Session: Spoofing Attack Detection and Prevention

AutoSec 20, March 18, 2020, New Orleans, LA, USA

On the Efficacy of Model-Based Attack Detectors for Unmanned
Aerial Systems

Ian Y. Garrett
Virginia Tech
Arlington, Virginia
ianygarrett@vt.edu

ABSTRACT

Unmanned Aerial Systems (UAS), informally known as drones, are
cyber-physical systems (CPS) that operate by remote human con-
trol or autonomous control. UAS are increasingly being used in a
wide variety of applications, such as search and rescue, delivery of
goods, or surveillance. These systems rely on sensors and actuators
to evaluate their current state and take further action; due to the
reliance on sensors and actuators, it is critical to thwart an adver-
sary’s attempt to compromise these elements. Security in these
systems rely on detectors to find malicious activity, many of which
require models of the system to compare what the readings are
versus the expected value. Due to measurement and process noise,
it is possible that an adversary may perpetrate undetectable attacks.
In this paper we examine the sensitivity of model-based attack
detectors to measurement and modeling uncertainty, ultimately
showing the weaknesses in relying solely on model-based detectors
for attack detection. We demonstrate attacks on a simulation of the
Senior Telamaster UAS and evaluate the performance of multiple
attack detectors after modifications on various parameters, such as
those related to internal factors, e.g., measurement noise, as well
as external forces, e.g., wind, ultimately showing that an attacker
is able to evade detection due to fundamental limitations in the
model-based approach.
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1 INTRODUCTION

Unmanned Aerial Systems (UAS), also known as unmanned aerial
vehicles or drones, are cyber-physical systems (CPS) that can func-
tion through either remote human control or autonomous control.
UAS are increasingly being utilized for a variety of applications,
such as providing wireless coverage, search and rescue, delivery of
goods, and surveillance [9]. A failure of these CPS to perform in a
safe manner may lead to a negative effect on the economy or phys-
ical human harm. Whether in human-controlled or autonomous
operation a UAS relies on sensor information to properly direct the
actuators; thus, sensor and actuator integrity is vital to successful
UAS flights. However, UAS have been shown to be susceptible to
both sensor and actuator attacks.

A number of previous studies focus on diverse methods for un-
manned vehicle attack detection. Some existing methods propose a
fault-based approach, detecting an attack by assigning signatures
[1], while others focus on model-free approaches, such as using
the Mahalanobis distance for anomaly detection [4]. In contrast
to these methods, we focus on model-based approaches wherein a
system model (i.e., a model describing how the UAS should respond
to exogenous and endogenous inputs) is used to create an accurate
estimate of the system’s state to compare to the sensors’ readings of
the current state [7]. Model-based detection hinges on the accuracy
of the model [3] to determine a precise estimate of the system’s
current state in order to compare it to the measured readings.

While studies may make the assumption that the model being
used is accurate, we instead take the opposite approach: this paper
assumes that there are errors allowed in the model that can create
an attack surface for an adversary. Weaknesses in model-based
approaches have been examined showing that the derivation be-
tween the estimated state and real-time values can be leveraged by
adversaries to exploit unmanned systems [2], and this work builds
upon the stated weaknesses by identifying the effect of modifying
model parameters on the model’s accuracy and ability to provide
estimation for detection.

Specifically, this paper examines the shortcomings of using model-
based detection methods for UAS to protect against common attacks,
e.g., in actuators [7] or sensors [6]. We improve upon this body of
work by examining the effect of modifying various model-based
parameters that affect the ability of a model-based detector to un-
cover an attacker. Furthermore, we approach the evaluation in a
systematic manner that highlights the parameters most appropriate
for the camouflage of adversarial activity.

2 SYSTEM AND THREAT MODELS

UAS require communication with the system’s sensors and actua-
tors to measure the current state since there is no user on-board



Session: Spoofing Attack Detection and Prevention

and able to use other senses to determine if the instruments are
faulty; this reliance on sensor and actuator accuracy leads to vul-
nerability. We hypothesize that the allowed difference between the
sensor measurement and the detector’s threshold can vary between
parameters and detectors, which ultimately gives more allowance
to an adversary to conduct an attack. If the adversary is able to read
the parameters, or modify the parameters, then the attacks can be
strategically timed to minimize likelihood of detection.

2.1 Threat model and assumptions

The goal of the adversary is to perform attacks using covert meth-
ods, e.g. false data injection (FDI) to manipulate sensor measure-
ment, that ultimately cause the UAS to perform actions that are
outside of its desired path. In order for the attack to be successfully
covert it must be undetected, which requires any sensor measure-
ment deviations to fall within the acceptable boundaries of the
chosen detector. In addition to an attack not being detected as a
false negative, it is assumed that the detector is adjusted for false
positive rates so that an attack could occur within the accepted
noise range of the detector as long as it stays within the range
of the rate. The primary motivation of the adversary is to remain
undetected so they are searching for the set of parameters that
allow for the greatest detection error.

We assume the adversary has exploited the UAS prior to the
attack and is capable of performing false data injection to affect the
sensors. Furthermore, the adversary has implanted the device so
that there is continual access that allows system value monitoring;
the adversary is assumed to have the ability to read the UAS control
inputs, as well as the model parameters, and can use them to create
the UAS state estimation that is used for anomaly detection. We
further assume that the UAS operators regularly modify the UAS
parameters in an attempt to prevent an adversary from adapting
attacks to specific parameters.

The adversary is limited by only being able to conduct the chosen
attack as well as view, but not able to modify, the set parameters.
Therefore, the adversary is a passive persistent threat focused on
searching for a time when the optimal set of parameters are in place
to conduct the attack; thus, they will remain dormant on the UAS
otherwise. The adversary is further constrained by being unable
to jam the detectors, and does not have access to the system logs
so the attack cannot be masked, but can only attempt to remain
hidden. Therefore, the attack will be read by the UAS and passed
to the detectors; it is up to the adversary to execute it when the
optimal set of parameters are in place to achieve their goal.

2.2 UAS Attack

The attack focused on disrupting the UAS position, such as in the
case of an FDI on a GPS sensor, so that the UAS path spirals instead
of maintaining a constant circular flight pattern. The FDI can be
performed by modifying the sensor readings in such a way that
the UAS sends control inputs according to its believed position
compared to the actual position. Figure 1 shows three UAS paths
with north/south (in meters) on the y-axis and east/west (in meters)
on the x-axis: the blue represents the ground truth (high-fidelity),
the green represents the estimated path (low-fidelity with an Ex-
tended Kalman Filter), and the red represents the path during an
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Figure 1: UAS Normal Flight Path Vs Attack

attack. Since many UAS applications require position accuracy, the
adversary is motivated to conduct the position-based attack to re-
duce the effectiveness of the UAS, e.g. a delivery could be sent to
a different address. While a drastic shift could be easily detected,
small modifications over a period of time could allow the UAS to
slowly divert from its expected path.

3 EXPERIMENTAL DESIGN AND
EVALUATION

To conduct the experiment we used a high-fidelity model to create a
simulation that represented the ground truth of a Senior Telamaster
UAS in flight [7], a low-fidelity model to create the state-estimate
used by the detectors, two different types of detectors, and made
modifications to four parameters. The output of the experiment
was the equal error rate (EER), which was determined by finding
the intersection of the false acceptance rate and the false rejection
rate, of each of the detectors as well as the average absolute error,
which was the difference between the high and low-fidelity model.

3.1 Setup

Since the high-fidelity model represents the ground truth, the model
does not take into account measurement noise; however, the model
does take into account external disturbances in the form of wind.
The model uses a PID controller to simulate a steady-sate circular
flight path. The state-space of this model takes into account the
roll, pitch, yaw, as well as the associated Euler angles, body-axis
linear velocities, x-position, y-position, height, actuator states, and
states pertaining to the Dryden turbulence model.

To represent the model-based detectors, a discrete-time linear
time-invariant low-fidelity model of the UAS estimated the position
of the UAS. The low-fidelity model took into account not only
external disturbances, but also measurement noise from the sensors.
Since the model was steady-state, an EKF was used to create a more
accurate estimate.

To assess the changes to detection ability, we measured metrics
from two detectors, a residual detector and the CUmulative SUM
(CUSUM), as well as various model parameters: measurement noise,
wind, sample rate, and state-space matrices.



Session: Spoofing Attack Detection and Prevention

3.2 Detectors

Our baseline detection method was to measure the residual between
the sensor reading’s current state and the estimated state [5] to
determine if that residual exceeds a certain threshold. If at time ¢
the residual is greater than the threshold, then an alarm is raised.
To find the alarm value A(t), the detector is defined by

A(t) = {(1)

where A(t) = 0 is when the alarm is not triggered and A(¢) = 1 is
when the alarm is sounded, given residual r; and threshold z;. The
threshold can be tuned to allow for an acceptable ratio between the
false acceptance rate and false rejection rate.

The second detector evaluated was the CUSUM, which allows
for more robust detection than that of using just the residual at
a single timestep [8]. Instead of simply checking the residual at a
single time, CUSUM evaluates the sum of residuals over a sequence
and triggering the alarm if that exceeds the threshold. The CUSUM
detector is defined by

if |rt|>rt (1)

if |r,g| < Tt

ifSt_l > Tt

if Sy <14

1,
Alt) = @)
St =max(0, S¢—1 + |re| — by,
where sequence S, which accumulates residuals r, is monitored
for malicious activity. The bias b allows for further tuning of the
acceptance and rejection rate of the detector.

3.3 Measured Parameters

To evaluate the potential effect of differing values on a model, we
selected various parameters to modify. The first parameter is the
measurement noise that is accounted for in the low-fidelity model.
This parameter accounts for any error in the readings as a result
of imperfection within the sensors; due to a number of causes, e.g.
weather’s effect on a GPS reading, no sensor can be expected to
report 100% accuracy at every moment. The measurement noise is
measured in standard deviations from a normal distribution; thus,
the baseline measurement has no measurement noise while the
modified parameter measures one standard deviation.

The second parameter captured is the wind, an external distur-
bance, that is accounted for in the model. The baseline measurement
accounts for no wind, however the modified parameter accounts
for an external disturbance coming from three directions: north,
east, and down. The wind parameter is measured in meters per
second and in this study is assumed to be a constant force. This
study focuses on having only a constant wind for an external distur-
bance, however other sources of external disturbance could include
forces from an adversary, e.g. an air cannon to manipulate the UAS
physical state.

The third parameter, the sample rate, is measured in hertz (hz)
and represents the samples per second of the model. Varying the
sample rate can either create a more accurate model at the cost of
higher resources, in the case of a high sample rate, or a less accurate
model, in the the case of a low sample rate. Three levels of sample
rate were tested: 13 hz, 25 hz, and 50 hz. The 25 hz sample rate
represented the baseline measurement.

The state-space matrices that make up the foundation of the
model can also be altered to create a more or less accurate model.
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The measurement of this parameter is represented by how different
from the baseline model the modification is made. Thus, the baseline
parameters are measured at 100% and any modifications, e.g. 90%,
mean they are a scaled value of the baseline.

The final value is a measurement of the error between the model
and the ground truth values, which is shown as the average absolute
error value. This value represents how effective the parameters are
at creating an accurate estimate; the smallest average absolute error
is from a highly accurate model.

4 RESULTS AND DISCUSSION

The results seek to quantify the effect of a model’s parameters on
its detection ability using two different detectors. Changes to the
parameters were examined by making parameter modifications,
then finding the equal error rate of each of the detectors. Table 1
shows each of the four parameters with the corresponding equal
error rate associated with the type of detector as well as the average
absolute error between the estimate and actual.

Neither detector outperformed the other detector in all exper-
imental categories, although interestingly the residual detector
generally performed with higher accuracy in these tests than the
CUSUM detector. We believe that even though the CUSUM detector
is more robust, the simple nature of the circular flight path allowed
the residual detector to more easily determine deviations from the
expected path. Given a more variable and dynamic flight path, we
believe the CUSUM detector would prove to be generally more ef-
fective. Nevertheless, the CUSUM detector performed significantly
better than the residual detector in the case of measurement noise,
which is a more realistic case than the absence of measurement
noise.

The introduction of an external disturbance increased the accu-
racy of the residual detector while worsening the effectiveness of
the CUSUM detector. One factor that may have led to this result is
that the external disturbance was in the form of a constant wind,
which would allow the residual detector to perform well compared
to a variable disturbance. Restricting the tests to a constant force
allowed for insight into the effect of applying an external distur-
bance in general, however future studies should examine the effect
of both constant and variable disturbances.

Broadly speaking, tests within the same parameter category
with different sample rates performed relatively similarly; the equal
error rates and the average absolute errors were within similar
ranges compared to the errors of other parameter categories. This
highlights that while the sample rate of the model can have a slight
effect, any changes would not significantly assist the adversary
in finding a window of opportunity to conduct a covert attack.
Moreover, this result means that sample rates can be modified and
optimized after implementation without introducing unnecessary
amount of risk.

The modification to the state-space matrices created the most
collective drastic effect on the detectors. The residual detector
performed similarly to when measurement noise was introduced,
however the CUSUM detector performed significantly worse. The
primary factor leading to this was that any modifications to the
state-space matrices inherently change the behavior of the model.
While this may seem intuitive, differing state-space matrices can
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Detectors Parameters
Residual EER | CUSUM EER | Measurement Noise Wind (m/s) Sample Rate | State-space Matrices | Avg Absolute Error
2.31% 5.25% None None 25 hz 100% 3.89
2.44% 5.99% None None 50 hz 100% 3.85
2.27% 4.95% None None 13 hz 100% 3.88
1.89% 8.71% None 2.5N /2.5E/ 2.5D 25 hz 100% 11.49
1.99% 9.09% None 25N /2.5 E/ 25D 50 hz 100% 11.54
1.86% 8.45% None 2.5N /2.5 E/ 2.5D 13 hz 100% 11.41
13.24% 1.05% 1 Std Dev None 25 hz 100% 18.32
13.30% 2.71% 1 Std Dev None 50 hz 100% 18.61
12.58% 3.45% 1 Std Dev None 13 hz 100% 18.50
12.18% 24.58% None None 25 hz 90% 13.82
12.86% 22.51% None None 50 hz 90% 14.29
11.96% 25.57% None None 13 hz 90% 13.74

Table 1: Model-Based Detectors and Parameters

be a highly likely source of disparity between the models in a
model-based detector as models have to adapt to any changes to
the behavior of the system. By referring to the baseline parameters
as 100%, this study assumes the low-fidelity state-space matrices
are the best representation of the ground truth, yet the assump-
tion does not stand true when applied to a physical system when
compared to a simulation. Thus, if the detector and the state-space
matrices are not completely in sync, an attack is more likely to be
undetected.

Interestingly, the average absolute error was not directly cor-
related to the detectors performance; while the baseline case per-
formed more accurately with the smallest average absolute error,
the different modification categories saw mixed results. The highest
error was in the case of introducing measurement noise, which is
plausible since the other categories involved a more constant offset
from the baseline. The measurement noise was more variable and
therefore provided more opportunities for error.

5 CONCLUSION AND FUTURE WORK

The evidence from this study points to the idea that there is an
inherent weakness within model-based detectors that can be ex-
ploited by an adversary to evade attack detection; furthermore,
this weakness can be systematically assessed. Ultimately, the re-
sults suggest that there is room for error in the assumption that a
model is sufficiently accurate in a model-based detection system.
The primary limitation of this study is the reliance on a simulation,
however our study provides the basis for which a more thorough
assessment on a physical platform may be conducted. This study is
the first step in creating a more holistic assessment of the effect of
parameters on the ability of a model-based detector to perform.
Future work will focus on examining an expanded number of de-
tectors on the current simulation, other UAS simulations, as well as
a physical UAS; expanding the experiments to a physical UAS will
provide more variable results than a simulation and thus strengthen
findings. Furthermore, future work will focus on a greater range of
parameters categories and modifications since this study focused
primarily on one modification per category. One factor that may
lead to interesting results is introducing variable parameters, such
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as in the case of external disturbances, e.g. wind that changes direc-
tions. Additionally, this study focused on systematically toggling
parameter categories, but did not look into the effect of combining
modifications with each other; we would like to expand this work
in the future by examining the effect of combinations.
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