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ABSTRACT

Unmanned Aerial Systems (UAS), informally known as drones, are

cyber-physical systems (CPS) that operate by remote human con-

trol or autonomous control. UAS are increasingly being used in a

wide variety of applications, such as search and rescue, delivery of

goods, or surveillance. These systems rely on sensors and actuators

to evaluate their current state and take further action; due to the

reliance on sensors and actuators, it is critical to thwart an adver-

sary’s attempt to compromise these elements. Security in these

systems rely on detectors to ind malicious activity, many of which

require models of the system to compare what the readings are

versus the expected value. Due to measurement and process noise,

it is possible that an adversary may perpetrate undetectable attacks.

In this paper we examine the sensitivity of model-based attack

detectors to measurement and modeling uncertainty, ultimately

showing the weaknesses in relying solely on model-based detectors

for attack detection. We demonstrate attacks on a simulation of the

Senior Telamaster UAS and evaluate the performance of multiple

attack detectors after modiications on various parameters, such as

those related to internal factors, e.g., measurement noise, as well

as external forces, e.g., wind, ultimately showing that an attacker

is able to evade detection due to fundamental limitations in the

model-based approach.
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1 INTRODUCTION

Unmanned Aerial Systems (UAS), also known as unmanned aerial

vehicles or drones, are cyber-physical systems (CPS) that can func-

tion through either remote human control or autonomous control.

UAS are increasingly being utilized for a variety of applications,

such as providing wireless coverage, search and rescue, delivery of

goods, and surveillance [9]. A failure of these CPS to perform in a

safe manner may lead to a negative efect on the economy or phys-

ical human harm. Whether in human-controlled or autonomous

operation a UAS relies on sensor information to properly direct the

actuators; thus, sensor and actuator integrity is vital to successful

UAS lights. However, UAS have been shown to be susceptible to

both sensor and actuator attacks.

A number of previous studies focus on diverse methods for un-

manned vehicle attack detection. Some existing methods propose a

fault-based approach, detecting an attack by assigning signatures

[1], while others focus on model-free approaches, such as using

the Mahalanobis distance for anomaly detection [4]. In contrast

to these methods, we focus on model-based approaches wherein a

system model (i.e., a model describing how the UAS should respond

to exogenous and endogenous inputs) is used to create an accurate

estimate of the system’s state to compare to the sensors’ readings of

the current state [7]. Model-based detection hinges on the accuracy

of the model [3] to determine a precise estimate of the system’s

current state in order to compare it to the measured readings.

While studies may make the assumption that the model being

used is accurate, we instead take the opposite approach: this paper

assumes that there are errors allowed in the model that can create

an attack surface for an adversary. Weaknesses in model-based

approaches have been examined showing that the derivation be-

tween the estimated state and real-time values can be leveraged by

adversaries to exploit unmanned systems [2], and this work builds

upon the stated weaknesses by identifying the efect of modifying

model parameters on the model’s accuracy and ability to provide

estimation for detection.

Speciically, this paper examines the shortcomings of usingmodel-

based detectionmethods for UAS to protect against common attacks,

e.g., in actuators [7] or sensors [6]. We improve upon this body of

work by examining the efect of modifying various model-based

parameters that afect the ability of a model-based detector to un-

cover an attacker. Furthermore, we approach the evaluation in a

systematic manner that highlights the parameters most appropriate

for the camoulage of adversarial activity.

2 SYSTEM AND THREAT MODELS

UAS require communication with the system’s sensors and actua-

tors to measure the current state since there is no user on-board
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3.2 Detectors

Our baseline detectionmethod was to measure the residual between

the sensor reading’s current state and the estimated state [5] to

determine if that residual exceeds a certain threshold. If at time t

the residual is greater than the threshold, then an alarm is raised.

To ind the alarm value A(t), the detector is deined by

A(t) =

{

1, if |rt | > τt

0, if |rt | ≤ τt

(1)

where A(t) = 0 is when the alarm is not triggered and A(t) = 1 is

when the alarm is sounded, given residual rt and threshold τt . The

threshold can be tuned to allow for an acceptable ratio between the

false acceptance rate and false rejection rate.

The second detector evaluated was the CUSUM, which allows

for more robust detection than that of using just the residual at

a single timestep [8]. Instead of simply checking the residual at a

single time, CUSUM evaluates the sum of residuals over a sequence

and triggering the alarm if that exceeds the threshold. The CUSUM

detector is deined by

A(t) =

{

1, if St−1 > τt

St = max(0, St−1 + |rt | − bt ), if St−1 ≤ τt

(2)

where sequence S , which accumulates residuals r , is monitored

for malicious activity. The bias b allows for further tuning of the

acceptance and rejection rate of the detector.

3.3 Measured Parameters

To evaluate the potential efect of difering values on a model, we

selected various parameters to modify. The irst parameter is the

measurement noise that is accounted for in the low-idelity model.

This parameter accounts for any error in the readings as a result

of imperfection within the sensors; due to a number of causes, e.g.

weather’s efect on a GPS reading, no sensor can be expected to

report 100% accuracy at every moment. The measurement noise is

measured in standard deviations from a normal distribution; thus,

the baseline measurement has no measurement noise while the

modiied parameter measures one standard deviation.

The second parameter captured is the wind, an external distur-

bance, that is accounted for in themodel. The baseline measurement

accounts for no wind, however the modiied parameter accounts

for an external disturbance coming from three directions: north,

east, and down. The wind parameter is measured in meters per

second and in this study is assumed to be a constant force. This

study focuses on having only a constant wind for an external distur-

bance, however other sources of external disturbance could include

forces from an adversary, e.g. an air cannon to manipulate the UAS

physical state.

The third parameter, the sample rate, is measured in hertz (hz)

and represents the samples per second of the model. Varying the

sample rate can either create a more accurate model at the cost of

higher resources, in the case of a high sample rate, or a less accurate

model, in the the case of a low sample rate. Three levels of sample

rate were tested: 13 hz, 25 hz, and 50 hz. The 25 hz sample rate

represented the baseline measurement.

The state-space matrices that make up the foundation of the

model can also be altered to create a more or less accurate model.

The measurement of this parameter is represented by how diferent

from the baselinemodel themodiication is made. Thus, the baseline

parameters are measured at 100% and any modiications, e.g. 90%,

mean they are a scaled value of the baseline.

The inal value is a measurement of the error between the model

and the ground truth values, which is shown as the average absolute

error value. This value represents how efective the parameters are

at creating an accurate estimate; the smallest average absolute error

is from a highly accurate model.

4 RESULTS AND DISCUSSION

The results seek to quantify the efect of a model’s parameters on

its detection ability using two diferent detectors. Changes to the

parameters were examined by making parameter modiications,

then inding the equal error rate of each of the detectors. Table 1

shows each of the four parameters with the corresponding equal

error rate associated with the type of detector as well as the average

absolute error between the estimate and actual.

Neither detector outperformed the other detector in all exper-

imental categories, although interestingly the residual detector

generally performed with higher accuracy in these tests than the

CUSUM detector. We believe that even though the CUSUM detector

is more robust, the simple nature of the circular light path allowed

the residual detector to more easily determine deviations from the

expected path. Given a more variable and dynamic light path, we

believe the CUSUM detector would prove to be generally more ef-

fective. Nevertheless, the CUSUM detector performed signiicantly

better than the residual detector in the case of measurement noise,

which is a more realistic case than the absence of measurement

noise.

The introduction of an external disturbance increased the accu-

racy of the residual detector while worsening the efectiveness of

the CUSUM detector. One factor that may have led to this result is

that the external disturbance was in the form of a constant wind,

which would allow the residual detector to perform well compared

to a variable disturbance. Restricting the tests to a constant force

allowed for insight into the efect of applying an external distur-

bance in general, however future studies should examine the efect

of both constant and variable disturbances.

Broadly speaking, tests within the same parameter category

with diferent sample rates performed relatively similarly; the equal

error rates and the average absolute errors were within similar

ranges compared to the errors of other parameter categories. This

highlights that while the sample rate of the model can have a slight

efect, any changes would not signiicantly assist the adversary

in inding a window of opportunity to conduct a covert attack.

Moreover, this result means that sample rates can be modiied and

optimized after implementation without introducing unnecessary

amount of risk.

The modiication to the state-space matrices created the most

collective drastic efect on the detectors. The residual detector

performed similarly to when measurement noise was introduced,

however the CUSUM detector performed signiicantly worse. The

primary factor leading to this was that any modiications to the

state-space matrices inherently change the behavior of the model.

While this may seem intuitive, difering state-space matrices can
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Detectors Parameters

Residual EER CUSUM EER Measurement Noise Wind (m/s) Sample Rate State-space Matrices Avg Absolute Error

2.31% 5.25% None None 25 hz 100% 3.89

2.44% 5.99% None None 50 hz 100% 3.85

2.27% 4.95% None None 13 hz 100% 3.88

1.89% 8.71% None 2.5 N /2.5 E/ 2.5D 25 hz 100% 11.49

1.99% 9.09% None 2.5 N /2.5 E/ 2.5D 50 hz 100% 11.54

1.86% 8.45% None 2.5 N /2.5 E/ 2.5D 13 hz 100% 11.41

13.24% 1.05% 1 Std Dev None 25 hz 100% 18.32

13.30% 2.71% 1 Std Dev None 50 hz 100% 18.61

12.58% 3.45% 1 Std Dev None 13 hz 100% 18.50

12.18% 24.58% None None 25 hz 90% 13.82

12.86% 22.51% None None 50 hz 90% 14.29

11.96% 25.57% None None 13 hz 90% 13.74

Table 1: Model-Based Detectors and Parameters

be a highly likely source of disparity between the models in a

model-based detector as models have to adapt to any changes to

the behavior of the system. By referring to the baseline parameters

as 100%, this study assumes the low-idelity state-space matrices

are the best representation of the ground truth, yet the assump-

tion does not stand true when applied to a physical system when

compared to a simulation. Thus, if the detector and the state-space

matrices are not completely in sync, an attack is more likely to be

undetected.

Interestingly, the average absolute error was not directly cor-

related to the detectors performance; while the baseline case per-

formed more accurately with the smallest average absolute error,

the diferent modiication categories saw mixed results. The highest

error was in the case of introducing measurement noise, which is

plausible since the other categories involved a more constant ofset

from the baseline. The measurement noise was more variable and

therefore provided more opportunities for error.

5 CONCLUSION AND FUTURE WORK

The evidence from this study points to the idea that there is an

inherent weakness within model-based detectors that can be ex-

ploited by an adversary to evade attack detection; furthermore,

this weakness can be systematically assessed. Ultimately, the re-

sults suggest that there is room for error in the assumption that a

model is suiciently accurate in a model-based detection system.

The primary limitation of this study is the reliance on a simulation,

however our study provides the basis for which a more thorough

assessment on a physical platform may be conducted. This study is

the irst step in creating a more holistic assessment of the efect of

parameters on the ability of a model-based detector to perform.

Future work will focus on examining an expanded number of de-

tectors on the current simulation, other UAS simulations, as well as

a physical UAS; expanding the experiments to a physical UAS will

provide more variable results than a simulation and thus strengthen

indings. Furthermore, future work will focus on a greater range of

parameters categories and modiications since this study focused

primarily on one modiication per category. One factor that may

lead to interesting results is introducing variable parameters, such

as in the case of external disturbances, e.g. wind that changes direc-

tions. Additionally, this study focused on systematically toggling

parameter categories, but did not look into the efect of combining

modiications with each other; we would like to expand this work

in the future by examining the efect of combinations.
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