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We present the complete mitochondrial genome of the Sharpnose/Granulated Guitarfish Glaucostegus granulatus,
obtained with whole genome shotgun sequencing of genomic DNA. The 16,547 bp long circular genome con-
sisted of 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and a non-coding control region. A few protein-
coding genes ended with incomplete stop codons. Phylogenetic analysis provided strong support for the spe-
cimen to be identified as G. granulatus and improved resolution of phylogeny within the genus Glaucostegus such
as placing G. thouin in a sister group with G. typus. This is the first complete mitogenome within the genus

Glaucostegus and will be beneficial to future molecular taxonomic studies and species identification, population
studies and conservation efforts involving G. granulatus.

1. Introduction

The Sharpnose Guitarfish (Glaucostegus granulatus) is one of fifteen
critically endangered Rhino Rays found in marine neritic and intertidal
habitats of the northern Indian ocean, where it ranges from the Gulf of
Oman and Persian Gulf to Myanmar (Kyne et al., 2019). This species,
alongwith other Rhino Rays has been exploited as incidental catch, and
this has led to severe population declines, and several localized dis-
appearances (Dulvy et al., 2017; Moore, 2017; Jabado et al., 2018).
Like many chondrichthyan species, there are no species-specific time-
series data available for the sharpnose guitarfish that can be used to
calculate population reduction (Kyne et al., 2019). This is due to a lack
of species-specific reporting as well as limitations in accurate taxonomic
identification. As a result current Red List assessments are made from
contemporary landings and catch rate datasets from range countries at
varying levels of taxonomic resolution (eg. ‘Rhinobatids’ to ‘Guitar-
fishes’ to specific measurements for other sympatric species such as
Glaucostegus halavi or G. thouin or G. typus or even Mobulid species).
Based on these data, overall declines of > 80% were estimated for the
Sharpnose Guitarfish populations throughout its range. However, it is

known that, aggregated catches mask overfishing and local extinctions
(Dulvy et al., 2000), underpinning the urgent need to enable species-
specific reporting for the critically endangered Sharpnose Guitarfish
and other Rhino Rays.

Further, Rhino Rays including the Sharpnose Guitarfish were listed
on Appendix II of the Convention for International Trade in Endangered
Species (CITES), in August 2019 (CITES Going Full Steam Ahead to
Ensure Sustainable Use of Marine Resources | CITES, 2019). The re-
sulting CITES trade restrictions obligate nations to monitor and regulate
all international exports of the species and require permits for sus-
tainable and legal harvests of the species for exports. Most fisheries
takes of the Sharpnose Guitarfish are intense and exploitative, poorly
monitored, and unregulated with respect to CITES monitoring and stock
assessments (Kyne et al., 2019; Moore, 2017). A crucial aspect of im-
proved monitoring regimes for G. granulatus and other Rhino Ray
fisheries is to increase capacity for species specific reporting and ac-
curate species identification using molecular taxonomy. Such im-
provements are vital in order to obtain the most accurate population
estimates for each species from landing or catch data, to ensure efficient
enforcement of trade laws in determining export quotas for each species
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Fig. 1. Dorsal view of specimen along the entire length (A), zoomed in views of the frontal (B) and caudal portions (C). Specimen identified as Glaucostegus granulatus

using morphology.

under CITES protections and, last in order to ensure the most efficient
protections for remaining populations of the species.

The most commonly used identification methods for Rhino Rays
currently rely on morphological identification which requires extensive
training and expertise, and in the absence of expert advice, which is
often the case, leads to misidentifications. Molecular taxonomic studies
of the Sharpnose Guitarfish and Rhino Rays are limited in scope to
single genetic markers (Naylor et al., 2012a), which are not always
accessible for all species and do not allow higher resolution analyses of
phylogenetic and evolutionary processes. In addition limited genetic
markers restrict genetic assessments of population structure and bio-
geography which further affect conservation and management of the
species under consideration (Li et al., 2015; Delser et al., 2016; Pazmino
et al., 2018).

We here report the first complete mitochondrial genome of the
Sharpnose Guitarfish, which was obtained by genome skimming of

genomic DNA obtained from fins slated for export. The mitogenome
reported is the first for G. granulatus and has enabled us to improve
species delimitation as well as phylogenetic relationships of taxa in the
genus Glaucostegus.

2. Methods
2.1. Sampling and DNA sequencing

DNA was extracted from a fin clip of an individual female guitarfish
specimen (Fig. 1) collected in Veraval, Gujarat, India as outlined in
(Johri et al., 2019a). Genomic DNA libraries were prepared using Accel-
NGS 2S DNA Library Kit for Illumina platform (Swift Biosciences). The
genomic library was sequenced on an Illumina MiSeq (MiSeq Reagent
Kit v3). Although the run was designed to be a PE sequencing run, only
single reads in the forward direction were obtained due to an error
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midway through sequencing.

2.2. Sequence analysis

Metagenomic sequence reads were quality filtered using the
PReprocessing and INformation of Sequences tool, PRINSEQ
(Schmieder and Edwards, 2011) to remove artificial replicate (Gomez-
Alvarez et al., 2009), while low quality sequence reads were trimmed to
contain < 5 bases of a Q-score <15 (Cox et al., 2010). The quality
filtered genomic sequence reads were then mapped to a reference mi-
tochondrial sequence (Accession # KF612341.1 Carcharhinus sorrah) in
the Geneious environment and assembled into a contig as previously
described (Johri et al., 2019a). Simultaneously De novo contig assembly
was conducted with genomic sequences using the SPAdes assembler
(Bankevich et al., 2012) on a computing server.

However, an accurate and complete mitochondrial genome was
obtained through the Geneious mapping and assembly pipeline as de-
scribed previously (Johri et al., 2019a). The resulting mitochondiral
genome sequence was annotated within Geneious through the align-
ment and annotation transfer tool by comparison with annotated elas-
mobranch mitochondrial genomes from GenBank (NCBI Resource
Coordinators, 2017). Annotation using MitoAnnotator on the MitoFish
website (Iwasaki et al., 2013) was also performed with unsatisfactory
results.

Taxonomic identity of the sample was determined through

morphological identification and phylogenetic  assessment.
Morphological identity was established through methods described in
Rays of the World (Rays of the World, Peter Last, William White,
Marcelo de Carvalho, Bernard Séret, Matthias Stehmann, Gavin Naylor,
9780643109131, 2019) and assessments on iNaturalist, an initative of
the California Academy of Sciences and National Geographic (DOI:
https://www.inaturalist.org/observations/29997970). To assess phy-
logenetic placement of the specimen, gene trees were constructed using
mitochondrial sequences for Cytochrome oxidase 1 (COX1), and NADH
dehydrogenase subunit 2 (NADH2 or ND2) obtained from GenBank
(NCBI Resource Coordinators, 2017) (Table S1). The genus Glaucos-
tegus is not fully represented in any gene currently available on Gen-
Bank (five species each available for COX1, and NADH2). Genes were
therefore analyzed separately and then in a concatenated matrix to
assess congruence between phylogenies. Due to a large amount of
missing data for the full COX1 gene, all COX1 sequences were trimmed
to 717 bp, the smallest available sequence. Multiple samples from G.
granulatus and G. thouin were included to address monophyly of these
two taxa since early analyses rendered them paraphyletic. All sequences
were aligned using MUSCLE 3.8.31 (Edgar, 2004) and PartitionFinder
2.1.1 (Lanfear et al., 2016) was used to identify optimal partitioning
schemes and the best-fit model of molecular evolution, which was then
used for all downstream analyses. In order to ensure robustness of the
phylogenetic estimates, phylogenies were inferred in both Maximum
Likelihood (IQ-Tree v1.6.10) (Nguyen et al., 2015) and Bayesian
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Table 1
Annotation table of genes identified in the G. granulatus mitochondrial sequence with their start and end positions on the forward or reverse strands.

Name Type Minimum Maximum Length Direction
tRNA-Phe tRNA 3 73 71 Forward
12s rRNA rRNA 74 1035 962 Forward
tRNA-Val tRNA 1036 1107 72 Forward
16s rRNA rRNA 1108 2801 1694 Forward
tRNA-Leu tRNA 2802 2876 75 Forward
ND1 gene 2878 3850 973 Forward
tRNA-Ile tRNA 3851 3920 70 Forward
tRNA-GIn tRNA 3921 3992 72 Reverse

tRNA-Met tRNA 3992 4062 71 Forward
ND2 gene 4063 5107 1045 Forward
tRNA-Trp tRNA 5109 5178 70 Forward
tRNA-Ala tRNA 5180 5248 69 Reverse

tRNA-Asn tRNA 5250 5323 74 Reverse

Origin of replication origin_of_replication 5324 5358 35 Forward
tRNA-Cys tRNA 5359 5426 68 Reverse

tRNA-Tyr tRNA 5429 5497 69 Reverse

COX1 gene 5499 7055 1557 Forward
tRNA-Ser tRNA 7059 7128 70 Reverse

tRNA-Asp tRNA 7130 7200 71 Forward
COX2 gene 7208 7898 691 Forward
tRNA-Lys tRNA 7899 7972 74 Forward
ATP8 gene 7974 8141 168 Forward
ATP6 gene 8132 8815 684 Forward
COX3 gene 8820 9605 786 Forward
tRNA-Gly tRNA 9607 9676 70 Forward
ND3 gene 9677 10,027 351 Forward
tRNA-Arg tRNA 10,026 10,097 72 Forward
ND4L gene 10,098 10,394 297 Forward
ND4 gene 10,388 11,768 1381 Forward
tRNA-His tRNA 11,769 11,837 69 Forward
tRNA-Ser tRNA 11,838 11,903 66 Forward
tRNA-Leu tRNA 11,904 11,975 72 Forward
ND5 gene 11,976 13,817 1842 Forward
ND6 gene 13,813 14,331 519 Reverse

tRNA-Glu tRNA 14,333 14,401 69 Reverse

CYTB gene 14,405 15,547 1143 Forward
tRNA-Thr tRNA 15,552 15,624 73 Forward
tRNA-Pro tRNA 15,627 15,696 70 Reverse

D_loop D_loop 15,698 16,547 850 Forward

Inference frameworks, MrBayes v3.2.6 (Huelsenbeck and Ronquist,
2001; Ronquist et al., 2012). For the IQ-Tree analyses, 100,000 ultrafast
bootstrap replicates (Wang et al., 2018) were generated, beginning
from 100 starting trees. MrBayes phylogenetic inference were run de-
scribed in (Johri et al., 2019a). All analyses were run on XSEDE on
CIPRES Scientific Gateway (Miller et al., 2010).

3. Results and discussion

The mitochondrial genome of G. granulatus (GenBank Accession#
MN783017) is 16,547 bp in length (Fig. 2) and consists of 13 protein-
coding genes (PCGs), 22 tRNA genes, 2 rRNA genes, and a non-coding
control region (D-loop) (Table 1). The GC content is 40.0% and the
control region is 849 bp long.

Phylogenetic analyses of COX1 sequences placed the specimen
within Glaucostegus granulatus with statistically significant support,
however, much of the remainder of the tree has poor support in both
the MrBayes and IQ-Tree analyses of COX1 due to poor data availability
for wedgefishes. These analyses place G. thouin within G. granulatus
with strong support, rendering G. granulatus paraphyletic at this
marker.

Our analyses of NADH2 eliminated the possibility of any resem-
blance of the specimen to G. halavi, which was not present in the COX1
dataset due to sequence unavailability. ND2 runs also recovered poor
support throughout the remaining phylogenetic tree using both
MrBayes and IQ-Tree analyses.

Phylogenetic analyses of the concatenated matrix again placed the
specimen within G. granulatus, and rendered G. granulatus paraphyletic

with strong support. While MrBayes recovered high support throughout
the in-group taxa (Fig. 3A), IQ-Tree analysis recovered moderate
bootstrap support throughout the remainder of the tree (Fig. 3B). Fur-
thermore, our MrBayes analysis placed one G. thouin sample as sister to
G. typus rather than in the G. granulatus + G. thouin clade (Fig. 3A).

We present the most extensively-sampled published phylogeny of
the genus Glaucostegus by including six species, two of which were
represented by multiple samples. Our phylogenetic analyses confidently
place the specimen under consideration within G. granulatus, matching
its taxonomic classification to G. granulatus using morphological para-
meters. While our analyses support the monophyly of Glaucostegus and
broadly find similar relationships as previous work (Aschliman, 2011;
Naylor et al., 2012b), resolution of the full phylogenetic tree is limited
by lack of available data. Full resolution of relationships among the
Rhinobatid species will require additional genetic or genomic datasets
and inclusion of taxa which currently lack sequence data (G. micro-
phthalamus and G. spinosus).

In addition to phylogenetic placement of our specimen, our analyses
places two previously reported samples of G. thouin within G. granulatus
and one other as sister to G. typus as also reported by Aschliman, N.
2011 (Aschliman, 2011), suggesting undescribed diversity or complex
demographic processes within Glaucostegus. Further sampling of spe-
cies within this genus with additional markers will be required to re-
solve these relationships.

The current report presents the first complete mitochondrial
genome of G. granulatus (GenBank Accession# MN783017). These
genomic data will significantly aid assessment of conservation status
and assist implementation of trade regulations for the species through



S. Johri, et al.

Meta Gene 24 (2020) 100648

G_granulatus_004
0.16
G_granulatus_185
0.16
G_granulatus_774
0.15
1 contig

G_thouin_440
1
G_thouin_441

,,,,,, G_granulatus_309

AAAAAA G_granulatus_954

G_cf_typus

G_typus

0.98
G_thouin_264

G_halavi

................ G_cemiculus

G_obtusus

.................................... P_clavata

0.96

P_zijsron

g P_pectinata

...................................... P_pristis

A_cuspidata

[ s R djiddensis
1

I. ,,,,,,, R_australiae

0.07

Z_schoenleinii
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improved species identification and population genetic assessments.
Overall, the genomic sequences and the analyses presented in this re-
port are a step forward in reducing the data deficiency of the species
and for the genus Glaucostegus.

Identification of species alone is not sufficient to combat the com-
plicated international trade networks involved in illegal import-export
of shark and ray products. International fin shipments change several
hands and shipping containers during which they are also repackaged
and relabeled, potentially allowing several opportunities to mix illeg-
ally harvested fins (and other products) with legal harvests (Mustain
et al., 2016). For example a species of shark may be protected in one
country but not in another country, and the inability to differentiate
between stocks from the two nations could allow laundering of illegally
fished populations of the species (unpublished data from OCEANS-
ASIA). Indeed illegal global trading of endangered and CITES listed
species has been reported by several studies. Thus, for efficient en-
forcement of species protections it is critical to differentiate between
different species and stocks of protected or CITES listed species such as
the sharpnose guitarfish, to ensure that the fins are not being sourced
illegally from protected populations. One of the main factors limiting
species and stock identification is the enormous gap in genetic data on
Chondrichthyes. Very few of the approximately 1200 Chondrichthyes
have been assessed with respect to their population genetics (Dudgeon

et al., 2012; Johri et al., 2019b), and as a result it remains challenging
to differentiate species as well as intraspecific populations of a species.
The mitochondrial genome presented here will potentially enable fu-
ture studies on population genetics of the sharpnose guitarfish using
nuclear SNP analyses and multiple mitochondrial markers.
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