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Abstract. Generalized matrix-fractional (GMF) functions are a class of matrix support func-
tions introduced by Burke and Hoheisel as a tool for unifying a range of seemingly divergent matrix
optimization problems associated with inverse problems, regularization and learning. In this paper
we dramatically simplify the support function representation for GMF functions as well as the rep-
resentation of their subdifferentials. These new representations allow the ready computation of a
range of important related geometric objects whose formulations were previously unavailable.
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1. Introduction. Generalized matrix-fractional (GMF) functions were intro-
duced in [3] as a means to unify a range of seemingly divergent tools in matrix opti-
mization related to inverse problems, regularization and machine learning. Somewhat
surprisingly GMF functions coincide with the negative of the optimal value function
for affinely constrained quadratic programs, and are representable as support func-
tions on the matrix space E := R

n×m×S
n, where Rn×m and S

n are the vector spaces
of real n×m and symmetric n× n matrices, respectively. The most significant chal-
lenge in [3] is the derivation of an expression for the closed convex set associated with
the support function representation. Unfortunately, the representation given in [3] is
exceedingly complicated. The main contribution of this paper is to provide a simple,
elegant, and intuitive representation for this set. We then use this representation
to provide a simplified expression for the subdifferential of a GMF function and to
compute various related geometric objects that were previously unavailable. Before
proceeding, we review the definition of a GMF function.

Given (A,B) ∈ R
p×n ×R

p×m with rgeB ⊂ rgeA, the graph of the matrix valued
mapping Y 7→ − 1

2Y Y T over an affine manifold {Y ∈ R
n×m | AY = B } is given by

(1.1) D(A,B) :=

{(
Y,−1

2
Y Y T

)
∈ E

∣∣ Y ∈ R
n×m : AY = B

}
.

The associated GMF function is the support function of the set D(A,B):

σD(A,B)(X,V ) := sup
(Y,W )∈D(A,B)

〈(X,V ), (Y,W )〉 ,

where we use the Frobenius inner product on E,

〈(Y,W ), (X,V )〉 := tr (Y TX) + trWV = tr (XY T +WV ).

In [3, Theorem 4.1], it is shown that
(1.2)

σD(A,B)(X,V ) =

{
1
2 tr
((

X
B

)T
M(V )†

(
X
B

))
if rge

(
X
B

)
⊂ rgeM(V ), V ∈ KA,

+∞ else,
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where KA :=
{
V ∈ S

n
∣∣ uTV u ≥ 0 (u ∈ kerA)

}
and M(V )† is the Moore-Penrose

pseudo inverse of the matrix

M(V ) :=

(
V AT

A 0

)
.

In particular, this implies that

(1.3)

domσD(A,B) = dom ∂σD(A,B)

=

{
(X,V ) ∈ R

n×m × S
n

∣∣∣∣ rge
(
X

B

)
⊂ rgeM(V ), V ∈ KA

}

(see [3, Theorem 4.1] for this formula). Note that domσD(A,B) is not closed. To see
this consider the case A = B = 0 and V = ηI so that any X 6= 0 has rgeX ⊂ rgeV .
But as η ↓ 0 it is not the case that rgeX ⊂ rge 0. This example requires two of the
authors of this paper to regretfully report that the claim made in [3, Theorem 4.1]
that domσD(A,B) is closed is false. Fortunately, this error does not affect the validity
of any other result in [3] since none of them use the closedness the set domσD(A,B).

The representation (1.2) is the basis for the name generalized matrix-fractional
function since the matrix-fractional functions [2, 4, 8, 9] are obtained when the ma-
trices A and B are both taken to be zero.

The paper is organized as follows: Section 2 begins with a study of the cones KA

defined in (2.1) and their polars. This is immediately followed by deriving our new
representation of the set Ω(A,B) := convD(A,B) in Theorem 2.2. With this repre-
sentation in hand, we derive new simplified descriptions for the normal cone NΩ(A,B)

and the subdifferential ∂σΩ(A,B) in Section 3. In Section 4 we explore the convex
geometry of the set Ω(A,B), and conclude in Section 5 with the important special
case where B = 0 and σΩ(A,0) is a gauge function.

Notation: Let E be a finite dimensional Euclidean space with inner product de-
noted by 〈·, ·〉 and the induced norm ‖ · ‖ :=

√
〈·, ·〉 with the closed ε-ball about a

point x ∈ E denoted by Bε(x). Let S ⊂ E be nonempty. The (topological) closure
and interior of S are denoted by clS and intS, respectively. The (linear) span of S
will be denoted by spanS.

The convex hull of S is the set of all convex combinations of elements of S and is
denoted by convS. Its closure (the closed convex hull) is convS := cl (convS). The
conical hull of S is the set

R+S := {λx | x ∈ S, λ ≥ 0} .

The convex conical hull of S is

cone S :=

{
r∑

i=1

λixi | r ∈ N, xi ∈ S, λi ≥ 0

}
.

It is easily seen that cone S = R+(convS) = conv (R+S). The closure of the latter
is cone S := cl (cone S). The affine hull of S, denoted by aff S, is the smallest affine
space that contains S.

The relative interior of a convex set C ⊂ E is its interior in the relative topology
with respect to the affine hull, i.e.

riC := {x ∈ C | ∃ε > 0 : Bε(x) ∩ aff C ⊂ C } .
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It is well known, see e.g. [1, Section 6.2], that the points x ∈ riC are characterized
through

(1.4) R+(C − x) = span (C − x),

where the latter is the (unique) subspace parallel to aff C. In particular, we have
R+C = aff C = spanC if and only if 0 ∈ riC.

The polar set of S is defined by

S◦ := {v ∈ E | 〈v, x〉 ≤ 1 (x ∈ S)} .

Moreover, we define the bipolar set of S by S◦◦ := (S◦)◦. It is well known that
S◦◦ = cone (S ∪ {0}) (e.g. see [10, page 125]). If K ⊂ E is a cone (i.e. R+K ⊂ K) it
can be seen by a homogeneity argument that

K◦ = {v ∈ E | 〈v, x〉 ≤ 0 (x ∈ K)} ,

and if S ⊂ E is a subspace, S◦ is the orthogonal subspace S⊥. The horizon cone of S
is the set

S∞ := {v ∈ E | ∃{λk} ↓ 0, {xk ∈ S} : λkxk → v }
which is always a closed cone. For a convex set C ⊂ E , C∞ coincides with the recession
cone of the closure of C, i.e.

C∞ = {v | x+ tv ∈ clC (t ≥ 0, x ∈ C)} = {y | C + y ⊂ C } .

For f : E → R ∪ {+∞} its domain and epigraph are given by

dom f := {x ∈ E | f(x) < +∞} and epi f := {(x, α) ∈ E × R | f(x) ≤ α} .

We call f convex if its epigraph epi f is a convex set.
For a convex function f : E → R ∪ {+∞} its subdifferential at a point x̄ ∈ dom f

is given by
∂f(x̄) := {v ∈ E | f(x) ≥ f(x̄) + 〈v, x− x̄〉} .

Given a nonempty set S ⊂ E , its indicator function δS : E → R ∪ {+∞} is given by

δS (x) :=

{
0 if x ∈ S,

+∞ if x /∈ S.

The indicator of S is convex if and only if S is a convex set, in which case the normal
cone of S at x̄ ∈ S is given by

NS (x̄) := ∂δS(x̄) = {v ∈ E | 〈v, x− x̄〉 ≤ 0 (x ∈ S)} .

The support function σS : E → R∪{+∞} and the gauge function γS : E → R∪{+∞}
of a nonempty set S ⊂ E are given by

σS (x) := sup
v∈S

〈v, x〉 and γS (x) := inf {t ≥ 0 | x ∈ tS } ,

respectively. Here we use the standard convention that inf ∅ = +∞. Since S ⊂ convS
and, for all u, v ∈ S and λ ∈ [0, 1],

〈(1− λ)u+ λv, x〉 = (1− λ) 〈u, x〉+ λ 〈v, x〉 ≤ max{〈u, x〉 , 〈v, x〉},

we have σS = σconv S , and so, by [10, page 112],

(1.5) σS = σconv S .



4 J. V. BURKE, Y. GAO, AND T. HOHEISEL

2. New Representation of convD(A,B). In view of (1.5), in order to obtain
a complete understanding of the variational properties of σS , it is useful to have a
simple description of the closed convex hull convS. This is often a non-trivial task.
In [3, Proposition 4.3], a representation for convD(A,B) is obtained after great effort,
and this representation is arduous. Although it is successfully used in [3, Section 5] in
several situations, the representation is an obstacle to a deeper understanding of the
function σD(A,B) as well as its ease of use in applications. The focus of this section is
to provide a new and intuitively appealing representation that dramatically facilitates
the use of σD(A,B). The key to this new representation is the class of cones

(2.1) KS :=
{
V ∈ S

n
∣∣ uTV u ≥ 0, (u ∈ S)

}
,

where S is a subspace of Rn, that is, KS is the set of all symmetric matrices that are
positive definite with respect to the given subspace S. Observe that if P ∈ S

n is the
orthogonal projection onto S, then

(2.2) KS = {V ∈ S
n | 0 � PV P } .

Clearly, KS is a convex cone. If S = R
n, then KS = S

n
+, and if S = {0}, then KS = S

n.
Given a matrix A ∈ R

p×n, the cones KkerA play a special role in our analysis. For
this reason, we simply write KA to denote KkerA, i.e. KA := KkerA.

Proposition 2.1 (KS and its polar). Let S be a nonempty subspace of Rn and
let P be the orthogonal projection onto S. Then the following hold:

a) K◦
S = cone

{
−vvT | v ∈ S

}
= {W ∈ S

n | W = PWP � 0} .
b) intKS =

{
V ∈ S

n
∣∣ uTV u > 0 (u ∈ S \ {0})

}
.

c) aff (K◦
S) = span

{
vvT | v ∈ S

}
= {W ∈ S

n | rgeW ⊂ S } .
d) ri (K◦

S) =
{
W ∈ K◦

S

∣∣ uTWu < 0 (u ∈ S \ {0})
}
when S 6= {0} and

ri (K◦
{0}) = {0} (since K{0} = S

n).

Proof.

a) Put B :=
{
−ssT | s ∈ S

}
⊂ S

n
− and observe that

cone B =

{
−

r∑

i=1

λisis
T
i | r ∈ N, si ∈ S, λi ≥ 0 (i = 1, . . . , r)

}
.

We have cone B =
{
W ∈ S

n
− | W = PWP

}
: To see this, first note that for

W := −∑r

i=1 λisis
T
i with r ∈ N, si ∈ S, λi ≥ 0, we have W ∈ S

n
− and

PWP = −
r∑

i=1

λi(Psi)(Psi)
T = −

r∑

i=1

λisis
T
i = W

so that cone B ⊂
{
W ∈ S

n
− | W = PWP

}
. The reverse inclusion invokes the

spectral decomposition of W =
∑n

i=1 λiqiq
T
i for λ1, . . . , λn ≤ 0. In particular,

this representation of cone B shows that it is closed. We now prove the first
equality in a): To this end, observe that

KS =
{
V ∈ S

n
∣∣ sTV s ≥ 0 (s ∈ S)

}

=
{
V ∈ S

n
∣∣ 〈V, −ssT

〉
≤ 0 (s ∈ S)

}

= (cone B)◦,
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where the third equality uses simply the linearity of the inner product in the
second argument. Polarization then gives

K◦
S = (cone B)◦◦ = cone B = cone B.

b) Set K̃ :=
{
V ∈ S

n
∣∣ uTV u > 0 (u ∈ S \ {0})

}
and k = dim(S). If k = 0,

then KS = intKS = S
n = K̃ so the result trivially holds. Therefore, we

assume that k ≥ 1, and begin by showing that ∅ 6= K̃ ⊂ intKS . Let U ∈
R

n×k be a matrix whose columns form an orthonormal basis for S. Then
UUT ∈ K̃ so that K̃ is non-empty subset of KS . For V ∈ K̃, let λmin :=
min

{
uTV u | u ∈ S, ‖u‖2 = 1

}
> 0. Recall that on S

n the spectral norm is
given by the spectral radius ρ. Given any W ∈ S

n with ρ(W ) ≤ λmin/2 and
u ∈ S with ‖u‖2 = 1, we have uT (V +W )u = uTV u+ uTWu ≥ λmin/2 > 0.

Hence the set K̃ is a non-empty open subset of KS and is therefore contained
in intKS . If there is a V ∈ intKS \ K̃, then there is a u ∈ S \ {0} such that
uTV u = 0. But then V − tuuT 6= KS for all t > 0 which contradicts the
assumption that V ∈ intKS . Therefore, intKS = K̃.

c) With B as defined above, observe that

aff K◦
S = spanK◦

S = spanB,

since 0 ∈ K◦
S , which shows the first equality. Consequently, aff K◦

S is a subset
of {W ∈ S

n | rgeW ⊂ S }. On the other hand, every W ∈ S
n such that

rgeW ⊂ S has a decomposition W =
∑rankW

i=1 λiqiq
T
i where λi 6= 0 and

qi ∈ rgeW ⊂ S for all i = 1, . . . , rankW , i.e. W ∈ spanB = aff K◦
S .

d) Set R :=
{
W ∈ K◦

S

∣∣ uTWu < 0 (u ∈ S \ {0})
}
and let W ∈ ri (K◦

S) \ R ⊂
K◦

S . Then there exists u ∈ S with ‖u‖ = 1 such that uTWu = 0. Then
for every ε > 0 we have uT (W + εuuT )u = ε > 0. Therefore W + εuuT ∈
(Bε(W )∩aff (K◦

S))\K◦
S for all ε > 0, and henceW /∈ ri (K◦

S), which contradicts
our assumption. Hence, ri (K◦

S) ⊂ R.
To see the reverse implication assume there were W ∈ R \ ri (K◦

S), i.e. for all
k ∈ N there exists Wk ∈ B 1

k

(W ) ∩ aff (K◦
S) \ K◦

S . In particular, there exists

{uk ∈ S | ‖uk‖ = 1} such that uT
kWkuk ≥ 0 for all k ∈ N. W.l.o.g. we can

assume that uk → u ∈ S \{0}. Letting k → ∞, we find that uTWu ≥ 0 since
Wk → W . This contradicts the fact that W ∈ R.

We are now in a position to prove the main result of this paper which gives a new,
simplified description of the closed convex hull of Ω(A,B).

Theorem 2.2. Let D(A,B) be as given by (1.1), then convD(A,B) = Ω(A,B),
where

(2.3) Ω(A,B) :=

{
(Y,W ) ∈ E

∣∣∣∣ AY = B and
1

2
Y Y T +W ∈ K◦

A

}
.

Proof. We first show that Ω(A,B) is itself a closed convex set. Obviously, Ω(A,B)
is closed since K◦

A is closed and the mappings Y 7→ AY and (Y,W ) 7→ 1
2Y Y T + W

are continuous.
So we need only show that Ω(A,B) is convex: To this end, let (Yi,Wi) ∈

Ω(A,B), i = 1, 2 and 0 ≤ λ ≤ 1. Then there exist Mi ∈ K◦
A, i = 1, 2 such that

Wi = − 1
2YiY

T
i +Mi. Observe that A((1− λ)Y1 + λY2) = B. Moreover, we compute
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that

1

2
((1− λ)Y1 + λY2)((1− λ)Y1 + λY2)

T + ((1− λ)W1 + λW2)

=
1

2
((1−λ)Y1+λY2)((1−λ)Y1+λY2)

T +

(
(1−λ)(−1

2
Y1Y

T
1 +M1)+λ(−1

2
Y2Y

T
2 +M2)

)

=
1

2
λ(1− λ)(−Y1Y

T
1 + Y1Y

T
2 + Y2Y

T
1 − Y2Y

T
2 ) + (1− λ)M1 + λM2

=λ(1− λ)

(
−1

2
(Y1 − Y2)(Y1 − Y2)

T

)
+ (1− λ)M1 + λM2.

Since rge (Y1−Y2) ⊂ kerA, this shows λ(1−λ)
(
− 1

2 (Y1 − Y2)(Y1 − Y2)
T
)
+(1−λ)M1+

λM2 ∈ K◦
A. Consequently, Ω(A,B) is a closed convex set.

Next note that if (Y,− 1
2Y Y T ) ∈ D(A,B), then (Y,− 1

2Y Y T ) ∈ Ω(A,B) since
0 ∈ K◦

A. Hence, convD(A,B) ⊂ Ω(A,B).
It therefore remains to establish the reverse inclusion: For these purposes, let

(Y,W ) ∈ Ω(A,B). By Carathéodory’s theorem, there exist µi ≥ 0, vi ∈ kerA (i =
1, . . . , N) such that

W = −1

2
Y Y T −

N∑

i=1

µiviv
T
i ,

where N = n(n+1)
2 + 1. Let 0 < ε < 1. Set λ1 := 1 − ε and λ2 = . . . = λN+1 = λ :=

ε/N . Denote Y1 := Y/
√
1− ε. Take Zi ∈ R

n×m, i = 1, . . . , N such that AZi = B.
Finally, set

Vi =

[√
2µi

λ
vi, 0, . . . , 0

]
∈ R

n×m and Yi+1 = Zi + Vi, (i = 1, . . . , N).

Observe that
N+1∑

i=1

λiYi =
√
1− εY +

ε

N

N+1∑

i=2

Yi =
√
1− εY +

ε

N

N∑

i=1

Zi +

√
ε

N

N∑

i=1

V̄i,

where V̄i = [
√
2µivi, 0, . . . , 0], i = 1, . . . , N , and

−1

2

N+1∑

i=1

λiYiY
T
i = −1

2
Y Y T − 1

2

N∑

i=1

ε

N

(
ZiZ

T
i + ZiV

T
i + ViZ

T
i

)
−

N∑

i=1

µiviv
T
i

= W −
N∑

i=1

1

2

(
ε

N
ZiZ

T
i +

√
ε

N
ZiV̄

T
i +

√
ε

N
V̄iZ

T
i

)
.

Therefore
(

√

1− εY +
ε

N

N
∑

i=1

Zi +

√

ε

N

N
∑

i=1

V̄i, W −

N
∑

i=1

1

2

(

ε

N
ZiZ

T

i +

√

ε

N
ZiV̄

T

i +

√

ε

N
V̄iZ

T

i

)

)

=

(

N+1
∑

i=1

λiYi, −
1

2

N+1
∑

i=1

λiYiY
T

i

)

.(2.4)

Set κ := dimE. By Carathéodory’s theorem,

convD(A,B)=

{(
κ+1∑

i=1

λiYi,−
1

2

κ+1∑

i=1

λiYiY
T
i

)∣∣∣∣
λ ∈ R

κ+1
+ ,

∑κ+1
i=1 λi = 1, Yi ∈ R

n×m

AYi = B (i = 1, . . . , κ+ 1)

}
.

By letting ε ↓ 0 in (2.4), we find (Y,W ) ∈ convD(A,B) thereby concluding the proof.
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3. Normal cone of Ω(A,B) and the subdifferential of σD(A,B). The new
representation for convD(A,B) allows us to dramatically simplify the representation
for the subdifferential of σD(A,B) given in [3, Theorem 4.8]. For this we use the
well-established relation

(3.1) ∂σC(x) = ∂σconvC(x) = {z ∈ convC | x ∈ NconvC (z)} ,
for any nonempty C ⊂ E, where the first equivalence follows from (1.5) and the second
from [10, Theorem 23.5].

Proposition 3.1 (The normal cone to Ω(A,B)). Let Ω(A,B) be as given by
(2.3) and let (Y,W ) ∈ Ω(A,B). Then

NΩ(A,B) (Y,W ) =




(X,V ) ∈ E

∣∣∣∣∣∣∣

V ∈ KA,

〈
V,

1

2
Y Y T +W

〉
= 0

and rge (X − V Y ) ⊂ (kerA)⊥





Proof. Observe that Ω(A,B) = C1 ∩ C2 ⊂ E where

C1 :=
{
Y ∈ R

n×m | AY = B
}
× S

n and C2 := {(Y,W ) | F (Y,W ) ∈ K◦
A } ,

with F (Y,W ) := 1
2Y Y T + W . Clearly, C1 is affine, hence convex, and C2 is also

convex, which can be seen by an analogous reasoning as for the convexity of Ω(A,B)
(cf. the proof of Theorem 2.2). Therefore, [10, Corollary 23.8.1] tells us that

(3.2) NΩ(A,B) (Y,W ) = NC1
(Y,W ) +NC2

(Y,W ) ,

where
NC1

(Y,W ) =
{
R ∈ R

n×m
∣∣ rgeR ⊂ (kerA)⊥

}
× {0}.

We now compute NC2
(Y,W ). First recall that for any nonempty closed convex cone

C ⊂ E , we have NC (x) = {z ∈ C◦ | 〈z, x〉 = 0} for all x ∈ C. Next, let ∇F (Y,W )
denote the Fréchet derivative of F at (Y,W ) and observe that the action of its adjoint
is given by

∇F (Y,W )∗U = (UY, U) (U ∈ S
n).

Hence ∇F (Y,W )∗U = 0 if and only if U = 0, and so, by [11, Exercise 10.26 Part (d)],

NC2
(Y,W ) =

{
(V Y, V )

∣∣∣∣ V ∈ KA,

〈
V,

1

2
Y Y T +W

〉
= 0

}
.

Therefore, by (3.2), NΩ(A,B) (Y,W ) is given by
{
(X,V )

∣∣∣∣ rge (X − V Y ) ⊂ (kerA)⊥, V ∈ KA,

〈
V,

1

2
Y Y T +W

〉
= 0

}
,

which proves the result.

By combining (3.1) and Proposition 3.1 we obtain a simplified representation of the
subdifferential of the support function σD(A,B).

Corollary 3.2 (The subdifferential of σD(A,B)). Let D(A,B) be as given in
(1.1). Then, for all (X,V ) ∈ domσD(A,B) (see (1.3)) we have

∂σD(A,B) (X,V ) =




(Y,W ) ∈ Ω(A,B)

∣∣∣∣∣∣∣

∃Z ∈ R
p×m : X = V Y +ATZ,

〈
V,

1

2
Y Y T +W

〉
= 0





.

Proof. This follows directly from the normal cone description in Proposition 3.1
and the relation (3.1).
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4. The geometry of Ω(A,B). We now compute the relative interior and the
affine hull of Ω(A,B). For these purposes, we recall an established result on the
relative interior of a convex set in a product space.

Proposition 4.1 ([10, Theorem 6.8]). Let C ⊂ E1 × E2. For each y ∈ E1 we
define Cy := {z ∈ E2 | (y, z) ∈ C } and D := {y | Cy 6= ∅}. Then

riC = {(y, z) | y ∈ riD, z ∈ riCy } .

We use this result to get a representation for the relative interior of Ω(A,B) directly,
and then mimic its technique of proof to tackle the affine hull.

Lemma 4.2. Let A,B ⊂ E be convex with riA ∩ riB 6= ∅. Then aff (A ∩ B) =
aff A ∩ aff B.

Proof. The inclusion aff (A∩B) ⊂ aff A∩aff B is clear since the latter set is affine
and contains A ∩B.

For proving the reverse inclusion, we can assume w.l.o.g. that 0 ∈ riA ∩ riB =
ri (A ∩ B), where for the latter equality we refer to [10, Theorem 6.5]. In particular
we have

(4.1) aff A = R+A, aff B = R+B and aff (A ∩B) = R+(A ∩B),

see (1.4) and the discussion afterwards. Now, let x ∈ aff A ∩ aff B. If x = 0 there
is nothing to prove. If x 6= 0, by (4.1), we have x = λa = µb for some λ, µ > 0 and
a ∈ A, b ∈ B. W.l.o.g we have λ > µ, and hence, by convexity of B, we have

a =
(
1− µ

λ

)
0 +

µ

λ
b ∈ B.

Therefore x = λa ∈ R+(A ∩B) = aff (A ∩B), see (4.1).

We now prove a result analogous to Proposition 4.1.

Proposition 4.3. In addition to the assumptions of Proposition 4.1 assume that
D is affine. Then (y, z) ∈ aff C if and only if y ∈ D and z ∈ aff Cy.

Proof. We imitate the proof of [10, Theorem 6.8]: Let L : (y, z) 7→ z. Since D is
assumed to be affine (hence D = affD = riD), we have

(4.2) D = L(C) = L(riC) = L(aff C),

where we invoke the fact that linear mappings commute with the relative interior and
the affine hull, see [10, Theorem 6.7 and p. 8].

Now fix y ∈ D = riD and define the affine set My := {(y, z) | z ∈ E2 } = {y}×E2.
Then, by (4.2), there exists z ∈ E2 such that y = L(y, z) and (y, z) ∈ riC. Hence,
riMy ∩ riC 6= ∅ and we can invoke Lemma 4.2 to obtain

affMy ∩ aff C = aff (My ∩ C) = aff ({y} × Cy) = {y} × aff Cy.

Hence, if y ∈ D, z ∈ aff Cy, we have (y, z) ∈ {y} × aff Cy = My ∩ aff C ⊂ aff C.
In turn, for (y, z) ∈ C, we have (y, z) ∈ My ∩aff C = {y}×Cy, hence z ∈ Cy 6= ∅,

so y ∈ D.

We are now in a position to prove the desired result on the relative interior and the
affine hull of Ω(A,B).

Proposition 4.4. For Ω(A,B) given by (2.3) the following hold:
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a) ri Ω(A,B) =
{
(Y,W ) ∈ E

∣∣ AY = B and 1
2Y Y T +W ∈ ri (K◦

A)
}
.

b) aff Ω(A,B) =
{
(Y,W ) ∈ E

∣∣ AY = B and 1
2Y Y T +W ∈ spanK◦

A

}
,

where spanK◦
A = span

{
vvT | v ∈ kerA

}
.

Proof. We apply the format of Proposition 4.1 and 4.3, respectively, for C :=
Ω(A,B). Then

D = {Y | AY = B } and Cy =

{
K◦

A − 1
2Y Y T , if AY = B,

∅, else.
(Y ∈ R

n×m),

a) Apply Proposition 4.1 and observe that ri (K◦
A − 1

2Y Y T ) = ri (K◦
A)− 1

2Y Y T .
b) Apply Proposition 4.3 and observe that D is affine, and that aff (K◦

A −
1
2Y Y T ) = aff (K◦

A)− 1
2Y Y T .

As a direct consequence of Propositions 2.1 and 4.4, we obtain the following result for
the special case (A,B) = (0, 0).

Corollary 4.5. It holds that

conv

{
(Y,−1

2
Y Y T )

∣∣ Y ∈ R
n×m

}
=

{
(Y,W ) ∈ E

∣∣∣∣W +
1

2
Y Y T � 0

}
,

and

int

(
conv

{
(Y,−1

2
Y Y T )

∣∣ Y ∈ R
n×m

})
=

{
(Y,W ) ∈ E

∣∣∣∣W +
1

2
Y Y T ≺ 0

}
.

We conclude this section by giving representations for the horizon cone and polar of
Ω(A,B).

Proposition 4.6 (The polar of Ω(A,B)). Let Ω(A,B) be as given in (2.3).
Then

Ω(A,B)◦ =

{
(X,V )

∣∣∣∣∣
rge
(
X
B

)
⊂ rgeM(V ), V ∈ KA,

1
2 tr

((
X
B

)T
M(V )†

(
X
B

))
≤ 1

}
.

Moreover,

Ω(A,B)∞ = {0n×m} × K◦
A(4.3)

and

(Ω(A,B)◦)∞=

{
(X,V )

∣∣∣∣∣
rge
(
X
B

)
⊂ rgeM(V ), V ∈ KA,

1
2 tr

((
X
B

)T
M(V )†

(
X
B

))
≤ 0

}
.(4.4)

Proof. For any nonempty convex set C ⊂ E, observe that {z | σC (z) ≤ 1} =
{z | 〈z, x〉 ≤ 1, ∀x ∈ C } = C◦. Consequently, our expression for Ω(A,B)◦ follows
from (1.2).

To see (4.3), let (Y,W ) ∈ Ω(A,B) and recall that (S, T ) ∈ Ω(A,B)∞ if and only
if (Y + tS,W + tT ) ∈ Ω(A,B) for all t ≥ 0. In particular, for (S, T ) ∈ Ω(A,B)∞, we
have A(Y + tS) = B and

(4.5)
1

2

[
Y Y T + t(SY T + Y ST ) +

t2

2
SST

]
+ (W + tT ) ∈ K◦

A (t > 0).

Consequently, AS = 0 and, if we divide (4.5) by t2 and let t ↑ ∞, we see that
SST ∈ K◦

A. But SST ∈ KA since rgeS ⊂ kerA, so we must have S = 0. If we now



10 J. V. BURKE, Y. GAO, AND T. HOHEISEL

divide (4.5) by t and let t ↑ ∞, we find that T ∈ K◦
A. Hence the set on the left-hand

side of (4.3) is contained in the one on the right. To see the reverse inclusion, simply
recall that K◦

A is a closed convex cone so that K◦
A +K◦

A ⊂ K◦
A.

Finally, we show (4.4). Since (0, 0) ∈ Ω(A,B)◦, we have (S, T ) ∈ (Ω(A,B)◦)∞ if
and only if (tS, tT ) ∈ Ω(A,B)◦ for all t > 0, or equivalently, for all t > 0,

tT ∈ KA and ∃ (Yt, Zt) ∈ R
n×m × R

p×m s.t.

(
tS

B

)
= M(tT )

(
Yt

Zt

)

with
1

2
tr

((
Yt

Zt

)T

M(tT )

(
Yt

Zt

))
≤ 1,

or equivalently, by taking Ẑt := t−1Zt,

T ∈ KA and ∃ (Yt, Ẑt) ∈ R
n×m × R

p×m s.t.

(
S

B

)
= M(T )

(
Yt

Ẑt

)

with
t

2
tr

((
Yt

Ẑt

)T

M(T )

(
Yt

Ẑt

))
≤ 1.

If we take
(Yt

Ẑt

)
:= M(T )†

(
S
B

)
, we find that (S, T ) ∈ (Ω(A,B)◦)∞ if and only if

T ∈ KA and
t

2
tr

((
S

B

)T

M(T )†
(
S

B

))
≤ 1 (t > 0),

which proves the result.

5. σΩ(A,0) as a gauge. Note that the origin is an element of Ω(A,B) if and only
if B = 0. In this case the support function of Ω(A, 0) equals the gauge of Ω(A, 0)◦.
Gauges are important in a number of applications and they posses their own duality
theory [5, 6, 7]. An explicit representation for both γΩ(A,0)◦ and γΩ(A,0) will be given
in the following theorem.

Theorem 5.1 (σD(A,0) is a gauge). Let Ω(A,B) be as given in (2.3). Then

(5.1) σΩ(A,0) (X,V ) = γΩ(A,0)◦ (X,V ) = γ◦
Ω(A,0)(X,V ),

and

(5.2)

γΩ(A,0) (Y,W )=σΩ(A,0)◦ (Y,W )

=

{
1
2σ

−1
min(−Y †W (Y †)T ) if rgeY ⊂kerA ∩ rgeW,W ∈ K◦

A,

+∞ else,

where σmin(−Y †W (Y †)T ) is the smallest nonzero singular-value of −Y †W (Y †)T when
such a singular-value exists and +∞ otherwise, e.g. when Y = 0. Here we interpret
1
∞ as 0 (0 = 1

∞ ), and so, in particular, γΩ(A,0) (0,W ) = δK◦

A
(W ).

Proof. The expression (5.1) follows from [10, Theorem 14.5]. To show (5.2), first
observe that

tΩ(A, 0)=

{
(Y,W )

∣∣∣∣ AY = 0 and
1

2
Y Y T + tW ∈ K◦

A

}
,(5.3)
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whose straightforward proof is left to the reader.
Given t̄ ≥ 0, by (5.3), (Y,W ) ∈ tΩ(A, 0) for all t > t̄ if and only if AY = 0 and

1
2Y Y T + tW ∈ K◦

A for all t > t̄. By Proposition 2.1 a), this is equivalent to AY = 0
and

(5.4)
1

2
Y Y T + tW = P

(
1

2
Y Y T + tW

)
P � 0 (t > t̄),

where, again, P is the orthogonal projection onto kerA. Dividing this inequality by
t and taking the limit as t ↑ ∞ tells us that W = PWP � 0. Since Y Y T is positive
semidefinite, inequality (5.4) also tells us that kerW ⊂ kerY T , i.e. rgeY ⊂ rgeW .
Consequently,

dom γΩ(A,0) ⊂ {(Y,W ) | rgeY ⊂kerA ∩ rgeW,W ∈ K◦
A } .

Now suppose (Y,W ) ∈ dom γΩ(A,0). Let Y = UΣV T be the reduced singular-value
decomposition of Y where Σ is an invertible diagonal matrix and U, V have orthonor-
mal columns. Since rgeY ⊂ rgeW = (kerW )⊥, we know that UTWU is negative
definite, and so Σ−1UTWUΣ−1 is also negative definite. Multiplying (5.4) on the left
by Σ−1UT and on the right by UΣ−1 gives

µI � −2Σ−1UTWUΣ−1 (0 < µ ≤ µ̄),

where µ̄ = t̄−1. The largest µ̄ satisfying this inequality is

σmin(−2Y †W (Y †)T ) = σmin(−2Σ−1UTWUΣ−1) > 0,

or equivalently, the smallest possible t̄ in (5.4) is 1/σmin(−2Y †W (Y †)T ), which proves
the result.

6. Conclusions. The representation Ω(A,B) for the closed convex hull of the
set D(A,B) in Theorem 2.2 is a dramatic simplification of the one given in [3]. As
a consequence, we also obtain simplified expressions for both the normal cone to
Ω(A,B) and the subdifferential for generalized matrix-fractional functions in Section
3. In addition, representations for several important geometric objects related to the
set Ω(A,B) are computed in Section 4.
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