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Abstract. Regularized least-squares approaches have been successfully applied to linear system identification.

Recent approaches use quadratic penalty terms on the unknown impulse response defined by stable spline kernels,

which control model space complexity by leveraging regularity and bounded-input bounded-output stability. This

paper extends linear system identification to a wide class of nonsmooth stable spline estimators, where regularization

functionals and data misfits can be selected from a rich set of piecewise linear-quadratic (PLQ) penalties. This class

includes the 1-norm, Huber, and Vapnik, in addition to the least-squares penalty.

By representing penalties through their conjugates, the modeler can specify any piecewise linear-quadratic

penalty for misfit and regularizer, as well as inequality constraints on the response. The interior-point solver we im-

plement (IPsolve) is locally quadratically convergent, with O(min(m,n)2(m+n)) arithmetic operations per iteration,

where n the number of unknown impulse response coefficients and m the number of observed output measurements.

IPsolve is competitive with available alternatives for system identification. This is shown by a comparison with

TFOCS, libSVM, and the FISTA algorithm. The code is open source1.

The impact of the approach for system identification is illustrated with numerical experiments featuring robust

formulations for contaminated data, relaxation systems, nonnegativity and unimodality constraints on the impulse

response, and sparsity promoting regularization. Incorporating constraints yields particularly significant improve-

ments.

Keywords: linear system identification; kernel-based regularization; Gaussian processes; bias-

variance; model order selection; robust statistics; sparse optimization; interior point methods

1. Introduction. System identification formalizes the process of inferring models from

observations and studying their properties. A system comprises multiple variable interactions

to produce observable signals [45]. We focus on linear time invariant system (LTI) identifi-

cation, i.e. systems where the response to a certain input signal does not depend on absolute

time, and the output response to a linear combination of inputs is the linear combination of the

responses to individual inputs. This class is computationally tractable, and has been success-

ful in a wide range of applications including NMR spectroscopy, seismology, circuits, signal

processing, control theory, biological processes, and many others. Many techniques have

been developed to identify LTI systems, in state space and frequency domains (see eg.[45]).

We focus on on identifying impulse responses from input-output data in the time domain.

Within the class of LTI systems, model selection and model space exploration is a key con-

cept. Classic approaches build parametric models of different orders using autoregressive

(moving average) models with exogenous inputs AR(MA)X, fit to data using Prediction Er-

ror Methods (PEM) [45, 63]. The “best” model is selected using complexity measures such

as Akaike information criterion (AIC), Bayesian information criterion (BIC) or by cross val-

idation (CV) techniques [2, 61, 35].

This approach has a number of limitations [55, 56]. For example, when the number of avail-

able output measurements is relatively small (so that asymptotic theory underlying AIC is not

applicable), the selected models often have poor predictive capability on new data. In some

cases, identifying a system is a highly ill-conditioned inverse problem [14], and principled

regularization techniques are required for estimation. The classical approach cannot incor-

porate additional information about the system, including domain restrictions, monotonicity,

and unimodality; this information can dramatically improve estimation. Finally, reliance on
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Fig. 1.1: Top: true impulse response (red solid) and estimates obtained under nominal con-

ditions (left) and in presence of outliers (right) using the stable spline estimator (Section 2.1)

with L2 loss (black dash) and L1 loss (blue dash-dot). Bottom: linearly interpolated noise-

less outputs (solid line), and noisy measurements (◦) under nominal conditions (left) and in

presence of outliers (right). The L1 estimator performs much better in the presence of outliers.

least-squares leaves the system identification process vulnerable to model mis-specification,

including outliers in the observations [36, 28, 4, 26].

Illustrative example. Some of the drawbacks to the standard approach are illustrated by the

example in Fig. 1.1 (implementation details are given in Section 5). The impulse response

(top panels, solid red line) is estimated from noisy outputs obtained using white noise as sys-

tem input. Consider two different situations. In the first case, the data set of 1000 samples

is corrupted by white stationary Gaussian noise (bottom left panel). The estimate obtained

using the stable spline estimator (discussed in Section 2.1) using the L2 loss (top left, black

dashdot line) is close to the true signal. In the second case, the data set is corrupted by a

few outliers (bottom right panel). Now, the impulse response profile (top right panel, black

dashdot line) reveals the vulnerability of the L2 loss to deviations in the noise model.

Contributions. We build a modeling framework for LTI system identification, together with

an open source solver (IPsolve)2 to fit all of the models of interest. The modeler can choose

from a range of convex piecewise linear-quadratic (PLQ) penalties to use as misfit and regu-

larizer. A particularly effective regularization strategy uses the stable spline kernel approach

to control model space complexity. The modeler can also incorporate constraints on the sig-

nal response, significantly narrowing the search when additional information is available. We

now briefly describe each component of the proposed framework.

Piecewise linear-quadratic penalties (PLQ). The limitations of L2 motivate outlier-robust

2https://github.com/saravkin/IPsolve
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losses, including the L1-norm, Huber [36], Vapnik [65, 58] and the hinge loss [25, 60]. All of

these penalties fall into the PLQ class, and appear in Figures 3.1a-3.1h. Just as the L2 penalty

corresponds to maximum likelihood estimation with Gaussian errors, other penalties can be

viewed as negative log likelihoods for non Gaussian noise [29]. The L1 loss corresponds to

assuming the noise follows a Laplacian distribution [4], and analogous likelihood interpreta-

tions have been developed for Vapnik and Huber penalties [9].

Stable-spline kernels. Recent approaches cast system identification as a kernel learning

problem, formulated in a Hilbert space [55, 54, 57]. Ill-posedness and ill-conditioning are

studied within a Gaussian regression framework [59]. The unknown impulse response is

modeled as a Gaussian process whose covariance encodes available prior knowledge, and

estimators proposed in [55, 53] model covariances using stable spline kernels, which include

information on regularity and exponential stability of the impulse response. Stable spline

estimators have significant advantages over the classical approach, especially in terms of the

quality of the model complexity selection [57].

General regularizers. Though quadratic penalization of stable spline coefficients has proved

to be effective, other choices can yield dramatic improvements. For example, if the impulse

response is expected to have many zero entries, the inclusion of a sparsity promoting prior

can significantly improve the quality of the estimator, e.g. the Laplace prior, or L1 loss, used

in the LASSO [64]. This leads to a weighted combination of norms in the spirit of the elastic

net procedure [71]. Our framework includes these priors, allowing any PLQ penalty to be

used as a regularizer or data misfit, see Figures 3.1a-3.1h.

Incorporating constraints. Additional information can be incorporated using inequality

constraints on the impulse response coefficients. Nonnegativity is often a consequence of

physical considerations. Relaxed systems with monotonic responses are frequently encoun-

tered in reciprocal electrical networks and mechanical systems with negligible inertial phe-

nomena [66] see e.g. the impulse response Fig. 1.1. A third example is bolus-tracking mag-

netic resonance imaging (MRI) [70], where quantification of cerebral hemodynamics requires

estimation of impulse responses known to be positive and unimodal. In all of these examples,

there is a wealth of prior knowledge about the signal, and incorporating this knowledge into

system identification can yield significant improvements (see Figures 5.1 and 5.3).

IPsolve. Convex optimization has become a standard tool in many applications, and gen-

eral convex solvers such as the MATLAB package CVX [31] and TFOCS [11] are important

tools for prototyping and testing new ideas. However, these general tools are not competitive

with solvers that exploit problem-specific structure. IPsolve strikes a good balance between

generality and problem structure, and outperforms TFOCS in the system identification con-

text. IPsolve can solve any PLQ problem, but is less general than TFOCS, which can in

principle solve any convex problem. On the other hand, IPsolve is much more general than

solvers targeted to specific problem classes (e.g. L1 regularization of smooth problems, or

convex quadratic solvers). Nevertheless, the numerical experiments show that it is still com-

petitive with targeted solvers for system identification. In particular, for system identification

problems that can be formulated as support vector regression (SVR), we compare IPsolve to

libSVM [16], a state of the art solver for this SVR. Similarly, for sparse system identification,

IPsolve is competitive with fast iterative soft thresholding (FISTA) [10], an optimal first-

order method designed for smooth problems with simple regularizers. In general, first-order

methods are faster than interior point methods for large-scale composite problems [6]. How-

ever, both system identification problems and stable spline kernels can be ill-conditioned, and

interior-point methods are well-suited to ill-conditioned problems, which explains the result.

We extend prior general work in PLQ modeling and optimization [7, 9] by incorporating

inequality constraints, and develop convergence guarantees for the entire framework in The-
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orem 4.3. We then apply the constrained PLQ framework to the linear system identification

scenario, and compare resulting estimators with classical PEM and stable spline approaches

in a range of numerical studies, featuring contaminated data, and the inclusion of additional

information about the impulse response, e.g. unimodality or complete monotonicity.

Road map. In Section 2, we review the classical approach to linear system identification,

and provide a brief introduction to the stable spline estimation technique. In Section 3, we

formulate the general class of nonsmooth stable spline estimators, using PLQ penalties as

misfits and regularizers, and incorporate inequality constraints on the impulse response. We

develop a general IP method for the class in Section 4, along with specific results for the

system identification setting. In Section 5, we compare against TFOCS, libSVM and FISTA

to illustrate scaling and efficiency of IPsolve, and also test the performance of new estimators

using several Monte Carlo studies, including estimators for the example discussed in the in-

troduction. While most of the experiments focus on the regime n << m, in subsection 5.5 we

develop a sparse and stable estimator for the high-dimensional setting (n >> m) that arises

in identifying multiple input single output (MISO) systems. This approach can be used to

simultaneously identify connectivity and estimate models in dynamic networks[18].

2. PEM and stable spline approaches to linear system identification. Consider the

following linear time-invariant discrete-time system

z(t) = G(q)u(t)+ e(t) (2.1)

where z∈Rm is the output , q is the shift operator qu(t) = u(t+1), G(q) is the linear operator

associated with the true system, assumed stable, u is the input, and e is white noise of variance

σ2. Our problem is to estimate the system impulse response assuming that the system input

is known for m measurements of z at instants t = 1, . . . ,m. We then measure the quality of an

estimator Ĝ by means of the fit measure

F (G, Ĝ) = 100
(

1−‖G− Ĝ‖2/‖G‖2

)
(2.2)

where, given a linear system S(q), ‖S‖2 is the L2-norm of its impulse response.

The classic approach to system identification represents a parametrized model space M for

linear systems by a transfer function G from input to output, parameterized by x:

z(t) = G(q,x)u(t)+ e(t). (2.3)

For instance, a standard black box description assumes G is a rational function of the shift

operator q,

G(q,x) = B(q)/C(q) (2.4)

where B(q) and C(q) are polynomials in q−1 whose unknown coefficients are the components

of x ∈ R
n. Different model structures can be associated with different degrees of B(q) and

C(q). For each model structure, the state x can be estimated by PEM [45], i.e.

x̂ = argmin
x

V (x), V (x) =
m

∑
t=1

(
z(t)−G(q,x)u(t)

)2
. (2.5)

where the quadratic loss V is a standard choice. In real applications, a suitable model struc-

ture (dimension of x) is typically unknown and needs to be inferred from data. This step is

crucial, as it balances bias and variance, and popular approaches include cross validation [35],

Akaike’s criterion [2], and its small-sample version, corrected Akaike’s criterion (AICc) [37].
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2.1. The stable spline estimator. A drawback to rational transfer functions is that they

require solving (2.5), a nonconvex and potentially high-dimensional problem, for each postu-

lated model order. A common alternative is the finite impulse response (FIR) model obtained

setting C(q) = 1 in (2.4), which makes (2.5) a linear least-squares problem in the polynomial

coefficients x for B:

V (x) =
m

∑
t=1

(
z(t)−Bx(q)u(t)

)2
=

m

∑
t=1

(zt −〈φ(ut ,q),x〉)2, (2.6)

where φ(ut ,q) is a vector determined by the input and shift operators. However, a high-order

FIR, often necessary to capture system dynamics, can suffer from high variance, so regular-

ization is crucial.

We quickly review the regularized approaches described in [55, 17]. First rewrite the mea-

surement model (2.6) using matrix-vector notation:

z = Φx+E, (2.7)

where z ∈Rm is a vector comprising the m output measurements, E is the noise, x ∈Rn is the

(column) vector of impulse response coefficients, and Φ is a matrix with rows φt = φ(ut ,q)
determined by input values and shift operator. For instance, assuming an input delay of one

sample, we have

z =




z1

z2

...

zm


 , Φ =




u0 u−1 . . . u−n+1

u1 u0 . . . u−n+2

...
...

...
...

um−1 um−2 . . . u−n+m


 , x =




x1

x2

...

xn


 .

In contrast to classical approaches to system identification, the nth-order FIR approach does

not need to balance bias and variance, but only needs to be of sufficiently large order to

capture the system dynamics. The model complexity is controlled via stable spline kernels.

A stable spline estimator for impulse response solves

x̂ = argmin
x
‖z−Φx‖2 + γxT Q−1x , (2.8)

where the positive scalar γ is the regularization parameter, while Q∈Rn×n is a regularization

matrix defined by the class of the stable spline kernels [53]. The choice of γ is important:

ideally, it must be tuned so that a small bias is introduced in the estimation process in order

to significantly reduce the variance (in comparison with a baseline such as least squares).

Problem (2.8) is always well-posed because of the strongly convex term γxT Q−1x, which

also controls model order. When using the discrete-time version of the first-order stable spline

kernel (also called TC kernel in [17]), the (i, j) entry of Q is specified to be

Qi j := αmax(i, j), for some 0≤ α < 1 . (2.9)

Smoother impulse response estimates can be obtained by using the second-order stable spline

kernel. In this case, the entries of Q are given by

Qi j :=
[
α(i+ j)αmax(i, j)/2−α3max(i, j)/6

]
, for some 0≤ α < 1 . (2.10)

The kernel Q may be ill-conditioned (the condition number grows to infinity with small

α and large n). Stability properties of first-order stable-spline kernels, as well as formulas for
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their inverses and Cholesky factors are discussed in detail in [15]. While ill-conditioning of

the kernel can partially controlled by hyper-parameter selection, general system identification

problems may be ill-conditioned, and the implications are discussed in Section 5.

In (2.9) and (2.10), α is a kernel hyperparameter related to the dominant pole of the

system (i.e. it establishes how fast the impulse response decays to zero) and is typically un-

known. The estimator (2.8),where Q is given by (2.9) or (2.10), depends on α and γ , which

need to be determined from data using marginal likelihood maximization [48, 46, 13, 7, 6].

Learning hyperparameters is analogous to model order selection in the classical PEM frame-

work. Once the two parameters are found, the impulse response estimate for the least-squares

formulation can be obtained by solving a linear system of equations given by the first-order

optimality conditions for the problem (2.8).

3. New formulations of the stable spline estimator. We now introduce the class of

piecewise linear quadratic (PLQ) functions and penalties. We first develop a representation

calculus for estimators of interest using simple PLQ building blocks, and then show how

to formulate general estimation problems as minimizers of a single PLQ objective over a

polyhedral set. All estimators are obtained using the algorithm developed in Section 4.

3.1. From quadratic to PLQ penalties. It is useful to rewrite the estimator (2.8) as:

y = L−1x, Q = LLT (3.1)

where L is invertible thanks to the positive definite property of stable spline kernels (we

caution that the variable y introduced here is not the same object as the function y(t) defined

in (2.1)). In the new variable y the estimation problem (2.8) translates into the problem

min
y
‖z−ΦLy‖2 + γ‖y‖2 . (3.2)

This estimator uses quadratic functions for both the misfit penalty and the regularizer. The

goal of the remainder of the paper is to show how to generalizing (3.2) for adaptation to a

variety of data scenarios and to illustrate the computational efficacy of these adaptations.

Let Y denote the feasible polyhedral constraint region for y. Then an explicit representa-

tion for Y can be written as

Y = {y : AT y≤ a} , A ∈ R
n×p, a ∈ R

p. (3.3)

This allows us to represent prior knowledge about the signal, including domain information

(e.g. lower and upper limits), as well as monotonicity or unimodality properties.

We consider generalizations of (3.2) that use any PLQ penalty:

min
y∈Y

V (z−ΦLy)+ γW (y) , (3.4)

where V and W are piecewise linear quadratic functions introduced below, and Y is as in (3.3).

Nine important examples of these penalties appear in Figures 3.1a-3.1h.

DEFINITION 3.1 (PLQ functions and penalties). A piecewise linear quadratic (PLQ)

function is any function ρ(c,C,b,B,M; ·) : Rn→ R admitting representation

ρ(c,C,b,B,M;y) = sup
u∈U

{
〈u,b+By〉− 1

2
〈u,Mu〉

}
, (3.5)

where U = {u : CT u ≤ c} is a polyhedral set containing the origin, M is symmetric positive

semidefinite, ∈ R
k, B ∈ R

k×n with null(B) = {0}.
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(a) quadratic (b) 1-norm (c) quantile, τ = 0.3 (d) huber, κ = 1

(e) quantile huber (f) vapnik, ε = 0.5 (g) huber ins. loss (h) elastic net, α = 0.5

Fig. 3.1: Common piecewise linear-quadratic (PLQ) losses.

Table 3.1: Dual representations of common PLQ penalties.

Penalty Representation (3.5) Selected references

Quadratic, Fig. 3.1a supu

{
ux− 1

2
u2
}

[27, 62]

1-norm, Fig. 3.1b supu∈[−1,1] {ux} [34, 24, 23, 47]

Quantile, Fig. 3.1c supu∈[−τ,(1−τ)] {ux} [39, 40, 38]

Huber, Fig. 3.1d supu∈[−κ,κ]

{
ux−u2/2

}
[36, 49, 44]

Q-Huber, Fig. 3.1e supu∈[−κτ,κ(1−τ)]

{
ux−u2/2

}
[1]

Vapnik, Fig. 3.1f sup
u∈[0,1]2

〈[
1

−1

]
x−

[
ε
ε

]
,u

〉
[65, 35, 60, 5]

SEL, Fig. 3.1g sup
u∈[0,1]2

{〈[
1

−1

]
x−

[
ε
ε

]
,u

〉
−u2/2

}
[19, 42, 22]

Elastic net, Fig. 3.1h sup
u∈[0,1]×R

{〈[
1

1

]
x,u

〉
−u2

2/2

}
[72, 71, 43, 21]

The eight loss functions illustrated in Figures 3.1a-3.1h are members of the PLQ class; dual

representations (3.5) and references are given in Table 3.1. In the following section, we use

these representations to develop fast algorithms.

Modeling with PLQ. We can classify PLQs according to three features: behavior at

origin, symmetry, and tail growth. Several situations are considered in the simulation studies.

Origin. Nonsmooth behavior at origin promotes sparsity. When used as a regularizer, the

1-norm and quantile loss find sparse solutions. When used as a misfit, these losses fit some of

the data exactly, quadratic behavior at the origin will fit data approximately, and the Vapnik

misfit corresponds to uniform residuals.

Tail growth. Tail growth allows robustness to outliers. Vapnik, 1-norm, and Huber all have

similar robustness properties. The quadratic and elastic net losses are not robust to outliers.

Symmetry. Asymmetric losses model cases where either (a) positive or negative responses

are more likely (asymmetric regularizer), or (b) costs for over-estimating or under-estimating
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observations are different (asymmetric loss).

The representation in Definition 3.1 is explicitly used to solve the generalized linear

system identification problem (3.4). We first derive a PLQ representation calculus.

REMARK 3.1 (Affine composition). Take any PLQ function ρ(c,C,b,B,M;y). Suppose

that y = Ex+ e, where x 7→ Ex+ e is an injective affine transformation in x. Then we have

ρ(c,C,b,B,M;Ex+ e) = ρ(c,C,b+Be,BE,M;x)

so the composition is also a PLQ function, with representation c,C,b+Be,BE,M.

REMARK 3.2 (PLQ addition). Given two PLQ functions ρ(c1,C1,b1,B1,M1;y) and

ρ(c2,C2,b2,B2,M2;y), the sum is also a PLQ function, with representation

c=

[
c1

c2

]
, C=

[
C1 0

0 C2

]
, b=

[
b1

b2

]
, B=

[
B1

B2

]
, M=

[
M1 0

0 M2

]
.

The PLQ class is closed under addition and affine composition, allowing the design of a PLQ

penalty that is well suited to a given application. For given PLQ penalties V and W , their

sum (3.4) is also a PLQ penalty, with a representation that can be automatically constructed

from individual components using the above remarks. Once a representation for (3.4) is

constructed, can optimize it over any polyhedral set, as shown in the next section.

4. An Interior Point (IP) Approach. We now show how to solve

min
y

ρ(c,C,b,B,M;y) s.t. AT y≤ a, (4.1)

using interior point IP methods [41, 50, 68]. IP methods solve nonsmooth optimization prob-

lems by applying a damped Newton method to a homotopy path that parametrizes the under-

lying Karush-Kuhn-Tucker (KKT) system. In this regard, the first key observation is that the

KKT system for (4.1) is an instance of a monotone mixed linear complementarity problem

(MLCP) [68] since it can be written as




s

r

0

0


=




0 0 −CT 0

0 0 0 −AT

C 0 M −B

0 A BT 0







q

w

u

y


+




c

a

b

0


 (4.2)

with

0≤
(

q

w

)
,

(
s

r

)
and

(
q

w

)T (
s

r

)
= 0 , (4.3)

where the matrix in (4.2) is positive semi-definite (see Appendix for details). Consequently,

it is possible to transform this MLCP into a monotone LCP and solve it by an interior point

algorithm [41]. However, this transformation is arduous, especially in high dimensions, and

may be prohibitively expensive [3, 33, 67]. In [67] it is noted that the transformation to an

LCP is not essential if the matrix

H :=




−CT 0

0 −AT

M −B

BT 0


 ∈ R

(`+p+k+n)×(k+n) (4.4)



Generalized system identification with stable spline kernels 9

is injective. In our context, the injectivity of this matrix can be established under mild condi-

tions.

THEOREM 4.1 (Injectivity of H ). Suppose M is symmetric positive semidefinite and

null(B) = {0}. Then the matrix H in (4.4) is injective if and only if

Nul(M)∩Nul
(
BT

)
∩Nul

(
CT

)
= {0} . (4.5)

Condition (4.5) is satisfied if the stronger condition

Nul(M)∩Nul
(
BT

)
= {0} (4.6)

holds. This latter condition is satisfied by all of the PLQ functions in Section 3.1 [9, 8].

We first specify the dimensions of the quantities appearing in (4.1). Let

b ∈ R
k,C ∈ R

k×l , c ∈ R
l , B ∈ R

k×n, A ∈ R
n×p, M ∈ R

k×k, and a ∈ R
p, (4.7)

and set N := 2l +2p+ k+n. Then, given µ ≥ 0, define Fµ : RN → R
N by

Fµ(q,w,u,y,s,r) :=




CT u+ s− c

AT y+ r−a

Mu+Cq−By−b

BT u+Aw

Qs−µ1

Wr−µ1




, (4.8)

where Q := diag(q) and W := diag(w). The KKT conditions (4.2)-(4.3) are

F0(q,w,u,y,s,r) = 0 for s,q ∈ R
l
+ and r,w ∈ R

p
+. (4.9)

The variables y ∈R
n and u ∈R

k are those that appear in the definition of the PLQ function ρ
(3.5), s and r are slack variables, and q, w are the dual variables that correspond to constraints

CT u≤ c and AT y≤ a. For any positive integer `, we set R`
+ := {x∈R` : 0≤ xi, i= 1,2, . . . , `}

and denote the interior of R`
+ by R

`
++.

An interior point approach applies a damped Newton iteration to a relaxed version of the

KKT system by solving (4.9) for µ > 0 and letting µ carefully descend to zero. We choose an

initial (y0,u0)∈Rn×Rk and (s0,r0,q0,w0)∈D++ where D++ :=R
l
++×Rp

++×Rl
++×Rp

++,

and then preserve positivity of the iterates (sν ,rν ,qν ,wν) at each iteration of the damped

Newton method for (4.9). For this to succeed, the Newton iteration must be well-defined; in

particular F
(1)
µ must be invertible at all iterates when µ > 0. On D++, we have

F
(1)
µ (q,w,u,y,s,r) =




0 0 −CT 0 −I 0

0 0 0 −AT 0 −I

C 0 M −B 0 0

0 A BT 0 0 0

Q 0 0 0 S 0

0 W 0 0 0 R



, (4.10)

where S = diag(s) and R = diag(r). We now show that the invertibility of F
(1)
µ is related to

the condition (4.5) in Theorem 4.1.

THEOREM 4.2 (Invertibility of F
(1)
µ ). Given (u,y) ∈ R

k×R
n and (q,w,s,r) ∈D++, the

matrix F
(1)
µ (q,w,u,y,s,r) is invertible if and only if the matrix

[
M+CSQ−1CT −B

BT ARW−1AT

]
(4.11)
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is invertible, which, in turn, is equivalent to condition (4.5).

Note that the central 2×2 block of F
(1)
µ (q,w,u,y,s,r) is precisely the block matrix appearing

in the lower right of the MLCP matrix (4.2), and Theorem 4.2 relates (4.5) to the algebraic

implementation of the interior point method for the general problem (4.1), detailed in Algo-

rithm 1. To simplify notation we let χ =
[
qT wT uT yT sT rT

]T
.

Algorithm 1 Interior Point Method for (3.4).

Input: x0,y0,u0,s0,r0,q0,η ∈ (0,1),µ0 ∈ R++, tol > 0

1: while not converged do

2: d ←−(F(1)
µ )−1Fµ

3: t ← max τ s.t.

{[
s+ τds

r+ τdr

]
,

[
q+ τdq

w+ τdw

]}
> 0, ‖Fµ(χ + τd)‖ ≤ (1−η)‖Fµ(χ)

4: χ ← χ + td

5: µ ← 0.1(sT q+ rT w)/(p+ l)
6: converged← (µ < tol)
7: end while

return χ

Let τ > 0 and define

F+(τ):=



(q,w,u,y,r,s)

∣∣∣∣∣∣

(u,y)∈Rk×Rn, (q,w,s,r)∈D++

and equation (4.2) is satisfied

with qT s+wT r ≤ τ





and C := {(q,w,u,y,r,s) |(4.9) holds for some µ > 0} . The set C is called the central path.

The key to the complexity analysis for the algorithm is to ensure that the iterates hew suffi-

ciently close to this path as µ descends to zero.

THEOREM 4.3 (Convergence Properties). Consider any optimization problem of the

form (4.1) satisfying (4.7). If F+(+∞) 6= /0 and (4.5) holds, then Algorithm 1 is imple-

mentable, the sets F+(τ) are non-empty, convex, and bounded for all τ > 0, the central path

is well-defined, and every cluster point of the central path as µ ↓ 0 is a KKT point for (4.1).

The proof and details for computing the Newton step are given in the appendix. Matrices

T := M+CSQ−1CT and Ω := BT T−1B+ARW−1AT (4.12)

and their inverses play a key role; T is invertible since (4.6) holds, and Ω is invertible since

T is invertible and B is injective. The sparsity of these matrices determine the complexity of

the algorithm, computing the Newton step is the main effort at each iteration. In all our PLQ

examples, M and C are very sparse, and the matrix T is diagonal. The next result describes

the per iteration complexity of the algorithm in this setting.

THEOREM 4.4 (PLQ Iteration Complexity). If the matrices Tk := M +CSkQ−1
k CT in

Algorithm 1 are diagonal, then every interior point iteration can be computed with complexity

O(min(n,k+ p)2(k+ p+n)).
If n < k+ p, we obtain the complexity above by forming and inverting Ω in (4.12). Oth-

erwise, we apply the Sherman-Morrison-Woodbury formula to form and invert a matrix in

dimension (k+p). The choice is made by IPsolve based on the dimensions of the inputs.

Turning our attention back to system identification, n is the dimension of the impulse re-

sponse, while k and l depend on m, in particular k ≥ m, while l depends on the structure of

the PLQ penalties used to build the estimate (3.4).

COROLLARY 4.5 (SysID Iteration Complexity). If the constraint matrix A contains O(n)
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entries (as e.g. with box constraints), while matrices B and C have on the order of m entries,

each interior point iteration can be solved with complexity O(min(m,n)2(m+n)).

The above result shows that IP computational complexity scales favorably with the num-

ber of measurements m which, in system identification, is typically much larger than the

number of unknown impulse response coefficients n.

5. Numerical studies. The new approach is now tested using numerical studies.

5.1. Introductory example: robust estimation with inequality constraints . Results

in Fig. 1.1 illustrate the well established fact that the estimator SS+L2 based on the quadratic

loss is vulnerable to outliers (recall that SS refers to stable spline in Section 2.1). Here we

exploit the general framework of the previous section to design a robust estimator by replacing

the quadratic (Gaussian) with the absolute value (Laplace) loss. This leads to the estimator

SS+L1 defined by

x̂ = argmin
x
‖z−Φx‖1 + γxT Q−1x . (5.1)

This objective can be transformed into form (3.4) and then into (4.1) as described in Section

3. As in the quadratic case (2.8), the solution depends on the unknown parameters γ and α
(which enters Q). To solve (5.1), γ and α are estimated via cross validation, splitting the data

into a training and a validation set of equal size. The “optimal” hyperparameters values are

obtained by searching over a two dimensional grid. In particular, α and γ assume values on

the grid defined, respectively, by the MATLAB commands

A=[0.01 0.05:0.05:0.95 0.99],

B=logspace(log10(g/100),log10(g*100),50),

with g set to the value of γ adopted by SS+L2.

The top panels of Fig. 1.1 display the impulse response estimates obtained by SS+L1 (dashed

line). The advantage of the new robust formulation is evident. While SS+L1 and SS+L2

exhibit a similar performance under nominal conditions (top left panel), SS+L1 outperforms

SS+L2 in presence of outliers (top right panel), returning an impulse response estimate much

close to truth. The robustness of the L1 loss w.r.t. large model deviations is due to the fact

that it pushes some residuals to zero. It thus detects which measurements are more accurate,

essentially treating them as constraints during the fitting.

To further compare SS+ L2 and SS+ L1, Fig. 5.1 plots the fit (2.2) returned by these two

estimators as a function of the regularization parameter γ (with α constant, fixed to its esti-

mate). The figure reveals that the adoption of the quadratic loss makes it difficult to choose

the regularization parameter: many values of γ lead to poor estimates, e.g. γ ≤ 1 leads to

outliers overfitting. On the other hand the fit profile associated with SS+L1 is more stable,

and is uniformly better than SS+L2.

We have also tested the Vapnik loss formulation of the stable spline estimator. The fit profile

is displayed in Fig. 5.1 (parameters α and ε are constant, set to their cross validated esti-

mates) and is similar to the one obtained by SS+L1. Even though it requires estimation of

the additional parameter ε , an advantage of the Vapnik loss over the L1 is its data compres-

sion capability: it detects the so called support vectors which contain those measurements

influencing the estimate, see [34] for details.

The last estimator tested embodies the information that the data come from a relaxation sys-

tem. This means that the impulse response is a completely monotonic function (e.g. see Sec-

tion 4 in [20]) and, hence, its derivatives f (`) satisfy (−1)` f (`)(t)≥ 0 for t ≥ 0, `= 0,1, . . ..
Since x = Ly, in discrete-time this information is (approximately) encoded in (4.1) by setting
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Fig. 5.1: Introductory example. Fit, as a function of the regularization parameter γ , obtained

using the stable estimator equipped with the L2,L1 and Vapnik loss, and combining the L1

loss with the information that data come from a relaxation system (L1 +Rel).

a to the null vector and

AT =




−In

D1

. . .
(−1)k−1Dk


L,

with k a sufficiently large integer and D an n× n lower triangular Toeplitz matrix whose

first column is [1,−1,0, . . .]T . Let SS+Rel denote the estimator (5.1) complemented with

the above constraints (k = 5), with the parameter α set to the estimate used by SS + L1.

The corresponding fit is reported in Fig. 5.1: SS+Rel shows impressive performance for

a wide range of regularization parameter values. Interestingly, the model incorporating the

complete monotonicity constraint competes favorably with the overfit residuals even for very

low values of γ . This example illustrates the observation that the inclusion of additional

model information in the form of constraints often helps to regularize the estimation process

while simultaneously improving the fit.

5.2. Computational efficiency: comparison of IPsolve, TFOCS and libSVM. In this

section, we compare the computational efficiency of the IPsolve approach with those of two

widely used publicly available packages, TFOCS [11] and libSVM [16]. While in fields such

as machine learning it is often assumed that the number of unknowns is much larger than the

data set size m� n, in system identification it is typically assumed that n� m. This makes

the per iteration complexity O(n2(m+ n)) of our algorithm (see Corollary 4.5) particularly

appealing. We illustrate the advantages for the specific problem

argmin
x
‖z−Φx‖ε + γxT Q−1x , (5.2)

where ‖ ·‖ε denotes the Vapnik loss (Fig. 3.1f), with noisy data z generated from the impulse

response used in the introductory example (Fig. 1.1, top panel). The objective is specified

using parameters γ = 10, α = 0.5 in (2.9), and ε = 0.1.

5.2.1. TFOCS. The TFOCS algorithm [11] is based on the proximal point algorithm,

and can be applied to generic convex minimization problems. The TFOCS software3 can

3http://cvxr.com/tfocs
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handle a broader class of problems than IPsolve (i.e. problems that are not piecewise linear

quadratic). The relevant standard form for TFOCS is the problem

minφ(x) = f (x)+
µ

2
‖x− x0‖2 +h(A (x)−b), (5.3)

where the proximity operator for both f and h can be efficiently computed. TFOCS combines

dual smoothing techniques with optimal first-order methods [11, 51, 52] and is therefore

capable of solving large-scale problems (much larger than those that can be solved with other

general convex solvers, such as the MATLAB package CVX [31, 32].). Like IPsolve, it is a

general purpose software that can be used to solve (5.2).

5.2.2. libSVM. libSVM is an optimization package4 aimed at support vector problems,

including problems of type 5.2. It uses pre-compiled routines with several interfaces, in-

cluding one for Matlab. libSVM is designed for a broad range of support vector problems,

including kernel machines; for our problem of interest, the formulation available through

libSVM is a slight modification of (5.2):

argmin
x,b
‖z−Φx−b1‖ε + γxT Q−1x. (5.4)

The inclusion of intercept b is not optional for libSVM; we therefore compared libSVM with

IPsolve on (5.4). libSVM solves the dual problem to (5.4):

min
α∈ 1

γ B∞

1

2
αT (QT/2ΦT ΦQ1/2)α + ε‖α‖1 + 〈z,α〉, s.t. 1T α = 0. (5.5)

This is a quadratic problem, and libSVM solves it using a specialized decomposition ap-

proach. By focusing on the dual, libSVM is able to handle linear and nonlinear SVM and

SVR; it has been widely applied in practice.

In the standard system identification context, we have n << m; and as shown in Corol-

lary 4.5, the number of arithmetic operations required to implement each iteration is O(n2(n+
m)). In contrast, a naive approach for solving (5.5) requires O(m3) operations. While the ap-

proach of [16] is far from naive, it is optimized for kernel machines, where one must restrict

all computation to the m-dimensional dual (since the primal dimension may be infinite); in

contrast IPsolve exploits the structure of the problem, performing most computations for (5.2)

in an n-dimensional space.

5.2.3. Experimental setup and results. We compare all three approaches for prob-

lem (5.2) using n∈ {100,150,200,250,300} and m∈ {1000,2000,5000,10000,20000}. The

scales of (m,n) are chosen to reflect the common system identification context, where n <<
m. We run each algorithm until their available optimality criteria fall below ε = 10−6; The

precise criteria for the three algorithms are as follows.

IPsolve uses a relative magnitude of the Karush-Kuhn-Tucker system; it terminates when
‖Fcurrent‖
‖Finitial‖ < ε, for F = F0 in (4.8).

TFOCS allows the user to select one of several stopping criterias; some are based on

optimality of problem (5.3); but there is also a relative criteria based on iterate convergence,
‖xk+1−xk‖

max(1,‖xk+1‖) < ε that allows the algorithm to terminate early. This is the criteria we selected;

internal optimality criteria required a far larger number of iterations, during which the objec-

tive value did not change significantly. To optimize performance of TFOCS, we experimented

with choice of first-order solvers, but found the default algorithm (Auslender & Teboulle’s

4https://www.csie.ntu.edu.tw/˜cjlin/libsvm/
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aa

m

n
1K 2K 5K 10K 20K

100 0.376 0.730 1.333 2.666 5.365

150 0.426 0.886 2.782 4.225 7.862

200 0.464 1.149 3.040 4.796 10.105

250 0.464 1.273 3.541 6.176 11.463

300 0.715 1.633 3.966 7.418 13.773

aa

m

n
1K 2K 5K 10K 20K

100 3.320 5.292 5.815 10.896 20.483

150 4.882 4.196 6.800 11.194 26.349

200 3.545 3.985 9.282 10.710 32.644

250 3.840 5.167 8.722 14.787 30.289

300 3.256 4.471 6.787 11.186 17.403

ROD(TFOCS): 10−5

aa

m

n
1K 2K 5K 10K 20K

100 0.0418 0.0046 0.0024 0.0044 0.0022

150 0.0179 0.0080 0.0015 0.0068 0.0260

200 0.0175 0.0135 0.0053 0.0055 0.0399

250 0.0074 0.0055 0.0028 0.0208 0.0100

300 0.1423 0.1424 0.1756 0.0982 0.1748

Table 5.1: Top tables: CPU time (seconds) taken by IPsolve (left) and TFOCS (right) to

solve (5.2) as a function of the dimension n of x and of the data set size m. Bottom table:

relative (signed) objective difference of the solutions. IPsolve always gets the lower objective

value; and it is uniformly faster for all problems tested. Note that TFOCS is very accurate.

single-projection method) to be the best. We also tuned the ‘restart’ option to restart the

step-length computation every 1000 iterations; as this improved performance of TFOCS, as

recommended by the authors.

libSVM convergence criteria for the SVR problem, as explained in [16], is based on the

iterate α satisfying a KKT criteria for (5.5) within ε (in the infinity norm).

In summary, we have two similar optimization problems, (5.2) and (5.4), and three sets

of convergence criteria. To fairly compare the algorithms, we run IPsolve against TFOCS on

problem (5.2), and IPsolve against libSVM on problem (5.4). In each case, we tabulate both

timing results, and also show an ‘accuracy’ heuristic, which is the signed relative objective

difference (ROD):

ROD(∗) := ( f(*)− fIPsolve)/ fIPsolve

A positive ROD indicates IPsolve found the lower objective value; a relative scale is chosen

because we consider a range of problem sizes.

Results of the numerical study are shown in Tables 5.1 and 5.2. IPsolve gets uniformly

better objective values for all experiments, and performs faster that TFOCS for all problem

sizes. Notably, TFOCS is very accurate at the settings we compared, with all ROD values

less than 10−5.

libSVM is more competitive in its timing, but also less accurate, with some ROD values

exceed 10−2, i.e. libSVM primal values are more than 1% larger than those of IPsolve on

some of the problems. Overall, IPsolve converges faster for approximately half of the prob-

lems; it especially has an advantage for large m and small n as expected. It should be noted

that libSVM has strange behavior for the n = 300 case; it converges very quickly, but the

solutions are less accurate than for other problems.

5.3. Monte Carlo study in the presence of outliers. We now consider a Monte Carlo

study of 1000 sample runs. For each run, a random single-input single-output (SISO) con-

tinuous time model of order 30 is generated and then sampled at three times its bandwidth

using Matlab commands:
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aa

m

n
1K 2K 5K 10K 20K

100 0.293 0.629 1.303 2.427 5.011

150 0.421 0.791 2.061 4.197 7.522

200 0.504 1.111 2.791 4.827 9.040

250 0.621 1.148 3.263 6.086 10.460

300 0.719 1.271 3.865 7.314 13.077

aa

m

n
1K 2K 5K 10K 20K

100 0.764 0.343 2.305 8.528 32.944

150 0.124 0.485 2.930 11.628 46.038

200 0.153 0.586 3.691 14.909 59.223

250 0.161 0.667 4.348 17.885 72.330

300 0.052 0.107 0.450 1.515 5.330

rod(libSVM): 10−3

aa

m

n
1K 2K 5K 10K 20K

100 1.8080 0.2988 0.0284 0.1225 0.0037

150 1.4702 0.1488 0.0241 0.0997 0.0049

200 3.5449 0.1984 0.0172 0.1130 0.0004

250 1.5892 0.1723 0.0141 0.1643 0.0080

300 5.4052 21.9701 3.8528 0.4366 1.2052

Table 5.2: Top tables: CPU time (seconds) taken by IPsolve (left) and libSVM (right) to

solve (5.4) as a function of the dimension n of x and of the data set size m. Bottom table:

relative (signed) objective difference of the solutions. Note that IPsolve always gets the lower

objective value, and it is faster for the majority of the problems. Note also that libSVM is a

lot less accurate than TFOCS (accuracy measured by IPsolve objective).

Oe+Or SS+Or Oe+CV SS+CV SS+ML

L2 loss 64.31 68.9 -303.2 59.7 63.1

L1 loss 79.9 82.3 -73.1 71.8 72.8

Table 5.3: Monte Carlo study (subsection 5.3). Average fit achieved by the PEM and stable

spline estimators using the L2 and the L1 loss.

m=rss(30); b=bandwidth(m); f = b*3*2*pi;

md=c2d(m,1/f,’zoh’); md.d = 0;

We accept only models with all poles in a disk of radius 0.95 in the complex plane. The

model md, initially at rest, is given a Gaussian white noise input with unit variance filtered

by a randomly generated model obtained by the same process already described. The input

delay is always equal to 1. We then generate 1000 measurements contaminated by outliers,

and use them to reconstruct the impulse response. The measurement errors are a mixture of

two normals given by ei ∼ 0.7N(0,σ2)+ 0.3N(0,100σ2), with σ2 equal to the variance of

the noiseless output divided by 100. Thus, with probability 0.3, a measurement becomes an

‘outlier’, since the corresponding simulated error has standard deviation 10σ .

We compare the performance of five different estimators over the 1000 runs of the simulation.

Each estimator uses either quadratic or 1-norm loss for data fidelity, and all formulations treat

the system input delay and initial conditions as known. The estimators are enumerated below.

Oe+Or is the classical PEM approach (MATLAB command oe), and we compare the quadratic

loss (2.5) with the 1-norm loss V (x) = ∑
m
t=1 |y(t)−G(q,x)u(t)|. Candidate models are ratio-

nal transfer functions (2.4) with polynomials B and C of the same order. The estimator is not

implementable in practice, since it uses an oracle which selects the model order maximizing

the percentage fit measure (2.2), and provides the best achievable PEM performance.

Oe+CV is an implementable analogue of Oe+Or that uses cross-validation to estimate model
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Fig. 5.2: Monte Carlo study (subsection 5.3). Boxplot of the 1000 percentage fit measures

(2.2) obtained by PEM and stable spline estimators equipped with the L2 loss (left panel) and

the L1 loss (right panel).

order. Data are split into training and validation sets of equal size. For every model order

ranging from 1 to 30, a model is trained using command oe on the training set. We choose

the order that minimizes the sum of squared prediction errors on the validation set, obtained

by using the command predict with null initial conditions. Once the order is found, the

final model is computed by oe using all measurements in training and validation sets.

SS+Or is the stable spline estimator using (2.9). Again, we compute the fit using both the

quadratic loss (2.8) and the 1-norm loss (5.1) for the purpose of comparison. The number of

estimated impulse response coefficients is 200, i.e. dim(x) = 200. This estimator also uses

an oracle which gives values for the hyperparameters α and γ that maximize the percentage

fit measure (2.2). As is the case for Oe+Or, this method is not implementable, but provides a

baseline for the best possible performance of a stable spline estimator.

SS+ML is an implementable analogue of SS+Or that uses marginal likelihood maximization

to estimate hyperparameters. For the quadratic loss, we estimate σ2 (the noise variance) by

fitting a low-bias FIR model of order p, (see e.g. in [30] for details), and then set

σ̂2 =
m

∑
t=1

(
y(t)− Ĝ(q)u(t)

)2
/(m− p), (5.6)

where Ĝ is the pth-order FIR obtained by least-squares. We estimate α and γ by maximizing

the marginal likelihood

(λ̂ , α̂) = argmin
λ ,α

{
zT Σ−1z+ logdet(Σ)

}
, Σ := λΦQΦT + σ̂2Im . (5.7)

Then let Q̂ = Q(α̂) and Σ̂ = Σ(λ̂ , α̂) be the estimates of Q and Σ with λ = λ̂ and α = α̂ .

From (2.8), the final impulse response estimate becomes x̂ = λ̂ Q̂ΦT Σ̂−1z. For the 1-norm

loss, we model components of E in (5.11) as independent Laplacian random variables with

variance σ2. For known hyperparameters, the negative log posterior of (x|z) is

√
2

σ2
‖z−Φx‖1 +

1

2λ
xT Q−1x
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with constant terms omitted. Then (5.1) is the MAP estimator of x given z if

γ =
σ2

2
√

2λ
. (5.8)

We take λ and α to be the same estimates as obtained under Gaussian noise assumptions (i.e.

optimizing (5.7)), then use (5.8) and (2.9) to obtain γ and Q, respectively.

SS+CV is nearly identical to SS+ML, but with hyperparameters estimated by cross-

validation. Data are split into a training and validation set of equal size and the best values of

γ and α are found over a two dimensional grid. Specifically, the α-γ grid is A×B , where A

and B are given by the MATLAB commands:
A=[0.01 0.05:0.05:0.95 0.99]

B=logspace(log10(g/100),log10(g*100),50)

with g taken to be the value of γ used in SS+ML. The plots in Fig. 5.2 show Matlab box-

plots of the 1000 percentage fit measures (2.2) obtained by the five estimators. The rectangle

contains the inter-quartile range (25− 75% percentiles) of the fits, with median shown with

a red line. The “whiskers” outside the rectangle display the upper and lower bounds of all

the numbers, not counting what are deemed outliers, plotted separately as “+”. Table 5.3 also

reports the average percentage fit values.

The left panel of Fig. 5.2 shows the fits achieved by the quadratic estimators. Oracle-based

procedures highlight the advantage of the stable spline estimators: SS+Or shows better per-

formance than Oe+Or. The performance gap increases in implementable estimators, when

hyperparameters are learned from data (as necessary in practical situations). SS+CV and

SS+ML have similar performance, and both are much better than Oe+CV.

The right panel of Fig. 5.2 displays the fits achieved by all five estimators when using the

1-norm data fidelity loss function. These estimators are more robust against outliers, and all

fits improve significantly. Furthermore, as in the previous case, performance of stable spline

estimators is superior to that of the classical system identification procedures.

5.4. Assessment of cerebral hemodynamics using magnetic resonance imaging. The

quantitative assessment of the cerebral blood flow is essential to the understanding of brain

function. An important technique is bolus-tracking magnetic resonance imaging (MRI),

which relies on established principles for tracer kinetics of nondiffusible tracers [70]. These

principles allow for the quantification of cerebral hemodynamics by solving a linear system

identification problem. The system output is the measured tracer concentration within a given

tissue volume of interest, while the system input is the measured arterial function. The im-

pulse response is proportional to the so called tissue residue function, and is known to be

positive and unimodal. It carries fundamental information on the system under study, e.g. the

cerebral blood flow is given by its maximum value. However, impulse response estimation is

especially difficult for this problem: even if the noise can be reasonably modeled as Gaussian,

the problem is often ill-conditioned and only a few noisy output samples are available [69].

We consider realistic simulation studies, using four different types of estimators all based on

the quadratic loss. The first two rely on the classical PEM paradigm. They are Oe+Or, de-

scribed in the previous subsection, with the maximum allowed model order equal to 10, and

Oe+AICc, which uses the AICc criterion [37] for model complexity selection. SS+ML uses

the stable spline kernel (2.10), estimates hyperparameters via marginal likelihood optimiza-

tion, and then uses (2.8) to find the final impulse response, where x ∈R100. The last estimator

SS+ML+um also estimates hyperparameters via marginal likelihood optimization, and then

incorporates nonnegativity and unimodality information. Specifically, we minimize objective

(2.8) (with hyperparameter estimates identical to those used by SS+ML), subject to inequality
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constraints that impose unimodality:

Dk
1xk

1 ≥ 0, Dn
k+1xn

k+1 ≤ 0, x≥ 0 . (5.9)
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Fig. 5.3: Cerebral hemodynamics. (Left): true impulse response (solid), PEM estimate with

AICc to select the model order (dashdot) and the stable spline estimate incorporating uni-

modality constraints (dashed). (Right): Noiseless output (solid) and the measurements (◦).
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Fig. 5.4: Assessment of cerebral hemodynamics. Boxplot of the 1000 percentage fit measures

(2.2) for the impulse response reconstruction (left) and peak reconstruction (right) obtained

by PEM equipped with an oracle and with AICc for model order selection, by the stable spline

estimator and by the stable spline estimator incorporating unimodality constraints.

Here, D ∈ R
n×n is the discrete derivative operator, i.e. a lower triangular Toeplitz matrix

with first column [1,−1,0, . . .]T , Dk
1 and Dn

k+1 contain, respectively, the first k and the last

n− k rows of D, and analogously for xk
1 and xn

k+1. In terms of (4.1), this is specified setting a
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to the null vector and

A = LT
[
−(Dk

1)
T (Dn

k+1)
T −In

]
. (5.10)

We solve the problem for each k, obtaining a set of solutions x̂(k), and then select the best

k for (2.8) by setting k = argmink ‖z−Φx̂(k)‖2 + γ(x̂(k))T Q−1x̂(k) , with the final estimator

given by x̂(k), the best unimodal estimator. We begin by considering the simulation described

in [69]. The system input is the typical arterial function u(t) = (t− 10)3e−
2t
3 if t > 10 and

zero otherwise, while the impulse response is the dispersed exponential displayed in Fig. 5.3

(left panel, solid line). This response is to be reconstructed from the 80 noisy output samples

reported in Fig. 5.3 (right panel). These measurements are generated as in subsection II.A of

[69], using parameters typical of a normal subject with a signal to noise ratio equal to 20 and

discretizing the problem using unit sampling instants.

The left panel of Fig. 5.3 shows the estimate by Oe+AICc (dashdot). The reconstructed pro-

file is far from the truth and contains many non-physiological oscillations: the asymptotic

theory underlying AICc does not compensate for ill-conditioning. The same panel shows the

SS+ML+um estimate (dashed line). This estimate is very close to truth, outlining the impor-

tance of regularization and the inclusion of addition information in the form of constraints

when handling these data poor situations. This result is confirmed by a Monte Carlo study of

1000 runs where independent noise realizations are generated at every run. Fig. 5.4 shows

the Matlab boxplots of the 1000 percentage fit measures (2.2) achieved by the four estimators

in the reconstruction of the impulse response (left panel) and of its peak (right panel). Most

of the time Oe+AICc returns negative fits, while the outcomes from Oe+Or and SS+ML are

similar with good performance (keep in mind Oe+Or is not implementable in practice). Fi-

nally, notice that SS+ML+um has the best performance vis-à-vis the percentage fit measures

(2.2), see also Table 5.4 for the average fits.

Oe+Or SS+ML SS+ML+um Oe+AICc

Imp. response 71.9 69.8 76.3 -3497.1

Peak 77.1 76.2 84.3 -26.3

Table 5.4: Average percentage fit (2.2) achieved by the PEM and stable spline estimators

relative to impulse response and peak reconstruction.

5.5. Stable and sparse estimation. A multiple input single output (MISO) system can

be written as

z =
p

∑
j=1

Φ jx j +E, (5.11)

where each vector x j contains the coefficients of the j-th impulse response. This problem

is challenging since the number of unknowns can be much larger than the number of output

measurements. One strategy is to use sparse regularization on x j to simultaneously perform

variable selection and estimation. This problem arises in dynamic networks, where sparsity

is used to detect structural connectivity.

To design a sparsity promoting stable PLQ estimator, take Q be the stable spline kernel in
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(2.9) and let let y j = L−1x j, Q = LLT . Then solve the problem

min
y

∥∥∥∥∥z−
p

∑
j=1

Φ jLy j

∥∥∥∥∥

2

+
p

∑
j=1

γ‖y j‖1 . (5.12)

5.5.1. A Monte Carlo study. A simple numerical study is used to test (5.12). Output

data are generated as described in Section 5.3, but no outliers are introduced. In the MISO,

x1 is the impulse response plotted in the top panels of Fig. 1.1 while, for j = 2, . . . ,10, the

remaining x j are null. Each x j contains 100 impulse response coefficients. Thus, the estimator

seeks to reconstruct 1000 unknowns from 400 measurements. The regularization parameter

γ and the kernel parameter α are obtained using the cross validation strategy described in the

Section 5.3. At each Monte Carlo run we compute the fit (2.2) related just to x1. We also

compute the fit obtained by

min
y

∥∥z−Φ1Ly1
∥∥2

+ γ‖y1‖2 , (5.13)

which corresponds to an oracle classical estimator that knows only x1 may be different from

zero. After 100 runs the average fits of (5.12) and (5.13) were 91.8 and 93.4, that is, there

was little loss in fit relative to an oracle estimator.

5.5.2. A comparison with FISTA. The problem (5.12) is the sum of a smooth and sim-

ple function, and can therefore be optimized by primal-only first-order methods. The Fast

Iterative Shrinkage Algorithm (FISTA) [10] is an optimal first-order method, i.e. it can ob-

tain a guaranteed rate of convergence of O( 1
k2 ), matching the best complexity of first-order

methods for convex problems (with faster rates under stronger assumptions). However, the

rate of convergence also depends on the condition number of the problem.

To compare IPsolve with this optimal first-order method in the high-dimensional system iden-

tification setting, we used the MISO problem to generate three scenarios: 400 measurements

vs. 1000,5000, and 10000 unknown impulse responses. We solved (5.12) using IPsolve, and

then ran FISTA to see how long it would take it to obtain the same function value.

The condition number of L is 3.5× 105 in each experiment. The condition numbers of

A = ΦLLT ΦT are given in the table. When n >> m, IPsolve uses the Woodbury-Sherman-

IP time IP iters FISTA time FISTA iters Cond A

400 x 1000 0.89 15 1.8 635 3.0×107

400 x 5000 1.96 16 20 1204 1.27×104

400 x 10000 3.8 18 49.8 1458 2.83×103

Table 5.5: Numerical comparison of IPsolve with FISTA. For each problem, FISTA is run

until it hits the objective function achieved by IPsolve.

Morisson formula to form and invert an m×m matrix at each iteration. Therefore the dom-

inant costs of each iteration are O(m2(m+ n)), linear in n. Each iteration of FISTA is dom-

inated by the computation of the gradient, which is 2mn. On the other hand, the number of

iterations required by FISTA is far less predictable than iterations required by IPsolve. The

key difference between IPsolve and first-order methods are that its complexity per iteration is
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cubic in min(m,n), while that of FISTA is quadratic. However, in regimes where m << n or

n >> m, and the systems may be ill-conditioned, IPsolve is competitive. Finally, the reader

should keep in mind that (5.12) has a special form, and more general PLQ estimators cannot

be solved with primal-only methods such as FISTA, but can still be solved using IPsolve.

6. Conclusions. This paper extends stable spline estimators to allow general modeling

of misfit measures, regularizers, and constraints. Quadratic losses and regularizers can now

be replaced by general PLQ functions. Furthermore, affine inequality constraints on the un-

known impulse response can also be incorporated, providing a simple mechanism for the

inclusion of information on domain restriction, monotonicity, and unimodality of the signal.

This can have a profound impact on the quality of the recovery and can significantly improve

the fit when a regularizing prior is required for identification (as illustrated in Fig. 5.1).

The new framework allows the user to formulate and explore new system identification pro-

cedures, balancing robustness against outliers, introducing sparsity promoting priors, or in-

troducing additional information by means of affine inequality constraints. If the resulting

nonparametric model is to be used for control purposes, our estimates can be projected onto

suitable low-order approximations using e.g. the approaches described in [12].

All of the extensions have been implemented in the open source package IPsolve. Numerical

comparisons in Section 5.2 showed that IPsolve is well-suited to ill-conditioned problems

that arise in system identification, and outperforms competing alternatives, including TFOCS

and libSVM when n << m and first-order methods such as FISTA when n >> m.

Multiple examples illustrate the power of the new framework in comparison to classical ap-

proaches. An important example comprises impulse responses known to be positively or

completely monotonic, in the presence of outliers. Classic approaches (using PEM and ra-

tional transfer function models (2.4)) solve a non-convex, possibly non-differentiable high-

dimensional inequality constrained optimization problem (dim(x) specifies domain complex-

ity) for each postulated model structure. Model order selection, a delicate issue even in the

unconstrained case, becomes, a fortiori, even harder. These drawbacks have greatly limited

the use of algorithms for inequality constrained/non-smooth linear system identification.

In contrast, we consider only a low-dimensional hyperparameter vector (λ ,α), and use cross-

validation over a grid of hyperparameter values, solving an inequality constrained PLQ op-

timization problem for each choice of parameters. The model selection process is intuitive,

and the entire approach is efficiently implementable, since the number of arithmetic opera-

tions required for the evaluation of each choice of hyperparameters is proportional to that of

standard RLS approaches. Spline kernel modeling with PLQ optimization pave the way to

for new applications of robust, sparse, and inequality constrained linear system identification.
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