) (Y, W) = N01 (Y, W) + ch (Y, W) ,

where
Ne, (Y, W) = {ReR™™ | 1ge R C (ker A)* } x {0}.
We now compute N¢, (Y, W). First recall that for any nonempty closed convex cone
C C &, we have No (x) = {z € C° | (2, 2) =0} for all x € C. Next, let VF(Y,W)
denote the Fréchet derivative of F' at (Y, W) and observe that the action of its adjoint
is given by
VFEY,W)'U=UY, U) (UeS").

Hence VF(Y,W)*U = 0 if and only if U = 0, and so, by [11, Exercise 10.26 Part (d)],

1
Ng, (Y, W) = {(VY,V) ’ V e Ky, <V, 2YYT+W> :0}.
Therefore, by (3.2), Noca,p) (Y, W) is given by

{m)

which proves the result. ]

1
rge (X —VY) C (ker A, V € Ky, <V, 2YYT-|-W> :()}7

By combining (3.1) and Proposition 3.1 we obtain a simplified representation of the
subdifferential of the support function op(A, B).

COROLLARY 3.2 (The subdifferential of op(a,p)). Let D(A,B) be as given in
(1.1). Then, for all (X,V) € domopa,p) (see (1.3)) we have

IZeRP™ . X =VY +ATZ,
do X, V)= (Y,W)eQA,B
D(A,B) ( ) ( ) (A, B) <V, ;YYT+W> _0

Proof. This follows directly from the normal cone description in Proposition 3.1
and the relation (3.1). d
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4. The geometry of Q(A, B). We now compute the relative interior and the
affine hull of Q(A, B). For these purposes, we recall an established result on the
relative interior of a convex set in a product space.

PROPOSITION 4.1 ([10, Theorem 6.8]). Let C C E; x Eo. For each y € Eq we
define Cy :={z€Ey | (y,2) €eC} and D:={y |Cy #0}. Then

riC={(y,z) |[yeriD, zeriCy,}.

We use this result to get a representation for the relative interior of Q(A, B) directly,
and then mimic its technique of proof to tackle the affine hull.

LEMMA 4.2. Let A,B C E be convex with tiANrtiB # (. Then aff (AN B) =
aff Anaff B.

Proof. The inclusion aff (ANB) C aff ANaff B is clear since the latter set is affine
and contains AN B.

For proving the reverse inclusion, we can assume w.l.o.g. that 0 € riANriB =
ri (A N B), where for the latter equality we refer to [10, Theorem 6.5]. In particular
we have

(4.1) aff A=R; A, af B=R;B and aff (AN B) =R, (AN B),

see (1.4) and the discussion afterwards. Now, let z € aff Anaff B. If z = 0 there
is nothing to prove. If x # 0, by (4.1), we have £ = Aa = ub for some A\, u > 0 and
a € Abe B. W.lo.g we have A > p, and hence, by convexity of B, we have

a:(l—%)(wf%beB.

Therefore x = Aa € Ry (AN B) = aff (AN B), see (4.1). |
We now prove a result analogous to Proposition 4.1.

PROPOSITION 4.3. In addition to the assumptions of Proposition 4.1 assume that
D is affine. Then (y,z) € aff C if and only if y € D and z € aff C.

Proof. We imitate the proof of [10, Theorem 6.8]: Let L : (y, z) — z. Since D is
assumed to be affine (hence D = aff D =ri D), we have

(4.2) D=L(C) = L(tiC) = L(aff C),

where we invoke the fact that linear mappings commute with the relative interior and
the affine hull, see [10, Theorem 6.7 and p. §].

Now fix y € D =i D and define the affine set M, := {(y,2) | z € E2 } = {y} xE,.
Then, by (4.2), there exists z € Ey such that y = L(y, z) and (y,2) € riC. Hence,
ri M, NriC # () and we can invoke Lemma 4.2 to obtain

aff My, Naff C = aff (M, NC) = aff {y} x Cy) = {y} x aff C,.

Hence, if y € D, z € aff C,, we have (y, z) € {y} xaff Cy = My Naff C C aff C.
In turn, for (y, z) € C, we have (y, z) € M, Naff C = {y} x Cy, hence z € Cy # 0,
soy € D. 0

We are now in a position to prove the desired result on the relative interior and the
affine hull of Q(A, B).

PROPOSITION 4.4. For Q(A, B) given by (2.3) the following hold:
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a) iQA,B)={(Y,W)€E | AY =B and YY" + W €1i(K%) }.
b) aff Q(A,B) = {(Y,W) €E | AY = B and %YYT + W € spank$ },
where span K9 = span {vv” | v € ker A }.
Proof. We apply the format of Proposition 4.1 and 4.3, respectively, for C' :=
Q(A, B). Then
Ko — %YYT, if  AY = B,

0, else. (Y € R™™),

D={Y |AY =B} and C _{

a) Apply Proposition 4.1 and observe that ri (K% — YY7) =ri (K%) — 3YY7T.
b) Apply Proposition 4.3 and observe that D is affine, and that aff (K —
YYT) = aff (K) — ,yV7. O

As a direct consequence of Propositions 2.1 and 4.4, we obtain the following result for
the special case (A4, B) = (0,0).

COROLLARY 4.5. It holds that

1 1
conv {(Y,—QYYT) |Y€Rnxm} = {(Y,W) ek ’ W+ §YYT 50},

and
1 1
int <conv {(Y,ZYYT) | Y e R™*™ }) = {(Y,W) cE ‘ W + §YYT =< 0}.

We conclude this section by giving representations for the horizon cone and polar of
Q(A, B).

PROPOSITION 4.6 (The polar of Q(A, B)). Let Q(A, B) be as given in (2.3).
Then

Q(A, B)® = {(X,V)

rge (g) C rjgeM(V), VekKa,
Lo () MY (F)) <1

Moreover,
(4.3) Q(A, B)® = {0psm} x K
and
oyo0_ rge () C 1ge M(V), V € Ka,
o s {(X’ D g (G vy ) <o }

Proof. For any nonempty convex set C C E, observe that {z |oc (2) <1} =
{z|(z,2) <1,Vz e C} = C°. Consequently, our expression for (A4, B)° follows
from (1.2).

To see (4.3), let (Y, W) € Q(A, B) and recall that (S,T) € Q(A, B)* if and only
it (Y +tS,W +tT) € Q(A, B) for all ¢t > 0. In particular, for (S,T) € Q(A, B)>, we
have A(Y +tS) = B and

2
(4.5) % VYT 4 i(SYT 4 ¥ST) + DSST| 4 (W Ty €KY (2> 0)

Consequently, AS = 0 and, if we divide (4.5) by t? and let ¢ 1 oo, we see that
SST € K9. But SST € K4 since rge S C ker A, so we must have S = 0. If we now
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divide (4.5) by t and let ¢ 1 oo, we find that T € K. Hence the set on the left-hand
side of (4.3) is contained in the one on the right. To see the reverse inclusion, simply
recall that K is a closed convex cone so that K9 + K9 C K.

Finally, we show (4.4). Since (0,0) € Q(A, B)°, we have (S,T) € (A, B)°)™ if
and only if (¢S,¢T) € Q(A, B)° for all t > 0, or equivalently, for all ¢ > 0,

Y;
tT € Ka and 3 (Y}, Z;) € R™™ x RPX™ g4, (g) = M(tT)( t)

Zy
o1 v\ " Y,
— <
with 2tr <<Zt) M(tT)(Zt>> <1,

or equivalently, by taking Z; := t~17,,

TeKa and 3 (V;, Z;) € R™™ x RPX™ st <S> :M(T)<A)

i 4o ((5) (%)) <

If we take (') := M(T)!(}}), we find that (S,T) € (2(A, B)°)™ if and only if

T eK4 and %tr <(2>TM(T)T<J§>> <1 (t>0),

which proves the result. 0

A
[

5. 0gq(a,0) as a gauge. Note that the origin is an element of (A, B) if and only
if B =0. In this case the support function of Q(A4,0) equals the gauge of 2(A,0)°.
Gauges are important in a number of applications and they posses their own duality
theory [5, 6, 7]. An explicit representation for both yo(4,0)c and o (a,0) Will be given
in the following theorem.

THEOREM 5.1 (0p(a,0) is a gauge). Let Q(A, B) be as given in (2.3). Then

(51) TQ(A,0) (Xa V) = TQ(A,0)° (Xa V) = ,YSO)(A,O) (X? V)a
and

Yoca,0) (Vs W)=0qa,00 (Y, W)
(5.2) _ {éal (=YW (YNHT) if rgeY Cker ANtge W, W € K9,

min

400 else,

where omin (=Y W (YT)T) is the smallest nonzero singular-value of =Y TW (Y 1)T when

such a singular-value exists and +o0o otherwise, e.g. when Y = 0. Here we interpret

é as 0 (0= é), and so, in particular, yo(a,0) (0, W) = dxcg (W).

Proof. The expression (5.1) follows from [10, Theorem 14.5]. To show (5.2), first
observe that

1
(5.3) tQ(A,0)= {(y, W) ‘ AY =0 and ZYYT 4 0W € /Cj;} :
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whose straightforward proof is left to the reader.

Given t > 0, by (5.3), (Y, W) € tQ2(A4,0) for all ¢ > ¢t if and only if AY = 0 and
%YYT +tW e K9 for all ¢ > t. By Proposition 2.1 a), this is equivalent to AY = 0
and

1 1
(5.4) §YYT+tW=P (2YYT—|—tW) P=0 (t>1),
where, again, P is the orthogonal projection onto ker A. Dividing this inequality by
t and taking the limit as ¢ 1 oo tells us that W = PWP < 0. Since YY7 is positive
semidefinite, inequality (5.4) also tells us that ker W C ker Y7, i.e. rgeY C rgeW.
Consequently,

domyg(a,0) C{(Y, W) |rgeY Cker ANrge W, W € K3 }.

Now suppose (Y, W) € dom Y40 Let Y = UXVT be the reduced singular-value
decomposition of Y where ¥ is an invertible diagonal matrix and U, V have orthonor-
mal columns. Since rgeY C rgeW = (ker W)+, we know that UT WU is negative
definite, and so S1UTWUX ! is also negative definite. Multiplying (5.4) on the left
by ¥7'UT and on the right by UL~ gives

pl < =227 'UTWUSTt (0 < p < f),
where i = t~!. The largest [i satisfying this inequality is
Omin(2YTW(YNT) = opin (22 UTWUR ) > 0,

or equivalently, the smallest possible 7 in (5.4) is 1/0uin(—2Y TW (YT)T), which proves
the result. a

6. Conclusions. The representation (A, B) for the closed convex hull of the
set D(A, B) in Theorem 2.2 is a dramatic simplification of the one given in [3]. As
a consequence, we also obtain simplified expressions for both the normal cone to
Q(A, B) and the subdifferential for generalized matrix-fractional functions in Section
3. In addition, representations for several important geometric objects related to the
set (A, B) are computed in Section 4.
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