VARIATIONAL PROPERTIES OF MATRIX FUNCTIONS VIA THE
GENERALIZED MATRIX-FRACTIONAL FUNCTION
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Abstract. We show that many important convex matrix functions can be represented as the
partial infimal projection of the generalized matrix fractional (GMF) and a relatively simple convex
function. This representation provides conditions under which such functions are closed and proper as
well as formulas for the ready computation of both their conjugates and subdifferentials. Particular
instances yield all weighted Ky Fan norms and squared gauges on R™"*™_ and as an example we
show that all variational Gram functions are representable as squares of gauges. Other instances
yield weighted sums of the Frobenius and nuclear norms. The scope of applications is large and the
range of variational properties and insight is fascinating and fundamental. An important byproduct
of these representations is that they lay the foundation for a smoothing approach to many matrix
functions on the interior of the domain of the GMF function.
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1. Introduction. The generalized matriz-fractional (GMF) function was intro-
duced by Burke and Hoheisel in [5] where it is shown to unify a number of tools and
concepts for matrix optimization including optimal value functions in quadratic pro-
gramming, nuclear norm optimization, multi-task learning, and, of course, the matrix
fractional function. In the present paper we expand the number of applications to
include all Ky Fan norms, matrix gauge functionals, and variational Gram functions
introduced by Jalali, Fazel and Xiao in [14]. Our analysis includes descriptions of the
variational properties of these functions such as formulas for their convex conjugates
and their subdifferentials.

Set E := R™*™ x S", where R"*™ and S™ are the linear spaces of real n x m
matrices and (real) symmetric n x n matrices, respectively. Given (A, B) € R*™ x
R>™ with rge B C rge A, recall that the GMF function ¢ is defined as the support
function of the graph of the matrix valued mapping Y +— —%YYT over the manifold
{Y e R"*™ | AY = B}, i.e.,, ¢ : E = RU{+0o0} is given by

(L.1) (X, V) =sup {((Y, W), (X,V)) | (Y, W) € D(A,B) },
where
(1.2) D(A, B) := {(Y ;YYT) EE|Y eR™™: AY = B} .

A closed form expression for ¢ is derived in [5, Theorem 4.1] where it is also shown
that ¢ is smooth on the (nonempty) interior of its domain.

Our study focuses on functions p : R"*™ — R = R U {00} representable as the
partial infimal projection

(1.3) p(X) = inf o(X,V)+h(V),

*Department of Mathematics, University of Washington, Seattle, WA 98195 (jvburke@uw.edu).
Research is supported in part by the National Science Foundation under grant number DMS-1514559.

TDepartment of Applied Mathematics, University of Washington, Seattle, WA 98195 (yuan-
gao@uw.edu).

$McGill University, 805 Sherbrooke St West, Room1114, Montréal, Québec, Canada H3A 0B9
tim.hoheisel@mcgill.ca)



2 J. V. BURKE, Y. GAO, AND T. HOHEISEL

where h : S” — R U {+o0} is closed, proper, convex. Different functions h illuminate
different variational properties of the matrix X. For example, when h := (U, -) for
U € 8%, and both A and B are zero, then p is a weighted nuclear norm where the
weights depend on any “square root” of U (see Corollary 4.6). Among the conse-
quences of the representation (1.3) are conditions under which p is closed and proper
as well as formulas for the ready computation of both the conjugate p* and the sub-
differential dp (Section 3). As an application of our general results, we give more
detailed explorations in the cases where h is a support function (Section 4) or an
indicator function (Section 5). We illustrate these results with specific instances. For
example, we obtain all weighted squared gauges on R™"*™ cf. Corollary 5.8, as well as
a complete characterization of variational Gram functions [14] and their conjugates.
In addition, we show that all variational Gram functions are representable as squares
of gauges, cf. Proposition 5.10. Other choices yield weighted sums of Frobenius and
nuclear norms [5, Corollary 5.9]. The scope of applications is large and the range of
variational properties is fascinating and fundamental.

Beyond the variational results of this paper, there is a compelling but unexplored

computational aspect: Hsieh and Olsen [13] show that (1.3) with h = 3tr(-) yields
a smoothing approach to optimization problems involving the nuclear norm. More
generally, observe that many matrix optimization problems take the form
(P) (hin  f(X) +p(X),
where f,p : R™*™ — RU{+o0}. The function f is thought of as the primary objective
and is often smooth or convex while p is typically a structure inducing convex function.
Using the representation (1.3), the problem (P) can be written as
(1.4) (Xr,r‘l};aeE F(X)+ (X, V) + h(V).
This reformulation allows one to exploit the smoothness of ¢ on the interior of its
domain. For example, if both f and h are smooth, one can employ a damped Newton,
or path following approach to solving (P). We emphasize, that this is not the goal or
intent of this paper, however, our results provide the basis for future investigations
along a variety of such numerical and theoretical avenues.

The paper is organized as follows: In Section 2 we provide the tools from convex
analysis and some basic properties of the GMF function. Section 3 contains the general
theory for partial infimal projections of the form (1.3). In Section 4 we specify h in
(1.3) to be a support function of some closed, convex set ¥V C S”. In Section 5 we
choose h to be the indicator of such set. In particular, this yields powerful results on
variational Gram functions and Ky Fan norms in Sections 5.2 and 5.3. We close out
with some final remarks in Section 6 and supplementary material in Section 7.

Notation: For a linear transformation L between finite dimensional linear spaces, we
write rge L and ker L for its range and kernel, respectively. For a given choice of
bases, every such linear transformation has a matrix representation for some A €
R*™ Therefore, we also write rge A and ker A for the range and kernel, respectively,
considering A as a linear map between R” and R?. Again, for A € R**™, we set

Ker,A:={X eR"" |AX =0} ={X €eR"" |rgeX Cker A},
Rge, A:={Y eR”" |IX eR™" : Y = AX } = {V e R”" |1geY Crge A}

and write KerA or RgeA when the choice of r is clear. Observe that Ker; A = ker A,
Rge; A = rge A, and (Ker,A)* = Rge,AT. We equip any matrix space with the
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(Frobenius) inner product (X, Y) := tr (XTY). The Moore-Penrose pseudoinverse
[11] of A is denoted by Af. The set of all n x n symmetric matrices is given by S™.
The positive and negative semidefinite cone are denoted by S and S", respectively.
For two sets S, T in the same real linear space their Minkowski sum is S + T :=
{s+t|seS,teT}. ForICRwealsoput I-S:={Xs|Ael, s€S}.

2. Preliminaries.

Tools from convex analysis. Let (&, (:, -)) be a finite-dimensional Euclidean
space with induced norm || - || := +/(-, -). The closed e-ball about a point z € & is
denoted by B.(z). Let S C £ be nonempty. The (topological) closure and interior
of S are denoted by clS and int S, respectively. The (linear) span of S is denoted
by spanS. The affine hull of S, denoted aff S, is the intersection of all affine sets
containing S, while the convexr hull of S, denoted conv S, is the intersection of all
convex sets containing S. Its closure (the closed convex hull) is conv S := cl (conv S).
The conical and convex conical hull of S are given by posS :={Az |z €S, A\ >0},
and cone S = {>I_, Nz; |r €N, z; €85, \; >0}, respectively, with cone S =
pos (conv S) = conv (pos S). The closure of the latter is cone S := cl (cone 5).

The relative interior of a convex set C' C &, denoted riC, is the interior of C
relative to its affine hull. By [2, Section 6.2], we have

(2.1) x €riC <= pos(C —z) =span (C — x).

The polar set of S C £ is defined by S° := {ve & | (v,z) <1(x € S)}, and the
horizon cone is the closed cone S™ = {ve & | I A} 10, {xp €S}: Ay = v}.
For a convex set C C £, C*° coincides with the recession cone of the closure of C, i.e.

(2.2) C®={v|z+tvecdC(t>0,z€C)}={y|C+ycC}.

For f: & — R its domain and epigraph are given by dom f := {x € £ | f(x) < +o0}
and epi f := {(z,a) € E X R | f(x) < a}, respectively. We say f is proper if f(z) >
—oo for all z € dom f # 0. We call f convez if its epigraph epi f is convex, and
closed (or lower semicontinuous) if epi f is closed. If f is proper, we call it positively
homogeneous if epi f is a cone, and sublinear if epi f is a convex cone. In what follows
we use the following abbreviations:

L&) :={f:& = RU{4o0} | f proper, convex }, I'o(£) :={f € () | f closed }.

The lower semicontinuous hull cl f and the horizon function f>° of f are defined
through the relations cl(epi f) = epicl f and epif> = (epi f)*°, respectively. For
f € To(€), f*° is also known as the recession function [15, p. 66] or the asymp-
totic function [1, 10]. The horizon cone of a function f is defined as hzn f :=
{z | f*(x) <0}, and for f € Ty, we have hzn f = {x | f(z) < p}™ for p € R
such that {z | f(x) < p} # 0 [15, Theorem 8.7].

For a convex function f : & — R U {400} its subdifferential at T € dom f
is given by 0f(z) = {vel | flx)> f(@)+ (v,z—Z) (x€&)}. For f € Ty(E),
we have ri(dom f) C domdf C dom f, see e.g. [15, p. 227], where domdf :=
{r €& |df(x) # 0} is the domain of the subdifferential.

For a function f : & — R its (Fenchel) conjugate f* : € — R is given by f*(y) :=
sup,ce{(z, y) — f(x)}, and f € To(€) if and only if f = f** := (f*)* is proper.
Given a nonempty S C &, its indicator function g : &€ — R U {400} is given by
ds () = 0 for z € S and +oo otherwise. The indicator of S is convex if and only if
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S is a convex set, in which case the normal cone of S at T € S is given by Ng (Z) :=
00s(z) ={vel|(v,x—2) <0 (xeS)}. The support function og : € - RU {400}
and the gauge function vs : € — R U {+oco} of a nonempty set S C & are given
respectively by og (x) := sup,cg (v, z) and vg(z) :=inf{t >0 |z €tS}. Here we
use the standard convention that inf ) = +oo.

Given C' C £ is closed and convex, the barrier cone of C'is defined by bar C' := dom o¢.
The closure of the barrier cone of C' and the horizon cone are paired in polarity, i.e.

(2.3) (bar C)° = C*° and cl(barC) = (C*)°.
For two functions fi, fo : £ = R, their infimal convolution is

(10 f2)(z) := ;Ielg{fl(m —y)+ f2(y)} (x€E).

The generalized matrix-fractional function. As noted in the introduction,
the GMF function is the support function of D(A, B) given in (1.2). Hence, we write

(2.4) p(X,V) = OD(A,B) (X, V)

and also refer to op(4, 5y as the GMF function. From [5, Theorem 4.1], we obtain the
formula

Ltr ((g)TM(V)T(g)) if  rge ()J_é) CrgeM(V), Ve Ka,

400 else,

(2.5) ¢(X,V) = {
where (A, B) € RPX™ x R*™ with rge B C rge A and K 4 is the cone of all symmetric
matrices that are positive semidefinite with respect to the subspace ker A, i.e.

(2.6) Ka={VesS"|[u"Vu>0(uckerA)},

and M (V)T is the Moore-Penrose pseudoinverse of the bordered matrix

(2.7) M(V) = (Z AOT) .

The matriz-fractional function [4, 9] is obtained by setting A and B to zero.
The GMF function ¢ = opa,p) appears in Burke and Hoheisel [5] and Burke,
Hoheisel and Gao [6], where it is shown that

dom ¢ = dom dyp = {(X,V) cE

int (dom ) = {(X, V)eE

rge (g) CrgeM(V), Ve inthA} £ 0.

For a deeper understanding of the support function ¢, a description of the closed
convex hull of the (nonconvex) set D(A, B) is critical. An arduous representation of
conv D(A, B) was obtained in [5, Proposition 4.3]. A much simpler and more versatile
expression was proven in [6, Theorem 2], see below. The key ingredient in the newer
expression is the (closed, convex) cone K4 defined in (2.6), which reduces to S} when
A = 0. We briefly summarize the geometric and topological properties of K4 useful
to our study. These follow from [6, Proposition 1] (by setting S = ker A).
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PROPOSITION 2.1. For A € R [et P € R™*™ be the orthogonal projection onto
ker A and let K4 be given by (2.6). Then the following hold:

(a) Ky={V eS"|PVP =0}

(b) K =cone {—vv” |vekerA} ={W eS" |W =PWP <0}

(¢) int KKy ={V €S" |u"Vu>0(uckerA\{0})}.

The central result in Burke, Hoheisel and Gao [6] now follows.

THEOREM 2.2 ([6, Theorem 2]). Let D(A, B) be given by (1.2). Then
conv D(A, B) = Q(A, B) = {(x W)eR ‘ AY = B and %YYT +W e K } :

In particular, Theorem 2.2 implies that ¢ = op4,B) = 0q4,B), Since 05 = Ocomv 5
for all subsets S of a Euclidean space. This identity is used throughout.

3. Infimal projections of the generalized matrix-fractional function. We
now focus on infimal projections involving the GMF function. Consider

(3.1) v:E—=R, ¢(X,V)=9X,V)+hV),

where ¢ € To(E) is given in (1.1) and h € To(S™). Our primary object of study is
the infimal projection of the sum v in the variable V' under the standing assumption
that rge B C rge A, i.e. {Y e R"*™ | AY = B} # 0

(3.2) p:R™™ 5 R, p(X)= Vlgsf" (X, V).

We lead with some elementary observations.

LEMMA 3.1 (Domain of p). Let p be defined by (3.2). Then the following hold:
(a) p is conver.
(b) domp={X e R"*™ | IV € Ko Ndomh : rge (%) Crge M(V)}. In partic-
ular, domp # 0 if and only if domhNK 4 # 0.

Moreover, if domp # (0 then the following hold:
(¢) If B=0 (e.g. if A=0) then domp is a subspace, hence relatively open.
(d) If rank A = ¢ (full row rank) and domh Nint K4 # 0, then domp = R™**™,
(e) If domhNK4 #0 and (domh)>® NK4 = {0}, then p is proper, hence p € T

Proof. (a) The convexity follows from, e.g., [16, Proposition 2.22].

(b) We have X € dom p if and only if there is a V' € S™ such that (X, V) € dom =
(dom ) N (R™*™ x dom h). Hence the representation for dom p follows from the one
of dom ¢ in (2.8). This representation for dom p tells us that domp # () implies that
domh N K4 # 0. On the other hand, if V € domh N K4, then (VY,V) € dom for
any Y € R"™™ satisfying AY = B, and so (VY,V) € domp # 0.

(¢) If B =0, we have X € domp if and only if span {X} C domp. Since domp is also
convex, it is a subspace, see, e.g., [16, Proposition 3.8].

(d) By the description of int 4 in Proposition 2.1 (c), the assumptions imply that
there exists V' € domh N K4 such that M (V) is invertible, see [5, Proposition 3.3].
This readily gives the desired statement in view of (b).

(e) By part (b), domp # ). Hence let X € domp, i.e. thereis a V € K4 Ndom h such
that rge (£) Crge M (V). If p(X) = —oo0, there is a sequence {V;, € S" Ndom h} with
{(X, Vi) € dom ¢} such that ¥(X,V}) — —oo. This implies that p(X,V}) - —o0 or
h(Vi) — —oo. In either case, this tells us that ||[Vx|| — oo since both ¢ and h are
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closed and proper. Consequently, there is a subsequence J C N, and a matrix Vesn

such that (V,/ ||V 2 V. Hence 0 4V € (domhNK4)>® = (domh)>® N K4, which
contradicts the hypothesis. ]

We give two examples to illustrate various statements in Lemma 3.1. The first shows
that an assumption of the type in part (e) is required to establish that p is proper.

EXAMPLE 3.2 (p improper). Letm =n =1, A=0, B =0 and h(v) = —v.

2
1 5 if v>0,
since st ={ 3 W VT werwe g =4 %0 i vZ0, (@) e,
’ +oo if v<0
Therefore, p = —o0 since

2
x
=1 f =1 f - — = — R .
p(e) = inf ple.0) + ho) = it {5~ o} =0 (@eR)
The properness condition given in Lemma 3.1 (e) is revisited in Definition 3.10 where
it is called boundedness primal constraint qualification (BPCQ). It is the strongest of
the constraint qualifications we discuss.
The second example shows dom p may not be relatively open if B # 0.

EXAMPLE 3.3 (domp not relatively open). Let A = (11) and b= (1). Then
ker A =span{( )} and Ka = {(5 %) | v+u>2w}. Moreover, put V := (3 {) and
define V :=[0,1]-V = {(?w¥) |w € [0,1]} C S?. Then V is convex and compact. Let
h € To(S?) be any function with domh = V. Note that domhNK4 = V. Hence

z €domp <= Jw e [0,1] : (§) erge (v} AOT)
x = wVr+ ATs,
b = Ar

= 3we A ApeR: z=w () [(D)+A(1)] +u(l)
—Jwel0,1l,yeR: z=w({)+~(1).

— Jw € [0,1],7,5s € R?:

Therefore, domp = [0,1] - (§) + span{(1)}, and hence ri(domp) = (0,1) - () +
span{(1)}, so that domp is clearly not relatively open.

The preceeding example, shows that dom p may fail to be a subspace if B # 0, hence
this assumption in Lemma 3.1(c) is not superfluous. On the other hand, Lemma 3.1
(d) and Example 3.18 (a) illustrate that the condition B = 0 is only sufficient but not
necessary for dom p to be a subspace.

3.1. The functions v, 9*, and their subdifferentials. The study of the
infimal projection p in (3.2) requires an understanding of the properties of the function
¥ from (3.1), its conjugate ¢*, and their subdifferentials. For this we make extensive
use of the condition

(CCQ) vi (dom h) Nint K4 # 0,

which we refer to as the conjugate constraint qualification. As a direct consequence
of the line segment principle (cf. [15, Theorem 6.1]), we have

(3.3) ri (domh) Nint Ky # 0 <= domhNint Ka # 0.
LEMMA 3.4 (Conjugate of ¢). Let ¢ be given as in (3.1) and define
(3.4) n: (Y, W)eEw— Tlgsfn R*(W —=T) + daa,p) (Y, T).
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Then

domn = Q(A, B) + ({0} x domh*)

(3.5) _ {(KW) ’Ay _ B, (_;ny+icj’4> N (W — dom h*) 75@}7

and the following hold:
(a) If 1 # +oo, then ¢ € Ty(E).
(b) Ifdomh N K # 0 then 1, ¢* € To(E) with ¢* = cln.
(¢) Under CCQ , we have ¥* = 1. Moreover, in this case, the infimum in the
definition of n is attained on the whole domain, i.e.

(3.6) S(Y,W) = argrgin{h*(W—T) | (Y,T) € Q(A,B)}
Tesn

is nonempty for all (Y, W) € dom¢* .
(d) Under CCQ, domoy* = {(Y,W) |0 # &(Y,W)} and, for every (Y,W) €
dom Ov*, we have

AT eS": Veodh" W -T)NKa,

(Y, W) =4 (X, V) <V, ;YyT+T> =0, rge (X — VY)C (ker A)*

Proof. Note that n(Y, W) < 400 if and only if there is a Wy, W5 € S such that
W = Wy +Ws, (Y,W1) € Q(A,B) and Wy € domh*, or equivalently, (Y, W) €
Q(A, B) + ({0} x dom 2*), which in turn is equivalent to AY = B, T € —3YY7T + K9
and T' € W — dom h* giving (3.5).

Define h : E — R by h(X,V) := h(V). Then domh = R™ ™ x domh and
Y=p+h=0q,p) + "
(a) The sum of two closed, proper, convex functions (here ¢ and iz) is closed and
convex. It is proper if and (only) if the sum is not constantly +oo.
(b) The sum of two proper functions is proper if and only if the domains of both
functions intersect. By (2.8), we have dom hNdom ¢ # ) if and only if dom hNK 4 # 0.
Therefore, 1 is proper if (and only if) the latter condition holds. Combined with
(a) this shows ¢ € Ty(E), and so ¢* € I'o(E). Moreover, by Appendix Theorem
7.1 (a), Y*(Y,W) = o (59(,4,3) Diz*) (Y, W). Since h*(Y,W) = 5403 (Y) + h*(W),
(do(a,B) O il*)(K W) = infy rycqa,p) B (W = T) = n(Y, W), proving ¢* = cln.
(¢) By [5, Theorem 4.1], int (dom¢) = {(X,V) |V €int K4} and, by definition,

ri (dom h) = R™*™ X ri(dom h). Hence
(3.7 ri (domh) Nri(domg) #0 <= ri(domh)Nint K4 # 0.

Theorem 7.1 (a) (applied to ¢ and iL), CCQ, and (3.7) imply ¢* = n with
(3.8) o o
0#T(Y,W):= argmin {h*(W) | (V,T)€QUAB), Y=Y, W=W+T}.
(Y,17),(0,W)€E

Since

e ST ={T S [[V.1), 0.0 - T) € T, W)}, and
. )

T W) ={[(Y,T),(0,W -T)] | T € &Y,W

)
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we have &(Y, W) # 0 if and only if T(Y, W) # 0.
(d) Observe that dp* = Nqa,p) and Oh* = R™™ x §h* with dom Oh* = {0} x
dom @h*. Then part (c) and Theorem 7.1 (d) (applied to ¢ and h) yield
. X, V) € dp* (Y1, W) N Oh* (Y, Wy) }
aprvow) =L x, vy | & : Wa),
s {( ) ‘ (Y, W) = (Y1, W1) + (Y2, W2)

= {(X,V) | 3T eR™™ : (X,V) € Noqap)(Y,T), V € h*(W —T)}.

The claim follows from the representation for No(4, 5y (Y,T) in [6, Proposition 3]. 0O

COROLLARY 3.5 (Subdifferential of ©). Let ¢ be given by (3.1) and & by (3.6).
Then the following hold: - o
(a) If (Y, W) € 0p(X,V) + ({0} x Oh(V)), then S(Y, W) # 0 and

(310) SY,W)={TeS"|W-TeonV), (Y,T)€dp(X,V)},

where Op is described in [6, Corollary 3.2].
(b) Under CCQ we have
X
dom Jy = {(X, V) ’ V e domohnN Ky, rge <B> CrgeM(V) } .
Moreover, for all (X,V) € domdy and all (Y, W) € 0(X,V), we have
SY,W)#0 and

(X, V) = 0p ) + ({0} x On(V))

3.11 o o
(311 ={(Y\W)eE |&Y,W)#0}.

Proof. Set f1(X,V):= (X, V) and fo(X,V) := h(V), so that the mapping T in
Theorem 7.1 is given by (3.8). Then, using (3.9), part (a) follows from Theorem 7.1
(b), and part (b) follows from Theorem 7.1 (c). d

3.2. Infimal projection I. Let the infimal projection p be as given in (3.2).
We are now in position to give a formula for p* under CCQ.

THEOREM 3.6 (Conjugate of p and properties under CCQ). Let p be given by
(3.2). Moreover, let ng : R™*™ — R be given by

(3.12) n:Y — h*(W).

inf
(Y,—W)eQ(A,B)
Then the following hold:
(a) domng = {Y e R"™™ | AY = B, (—3YYT +K%) N (—domh*) # 0}
={Y e R"™™ | (Y,0) € domn}, where n is defined in (3.4).
(b) If domhN K4 #0, then p* = clng, hence domng C dom p*.
(c) If CCQ holds for p, then domp = R™ ™ and the following hold:
(1) p* =mng, i.e.

(3.13) p (YY) = (Y,—Wl)réE)(A,B)h (W).

Moreover, for all' Y € domp*, the infimum is a minimum, i.e. there
exists W € dom h* with (Y, —W) € Q(A, B) such that p*(Y') = h*(W).
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In particular, p* is closed, proper convex under CCQ if and only if it is
proper, which is the case if and only if

0 # dom*(-,0) = {Y | IW € domh* : (Y,—W) € Q(A, B)}
={Y | (Y,0) € A, B) + ({0} x domh*)},

with dom p* = dom¢*(-,0) = dom 7.
(II) p is either (convex) finite-valued (hence p € To(R™*™)) or p = —oo.
The former is the case if and only if dom¢*(-,0) # 0.
Proof. (a) This follows from the definition of 79. Also note that ny = 7(-,0).
(b) By Lemma 3.4 (b), ¢* € T'g(E) with ¢* = cln with n defined in (3.4). Hence, by
[16, Theorem 11.23 (¢)], p* = ¥*(+,0) which establishes the given representation. The
domain containment is clear as p* = clny < 7.

(c) Observe that domp = L(dom e NR™™™ x domh), where L : (X,V) — X, see
Lemma 3.1. By CCQ, we have ri (dom h) Nint K 4 # 0, hence

ri (dom ¢ N (R™*™ x dom h)) = int (dom ¢) N (R™*™ x ri (dom h))
= (R™™ xint 4) N (R™™™ x ri(dom h))
=R""™ x (int K4 Nri(domh)),

where we use [5, Theorem 4.1] to represent int (dom ¢). This now gives
ri (domp) = L [ri (dom ¢ NR™ ™ x dom h)| = R™*™".

(c.I) As in part (b), p* = ¥*(-,0). Hence, Lemma 3.4 (c) gives the identity p* = ng
under CCQ as well as the attainment statement. Since ©* is closed, proper, convex
(under CCQ) by Lemma 3.4 (b), ¥*(-,0) is, too, if and only if dom*(-,0) # 0, and
so the statements about p* = ¢*(-,0) follow .

(c.II) We have domp = R™ ™. By [15, Corollary 7.2.3] this implies that either
p = —oo or p is finite-valued, which shows the first statement. For the second, again
as dom p = R™ ™ observe that the convex function p is finite-valued if and only if it
is proper, which is true if and only if p* is proper, so I) gives the desired statement.O

Observe that Example 3.2 shows that the condition () # dom*(-,0) is essential
in Theorem 3.6 (c.I-c.IT). Indeed, in this example, p = —oco so domp = R, while
h=o¢_1y and h* = d;_1y, ¥*(+,0) = p* = o0, and CCQ is satisfied.

We now broaden our perspective of infimal projection by embedding it into a
pertubation duality framework in the sense of [16, Theorem 11.39] or the development
in [1, Chapter 5]. Given X € R"*™ define fg by

fX(XﬂV) :¢(X+X7V) ((XaV)GE)v
and pg by

(3.14) px(X) = inf fy(X,V) (X eR™™),

Then f5(Y,W)=4*(Y,W)—(X,Y) ((Y,W)e€E), [16, Equation 11(3)]. Define

(3.15) gx(W) = —sgp{<X7 Y) -y (Y, W)} (W esn).
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Then ¢y is a convex function that pairs in duality with pg satisfying the weak duality
px(0) > —qx(0) (X € R™™). Applying the general pertubation duality to our
scenario yields the following result.

PROPOSITION 3.7 (Shifted duality for p). Let p be defined by (3.2), let X € domp
and qx be defined by (3.15). Then the following hold:

(a) If 0 € ri(domgqg) then p(X) = —qg(0) € R, argminy(X,-) # 0, and
9qx(0) # 0. ) )

(b) If X €ri(domp) then p(X) = —qx(0) € R, argmaxy {(X, Y)—¢*(Y, W)} #
0, and Op(X) # 0.

(c) Under either condition 0 € 1i(domgqg) or X € ri(domp), p is Isc at X and
—qx 1s lsc at 0.

(d) We have

p(X)
_ zp;(( ’VQ’ y — (V,00€0)(X,V) <= (X,V)edp*(Y,0).
= —qx(0)

Proof. Let X € dom p and observe that p(X+X) = pg(X) (X € R"*™), hence,

in particular, p(X) = p5(0) € R. Moreover, notice that ¢ and hence fg is proper
(hence in Ty) as by assumption X € domp exists. Applying the results [I, Theorem
5.1.2-5.1.5, Corollary 5.1.2] to the duality pair px and ¢g and translating from pg
at 0 to p at X gives all the desired statements. ]

The domain of g5 plays a key role in interpreting this result in a given setting. Below
we provide a useful representation of this domain using the set
(3.16) O (A, B)={WesS"|TY: (Y, IW)eQA4,B)}.

LEMMA 3.8 (Domain of gg). Let X € R™ ™ and qg defined by (3.15). Then
domgg = Qs(A, B) + dom h*.

Proof. Using Lemma 3.4, observe that

5 (V) = igf {4 (V.10 — (X, V)
= ir}}f Iy, w)—(X,Y)}
(e - 7) - (X, 1)}

= inf
(Y,T)eQ(A,B)
Therefore,

domgy ={W e S" |3Y,T) e QA,B): W —-T €domh*} = Q(A, B) + domh*.
d
We now discuss various constraint qualifications for p.

3.3. Constraint qualifications. We start our analysis with a result about the
set Q2(A4, B) from (3.16), which was used in Lemma 3.8 to represent the domain of
ax-

LEMMA 3.9 (Properties of Q3(A, B)). Let Q2(A, B) be as in (3.16). Then we

have:
(a) Q2(A, B) is closed and convex with Qs(A, B)>® = K.
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(b) Q2(A, B) = dom (X, -)* for all X € R™*™ such that (X, -) is proper.
(c) We have
rng(AB)_:{W |3y : AY =B, LYYTHW €ri(K%)}=ri(domp(X,-)*)
for all X such that (X, -) is proper.
Proof. (a) With the linear map T": (Y, W) — W we have Q2(A4, B) = T(2(A, B)).
Therefore 2(A, B) is convex. By [6, Proposition 10], we have Q(A4, B)*™ = {0} x K9,
and so ker T N Q(A, B)*® = {0} giving the remainder of (a) by [16, Theorem 3.10].

(b) Recall from [5, Theorem 4.1] that int (domo,) = {(X,V) € E | V € int K4 }, Thus
we can apply Proposition 7.2 to § := ¢(X,-) to infer that

g (W) = inf -X,Y W e S").
g (W) Y:(Y,Wl)neQ(A,B)< YY) (Wes)

This proves the claim.

(c) Observe that riQs(A, B) = riT(2(A, B)) = T(riQ(A, B)) and use [6, Proposition
8] to get the first representation. The second one follows from (b). |

We now define the constraint qualifications central to our study. Note that CCQ was
previously introduced in Section 3.1.

DEFINITION 3.10 (Constraint qualifications). Let p be given by (3.2). We say
that p satisfies
(1) PCQ: if 0 € i (Q2(A4, B) + dom h*);
(i) strong PCQ (SPCQ): if 0 € int (Q2(A, B) + dom h*);
(#1) boundedness PCQ (BPCQ): if domh NKa # 0 and (domh)>* NK4 = {0};
(iv) CCQ: if ri(domh) Nint K4 # 0.
(v) strong CCQ (SCCQ): if CCQ is satisfied and § # domp*(-,0), or equiva-
lently,

1
0 +£Z(A,B) = {YGRW”‘AYB, YYTedomh*+/c°}
(3.17) # E(4, B) 2 A

= {Y e R™™ | (Y,0) € Q(A, B) + ({0} x dom h*) }.

The notation PCQ stands for primal constraint qualification while CCQ stands for
conjugate constraint qualification. Theorem 3.6 and Lemma 3.8, respectively, give the
following useful implications:

(3.18)

The following results clarify the relations between the various constraint qualifi-
cations. We lead with characterizations of PCQ and BPCQ.

LeEMMA 3.11 (Characterizations of (B)PCQ). Let p be given by (3.2) and X €
dom p, and set

(3.19) bg =X, ) (X e R™™),

(a) The following are equivalent:
(i) 0 € ri(dom¢%);
(ii) PCQ holds for p;
(isi) Y e R"*™ . AY = B, %YYT € i (K9 + domh*).
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In addition, similar characterizations of SPCQ hold by substituting the inte-
rior for the relative interior.
(b) BPCQ holds for p if and only if domh N K 4 is nonempty and bounded.

Proof. (a) Defining ¢ := (X, ), we find that % = cl(¢% Oh*) and therefore
ri (dom %) = ri (dom p% +dom h*) = ri (Q2(A, B)+dom h*), see Lemma 3.9 (c). This
proves the first two equivalences. The third follows readily from the representation of
ri (Q(A, B)) from [6, Proposition 8§].

(b) Follows readily from [16, Theorem 3.5, Proposition 3.9]. 0

We point out that, under PCQ, Lemma 3.11 shows that the objective functions
¥(X,-) (X € domp) occuring in the definition of p in (3.2) are weakly coercive [1,
Definition 3.2.1] when proper, see [1, Theorem 3.2.1]. This tells us that the infimum
in (3.2) is attained under PCQ if finite [1, Proposition 3.2.2, Theorem 3.4.1], a fact
that is stated again (and derived alternatively) in Theorem 3.15. Under SPCQ, the
objective functions (X, -) (X € domp) are level-bounded (or coercive), in which case
the argmin(X,-) is nonempty and compact (and clearly convex). Finally, it was
shown in Lemma 3.1 (e) that p is closed proper convex under BPCQ.
The next result shows the relations between the different notions of PCQ.

LEMMA 3.12. Let p be given by (3.2). Then the following hold:

(a) BPCQ = SPCQ = PCQ.

(b) If int (dom h*) Nint (—Q2(4, B)) # 0, then PCQ and SPCQ are equivalent.

Proof. (a) The first implication can be seen as follows: If BPCQ holds then
domg C domh N K4 is bounded (and nonempty exactly if X € domp). Therefore
g is level-bounded for all X € domp, i.e. 0 € int (dom V%) (X € domp), see e.g.
[16, Theorem 11.8]. In view of Lemma 3.11 (a) this implies that SPCQ holds.

The second implication is trivial.

(b) This is follows directly from the definitions. O
We now provide characterizations for CCQ.

LEMMA 3.13 (Characterizations of CCQ). Let p be given by (3.2). Then
(i) domhNintK4 #0 < (ii) CCQ holds for p < (iii) (—K%)Nhznh* = {0}.
Proof. The first equivalence was previously observed in (3.3). The second equiv-
alence can be seen as follows: We apply [15, Corollary 16.2.2] (to f; := h and

f2 = dx,). This result tells us that ri(domh) Nint K4 # @ if and only if there
does not exist a matrix W € S” such that

(3.20) (W) (W) + oxc, (~W) <0 and (B*)®°(=W) + o, (W) > 0.

Since ok, (=W) = bk, (—=W), the first of these conditions is equivalent to the con-
dition W € (=K% ) Nhznh*. In particular, we can infer that (—K%) Nhznh* = {0}
gives the inconsistency of (3.20) and thus establishes (iii)=-(ii).

The second condition in (3.20) implies W # 0. Thus, in view of Proposition 2.1
(b), 0 # =W € K9 C S%, and hence W ¢ K. Thus, every nonzero element of the
set (—K%) Nhznh* satisfies (3.20). Thus, the nonexistence of a W satisfying (3.20)
implies that (=K% ) Nhzn h* = {0}, which altogether proves the result. O

Note that for any proper, convex function f we always have hzn f C (dom f)* which,
in view of Lemma 3.13, implies that the condition

(3.21) (=K%) N (dom h*)> = {0}
is stronger than CCQ. However, (3.21) is not used in our study.
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3.4. Infimal projection II. We return to our analysis of the infimal projection
defining p in (3.2). The following result shows that the two key conditions appearing
in Proposition 3.7, 0 € ri(domgg) and X € ri(domp), correspond nicely to the
constraint qualifications studied in Section 3.3.

COROLLARY 3.14. Let p be defined by (3.2), let X € domp and qx be defined by
(3.15). Then the following hold:

(a) PCQ holds for p if and only if 0 € ri (domqx);

(b) If CCQ holds, then X € ri(dom p).

Proof. (a) Follows immediately from Lemma 3.8 and the definition of PCQ.

(b) Under CCQ we have dom p = R™*™ (see the proof of Theorem 3.6 (c.II)), hence
(b) follows. d

As a consequence of Corollary 3.14 and Proposition 3.7 we can add to the properties
of p proven in Theorem 3.6.

THEOREM 3.15 (Properties of p under PCQ). Let p, defined in (3.2), be such
that PCQ is satisfied and domh N Ka # 0 (i.e. domp # 0). Let g5 be given by
(3.15). Then the following hold:

(a) p € To(R™™); ]

(b) argmin, (X, V) #0 (X € domp) (primal attainment);

(c) p(X) = —qx(0) (X €domp) (zero duality gap).

Proof. Let X € domp. Under PCQ, by Corollary 3.14, we have 0 € ri (dom qyx).
Hence, by Proposition 3.7 (a), there is a V € S™ such that p(X) = (X, V), and so,
by Proposition 3.7 (c), p is Isc at X with p(Z) € R. The discussion in [1, p. 153] tells
us that p is, in fact, closed, proper, convex.

Finally, the equality p(X) = —¢x5(0), also follows from Proposition 3.7 (a). d

Theorem 3.15 can be proven entirely without the shifted duality framework in Propo-
sition 3.7 by using the linear projection L : (X,V) — X used implicitly throughout
our study. It can be seen that p = L1 is a linear image in the sense described in
[15, p. 38]. Then [15, Theorem 9.2] gives all statements from Proposition 3.15 after
realizing that the constraint qualification in [15, Theorem 9.2], which reads

(3.22) (0,V)>0 or ¥(0,-V)<0 (Vesm),

since ker L = {0} x S™, is equivalent to PCQ in this setting. However, we chose to
derive Theorem 3.15 from the shifted duality scheme since this assists in the subdif-
ferential analysis.

The next result follows readily from the foregoing study.

COROLLARY 3.16. Let p be given by (3.2) and no by (3.12). If PCQ and CCQ
are satisfied for p then the following hold:

(a) SCCQ holds and p is finite-valued.

(b) (primal attainment) p € To(R"™>™) is finite-valued and for all X € R™*™
there exists V such that p(X) = (X, V).

(c) (dual attainment) p* = 1o and for all Y € domp* there exists W such that
(Y, W) € Q(A, B) and p*(Y) = h*(=W).

Proof. (a) Follows readily from Lemma 3.11 a) and the definition of SCCQ.

(b) By (a), SCCQ holds, so the first statement follows from Theorem 3.6 (c). The
second is due to Theorem 3.15 (b).

(¢) Since SCCQ holds, see (b), Theorem 3.15 (c) applies.
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The table below summarizes most of our findings so far. Here X € dom p.

Consequence\Hypoth. | PCQ | SPCQ | BPCQ | CCQ | SCCQ | PCQ+CCQ
peElgVp=—o0 v v v v v v
peTy v v v v v
p(X) = —¢x(0) v v v Ve v v
argmin (X, -) # 0 v v v v
argmin ¢ (X, -) compact v v? v
domp = R v v v
argmin h*(=T) # 0 v v v

(V. T)eQ(A,B)

In view of Proposition 3.7 (b) and Corollary 3.14 one might be inclined to think that
using CCQ instead of the pointwise condition X € ri(domp) is excessively strong.
However, computing the relative interior of dom p without CCQ is problematic, cf.
the derivations in the proof of Theorem 3.6 (¢) under CCQ. Hence, we do not consider
constraint qualifications weaker than CCQ.

We now turn our attention to subdifferentiation of p.

PROPOSITION 3.17 (Subdifferential of p). Let p be given by (3.2). Then the
following hold:
(a) Under SCCQ, domp = dom dp = R"*™ and we have

3.23 Op(X) = X, Y) — inf h* (=T
(323)  0p(X) = argmax((X.Y) — | int w(-T)),

which is nonempty and compact. -
(b) Under PCQ equation (3.23) holds, and, for X € domp, we have

(¢) Under PCQ and CCQ, domp = dom dp = R"*™ and we have
Op(X) = (Y | IV, T: T € oh(V), (V,T) € 0p(X, V) },

which is nonempty and compact.

Proof. (a) Under SCCQ, p is convex and finite-valued (hence closed and proper),
therefore domp = domdp = R™*™ with dp(X) compact for all X € R"*™. The
representation (3.23) follows from [15, Theorem 23.5] and the fact that the closure for
p* can be dropped in the argmax problem.

(b) Under PCQ we also have that p € Ty, hence the same reasoning as in (a) gives
(3.23). We now prove the remainder: For the first identity notice that (see e.g. [10,
Chapter D, Corollary 4.5.3])

opX)={Y |(Y,00eop(X,V)} (Ve arg‘];ninw()_(,V))7

Ip(X) = —oco is possible. ~
2BPCQ also implies that dom (X, -) is bounded.
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the latter argmin set being nonempty due to what was argued above. The ’C’-inclusion
is hence clear. For the reverse inclusion invoke the results in [16, Example 10.12] to
see that if (Y,0) € ¥(X, V) then V € argminy, ¢(X,V).

The second identity in (c) is clear from [15, Theorem 23.5] as i) € I'o(E).

The third follows from Proposition 3.7 in combination with Corollary 3.14 and
recalling that ¥*(Y,0) = p*(Y).
(c) Apply Corollary 3.5 to the first representation in (b). d

For X € rbd (domp) the subdifferential Op(X) can be empty. Moreover, it is un-
bounded if X ¢ int (dom p). The latter may even occur under BPCQ as the following
example shows.

EXAMPLE 3.18. Let A = (}9) and b = () so that Ka = {(4 %) |u>0}.
Defining h := 6y for V :={(§9) | u <0,v € [0,1]} we hence find that domhNK 4 =
{(48) |vel0,1]} and domhNint K4 = 0, so that CCQ is violated but BPCQ (hence
(S)PCQ) holds. We find that

x€domp<—= IV eVNKy: (”ﬁ)erge(XAOT)
_ (O 10
= 3Jvel0,1,rsckR?: U ~ (?8)T+<00)8’
(6) = (Go)r
< 3Jvel0,l,poeR:2=(§3)[(5)+r(5)]+0o(5)

<z espan{(})}.

Therefore we have domp = span{(})}. In particular, domp is a proper subspace
of R?, hence relatively open with empty interior. Therefore Op(x) is nonempty and
unbounded for any x € dom p.

4. Infimal projection with a support function. We now study the case
where h is a support function:

(4.1) p(X) = inf p(X, V) +ou(V),

where V is a given closed, convex subset of S™. Our first task is to interpret the
constraint qualifications of Section 3.3 when h = 0y,. Here, and for the remainder of
this section, the choice h = oy implies that dom h = barV and dom h* = V.

LEMMA 4.1 (Constraint qualifications for (4.1)). Let p be given by (4.1). Then
the following hold:
(a) (CCQ) The conditions

(4.2) barV Nint K4 # 0,
(4.3) V= n(=K5) = {0},
(4.4) cl(barV) — K4 =8S"

are each equivalent to CCQ for p in (4.1). Moreover, if CCQ holds, then
SCCQ holds if and only if

(4.5) 0 #E2(A,B) ={Y [ (Y,0) € Q(4, B) + ({0} x V) },

where Z(A, B) is defined in (3.17).
(b) (PCQ) PCQ holds for p if and only if

(4.6) pos (Q2(A, B) +V) = span (Q2(A, B) + V),
where Qa(A, B) is defined in (3.16).
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(¢) (BPCQ) The conditions

(4.7) barVNKa #0 and cl(barV)NK4 = {0},
(4.8) barV N K4 is nonempty and bounded,
(4.9) barVNKs #0 and V* +KG =S"

are each equivalent to BPCQ for p, hence imply (4.6).

Proof. Observe that with h = oy we have dom h = bar V and hzn h* = V*°.

(a) (4.2) is condition (i) in Lemma 3.13 for h = oy, while (4.3) is condition (iii).
Employing the results in [3, Section 3.3, Exercise 16]) we have that (4.3) holds if and
only if cl (bar ¥V — K4) = S™. The final statement follows from (3.17) in the definition
of SCCQ.

(b) This is an application of (2.1) and the definition of PCQ.

(c) As the horizon cone of any cone is its closure, we see that (4.7) is exactly BPCQ
(for h = oy), while the equivalence to (4.8) follows from Lemma 3.11 (b). The
equivalence of (4.9) to the former follows from the fact that (4.7) holds if and only
if cl (V> 4+ K9) = S, see [3, Section 3.3, Exercise 16]), where the closure can be
dropped by interpreting [15, Theorem 6.3] accordingly. 0

The additivity of support functions tells us that

(4.10) p(X) = Vinan ox(X,V) (X e R™™™),
where
(4.11) S :=Q(A, B) + {0} x V C E.

In particular, this implies that p(AX) = Ap(X), for all A > 0 and p(X; + Xq) <
p(X1) + p(X3). Hence, if p is proper, it is a support function. In addition, by (3.17),
E(A,B) ={Y | (Y,0) € X} is the set featured in (3.17), (3.18), and (4.5).

PROPOSITION 4.2. Let p be given by (4.1). Then the following hold:

(a) p € To(R™™™) (i.e. p=p**) under condition (4.6), and, hence, under any of
the conditions (4.7)-(4.9). Moreover, this is also true under any condition in
(4.2)-(4.4) tf, in addition, (4.5) or (4.6) holds, in which case p is finite-valued.

(b) p* = dax(-,0) where the closure is superfluous (i.e. ¥ is closed) under any
of the conditions (4.2)-(4.4), in which case p* = 6=(a,p)-

(c) If any of (4.2)-(4.4) hold then p = —00 or p = 0=(a,p) is finite-valued. The
latter is the case if and only if (4.5) holds, which is valid under (4.6).

Proof. (a) The first statement follows from Lemma 4.1 and Theorem 3.15. The

second uses Lemma 4.1, Theorem 3.6 (c¢) and Corollary 3.16.

(b) By [16, Exercise 3.12] and [6, Proposition 10], ¥ is closed if (—K%) N V> = {0},
i.e. under any condition in (4.2)-(4.4), see Lemma 4.1 (a). Moreover, p* = o&(-,0) =
de1x(+,0), see [16, Proposition 11.23 (c)].

(c) Follows from (a), (b) and Theorem 3.6 ¢ II), as well as Corollary 3.16. 0

4.1. The case B = 0. We now consider the case when B = 0. Recall from [6,
Theorem 11] that this implies that 04,0y is a gauge function. Similarly, if 0 € V,
then oy is also a gauge, in fact, oy = o, cf. [16, Example 11.19].

This combination of assumptions has interesting consequences when the geome-
tries of the sets ¥V and —K¢ are compatible in the following sense.
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DEFINITION 4.3 (Cone compatible gauges). Given a closed, conver cone K C &,
we define an ordering on € by x <k y if and only if y —x € K. A gauge v on & is
said to be compatible with this ordering if

v(z) < (y) whenever 0 <k x <k y.

The following lemma provides a characterization of cone compatible gauges and pro-
vides a very useful tool for determining is a gauge is compatible with a given cone.

LEMMA 4.4 (Cones and compatible gauges). Let 0 € C' C & be a closed, convex
set, and let K C &€ be a closed, convex cone. Then ¢ is compatible with the ordering
<k ifandonlyif KN(y—K)cC (ye KnCQC).

Proof. Note that, for y € K, we have KN(y—K) ={z | 0 2k = <k y} . Suppose
that ¢ is compatible with K, and let y € CNK. If z € KN (y — K), then
vo(z) < ve(y) < 1, and, consequently, K N (y — K) C C.

Next suppose KN (y — K) € C for all y € KN C, and let x,y € £ be such
that 0 <k « <k y. Then, y € K and x € KN (y — K). We need to show that
vo(z) < ve(y). If vo(y) = +oo, this is trivially the case, so we may as well assume
that yo(y) =t < +o00. If £ >0, thent 'y e CNK andt 'z e KNt ly— K) C C.
Hence, vo (7 1y) = 1 > qc(t712), and so, v (x) < vo(y) as desired. In turn, if £ = 0,
then ty € KNC (t > 0), so that tx € KN (ty — K) C C (¢t > 0), i.e., z € C* and so
Yo(z) = 0. 0

COROLLARY 4.5 (Infimal projection with a gauge function). Let p be given by
(4.1) where V is a nonempty, closed, convex subset of S™. Suppose that B = 0. Under
any of the conditions (4.2)-(4.4) we have:

(a) p* = b=(a,0), where Z2(A,0) ={Y |AY =0, 3IW e V: AW =0, 3YYT W }.
(b) If 0 € V and ~yy is compatible with the ordering induced by —KS, then

(4.12) pr(Y) = 5{Y| AY=0, vy (3YYT)<1} Y)= O(—rcg)nv (;YYT> .

Proof. (a) This follows from Proposition 4.2, (4.5) with B = 0, and using the
representation of 4 in Proposition 2.1.

(b) First observe that —K$ = {W € S |rgeW C ker A}, see Proposition 2.1 (b),
recall that rgeY = rgeYY7T (Y € R™™) and, since 0 € V, V € V if and only if
v (V) < 1. Exploiting these facts and the compatibility hypothesis, we see that

1
Y € 2(A,0) <= AY =0, HWEV:AW:O,§YYT5W
1

— AY =0, IW e V: ’Yv(W) >y <2YYT)

= AY =0, v (;YYT> <1

= AY =0, %YYTEV

1
—1geYY7T C ker A, 5YYT =Y
1 T )
= §YY e (—=K3)ny.

Conversely, we have 1YY7 € (—K4)NV <= AY =0, Y € K4, and 1YY7T € V.

Taking W = 1YYT, we see that Y € Z(A,0). Therefore (b) follows from (a). d
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When the support function A is taken to be a linear functional, we obtain the following

remarkable result. Here || - ||, denotes the nuclear norm®.

COROLLARY 4.6 (h linear). Let p:R" ™ — R be defined by

p(X) = inf (X, V)+(U, V)
for some U € ST NKer, A and set C(U) :={Y e R™™ | 1YY" U} . Then:
(a) p* = d¢c(oy is closed, proper, convex.
(b) p = oc@w) = Yoo s sublinear, finite-valued, nonnegative and symmetric
(i.e. a seminorm,).
(c) If U = 0 with 2U = LLT (L € R"*") and A =0 then p = ooy = ILT ()l

i.e. pis a norm with C(U)° as its unit ball and Yooy a8 its dual norm.
(d) If U = 0, then C(U) and C(U)° are compact, convez, symmetric’ with 0 in

their interior, thus pos C(U) = pos C(U)°® = S".

Proof. (a) Observe that h:= (U, ) = oyiy- Hence the machinery from above ap-
plies with V = {U}. AsV is bounded, CCQ is trivially satisfied (cf. (4.2)-(4.4)). Note
that 0 € C(U) # 0. Given Y € C(U), we must have rgeY C ker A since otherwise
there is a nonzero z € (ker A)* with Y7z # 0 yielding 0 < HYTzHE < 27Uz = 0.
Consequently, C(U) = {Y e R™™ | AY =0, LYYT —U € K3 } =E(A4,0) # 0, and
the result follows from Proposition 4.2 (b).

(b) This follows from [15, Theorem 14.5], part (a), and the fact that 0 € C(U).

(c) Consider the case U = %I: By part (a), we have p* = dyy | yyr<s}. Observe that
{Y |YYT <I}={Y ||Y]2 <1} =:By is the closed unit ball of the spectral norm.
Therefore, p=op, = || - [|B3 = || - [|+- ) )

To prove the general case suppose that 2U = LLT. Then it is clear that C(U) =
{Y | L='Y € C(31)}, and therefore

p(X) = o) (X)

= sw (Y, X)
Y:L-1YeC(iI)

sup  (L7'Y, LTX)
L-yeC(3)

=ocun(LTX)
= [ LTX]..

Here the first identity is due to part (b) (with A = 0) and the last one follows from
the special case considered at the start of the proof.
(d) Follows from (c) using [15, Theorem 15.2]. |

We point out that Corollary 4.6 generalizes the nuclear norm smoothing result by
Hsieh and Olsen [13, Lemma 1] and complements [5, Theorem 5.7]

5. h is an indicator function. We now suppose that the function h in (3.1) is
the indicator h := §y, for some nonempty, closed, and convex set V € S™:

(5.1) p(X) = inf $(X,V) +5,(V).

!For a matrix T the nuclear norm ||T||+ is the sum of its singular values.
2We say the set S C £ symmetric if S = —S.
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We begin by interpreting the constraint qualifications from Section 3.3. Here, and for
the remainder of this section, h = §y and so dom h =V and dom h* = bar V.

LEMMA 5.1 (Constraint qualifications for (5.1)). Let p be given by (5.1). Then
the following hold:
(a) (CCQ) The conditions

(5.2) VNintKa # 0,
(5.3) cone Y — K4 =S"

are each equivalent to CCQ for p. Moreover, if CCQ holds, then SCCQ holds
if and only if

(54) 0#Z(AB)={Y e R"™™ | (Y,0) € QA,B) + ({0} x bar V) } .
(b) (PCQ) The PCQ holds for p if and only if
(5.5) pos (Q2(A, B)) + bar V = span (22(A, B) 4 bar V).

(¢) (BPCQ) The conditions

(5.6) VNKs#D and VNK4 = {0},
(5.7) VNKa#0Dis bounded,
(5.8) VNKa#0 and barV + K9 =S

are each equivalent to BPCQ for p, hence imply (5.5).

Proof. (a) First, observe that , with h = dy, condition (i) in Lemma 3.13 is exactly
(5.2). By the same lemma this is equivalent to hznoy N (—K9%) = {0}. Moreover,
since oy = oy, we have hznoy = {V | oy (V) < 0} = (cone V)°. Invoking the results
in [3, Section 3.3, Exercise 16 (a)] implies that hznoy N (—K%) = {0} if and only
if cl(come’V — KC4) = S”, where the closure in the latter statement can clearly be
dropped, e.g. by interpreting [15, Theorem 6.3] accordingly.

(b) Use (2.1) to infer that PCQ holds for p if and only if

pos (Q2(A, B)) + bar V = pos (Q2(A, B) 4+ bar V') = span (Q2(A4, B) + bar V).

(¢) The equivalences of BPCQ, (5.6), and (5.7) are clear. Since V*° and cl (bar V) are
paired in polarity, see (2.3), [3, Section 3.3, Exercise 16 (a)] implies that VN4 =
{0} if and only if cl (bar V + K£9) = S™, where the closure in the latter statement can
be dropped as in (a). This establishes all equivalences. 0

The following result provides sufficient conditions for p being closed, proper, convex
when h is an indicator function.

COROLLARY 5.2. Let p be given by (5.1). Then p € To(R™™™) under any of the
following conditions:
(i) (5.4) holds along with either (5.2) or (5.3).
(ii) (5.5) holds.
(#ii) Any one of (5.6)-(5.8) holds.

Proof. Follows from Lemma 5.1 and Theorem 3.6 (¢) and Theorem 3.15, respec-
tively. 0
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The case A = 0 and B = 0 is of particular interest in applications to variational Gram
functions in Section 5.2.

COROLLARY 5.3. Let p be given as in (5.1) with A = 0 and B = 0 so that

Ka=S% and K =S™. Assume that V NS # 0. Then
PCQ << SPCQ < S" +barV =8S" < BPCQ.
Moreover, p € To(R™ ™) under any of following conditions:

(i) (SCCQ){Y eR™™ |IT ebarV : 3YYT T} #0 and VST, #0;

(i) (PCQ)S™ +barV =S8";

(iii) ((B/S)PCQ) 0 # VNS is bounded.

Proof. First note that 2(0,0) = {Y e R™™ |3 T ebarV : ;YYT <T} and
22(0,0) = S® = K. The first statement now follows from Lemma 5.1 and the
definition of PCQ and SPCQ), resepectively, since the span of a set with interior is the
whole space. The remaining implications follow from Corollary 5.2 and Lemma 5.1.0

We directly compute the conjugate p* using techniques from [5, Theorem 3.2].

THEOREM 5.4 (Infimal projection with an indicator function). Let p be given by
(5.1). Assume that

(5.9) @ # dom (p+4dy) = {(X,V) eE ‘ VeVnNKa and rge <);> CrgeM(V)}.

Then p* : R™*™ — R is given by
p*(Y) = 30vnks (YYT) + 612 az=5} (V).
In particular, for A =0 and B =0 we obtain p*(Y) = %Uvmgi (YYT) .

Proof. By (2.4) and our assumption that () # dom (¢ + dy), we have
p*(Y) = sup [(X,Y) — inf p(X, V) + 6y(V)]
b’ 14

= supsup [(X,Y) — 0045 (X, V) = 6u(V)]

1 x\7" X
= sup sup (X,Y) — —tr (( ) M(V)T< )) ,
Vevnka rge ()B{)Crge M(V) 2 B B

for Y € R™*™. Since rge (35) C rge M(V), we make the substitution M (V) () = (})
to obtain

*(Y)= sup sup tr —1(U)TM(V)(U)+YT(VU+ATW)
P VEVF?)CAA%VBB 2\W W

m T
L (g i
= sup -— g inf (u ) M(V)(u ) —yl'Vu; —w] Ay;
Vevnka I 4w, 2 \wj; w;

m

1
= sup - Z inf <2uZTVui — (Vyi, us) + {(w;, by — Ayi>>

VEVNKA i1 Auish
= sup - f: inf luTVui — (Vyi,w;) | +inf ((wy, by — Ay;))
Vevnka 5 Auj=b; \ 2 " ’ w; ’

i 1
(21 az=5)( vax%)m ;Ai?—bi@”l wi = (Vy “>>
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where the final equality follows since 0y | ay—p,1(¥i) = sup,, (wi, Ay; —b;) (i =
1,...,m). By hypothesis rge B C rge A, and so, by [5, Theorem 3.2]

1/Vy\" Vy; . 1 ,
LV et (VY 2w (R v — (v .
2( b, ) (V) ( b, Jnf, | i Vs Vyisui) | (i=1,...,m),
Therefore, when AY = B, we have

1 Vyz)T (Vyi)
(Y sup — ) —= M)t
r)= e ; 2(@ SR

2t 13 (00 (5)) o (a0 (5)

1 m " T " T
= su — ) M(V !
veVrIw)icAQ;<0) ( )<0>

1 m
T
= sup fE yi Vi
vevnka 2 = ’

(Where Ay; = b; so>

(0) = M(V)(%)

1
= sup ~tr(YTVY),
VEVNK 4

which proves the general expression for p*. The case A =0, B = 0 follows. O

COROLLARY 5.5. Let p be given by (5.1). If SCCQ holds, i.e.,
VNintKa #0 and {Y € R™™ | (Y,0) € Q(A, B) + ({0} + bar V) } # 0,

then
oy(=T)}

is nonempty and compact for all X € R™*™. Alternatively, if VNint K4 # 0 (CCQ)
and

ap(X) = X =
p(X) arg}r/nax{< > (Y,T)le%(AaB)

posQa(A, B) + bar V = span (22(A4, B) + bar V) (PCQ)
hold, then

op(X) = {V |3V, T: T € Ny(V), (V.T) € 0p(X,V)}

is nonempty and compact for all X € R™*™.,
Proof. This follows from Proposition 3.17 in combination with Lemma 5.1. ]

5.1. B=0 and 0 € V. We now consider the important special case of p given
by (5.1) where 0 € ¥V and B = 0. In this case p turns out to be a squared gauge
function, see Corollary 5.8. We start with a technical lemma.

LEMMA 5.6. Let C, K C E be nonempty, convexr with K being a cone. Then
(C+K)°=C°NnK°. If C+ K is closed with 0 € C, then (C°NK°)°=C+ K. In
particular, the set C + K is closed if C and K are closed and K N (—C*) = {0}.

Proof. Clearly, C° N K° C (C + K)°. Conversely, if z € (C + K)°, then
(zyz+ty) < lforallz € C, y € K, and t > 0. Multiplying this inequality by
t~! and letting t — 0o, we see that z € K°. By letting ¢t | 0, we see that z € C°.

Now assume that C'+ K is closed with 0 € C. Then C' + K is closed and convex
with 0 € C'+ K. Hence, by [15, Theorem 14.5], C + K = (C + K)°° = (C° N K°)°.

The final statement of the lemma follows from [15, Corollary 9.1.1]. d
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The first result in this section is concerned with a representation of the conjugate p*
under the standing assumptions.

COROLLARY 5.7 (The gauge case I). Let p be given by (5.1) with 0 € V and
B =0 and let P be the orthogonal projection onto ker A. Moreover, let

S={WeS"|rgeW CkerA}={WeS" |W=PWP}.

Assume that
0+ {(X,V) cE ’ VeVNKas and rge ()0() C rgeM(V)}.
Then the following hold:
(a) We have

1 1
p*(Y)= FO(VNK )+ (Yy") = 3vnKa)ens (yy™)

where St = {V €S" | PVP =0}. In particular, p* is positively homoge-
neous of degree 2.
(b) If V° + K9 is closed (e.g. when K9 N —(cone V)° = {0}) then

N 1
(5.10) p'(Y) = 5rvens)+xy (Yv?),

where domp* = {Y | YY7 € cone (V°NS) + K4 }.
Proof. (a) By Theorem 5.4, we have
p*(Y) :%UVQKA (YYT) + 0171 az=03(Y)
:%am,@, (YY7") + %55 (vyT)
= govica (VYT) + Lose (YY)
Z%U(mm)wl (Yv”)

1
=§V(VmICA)°mS (YYT) .

Here the first equality uses Theorem 5.4, the second equality follows from the fact
that rgeY = rgeYY 7T, the third can be seen from [16, Example 7.4], and the final
equivalence follows from [15, Theorem 14.5] and Lemma 5.6.

(b) If V° 4 K¢ is closed, then Lemma 5.6 also tells us that (VN K4)° = V° + KS.
Since K9 C S, see Lemma 2.1 (b), we have (V° +K%) NS = (V°NS) + K9 which,
using (a), gives the first equivalence in (5.10). |

Our final goal is to show that p, under the standing assumption in this section, is a
squared gauge. Here we denote by Bp the (closed) unit ball in the Frobenius norm.

COROLLARY 5.8 (The gauge case II). Let p be as in Theorem 5.4 with 0 € V and
B = 0, and assume that (5.9) holds. Let P € R™ ™ be the orthogonal projector on
ker A and define the (closed, conver) sets

VY2 = {LeR™™ | LL" € PVNKA)P}, Fi= {LZ ‘ Levy? ZeIB%F}7
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and the subspace U := Ker,, A.> Then
1 .1
b= 57.?:4»(/{1- and p* = g’y‘%.-onu.
In particular, for A=0 and F := {LZ ‘ LLT ¢y nst, Z € BF} we obtain

1 *
p:?ﬁf and p :’y;—o.

Proof. For all Y € R"*™_ by Theorem 5.4 and the definition of U, we have
1 1
p*(Y) = o, YY) +6u(Y) == sup (PVPYYT)+5,(Y).
2 2 vevnk,

In turn, by the definitions of Vil/ % and the Frobenius norm, the latter equals

1 1

= sup (LLT, YYT)+6(Y) = 5 Sup 1LY )% + 6u(Y).
Levy/? Levly/?

On the other hand, by the monotonicity and continuity of t € R, + 2 as well as the

self-duality of the Frobenius norm, we find that the second term can be written as

2 2

1 1
3| sw ILTY||r| +60u(Y) == sup (LY, Z)| +6u(Y).
Levy/? (Z,L)eBpx VY2

Using the definition of F and the convention (+00)? = 400, we can rewrite this
equivalence as 107(Y)? + 0y (Y) = 3 [o£(Y) + §(Y))?. All in all, using the latter,
[16, Example 11.4], and [16, Example 11.19] and the polar cone calculus from, e.g.,
[3, p. 70], we conclude that

1, 1

P(V) = o (V) + (V)= o (V) + o (V)P = 50000 (V) = 373 (V).

This gives the representation for p*; the one for p follows from [15, Corollary 15.3.1].0

5.2. Variational Gram Functions. Given a closed, convex set ¥V C S™ define

(5.11) Py R SR, dp(Y) = %O’Vmgi (Yy7T).

These functions are called variational Gram functions (VGF) and were introduced
by Jalali, Fazel and Xiao [14]. They have received attention in the machine learning
community due to their orthogonality promoting properties when used as penalty
functions, cf. [14].

Note that the definition (5.11) explicitly intersects V with the positive semidefinite
cone S’j while Jalali, Fazel and Xiao [14] employ the standing assumption that &y =
®ynsn . These (equivalent) conventions guarantee that ®y, is convex. We also scale
by % since @y, is positively homogeneous of degree 2.

As an immediate consequence of Theorem 5.4, &, = p* where p is defined in
(5.1) with A =0, B=0and VN S} # (. In addition, the constraint qualifications
dramatically simplify in this case. We have already seen in Corollary 5.3 that PCQ,
SPCQ and BPCQ are all equivalent for VGFs. We now observe that CCQ and SCCQ

are also equivalent.

3Hence U+ = Rge,, AT.
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LEMMA 5.9 (CCQ=SCCQ for VGFs). Let ®y be given by (5.11) with ¥V C S™.
Then the condition V NS # 0 is equivalent to (5.9), and (5.4) is satisfied with
&y, = p* where A =0, B=0 and p defined in (5.1). In particular, CCQ and SCCQ
are equivalent where CCQ is given by V NS # 0.

Proof. First note that 0 € 2(0,0) = {Y ’ dW € barV : %YYT < W} since 0 €
bar V. The relationship between ®y, and p is given in Theorem 5.4. ]

Lemma 5.9 and the results of the previous section allow us to refine [14, Propo-
sition 4].

PropOSITION 5.10 (Conjugate of VGFs and VGFs as Squared Gauges). Let @y
be given by (5.11). Under either of the assumptions

(i) (CCQ) VNS, #1),

(ii) (PCQ)VNSY #0 is bounded (or equivalently S™ + barV = S"),
we have

®3(X) = inf 00,0 (X, V) 4+ 6v(V) = 5 VE%S? tr (XTVIX) (X e R™™).
rge X CrgeV

Under (i), ®3, is finite-valued, and under (ii), ®y is finite-valued. In addition, if
0 €V we also have

1 . 1
oy = Q’y‘%:o and ®3, = 57%

with F={LZ | LLT e VNS, Z € Br }.

Proof. Lemma 5.9 tells us that assumption (i) is equivalent to SCCQ, and Corol-
lary 5.3 tells us that assumption (ii) is equivalent to BPCQ. Hence, by Theorem 5.4,
either assumption (i) or (ii) implies that ®3, = p** = p. The remainder is now follows
from the definition of p, equation (2.5), and Corollary 5.8. d
Next consider the subdifferential of a VGF when defined by (5.11). Although, a
VGF is always convex, we take the convez-composite perspective, see e.g. [7], since
a VGF is simply the composition of a closed, proper, convex function ovns? and a

nonlinear map H : Y YYT._ The basic constraint qualification for the composition
Dy = %Uw]si o H at a point Y € dom ®y, is given by

(BCQ) Niom o YYT)n (Ker,YT) = {0}.

It is well-known that this condition is essential for a full subdifferential calculus of
convex-composite functions [16]. We now show that this condition is intimately linked
to condition (ii) in Corollary 5.3.

LEMMA 5.11 (BPCQ=PCQ=BCQ for VGFs). Let &y be as in (5.11) and as-
sume that ST NV # 0. Then the following are equivalent:
(i) There exists Y € dom @y such that BCQ holds;
(ii) ((B)PCQ) V> NS} = {0} (or equivalently V NS} is bounded);
(iii) BCQ holds at every Y € dom ®y,.

Proof. *(i)=(ii): Let V € S% NV and assume (ii) is violated, i.e. there exists
0#W e (YNSy)>® =v>*nSh. By (2.2), we have

(5.12) Vii=V+tWevns} (t>0).
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Now, take any Y € dom ®y,. Then, for all £ > 0, we have

+oo > (I)v (Y)

= sup <V, YYT>
vesrny

Since W = 0, we have (YY”?, W) = tr (YTWY) > 0. In view of the above chain of
inequalities this implies <VV, ?YT> =0andas W, YYT ¢ S7} this gives wYYyT =o.
Since rgeY = rgeYYT this implies WY = 0 or, equivalently, Y7W = 0. Therefore,
we have 0 # W € (VN ST)™ N (Ker,Y?). Now, observe that Ndomg\msﬂi (Z2) =
(VNSY)* for any Z € domoyngr, see e.g. [16]. This shows that BCQ is violated at
Y. Since Y € dom ®y, was chosen arbitrarily, this establishes the desired implication.

(ii)=(iii)’: If VNS is bounded, then dom ovnsy = S", and so, for every Y € dom ),

Ndom vnen (YYT) = {0} giving the desired implication.

'(iii)=-(i)’: Obvious. 0

We now derive the formula for the subdifferential of the VGF from (5.11).
PROPOSITION 5.12. Let @y be given by (5.11). Then

OPy(Y) D {VY | Vevnsy: (VYY) =0, (Y)} (Y € dom®y).

If ST NV is nonempty and bounded, equality holds and dom ®y, = R™*™.

Proof. Combine Lemma 5.11 with [16, Theorem 10.6], [16, Corollary 8.25] and
the fact that for H : Y — YY7T we have VH(Y)*V = 2VY for all (Y,V) € E. u|

We next consider an example.

EXAMPLE 5.13 (Failure of subdifferential calculus for VGF). LetV := pos{I} C
S*, putm:=1 and let H : Y + YYT. Then clearly condition (i) in Proposition 5.10
holds, but condition (ii) and hence the BCQ fails. We have

(5.13) ovnsn w) = Sl;% atr (W) = 6{U€Sn | tr (U)gO}(W) (W e s™).

Hence, we obtain dom @y = {0} and VH(0)*9ovnsy (0) = {0}. On the other hand,
we have &y = %Uvaz o H = d0y9y. Therefore,

d®y(0) = Nyoy(0) = R™™ 2 {0} = VH(0)*9ovnsy (0).

Example 5.13 establishes various things: First, it shows that condition (i) in Propo-
sition 5.10 does not yield equality in the subdifferential formula for VGFs. It also
illustrates that equality in the subdifferential formula may fail tremendously in the
absence of BCQ, even for a convex-composite which is, in fact, convex.

Jalali, Fazel and Xiao [14] employ great effort to compute the conjugate of a
(convex) VGF, cf. the proof of [14, Proposition 7]. However, a slightly refined version
of [14, Proposition 7] follows immediately from our analysis.

PROPOSITION 5.14 (Subdifferential of ®3,). Let ®y be given by (5.11).
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(a) ((5)CCQ) IfvNSh, #0, dom P}, = dom ®3, and

0P, (X) = argmax < (X, Y) — inf  opase (T) p.
v(X) gy {< > 1yyr<r vns+( )}

(b) ((B)PCQ) If the set V NS is nonempty and bounded, dom 03, = dom ¥,
and we have

v e YNnSy: rge X CrgeV,

AL(X) =Y

23(X) = pir (XTVIX) = (X, V) — @u(¥),

for all X € dom 3.

Proof. (a) By Lemma 5.9, PCQ=SCCQ and ®y, = p*. The subdifferential formula
follows from Proposition 3.17 (a) (see in particular the third identity in (c)).

(b) The fact that dom 0®3, = dom @3, is due to the fact that the latter is a subspace,
hence relatively open, cf. Lemma 3.1 (c¢). The remainder follows from Lemma 5.9 and
Proposition 3.17 (c). ad

5.3. VGFs and squared Ky Fan norms. For p > 1, 1 < k < min{m,n}, the
Ky Fan (p,k)-norm [12, Ex. 3.4.3] of a matrix X € R™*™ is defined as

k 1/p
[ X1lp, = (ng> )
i=1

where o; are the singular values of X sorted in nonincreasing order. In particular,
the (p, min{m,n})-norm is the Schatten-p norm and the (1, k)-norm is the standard
Ky Fan k-norm, see [12]. For 1 < p < oo, denote the closed unit ball for || - ||, by
By :=4{X | | X|lpe <1} Forl <p < oo, define s :=p/2. Then, for 2 < p < oo, we

have
1 ) b 1/s
SIXNp =5 | D (09)°
2 2 i=1
1 T 1 T 1 T
= §||XX s,k = ing,k(XX ) = QO']B;:JCQSK(XX )
1
= 58, (X),

where the first equality follows from the definition of s, the second from the definition
of the singular values, the third from properties of gauges and their polars, the fourth
from the equivalence <V, XXT> = Z;":l ijij with the z;’s the columns of X, and
the final from (5.11). For the Schatten norms, where k = min{n, m} we have B, =
B;. i, where § satisfies % + % =1, see [11]. For other values of k, the representation of
BS  can be significantly more complicated, e.g. see [8].

6. Final remarks. We studied partial infimal projections of the generalized
matrix-fractional function with a closed, proper, convex function h : S* — R. Suffi-
cient conditions for closedness and properness as well as representations of both the
conjugate and the subdifferential of the infimal projections under the associated es-
sential constraint qualifications. The general results were applied to the cases when
h is a support or an indicator function of a closed, convex set in S™. These results
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revealed close connections to a range of important convex functions on R™*". In par-
ticular, the infimal projection with linear functionals yielded smoothing variational
representations for the family of scaled nuclear norms, while the infimal projection
with an indicator is often a squared gauge. As a special case, it was shown that the
conjugate of the infimal projection coincides with a variational Gram function (VGF)
of the underlying set. Hence the variational calculus for VGF's follows easily as a con-
sequence of our general study. In all of these cases, the infimal projection opens the
door to new smoothing approaches to a range of nonsmooth optimization problems
on R™ ™ using the representation (1.4).

7. Appendix. In what follows we use the direct sum of functions f; : € —
RU{+o0} (i =1,...,m) which is defined by

O fi i €™ > RU{+00}, @, fi(z1,.. ., 2m) = Y filwi).

THEOREM 7.1 (Extended sum rule). Let f; € To(€E) (i = 1,...,m) and set
=", fi. Then the following hold:
(a) The conjugate of f is given by f* = cl(ffOf50---0f). Under the condition

(7.1) ﬂ i (dom f;) # 0
we have f* = {0 foO---0 f which is closed, proper and conver and
0 # T(z) := argmin {Z :Zzz} (z € dom f*).
=1 i=1

(b) If z€ X", 0fi(x), then T(z) # 0 and

m

Ezz,zi, 2t € 0fi(z), izl,...,m}.

i=1

T(2) = {(zl,...,zm)

(¢) Under (7.1) we have df = i, df;, domdf = (-, domdf; and

T Z{Zzi|zi63fi(x),i=1,...,m}
i=1
={z|(z',....2™" eT(2), 2 €dfi(z)i=1,...m} (z € domf).
(d) Under (7.1), f* = ff O f5 00 f5, domdf* = {z | 0 £ T(2)} # 0, and

af*(2) = {ﬂ ofi (=
=1

Proof. (a) See [15, Theorem 16.4].
(b) Let L : E™ — & be defined by L(z',...,z™) = >.7" | 2*. Then its adjoint L* :
& — &m is given by L*(z) = (x,...,z) (z € £). Let z € 31", 8f;(z), and take
any 2z € 9f;(z) (i = 1,...,m) such that z = Y ", 2*. By [15, Theorem 23.5],

m

zZ= Zzl} (z € domOf™).

=1
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T € dff(2") (i = 1,...,m). Hence, by [15, Theorem 23.8, 23.9] and [2, Proposition
16.8] we obtain

0 € rge L+ O (1) x -+ x Df (™) € 310y (L() = 2) + Oy F1) (. 2.
Therefore, (2%,...,2™) € T(Z), and we have

0 # {(z17...,zm)

z=Y 4 2 edfix), i= 1,...,m} C T(2).
i=1

To see the reverse inclusion, let (z1,...,2™) € T(2). By assumption and again [15,

Theorem 23.8], we have z € > 1", 8]‘}(@) C 0f(z). By [15, Theorem 23.5] and the

fact that f*(z) =Y ", f7(2"), we have

S () =z 2) = £1(2) + @) = () + @),

i=1 =1
so that 0 =Y (fF (") + f:(%) — (2, &)). By the Fenchel-Young inequality, f;(z*)+
fi(®) = (2, ) > 0 (i =1,...,m), hence equality must hold for each i = 1,...,m, or
equivalently 2¢ € 8f;(Z) (i = 1,...,m). This establishes the reverse inclusion.
(¢) The first two consequences follow from [15, Theorem 23.8]. For the third, the
first equivalence simply follows from the fact that 9f = >\, df;. To see the second
equivalence, let z € f(Z). Then, by part (b), T(z) # 0, and, for every (2%,...,2™) €
T (%), we have z° € 8fi(i"), i=1,...,m. Hence,

c{z](z ™ eT(2), 2 €0fi(z), i=1,....m}.

The reverse inclusion follows from the first equivalence.
(d) By (a), f*=f0Of0---0fF €To(€) and T(z) # 0 for all z € dom f*.
Let us first suppose that z € dom df* C dom f*, then T(z) # 0. Let € 9f*(2).
By [15, Theorem 23.5], z € 0f(2). By part (c), this is equivalent to the existence
of ¥ € 0f; (%) such that z = >, 2", which, by [lo Theorem 23 5] is equivalent to
ze{NiL, 0f7(z") | z=>1" 12} Hence@f c{NiY, 2 z=30 2
On the other hand, let z € {(/"; 87 (%) | z=>1", 7 } Then, by [15, Theorem
23.5] we have z € 8f(1‘:). But then, again by [15, Theorem 23.5], Z € 9f*(%). Finally,
suppose that (z,...,2™) € T(2) # 0. Then, asin part (a), 0 € rge L*+0f7 (21) x- - -x
Ofr (™), or equivalently, there is an Z such that z € (), 9f; (%) with 2 =Y"7" | 2%,
i.e.,, T € f*(z). This completes the proof. 0

PROPOSITION 7.2 (Partial conjugates). Let f € T'(E; X &) and T € & be such
that g := f(z,-) is proper and T € ri L(dom f), where L : (x,v) — x. Then

9" (w) = i [f*(z,w) = (%, 2)].

z:(z,w)€dom f*

Proof. By [15, Theorem 6.6], ri L(dom f) = L(ridom f), so the hypothesis implies
the existence of a w € & such that (z,w) € ridom f. By [15, Theorem 16.4],

g (w) = sup{{v, w) — f(z,w)}

= (Sup){<($»v)7 (0,w)) = (f + dzyxe,) (T, 0)}
= (f + d(zyxe,)" (0, w)

=cl(f* Oogzyxe,)(0,w),
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where the closure can be dropped if ri (dom f) Nri(dom dgzyx¢,) 7# 0. But this inter-
section is nonempty by hypothesis since (Z,w) € {Z} x & =1i(dom dz1x¢,). Hence

" (w) = (f* D ogzyxe,)(0,w)
— (lzr,lzf){f*(Z7U) + <.f‘, 0— Z> + 6{0}(w — u)}

= inf {f*(z,w) = (z, 2)}.

z:(z,w)€dom f*
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