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Abstract. We show that many important convex matrix functions can be represented as the
partial infimal projection of the generalized matrix fractional (GMF) and a relatively simple convex
function. This representation provides conditions under which such functions are closed and proper as
well as formulas for the ready computation of both their conjugates and subdifferentials. Particular
instances yield all weighted Ky Fan norms and squared gauges on Rn×m, and as an example we
show that all variational Gram functions are representable as squares of gauges. Other instances
yield weighted sums of the Frobenius and nuclear norms. The scope of applications is large and the
range of variational properties and insight is fascinating and fundamental. An important byproduct
of these representations is that they lay the foundation for a smoothing approach to many matrix
functions on the interior of the domain of the GMF function.

Key words. convex analysis, infimal projection, matrix-fractional function, support function,
gauge function, subdifferential, Ky Fan norm, variational Gram function

AMS subject classifications. 68Q25, 68R10, 68U05

1. Introduction. The generalized matrix-fractional (GMF) function was intro-
duced by Burke and Hoheisel in [5] where it is shown to unify a number of tools and
concepts for matrix optimization including optimal value functions in quadratic pro-
gramming, nuclear norm optimization, multi-task learning, and, of course, the matrix
fractional function. In the present paper we expand the number of applications to
include all Ky Fan norms, matrix gauge functionals, and variational Gram functions
introduced by Jalali, Fazel and Xiao in [14]. Our analysis includes descriptions of the
variational properties of these functions such as formulas for their convex conjugates
and their subdifferentials.

Set E := Rn×m × Sn, where Rn×m and Sn are the linear spaces of real n × m
matrices and (real) symmetric n × n matrices, respectively. Given (A,B) ∈ R`×n ×
R`×m with rgeB ⊂ rgeA, recall that the GMF function ϕ is defined as the support
function of the graph of the matrix valued mapping Y 7→ − 1

2Y Y
T over the manifold

{Y ∈ Rn×m | AY = B }, i.e., ϕ : E → R ∪ {+∞} is given by

(1.1) ϕ(X,V ) := sup {〈(Y,W ), (X,V )〉 | (Y,W ) ∈ D(A,B)} ,

where

(1.2) D(A,B) :=

{(
Y,−

1

2
Y Y T

)
∈ E

∣∣ Y ∈ Rn×m : AY = B

}
.

A closed form expression for ϕ is derived in [5, Theorem 4.1] where it is also shown
that ϕ is smooth on the (nonempty) interior of its domain.

Our study focuses on functions p : Rn×m → R = R ∪ {±∞} representable as the
partial infimal projection

(1.3) p(X) := inf
V ∈Sn

ϕ(X,V ) + h(V ),
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where h : Sn → R ∪ {+∞} is closed, proper, convex. Different functions h illuminate
different variational properties of the matrix X. For example, when h := 〈U, ·〉 for
U ∈ Sn++ and both A and B are zero, then p is a weighted nuclear norm where the
weights depend on any “square root” of U (see Corollary 4.6). Among the conse-
quences of the representation (1.3) are conditions under which p is closed and proper
as well as formulas for the ready computation of both the conjugate p∗ and the sub-
differential ∂p (Section 3). As an application of our general results, we give more
detailed explorations in the cases where h is a support function (Section 4) or an
indicator function (Section 5). We illustrate these results with specific instances. For
example, we obtain all weighted squared gauges on Rn×m, cf. Corollary 5.8, as well as
a complete characterization of variational Gram functions [14] and their conjugates.
In addition, we show that all variational Gram functions are representable as squares
of gauges, cf. Proposition 5.10. Other choices yield weighted sums of Frobenius and
nuclear norms [5, Corollary 5.9]. The scope of applications is large and the range of
variational properties is fascinating and fundamental.

Beyond the variational results of this paper, there is a compelling but unexplored
computational aspect: Hsieh and Olsen [13] show that (1.3) with h = 1

2 tr (·) yields
a smoothing approach to optimization problems involving the nuclear norm. More
generally, observe that many matrix optimization problems take the form

(P ) min
X∈Rn×m

f(X) + p(X),

where f, p : Rn×m → R∪{+∞}. The function f is thought of as the primary objective
and is often smooth or convex while p is typically a structure inducing convex function.
Using the representation (1.3), the problem (P ) can be written as

(1.4) min
(X,V )∈E

f(X) + ϕ(X,V ) + h(V ).

This reformulation allows one to exploit the smoothness of ϕ on the interior of its
domain. For example, if both f and h are smooth, one can employ a damped Newton,
or path following approach to solving (P ). We emphasize, that this is not the goal or
intent of this paper, however, our results provide the basis for future investigations
along a variety of such numerical and theoretical avenues.

The paper is organized as follows: In Section 2 we provide the tools from convex
analysis and some basic properties of the GMF function. Section 3 contains the general
theory for partial infimal projections of the form (1.3). In Section 4 we specify h in
(1.3) to be a support function of some closed, convex set V ⊂ Sn. In Section 5 we
choose h to be the indicator of such set. In particular, this yields powerful results on
variational Gram functions and Ky Fan norms in Sections 5.2 and 5.3. We close out
with some final remarks in Section 6 and supplementary material in Section 7.

Notation: For a linear transformation L between finite dimensional linear spaces, we
write rgeL and kerL for its range and kernel, respectively. For a given choice of
bases, every such linear transformation has a matrix representation for some A ∈
R`×n. Therefore, we also write rgeA and kerA for the range and kernel, respectively,
considering A as a linear map between Rn and R`. Again, for A ∈ R`×n, we set

KerrA :=
{
X ∈ Rn×r | AX = 0

}
=
{
X ∈ Rn×r | rgeX ⊂ kerA

}
,

RgerA :=
{
Y ∈ R`×r

∣∣ ∃X ∈ Rn×r : Y = AX
}
=
{
Y ∈ R`×r | rgeY ⊂ rgeA

}

and write KerA or RgeA when the choice of r is clear. Observe that Ker1A = kerA,
Rge1A = rgeA, and (KerrA)

⊥ = RgerA
T . We equip any matrix space with the
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(Frobenius) inner product 〈X, Y 〉 := tr (XTY ). The Moore-Penrose pseudoinverse
[11] of A is denoted by A†. The set of all n × n symmetric matrices is given by Sn.
The positive and negative semidefinite cone are denoted by Sn+ and Sn−, respectively.

For two sets S, T in the same real linear space their Minkowski sum is S + T :=
{s+ t | s ∈ S, t ∈ T } . For I ⊂ R we also put I · S := {λs | λ ∈ I, s ∈ S } .

2. Preliminaries.

Tools from convex analysis. Let (E , 〈·, ·〉) be a finite-dimensional Euclidean
space with induced norm ‖ · ‖ :=

√
〈·, ·〉. The closed ε-ball about a point x ∈ E is

denoted by Bε(x). Let S ⊂ E be nonempty. The (topological) closure and interior
of S are denoted by clS and intS, respectively. The (linear) span of S is denoted
by spanS. The affine hull of S, denoted aff S, is the intersection of all affine sets
containing S, while the convex hull of S, denoted convS, is the intersection of all
convex sets containing S. Its closure (the closed convex hull) is convS := cl (convS).
The conical and convex conical hull of S are given by posS := {λx | x ∈ S, λ ≥ 0} ,
and cone S := {

∑r
i=1 λixi | r ∈ N, xi ∈ S, λi ≥ 0} , respectively, with cone S =

pos (convS) = conv (posS). The closure of the latter is cone S := cl (cone S).
The relative interior of a convex set C ⊂ E , denoted riC, is the interior of C

relative to its affine hull. By [2, Section 6.2], we have

(2.1) x ∈ riC ⇐⇒ pos (C − x) = span (C − x).

The polar set of S ⊂ E is defined by S◦ := {v ∈ E | 〈v, x〉 ≤ 1 (x ∈ S)} , and the
horizon cone is the closed cone S∞ := {v ∈ E | ∃{λk} ↓ 0, {xk ∈ S} : λkxk → v } .
For a convex set C ⊂ E , C∞ coincides with the recession cone of the closure of C, i.e.

(2.2) C∞ = {v | x+ tv ∈ clC (t ≥ 0, x ∈ C)} = {y | C + y ⊂ C } .

For f : E → R its domain and epigraph are given by dom f := {x ∈ E | f(x) < +∞}
and epi f := {(x, α) ∈ E × R | f(x) ≤ α} , respectively. We say f is proper if f(x) >
−∞ for all x ∈ dom f 6= ∅. We call f convex if its epigraph epi f is convex, and
closed (or lower semicontinuous) if epi f is closed. If f is proper, we call it positively
homogeneous if epi f is a cone, and sublinear if epi f is a convex cone. In what follows
we use the following abbreviations:

Γ(E) := {f : E → R ∪ {+∞} | f proper, convex} , Γ0(E) := {f ∈ Γ(E) | f closed} .

The lower semicontinuous hull cl f and the horizon function f∞ of f are defined
through the relations cl (epi f) = epi cl f and epi f∞ = (epi f)∞, respectively. For
f ∈ Γ0(E), f

∞ is also known as the recession function [15, p. 66] or the asymp-
totic function [1, 10]. The horizon cone of a function f is defined as hzn f :=
{x | f∞(x) ≤ 0} , and for f ∈ Γ0, we have hzn f = {x | f(x) ≤ µ}∞ for µ ∈ R

such that {x | f(x) ≤ µ} 6= ∅ [15, Theorem 8.7].
For a convex function f : E → R ∪ {+∞} its subdifferential at x̄ ∈ dom f

is given by ∂f(x̄) := {v ∈ E | f(x) ≥ f(x̄) + 〈v, x− x̄〉 (x ∈ E)} . For f ∈ Γ0(E),
we have ri (dom f) ⊂ dom ∂f ⊂ dom f, see e.g. [15, p. 227], where dom ∂f :=
{x ∈ E | ∂f(x) 6= ∅} is the domain of the subdifferential.

For a function f : E → R its (Fenchel) conjugate f∗ : E → R is given by f∗(y) :=
supx∈E{〈x, y〉 − f(x)}, and f ∈ Γ0(E) if and only if f = f∗∗ := (f∗)∗ is proper.
Given a nonempty S ⊂ E , its indicator function δS : E → R ∪ {+∞} is given by
δS (x) = 0 for x ∈ S and +∞ otherwise. The indicator of S is convex if and only if
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S is a convex set, in which case the normal cone of S at x̄ ∈ S is given by NS (x̄) :=
∂δS(x̄) = {v ∈ E | 〈v, x− x̄〉 ≤ 0 (x ∈ S)} . The support function σS : E → R∪{+∞}
and the gauge function γS : E → R ∪ {+∞} of a nonempty set S ⊂ E are given
respectively by σS (x) := supv∈S 〈v, x〉 and γS (x) := inf {t ≥ 0 | x ∈ tS } . Here we
use the standard convention that inf ∅ = +∞.
Given C ⊂ E is closed and convex, the barrier cone of C is defined by barC := domσC .
The closure of the barrier cone of C and the horizon cone are paired in polarity, i.e.

(2.3) (barC)◦ = C∞ and cl (barC) = (C∞)◦.

For two functions f1, f2 : E → R, their infimal convolution is

(f1 � f2)(x) := inf
y∈E

{f1(x− y) + f2(y)} (x ∈ E).

The generalized matrix-fractional function. As noted in the introduction,
the GMF function is the support function of D(A,B) given in (1.2). Hence, we write

(2.4) ϕ(X,V ) = σD(A,B)(X,V )

and also refer to σD(A,B) as the GMF function. From [5, Theorem 4.1], we obtain the
formula

(2.5) ϕ(X,V ) =

{
1
2 tr
((

X
B

)T
M(V )†

(
X
B

))
if rge

(
X
B

)
⊂ rgeM(V ), V ∈ KA,

+∞ else,

where (A,B) ∈ R`×n ×R`×m with rgeB ⊂ rgeA and KA is the cone of all symmetric
matrices that are positive semidefinite with respect to the subspace kerA, i.e.

(2.6) KA :=
{
V ∈ Sn

∣∣ uTV u ≥ 0 (u ∈ kerA)
}
,

and M(V )† is the Moore-Penrose pseudoinverse of the bordered matrix

(2.7) M(V ) =

(
V AT

A 0

)
.

The matrix-fractional function [4, 9] is obtained by setting A and B to zero.
The GMF function ϕ = σD(A,B) appears in Burke and Hoheisel [5] and Burke,

Hoheisel and Gao [6], where it is shown that

(2.8)

domϕ = dom ∂ϕ =

{
(X,V ) ∈ E

∣∣∣∣ rge
(
X

B

)
⊂ rgeM(V ), V ∈ KA

}
,

int (domϕ) =

{
(X,V ) ∈ E

∣∣∣∣ rge
(
X

B

)
⊂ rgeM(V ), V ∈ intKA

}
6= ∅.

For a deeper understanding of the support function ϕ, a description of the closed
convex hull of the (nonconvex) set D(A,B) is critical. An arduous representation of
convD(A,B) was obtained in [5, Proposition 4.3]. A much simpler and more versatile
expression was proven in [6, Theorem 2], see below. The key ingredient in the newer
expression is the (closed, convex) cone KA defined in (2.6), which reduces to Sn+ when
A = 0. We briefly summarize the geometric and topological properties of KA useful
to our study. These follow from [6, Proposition 1] (by setting S = kerA).
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Proposition 2.1. For A ∈ R`×n let P ∈ Rn×n be the orthogonal projection onto
kerA and let KA be given by (2.6). Then the following hold:

(a) KA = {V ∈ Sn | PV P � 0}.
(b) K◦

A = cone
{
−vvT | v ∈ kerA

}
= {W ∈ Sn |W = PWP � 0}

(c) intKA =
{
V ∈ Sn

∣∣ uTV u > 0 (u ∈ kerA \ {0})
}
.

The central result in Burke, Hoheisel and Gao [6] now follows.

Theorem 2.2 ([6, Theorem 2]). Let D(A,B) be given by (1.2). Then

convD(A,B) = Ω(A,B) :=

{
(Y,W ) ∈ E

∣∣∣∣ AY = B and
1

2
Y Y T +W ∈ K◦

A

}
.

In particular, Theorem 2.2 implies that ϕ = σD(A,B) = σΩ(A,B), since σS = σconv S

for all subsets S of a Euclidean space. This identity is used throughout.

3. Infimal projections of the generalized matrix-fractional function. We
now focus on infimal projections involving the GMF function. Consider

(3.1) ψ : E → R, ψ(X,V ) = ϕ(X,V ) + h(V ),

where ϕ ∈ Γ0(E) is given in (1.1) and h ∈ Γ0(S
n). Our primary object of study is

the infimal projection of the sum ψ in the variable V under the standing assumption
that rgeB ⊂ rgeA, i.e. {Y ∈ Rn×m | AY = B } 6= ∅:

(3.2) p : Rn×m → R, p(X) = inf
V ∈Sn

ψ(X,V ).

We lead with some elementary observations.

Lemma 3.1 (Domain of p). Let p be defined by (3.2). Then the following hold:
(a) p is convex.
(b) dom p = {X ∈ Rn×m | ∃V ∈ KA ∩ domh : rge (XB ) ⊂ rgeM(V )} . In partic-

ular, dom p 6= ∅ if and only if domh ∩ KA 6= ∅.
Moreover, if dom p 6= ∅ then the following hold:

(c) If B = 0 (e.g. if A = 0) then dom p is a subspace, hence relatively open.
(d) If rankA = ` (full row rank) and domh ∩ intKA 6= ∅, then dom p = Rn×m.
(e) If domh ∩KA 6= ∅ and (domh)∞ ∩KA = {0}, then p is proper, hence p ∈ Γ.

Proof. (a) The convexity follows from, e.g., [16, Proposition 2.22].

(b) We have X ∈ dom p if and only if there is a V ∈ Sn such that (X,V ) ∈ domψ =
(domϕ) ∩ (Rn×m × domh). Hence the representation for dom p follows from the one
of domϕ in (2.8). This representation for dom p tells us that dom p 6= ∅ implies that
domh ∩ KA 6= ∅. On the other hand, if V ∈ domh ∩ KA, then (V Y, V ) ∈ domψ for
any Y ∈ Rn×m satisfying AY = B, and so (V Y, V ) ∈ dom p 6= ∅.

(c) If B = 0, we have X ∈ dom p if and only if span {X} ⊂ dom p. Since dom p is also
convex, it is a subspace, see, e.g., [16, Proposition 3.8].

(d) By the description of intKA in Proposition 2.1 (c), the assumptions imply that
there exists V ∈ domh ∩ KA such that M(V ) is invertible, see [5, Proposition 3.3].
This readily gives the desired statement in view of (b).

(e) By part (b), dom p 6= ∅. Hence let X ∈ dom p, i.e. there is a V ∈ KA∩domh such
that rge (XB ) ⊂ rgeM(V ). If p(X) = −∞, there is a sequence {Vk ∈ Sn∩domh} with
{(X,Vk) ∈ domϕ} such that ψ(X,Vk) → −∞. This implies that ϕ(X,Vk) → −∞ or
h(Vk) → −∞. In either case, this tells us that ‖Vk‖ → ∞ since both ϕ and h are
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closed and proper. Consequently, there is a subsequence J ⊂ N, and a matrix V̂ ∈ Sn

such that (Vv/ ‖Vk‖)
J
→ V̂ . Hence 0 6= V̂ ∈ (domh ∩ KA)

∞ = (domh)∞ ∩ KA, which
contradicts the hypothesis.

We give two examples to illustrate various statements in Lemma 3.1. The first shows
that an assumption of the type in part (e) is required to establish that p is proper.

Example 3.2 (p improper). Let m = n = 1, A = 0, B = 0 and h(v) = −v.

Since v† =

{
1
v if v 6= 0,
0 if v = 0,

we have ϕ(x, v) =





x2

2v if v > 0,
0 if v = 0,

+∞ if v < 0

((x, v) ∈ R2).

Therefore, p ≡ −∞ since

p(x) = inf
v∈R

ϕ(x, v) + h(v) = inf
v>0

{
x2

2v
− v

}
= −∞ (x ∈ R).

The properness condition given in Lemma 3.1 (e) is revisited in Definition 3.10 where
it is called boundedness primal constraint qualification (BPCQ). It is the strongest of
the constraint qualifications we discuss.

The second example shows dom p may not be relatively open if B 6= 0.

Example 3.3 (dom p not relatively open). Let A = ( 1 1
1 1 ) and b = ( 11 ). Then

kerA = span {
(

1
−1

)
} and KA = {( v w

w u ) | v + u ≥ 2w} . Moreover, put V̄ := ( 2 1
1 0 ) and

define V := [0, 1] · V̄ = {( 2w w
w 0 ) | w ∈ [0, 1]} ⊂ S2. Then V is convex and compact. Let

h ∈ Γ0(S
2) be any function with domh = V. Note that domh ∩ KA = V. Hence

x ∈ dom p⇐⇒ ∃w ∈ [0, 1] : ( xb ) ∈ rge
(
wV̄ AT

A 0

)

⇐⇒ ∃w ∈ [0, 1], r, s ∈ R2 :
x = wV̄ r +AT s,
b = Ar

⇐⇒ ∃w ∈ [0, 1], λ, µ ∈ R : x = w ( 2 1
1 0 )

[
( 01 ) + λ

(
1
−1

)]
+ µ ( 11 )

⇐⇒ ∃w ∈ [0, 1], γ ∈ R : x = w ( 10 ) + γ ( 11 ) .

Therefore, dom p = [0, 1] · ( 10 ) + span {( 11 )}, and hence ri (dom p) = (0, 1) · ( 10 ) +
span {( 11 )}, so that dom p is clearly not relatively open.

The preceeding example, shows that dom p may fail to be a subspace if B 6= 0, hence
this assumption in Lemma 3.1(c) is not superfluous. On the other hand, Lemma 3.1
(d) and Example 3.18 (a) illustrate that the condition B = 0 is only sufficient but not
necessary for dom p to be a subspace.

3.1. The functions ψ, ψ∗, and their subdifferentials. The study of the
infimal projection p in (3.2) requires an understanding of the properties of the function
ψ from (3.1), its conjugate ψ∗, and their subdifferentials. For this we make extensive
use of the condition

(CCQ) ri (domh) ∩ intKA 6= ∅,

which we refer to as the conjugate constraint qualification. As a direct consequence
of the line segment principle (cf. [15, Theorem 6.1]), we have

(3.3) ri (domh) ∩ intKA 6= ∅ ⇐⇒ domh ∩ intKA 6= ∅.

Lemma 3.4 (Conjugate of ψ). Let ψ be given as in (3.1) and define

(3.4) η : (Y,W ) ∈ E 7→ inf
T∈Sn

h∗(W − T ) + δΩ(A,B)(Y, T ).
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Then

(3.5)

dom η = Ω(A,B) + ({0} × domh∗)

=

{
(Y,W )

∣∣∣∣ AY = B,

(
−
1

2
Y Y T +K◦

A

)
∩ (W − domh∗) 6= ∅

}
,

and the following hold:
(a) If ψ 6≡ +∞, then ψ ∈ Γ0(E).
(b) If domh ∩ KA 6= ∅ then ψ, ψ∗ ∈ Γ0(E) with ψ

∗ = cl η.
(c) Under CCQ , we have ψ∗ = η. Moreover, in this case, the infimum in the

definition of η is attained on the whole domain, i.e.

(3.6) S(Ȳ , W̄ ) := argmin
T∈Sn

{
h∗(W̄−T )

∣∣ (Ȳ , T ) ∈ Ω(A,B)
}

is nonempty for all (Ȳ , W̄ ) ∈ domψ∗ .
(d) Under CCQ, dom ∂ψ∗ = {(Y,W ) | ∅ 6= S(Y,W )} and, for every (Y,W ) ∈

dom ∂ψ∗, we have

∂ψ∗(Y,W )=




(X,V )

∣∣∣∣∣∣∣

∃T ∈ Sn : V ∈ ∂h∗(W − T ) ∩ KA,〈
V,

1

2
Y Y T + T

〉
= 0, rge (X − V Y )⊂(kerA)⊥




.

Proof. Note that η(Y,W ) < +∞ if and only if there is a W1,W2 ∈ Sn such that
W = W1 + W2, (Y,W1) ∈ Ω(A,B) and W2 ∈ domh∗, or equivalently, (Y,W ) ∈
Ω(A,B)+({0}×domh∗), which in turn is equivalent to AY = B, T ∈ − 1

2Y Y
T +K◦

A

and T ∈W − domh∗ giving (3.5).

Define ĥ : E → R by ĥ(X,V ) := h(V ). Then dom ĥ = Rn×m × domh and

ψ = ϕ+ ĥ = σΩ(A,B) + ĥ.

(a) The sum of two closed, proper, convex functions (here ϕ and ĥ) is closed and
convex. It is proper if and (only) if the sum is not constantly +∞.

(b) The sum of two proper functions is proper if and only if the domains of both

functions intersect. By (2.8), we have dom ĥ∩domϕ 6= ∅ if and only if domh∩KA 6= ∅.
Therefore, ψ is proper if (and only if) the latter condition holds. Combined with
(a) this shows ψ ∈ Γ0(E), and so ψ∗ ∈ Γ0(E). Moreover, by Appendix Theorem

7.1 (a), ψ∗(Y,W ) = cl
(
δΩ(A,B) � ĥ

∗
)
(Y,W ). Since ĥ∗(Y,W ) = δ{0}(Y ) + h∗(W ),

(δΩ(A,B) � ĥ
∗)(Y,W ) = inf(Y,T )∈Ω(A,B) h

∗(W − T ) = η(Y,W ), proving ψ∗ = cl η.

(c) By [5, Theorem 4.1], int (domϕ) = {(X,V ) | V ∈ intKA } and, by definition,

ri (dom ĥ) = Rn×m × ri (domh). Hence

(3.7) ri (dom ĥ) ∩ ri (domϕ) 6= ∅ ⇐⇒ ri (domh) ∩ intKA 6= ∅.

Theorem 7.1 (a) (applied to ϕ and ĥ), CCQ, and (3.7) imply ψ∗ = η with
(3.8)

∅ 6= T (Ȳ , W̄ ) := argmin
(Y,T ),(0,W )∈E

{
h∗(W )

∣∣ (Y, T ) ∈ Ω(A,B), Y = Ȳ , W̄ =W + T
}
.

Since

(3.9)
S(Ȳ , W̄ ) =

{
T ∈ Sn

∣∣ [(Ȳ , T ), (0, W̄ − T )] ∈ T (Ȳ , W̄ )
}
, and

T (Ȳ , W̄ ) =
{
[(Ȳ , T ), (0, W̄ − T )]

∣∣ T ∈ S(Ȳ , W̄ )
}
,
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we have S(Ȳ , W̄ ) 6= ∅ if and only if T (Ȳ , W̄ ) 6= ∅.

(d) Observe that ∂ϕ∗ = NΩ(A,B) and ∂ĥ∗ = Rn×m × ∂h∗ with dom ∂ĥ∗ = {0} ×

dom ∂h∗. Then part (c) and Theorem 7.1 (d) (applied to ϕ and ĥ) yield

∂ψ∗(Y,W ) =

{
(X,V )

∣∣∣∣
(X,V ) ∈ ∂ϕ∗(Y1,W1) ∩ ∂ĥ

∗(Y2,W2),
(Y,W ) = (Y1,W1) + (Y2,W2)

}

=
{
(X,V )

∣∣ ∃T ∈ Rn×m : (X,V ) ∈ NΩ(A,B)(Y, T ), V ∈ ∂h∗(W − T )
}
.

The claim follows from the representation for NΩ(A,B)(Y, T ) in [6, Proposition 3].

Corollary 3.5 (Subdifferential of ψ). Let ψ be given by (3.1) and S by (3.6).
Then the following hold:

(a) If (Ȳ , W̄ ) ∈ ∂ϕ(X̄, V̄ ) + ({0} × ∂h(V̄ )), then S(Ȳ , W̄ ) 6= ∅ and

(3.10) S(Ȳ , W̄ ) =
{
T ∈ Sn

∣∣ W̄ − T ∈ ∂h(V̄ ), (Ȳ , T ) ∈ ∂ϕ(X̄, V̄ )
}
,

where ∂ϕ is described in [6, Corollary 3.2].
(b) Under CCQ we have

dom ∂ψ =

{
(X,V )

∣∣∣∣ V ∈ dom ∂h ∩ KA, rge

(
X

B

)
⊂ rgeM(V )

}
.

Moreover, for all (X̄, V̄ ) ∈ dom ∂ψ and all (Ȳ , W̄ ) ∈ ∂ψ(X̄, V̄ ), we have
S(Ȳ , W̄ ) 6= ∅ and

(3.11)
∂ψ(X̄, V̄ ) = ∂ϕ(X̄, V̄ ) + ({0} × ∂h(V̄ ))

=
{
(Ȳ , W̄ ) ∈ E

∣∣ S(Ȳ , W̄ ) 6= ∅
}
.

Proof. Set f1(X,V ) := ϕ(X,V ) and f2(X,V ) := h(V ), so that the mapping T in
Theorem 7.1 is given by (3.8). Then, using (3.9), part (a) follows from Theorem 7.1
(b), and part (b) follows from Theorem 7.1 (c).

3.2. Infimal projection I. Let the infimal projection p be as given in (3.2).
We are now in position to give a formula for p∗ under CCQ.

Theorem 3.6 (Conjugate of p and properties under CCQ). Let p be given by
(3.2). Moreover, let η0 : Rn×m → R be given by

(3.12) η0 : Y 7→ inf
(Y,−W )∈Ω(A,B)

h∗(W ).

Then the following hold:
(a) dom η0 =

{
Y ∈ Rn×m

∣∣ AY = B,
(
− 1

2Y Y
T +K◦

A

)
∩ (−domh∗) 6= ∅

}

= {Y ∈ Rn×m | (Y, 0) ∈ dom η } , where η is defined in (3.4).
(b) If domh ∩ KA 6= ∅, then p∗ = cl η0, hence dom η0 ⊂ dom p∗.
(c) If CCQ holds for p, then dom p = Rn×m and the following hold:

(I) p∗ = η0, i.e.

(3.13) p∗(Y ) = inf
(Y,−W )∈Ω(A,B)

h∗(W ).

Moreover, for all Y ∈ dom p∗, the infimum is a minimum, i.e. there
exists W ∈ domh∗ with (Y,−W ) ∈ Ω(A,B) such that p∗(Y ) = h∗(W ).
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In particular, p∗ is closed, proper convex under CCQ if and only if it is
proper, which is the case if and only if

∅ 6= domψ∗(·, 0) = {Y | ∃W ∈ domh∗ : (Y,−W ) ∈ Ω(A,B)}

= {Y | (Y, 0) ∈ Ω(A,B) + ({0} × domh∗)} ,

with dom p∗ = domψ∗(·, 0) = dom η0.
(II) p is either (convex) finite-valued (hence p ∈ Γ0(R

n×m)) or p ≡ −∞.
The former is the case if and only if domψ∗(·, 0) 6= ∅.

Proof. (a) This follows from the definition of η0. Also note that η0 = η(·, 0).

(b) By Lemma 3.4 (b), ψ∗ ∈ Γ0(E) with ψ
∗ = cl η with η defined in (3.4). Hence, by

[16, Theorem 11.23 (c)], p∗ = ψ∗(·, 0) which establishes the given representation. The
domain containment is clear as p∗ = cl η0 ≤ η0.

(c) Observe that dom p = L(domϕ ∩ Rn×m × domh), where L : (X,V ) 7→ X, see
Lemma 3.1. By CCQ, we have ri (domh) ∩ intKA 6= ∅, hence

ri (domϕ ∩ (Rn×m × domh)) = int (domϕ) ∩ (Rn×m × ri (domh))

= (Rn×m × intKA) ∩ (Rn×m × ri (domh))

= Rn×m × (intKA ∩ ri (domh)),

where we use [5, Theorem 4.1] to represent int (domϕ). This now gives

ri (dom p) = L
[
ri (domϕ ∩ Rn×m × domh)

]
= Rn×m.

(c.I) As in part (b), p∗ = ψ∗(·, 0). Hence, Lemma 3.4 (c) gives the identity p∗ = η0
under CCQ as well as the attainment statement. Since ψ∗ is closed, proper, convex
(under CCQ) by Lemma 3.4 (b), ψ∗(·, 0) is, too, if and only if domψ∗(·, 0) 6= ∅, and
so the statements about p∗ = ψ∗(·, 0) follow .

(c.II) We have dom p = Rn×m. By [15, Corollary 7.2.3] this implies that either
p ≡ −∞ or p is finite-valued, which shows the first statement. For the second, again
as dom p = Rn×m, observe that the convex function p is finite-valued if and only if it
is proper, which is true if and only if p∗ is proper, so I) gives the desired statement.

Observe that Example 3.2 shows that the condition ∅ 6= domψ∗(·, 0) is essential
in Theorem 3.6 (c.I-c.II). Indeed, in this example, p ≡ −∞ so dom p = R, while
h = σ{−1} and h∗ = δ{−1}, ψ

∗(·, 0) = p∗ ≡ ∞, and CCQ is satisfied.
We now broaden our perspective of infimal projection by embedding it into a

pertubation duality framework in the sense of [16, Theorem 11.39] or the development
in [1, Chapter 5]. Given X̄ ∈ Rn×m, define fX̄ by

fX̄(X,V ) := ψ(X + X̄, V ) ((X,V ) ∈ E),

and pX̄ by

(3.14) pX̄(X) := inf
V ∈Sn

fX̄(X,V ) (X ∈ Rn×m).

Then f∗
X̄
(Y,W ) = ψ∗(Y,W )−

〈
X̄, Y

〉
((Y,W ) ∈ E), [16, Equation 11(3)]. Define

(3.15) qX̄(W ) := − sup
Y

{
〈
X̄, Y

〉
− ψ∗(Y,W )} (W ∈ Sn).
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Then qX̄ is a convex function that pairs in duality with pX̄ satisfying the weak duality
pX̄(0) ≥ −qX̄(0) (X̄ ∈ Rn×m). Applying the general pertubation duality to our
scenario yields the following result.

Proposition 3.7 (Shifted duality for p). Let p be defined by (3.2), let X̄ ∈ dom p
and qX̄ be defined by (3.15). Then the following hold:

(a) If 0 ∈ ri (dom qX̄) then p(X̄) = −qX̄(0) ∈ R, argminψ(X̄, ·) 6= ∅, and
∂qX̄(0) 6= ∅.

(b) If X̄ ∈ ri (dom p) then p(X̄) = −qX̄(0) ∈ R, argmaxY {
〈
X̄, Y

〉
−ψ∗(Y,W )} 6=

∅, and ∂p(X̄) 6= ∅.
(c) Under either condition 0 ∈ ri (dom qX̄) or X̄ ∈ ri (dom p), p is lsc at X̄and

−qX̄ is lsc at 0.
(d) We have

p(X̄)
= ψ(X̄, V̄ ),
=
〈
X̄, Ȳ

〉
− ψ∗(Ȳ , 0),

= −qX̄(0)





⇐⇒ (Ȳ , 0)∈∂ψ(X̄, V̄ )⇐⇒ (X̄, V̄ )∈∂ψ∗(Ȳ , 0).

Proof. Let X̄ ∈ dom p and observe that p(X+X̄) = pX̄(X) (X ∈ Rn×m), hence,
in particular, p(X̄) = pX̄(0) ∈ R. Moreover, notice that ψ and hence fX̄ is proper
(hence in Γ0) as by assumption X̄ ∈ dom p exists. Applying the results [1, Theorem
5.1.2–5.1.5, Corollary 5.1.2] to the duality pair pX̄ and qX̄ and translating from pX̄
at 0 to p at X̄ gives all the desired statements.

The domain of qX̄ plays a key role in interpreting this result in a given setting. Below
we provide a useful representation of this domain using the set

(3.16) Ω2(A,B) := {W ∈ Sn | ∃Y : (Y,W ) ∈ Ω(A,B)} .

Lemma 3.8 (Domain of qX̄). Let X̄ ∈ Rn×m and qX̄ defined by (3.15). Then
dom qX̄ = Ω2(A,B) + domh∗.

Proof. Using Lemma 3.4, observe that

qX̄(W ) = inf
Y

{
ψ∗(Y,W )−

〈
X̄, Y

〉}

= inf
Y

{
η(Y,W )−

〈
X̄, Y

〉}

= inf
(Y,T )∈Ω(A,B)

{
h∗(W − T )−

〈
X̄, Y

〉}
.

Therefore,

dom qX̄ = {W ∈ Sn | ∃(Y, T ) ∈ Ω(A,B) :W − T ∈ domh∗ } = Ω2(A,B) + domh∗.

We now discuss various constraint qualifications for p.

3.3. Constraint qualifications. We start our analysis with a result about the
set Ω2(A,B) from (3.16), which was used in Lemma 3.8 to represent the domain of
qX̄ .

Lemma 3.9 (Properties of Ω2(A,B)). Let Ω2(A,B) be as in (3.16). Then we
have:

(a) Ω2(A,B) is closed and convex with Ω2(A,B)∞ = K◦
A.
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(b) Ω2(A,B) = domϕ(X̄, ·)∗ for all X̄ ∈ Rn×m such that ϕ(X̄, ·) is proper.
(c) We have
ri Ω2(A,B)=

{
W
∣∣∃Y : AY =B, 1

2Y Y
T +W ∈ ri (K◦

A)
}
=ri (domϕ(X̄, ·)∗)

for all X̄ such that ϕ(X̄, ·) is proper.

Proof. (a) With the linear map T : (Y,W ) 7→W we have Ω2(A,B) = T (Ω(A,B)).
Therefore Ω2(A,B) is convex. By [6, Proposition 10], we have Ω(A,B)∞ = {0}×K◦

A,
and so kerT ∩ Ω(A,B)∞ = {0} giving the remainder of (a) by [16, Theorem 3.10].

(b) Recall from [5, Theorem 4.1] that int (domσϕ) = {(X,V ) ∈ E | V ∈ intKA }, Thus
we can apply Proposition 7.2 to ḡ := ϕ(X̄, ·) to infer that

ḡ∗(W ) = inf
Y :(Y,W )∈Ω(A,B)

〈
−X̄, Y

〉
(W ∈ Sn).

This proves the claim.

(c) Observe that ri Ω2(A,B) = riT (Ω(A,B)) = T (ri Ω(A,B)) and use [6, Proposition
8] to get the first representation. The second one follows from (b).

We now define the constraint qualifications central to our study. Note that CCQ was
previously introduced in Section 3.1.

Definition 3.10 (Constraint qualifications). Let p be given by (3.2). We say
that p satisfies

(i) PCQ: if 0 ∈ ri (Ω2(A,B) + domh∗);
(ii) strong PCQ (SPCQ): if 0 ∈ int (Ω2(A,B) + domh∗);
(iii) boundedness PCQ (BPCQ): if domh ∩ KA 6= ∅ and (domh)∞ ∩ KA = {0};
(iv) CCQ: if ri (domh) ∩ intKA 6= ∅.
(v) strong CCQ (SCCQ): if CCQ is satisfied and ∅ 6= domψ∗(·, 0), or equiva-

lently,

(3.17)
∅ 6= Ξ(A,B) :=

{
Y ∈ Rn×m

∣∣∣∣ AY = B,
1

2
Y Y T ∈ domh∗ +K◦

A

}

=
{
Y ∈ Rn×m | (Y, 0) ∈ Ω(A,B) + ({0} × domh∗)

}
.

The notation PCQ stands for primal constraint qualification while CCQ stands for
conjugate constraint qualification. Theorem 3.6 and Lemma 3.8, respectively, give the
following useful implications:

(3.18)
CCQ =⇒ dom p∗ = Ξ(A,B)

SCCQ =⇒ dom p∗ = Ξ(A,B) 6= ∅.

The following results clarify the relations between the various constraint qualifi-
cations. We lead with characterizations of PCQ and BPCQ.

Lemma 3.11 (Characterizations of (B)PCQ). Let p be given by (3.2) and X̄ ∈
dom p, and set

(3.19) ψX̄ := ψ(X̄, ·) (X̄ ∈ Rn×m).

(a) The following are equivalent:
(i) 0 ∈ ri (domψ∗

X̄
);

(ii) PCQ holds for p;
(iii) ∃Y ∈ Rn×m : AY = B, 1

2Y Y
T ∈ ri (K◦

A + domh∗).
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In addition, similar characterizations of SPCQ hold by substituting the inte-
rior for the relative interior.

(b) BPCQ holds for p if and only if domh ∩ KA is nonempty and bounded.

Proof. (a) Defining ϕX̄ := ϕ(X̄, ·), we find that ϕ∗
X̄

= cl (ϕ∗
X̄

� h∗) and therefore
ri (domψ∗

X̄
) = ri (domϕ∗

X̄
+domh∗) = ri (Ω2(A,B)+domh∗), see Lemma 3.9 (c). This

proves the first two equivalences. The third follows readily from the representation of
ri (Ω(A,B)) from [6, Proposition 8].

(b) Follows readily from [16, Theorem 3.5, Proposition 3.9].

We point out that, under PCQ, Lemma 3.11 shows that the objective functions
ψ(X̄, ·) (X̄ ∈ dom p) occuring in the definition of p in (3.2) are weakly coercive [1,
Definition 3.2.1] when proper, see [1, Theorem 3.2.1]. This tells us that the infimum
in (3.2) is attained under PCQ if finite [1, Proposition 3.2.2, Theorem 3.4.1], a fact
that is stated again (and derived alternatively) in Theorem 3.15. Under SPCQ, the
objective functions ψ(X̄, ·) (X̄ ∈ dom p) are level-bounded (or coercive), in which case
the argminψ(X̄, ·) is nonempty and compact (and clearly convex). Finally, it was
shown in Lemma 3.1 (e) that p is closed proper convex under BPCQ.

The next result shows the relations between the different notions of PCQ.

Lemma 3.12. Let p be given by (3.2). Then the following hold:
(a) BPCQ =⇒ SPCQ =⇒ PCQ.
(b) If int (domh∗) ∩ int (−Ω2(A,B)) 6= ∅, then PCQ and SPCQ are equivalent.

Proof. (a) The first implication can be seen as follows: If BPCQ holds then
domψX̄ ⊂ domh ∩ KA is bounded (and nonempty exactly if X̄ ∈ dom p). Therefore
ψX̄ is level-bounded for all X̄ ∈ dom p, i.e. 0 ∈ int (domψ∗

X̄
) (X̄ ∈ dom p), see e.g.

[16, Theorem 11.8]. In view of Lemma 3.11 (a) this implies that SPCQ holds.
The second implication is trivial.

(b) This is follows directly from the definitions.

We now provide characterizations for CCQ.

Lemma 3.13 (Characterizations of CCQ). Let p be given by (3.2). Then
(i) domh∩ intKA 6= ∅ ⇐⇒ (ii) CCQ holds for p ⇐⇒ (iii) (−K◦

A)∩hznh∗ = {0}.

Proof. The first equivalence was previously observed in (3.3). The second equiv-
alence can be seen as follows: We apply [15, Corollary 16.2.2] (to f1 := h and
f2 := δKA

). This result tells us that ri (domh) ∩ intKA 6= ∅ if and only if there
does not exist a matrix W ∈ Sn such that

(3.20) (h∗)∞(W ) + σKA
(−W ) ≤ 0 and (h∗)∞(−W ) + σKA

(W ) > 0.

Since σKA
(−W ) = δK◦

A
(−W ), the first of these conditions is equivalent to the con-

dition W ∈ (−K◦
A) ∩ hznh∗. In particular, we can infer that (−K◦

A) ∩ hznh∗ = {0}
gives the inconsistency of (3.20) and thus establishes (iii)⇒(ii).

The second condition in (3.20) implies W 6= 0. Thus, in view of Proposition 2.1
(b), 0 6= −W ∈ K◦

A ⊂ Sn+, and hence W /∈ K◦
A. Thus, every nonzero element of the

set (−K◦
A) ∩ hznh∗ satisfies (3.20). Thus, the nonexistence of a W satisfying (3.20)

implies that (−K◦
A) ∩ hznh∗ = {0}, which altogether proves the result.

Note that for any proper, convex function f we always have hzn f ⊂ (dom f)∞ which,
in view of Lemma 3.13, implies that the condition

(3.21) (−K◦
A) ∩ (domh∗)∞ = {0}

is stronger than CCQ. However, (3.21) is not used in our study.
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3.4. Infimal projection II. We return to our analysis of the infimal projection
defining p in (3.2). The following result shows that the two key conditions appearing
in Proposition 3.7, 0 ∈ ri (dom qX̄) and X̄ ∈ ri (dom p), correspond nicely to the
constraint qualifications studied in Section 3.3.

Corollary 3.14. Let p be defined by (3.2), let X̄ ∈ dom p and qX̄ be defined by
(3.15). Then the following hold:

(a) PCQ holds for p if and only if 0 ∈ ri (dom qX̄);
(b) If CCQ holds, then X̄ ∈ ri (dom p).

Proof. (a) Follows immediately from Lemma 3.8 and the definition of PCQ.

(b) Under CCQ we have dom p = Rn×m (see the proof of Theorem 3.6 (c.II)), hence
(b) follows.

As a consequence of Corollary 3.14 and Proposition 3.7 we can add to the properties
of p proven in Theorem 3.6.

Theorem 3.15 (Properties of p under PCQ). Let p, defined in (3.2), be such
that PCQ is satisfied and domh ∩ KA 6= ∅ (i.e. dom p 6= ∅). Let qX̄ be given by
(3.15). Then the following hold:

(a) p ∈ Γ0(R
n×m);

(b) argminV ψ(X̄, V ) 6= ∅ (X̄ ∈ dom p) (primal attainment);
(c) p(X̄) = −qX̄(0) (X̄ ∈ dom p) (zero duality gap).

Proof. Let X̄ ∈ dom p. Under PCQ, by Corollary 3.14, we have 0 ∈ ri (dom qX̄).
Hence, by Proposition 3.7 (a), there is a V̄ ∈ Sn such that p(X̄) = ψ(X̄, V̄ ), and so,
by Proposition 3.7 (c), p is lsc at X̄ with p(x̄) ∈ R. The discussion in [1, p. 153] tells
us that p is, in fact, closed, proper, convex.

Finally, the equality p(X̄) = −qX̄(0), also follows from Proposition 3.7 (a).

Theorem 3.15 can be proven entirely without the shifted duality framework in Propo-
sition 3.7 by using the linear projection L : (X,V ) → X used implicitly throughout
our study. It can be seen that p = Lψ is a linear image in the sense described in
[15, p. 38]. Then [15, Theorem 9.2] gives all statements from Proposition 3.15 after
realizing that the constraint qualification in [15, Theorem 9.2], which reads

(3.22) ψ(0, V ) > 0 or ψ∞(0,−V ) ≤ 0 (V ∈ Sn),

since kerL = {0} × Sn, is equivalent to PCQ in this setting. However, we chose to
derive Theorem 3.15 from the shifted duality scheme since this assists in the subdif-
ferential analysis.

The next result follows readily from the foregoing study.

Corollary 3.16. Let p be given by (3.2) and η0 by (3.12). If PCQ and CCQ
are satisfied for p then the following hold:

(a) SCCQ holds and p is finite-valued.
(b) (primal attainment) p ∈ Γ0(R

n×m) is finite-valued and for all X̄ ∈ Rn×m

there exists V̄ such that p(X̄) = ψ(X̄, V̄ ).
(c) (dual attainment) p∗ = η0 and for all Ȳ ∈ dom p∗ there exists W̄ such that

(Ȳ , W̄ ) ∈ Ω(A,B) and p∗(Ȳ ) = h∗(−W̄ ).

Proof. (a) Follows readily from Lemma 3.11 a) and the definition of SCCQ.

(b) By (a), SCCQ holds, so the first statement follows from Theorem 3.6 (c). The
second is due to Theorem 3.15 (b).

(c) Since SCCQ holds, see (b), Theorem 3.15 (c) applies.
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The table below summarizes most of our findings so far. Here X̄ ∈ dom p.

Consequence\Hypoth. PCQ SPCQ BPCQ CCQ SCCQ PCQ+CCQ
p ∈ Γ0 ∨ p ≡ −∞ X X X X X X

p ∈ Γ0 X X X X X

p(X̄) = −qX̄(0) X X X X1 X X

argminψ(X̄, ·) 6= ∅ X X X X

argminψ(X̄, ·) compact X X2 X

dom p = Rn×m X X X

argmin
(Ȳ ,T )∈Ω(A,B)

h∗(−T ) 6= ∅ X X X

In view of Proposition 3.7 (b) and Corollary 3.14 one might be inclined to think that
using CCQ instead of the pointwise condition X̄ ∈ ri (dom p) is excessively strong.
However, computing the relative interior of dom p without CCQ is problematic, cf.
the derivations in the proof of Theorem 3.6 (c) under CCQ. Hence, we do not consider
constraint qualifications weaker than CCQ.

We now turn our attention to subdifferentiation of p.

Proposition 3.17 (Subdifferential of p). Let p be given by (3.2). Then the
following hold:

(a) Under SCCQ, dom p = dom ∂p = Rn×m and we have

(3.23) ∂p(X̄) = argmax
Y

{
〈
X̄, Y

〉
− inf

(Y,T )∈Ω(A,B)
h∗(−T )},

which is nonempty and compact.
(b) Under PCQ equation (3.23) holds, and, for X̄ ∈ dom p, we have

∂p(X̄) =
{
Ȳ
∣∣ ∃V̄ : (Ȳ , 0) ∈ ∂ψ(X̄, V̄ )

}

=
{
Ȳ
∣∣ ∃V̄ : (X̄, V̄ ) ∈ ∂ψ∗(Ȳ , 0)

}

=
{
Ȳ
∣∣ ∃V̄ : p(X̄) = ψ(X̄, V̄ ) =

〈
X̄, Ȳ

〉
− p∗(Ȳ )

}
.

(c) Under PCQ and CCQ, dom p = dom ∂p = Rn×m and we have

∂p(X̄) =
{
Y
∣∣ ∃V̄ , T̄ : −T̄ ∈ ∂h(V̄ ), (Y, T̄ ) ∈ ∂ϕ(X̄, V̄ )

}
,

which is nonempty and compact.

Proof. (a) Under SCCQ, p is convex and finite-valued (hence closed and proper),
therefore dom p = dom ∂p = Rn×m with ∂p(X) compact for all X ∈ Rn×m. The
representation (3.23) follows from [15, Theorem 23.5] and the fact that the closure for
p∗ can be dropped in the argmax problem.

(b) Under PCQ we also have that p ∈ Γ0, hence the same reasoning as in (a) gives
(3.23). We now prove the remainder: For the first identity notice that (see e.g. [10,
Chapter D, Corollary 4.5.3])

∂p(X̄) =
{
Y
∣∣ (Y, 0) ∈ ∂ψ(X̄, V̄ )

}
(V̄ ∈ argmin

V
ψ(X̄, V )),

1p(X̄) ≡ −∞ is possible.
2BPCQ also implies that domψ(X̄, ·) is bounded.
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the latter argmin set being nonempty due to what was argued above. The ’⊂’-inclusion
is hence clear. For the reverse inclusion invoke the results in [16, Example 10.12] to
see that if (Y, 0) ∈ ψ(X̄, V̄ ) then V̄ ∈ argminV ψ(X̄, V ).

The second identity in (c) is clear from [15, Theorem 23.5] as ψ ∈ Γ0(E).
The third follows from Proposition 3.7 in combination with Corollary 3.14 and

recalling that ψ∗(Ȳ , 0) = p∗(Ȳ ).

(c) Apply Corollary 3.5 to the first representation in (b).

For X̄ ∈ rbd (dom p) the subdifferential ∂p(X̄) can be empty. Moreover, it is un-
bounded if X̄ /∈ int (dom p). The latter may even occur under BPCQ as the following
example shows.

Example 3.18. Let A = ( 1 0
0 0 ) and b = ( 10 ) so that KA = {( v w

w u ) | u ≥ 0} .
Defining h := δV for V := {( v 0

0 u ) | u ≤ 0, v ∈ [0, 1]} we hence find that domh∩KA =
{( v 0

0 0 ) | v ∈ [0, 1]} and domh∩ intKA = ∅, so that CCQ is violated but BPCQ (hence
(S)PCQ) holds. We find that

x ∈ dom p⇐⇒ ∃V ∈ V ∩ KA : ( xb ) ∈ rge
(
V AT

A 0

)

⇐⇒ ∃ v ∈ [0, 1], r, s ∈ R2 :
x = ( v 0

0 0 ) r + ( 1 0
0 0 ) s,

( 10 ) = ( 1 0
0 0 ) r

⇐⇒ ∃ v ∈ [0, 1], ρ, σ ∈ R : x = ( v 0
0 0 ) [(

1
0 ) + ρ ( 10 )] + σ ( 10 )

⇐⇒ x ∈ span {( 10 )}.

Therefore we have dom p = span {( 10 )}. In particular, dom p is a proper subspace
of R2, hence relatively open with empty interior. Therefore ∂p(x) is nonempty and
unbounded for any x ∈ dom p.

4. Infimal projection with a support function. We now study the case
where h is a support function:

(4.1) p(X) := inf
V ∈Sn

ϕ(X,V ) + σV(V ),

where V is a given closed, convex subset of Sn. Our first task is to interpret the
constraint qualifications of Section 3.3 when h = σV . Here, and for the remainder of
this section, the choice h = σV implies that domh = barV and domh∗ = V.

Lemma 4.1 (Constraint qualifications for (4.1)). Let p be given by (4.1). Then
the following hold:

(a) (CCQ) The conditions

barV ∩ intKA 6= ∅,(4.2)

V∞ ∩ (−K◦
A) = {0},(4.3)

cl (barV)−KA = Sn(4.4)

are each equivalent to CCQ for p in (4.1). Moreover, if CCQ holds, then
SCCQ holds if and only if

(4.5) ∅ 6= Ξ(A,B) = {Y | (Y, 0) ∈ Ω(A,B) + ({0} × V)} ,

where Ξ(A,B) is defined in (3.17).
(b) (PCQ) PCQ holds for p if and only if

(4.6) pos (Ω2(A,B) + V) = span (Ω2(A,B) + V),

where Ω2(A,B) is defined in (3.16).
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(c) (BPCQ) The conditions

barV ∩ KA 6= ∅ and cl (barV) ∩ KA = {0},(4.7)

barV ∩ KA is nonempty and bounded,(4.8)

barV ∩ KA 6= ∅ and V∞ +K◦
A = Sn(4.9)

are each equivalent to BPCQ for p, hence imply (4.6).

Proof. Observe that with h = σV we have domh = barV and hznh∗ = V∞.

(a) (4.2) is condition (i) in Lemma 3.13 for h = σV , while (4.3) is condition (iii).
Employing the results in [3, Section 3.3, Exercise 16]) we have that (4.3) holds if and
only if cl (barV −KA) = Sn. The final statement follows from (3.17) in the definition
of SCCQ.
(b) This is an application of (2.1) and the definition of PCQ.

(c) As the horizon cone of any cone is its closure, we see that (4.7) is exactly BPCQ
(for h = σV), while the equivalence to (4.8) follows from Lemma 3.11 (b). The
equivalence of (4.9) to the former follows from the fact that (4.7) holds if and only
if cl (V∞ + K◦

A) = Sn, see [3, Section 3.3, Exercise 16]), where the closure can be
dropped by interpreting [15, Theorem 6.3] accordingly.

The additivity of support functions tells us that

(4.10) p(X) = inf
V ∈Sn

σΣ(X,V ) (X ∈ Rn×m),

where

(4.11) Σ := Ω(A,B) + {0} × V ⊂ E.

In particular, this implies that p(λX) = λp(X), for all λ > 0 and p(X1 + X2) ≤
p(X1) + p(X2). Hence, if p is proper, it is a support function. In addition, by (3.17),
Ξ(A,B) = {Y | (Y, 0) ∈ Σ} is the set featured in (3.17), (3.18), and (4.5).

Proposition 4.2. Let p be given by (4.1). Then the following hold:
(a) p ∈ Γ0(R

n×m) (i.e. p = p∗∗) under condition (4.6), and, hence, under any of
the conditions (4.7)-(4.9). Moreover, this is also true under any condition in
(4.2)-(4.4) if, in addition, (4.5) or (4.6) holds, in which case p is finite-valued.

(b) p∗ = δcl Σ(·, 0) where the closure is superfluous (i.e. Σ is closed) under any
of the conditions (4.2)-(4.4), in which case p∗ = δΞ(A,B).

(c) If any of (4.2)-(4.4) hold then p ≡ −∞ or p = σΞ(A,B) is finite-valued. The
latter is the case if and only if (4.5) holds, which is valid under (4.6).

Proof. (a) The first statement follows from Lemma 4.1 and Theorem 3.15. The
second uses Lemma 4.1, Theorem 3.6 (c) and Corollary 3.16.

(b) By [16, Exercise 3.12] and [6, Proposition 10], Σ is closed if (−K◦
A) ∩ V∞ = {0},

i.e. under any condition in (4.2)-(4.4), see Lemma 4.1 (a). Moreover, p∗ = σ∗
Σ(·, 0) =

δcl Σ(·, 0), see [16, Proposition 11.23 (c)].

(c) Follows from (a), (b) and Theorem 3.6 c II), as well as Corollary 3.16.

4.1. The case B = 0. We now consider the case when B = 0. Recall from [6,
Theorem 11] that this implies that σΩ(A,0) is a gauge function. Similarly, if 0 ∈ V ,
then σV is also a gauge, in fact, σV = γV◦ , cf. [16, Example 11.19].

This combination of assumptions has interesting consequences when the geome-
tries of the sets V and −K◦

A are compatible in the following sense.
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Definition 4.3 (Cone compatible gauges). Given a closed, convex cone K ⊂ E,
we define an ordering on E by x �K y if and only if y − x ∈ K. A gauge γ on E is
said to be compatible with this ordering if

γ(x) ≤ γ(y) whenever 0 �K x �K y.

The following lemma provides a characterization of cone compatible gauges and pro-
vides a very useful tool for determining is a gauge is compatible with a given cone.

Lemma 4.4 (Cones and compatible gauges). Let 0 ∈ C ⊂ E be a closed, convex
set, and let K ⊂ E be a closed, convex cone. Then γC is compatible with the ordering
�K if and only if K ∩ (y −K) ⊂ C (y ∈ K ∩ C).

Proof. Note that, for y ∈ K, we have K∩(y−K) = {x | 0 �K x �K y } . Suppose
that γC is compatible with K, and let y ∈ C ∩ K. If x ∈ K ∩ (y − K), then
γC(x) ≤ γC(y) ≤ 1, and, consequently, K ∩ (y −K) ⊂ C.

Next suppose K ∩ (y − K) ⊂ C for all y ∈ K ∩ C, and let x, y ∈ E be such
that 0 �K x �K y. Then, y ∈ K and x ∈ K ∩ (y − K). We need to show that
γC(x) ≤ γC(y). If γC(y) = +∞, this is trivially the case, so we may as well assume
that γC(y) =: t̄ < +∞. If t̄ > 0, then t̄−1y ∈ C ∩K and t̄−1x ∈ K ∩ (t̄−1y−K) ⊂ C.
Hence, γC(t̄

−1y) = 1 ≥ γC(t̄
−1x), and so, γC(x) ≤ γC(y) as desired. In turn, if t̄ = 0,

then ty ∈ K ∩ C (t > 0), so that tx ∈ K ∩ (ty −K) ⊂ C (t > 0), i.e., x ∈ C∞ and so
γC(x) = 0.

Corollary 4.5 (Infimal projection with a gauge function). Let p be given by
(4.1) where V is a nonempty, closed, convex subset of Sn. Suppose that B = 0. Under
any of the conditions (4.2)-(4.4) we have:
(a) p∗ = δΞ(A,0), where Ξ(A, 0) =

{
Y
∣∣ AY = 0, ∃W ∈ V : AW = 0, 1

2Y Y
T �W

}
.

(b) If 0 ∈ V and γV is compatible with the ordering induced by −K◦
A, then

(4.12) p∗(Y ) = δ{Y | AY=0, γV( 1
2
Y Y T )≤1} (Y ) = δ(−K◦

A)∩V

(
1

2
Y Y T

)
.

Proof. (a) This follows from Proposition 4.2, (4.5) with B = 0, and using the
representation of KA in Proposition 2.1.

(b) First observe that −K◦
A =

{
W ∈ Sn+ | rgeW ⊂ kerA

}
, see Proposition 2.1 (b),

recall that rgeY = rgeY Y T (Y ∈ Rn×m) and, since 0 ∈ V, V ∈ V if and only if
γV(V ) ≤ 1. Exploiting these facts and the compatibility hypothesis, we see that

Y ∈ Ξ(A, 0) ⇐⇒ AY = 0, ∃W ∈ V : AW = 0,
1

2
Y Y T �W

=⇒ AY = 0, ∃W ∈ V : γV(W ) ≥ γV

(
1

2
Y Y T

)

⇐⇒ AY = 0, γV

(
1

2
Y Y T

)
≤ 1

⇐⇒ AY = 0,
1

2
Y Y T ∈ V

⇐⇒ rgeY Y T ⊂ kerA,
1

2
Y Y T ∈ V

⇐⇒
1

2
Y Y T ∈ (−K◦

A) ∩ V .

Conversely, we have 1
2Y Y

T ∈ (−K◦
A) ∩ V ⇐⇒ AY = 0, Y ∈ KA, and

1
2Y Y

T ∈ V.
Taking W = 1

2Y Y
T , we see that Y ∈ Ξ(A, 0). Therefore (b) follows from (a).



18 J. V. BURKE, Y. GAO, AND T. HOHEISEL

When the support function h is taken to be a linear functional, we obtain the following
remarkable result. Here ‖ · ‖∗ denotes the nuclear norm1.

Corollary 4.6 (h linear). Let p : Rn×m → R be defined by

p(X) = inf
V ∈Sn

ϕ(X,V ) +
〈
Ū , V

〉

for some Ū ∈ Sn+ ∩KernA and set C(Ū) :=
{
Y ∈ Rn×m

∣∣ 1
2Y Y

T � Ū
}
. Then:

(a) p∗ = δC(Ū) is closed, proper, convex.
(b) p = σC(Ū) = γC(Ū)◦ is sublinear, finite-valued, nonnegative and symmetric

(i.e. a seminorm).
(c) If Ū � 0 with 2Ū = LLT (L ∈ Rn×n) and A = 0 then p = σC(Ū) = ‖LT (·)‖∗,

i.e. p is a norm with C(Ū)◦ as its unit ball and γC(Ū) as its dual norm.

(d) If Ū � 0, then C(Ū) and C(Ū)◦ are compact, convex, symmetric2 with 0 in
their interior, thus posC(Ū) = posC(Ū)◦ = Sn.

Proof. (a) Observe that h :=
〈
Ū , ·

〉
= σ{Ū}. Hence the machinery from above ap-

plies with V = {Ū}. As V is bounded, CCQ is trivially satisfied (cf. (4.2)-(4.4)). Note
that 0 ∈ C(Ū) 6= ∅. Given Y ∈ C(Ū), we must have rgeY ⊂ kerA since otherwise

there is a nonzero z ∈ (kerA)⊥ with Y T z 6= 0 yielding 0 <
∥∥Y T z

∥∥2
2
≤ 2zT Ūz = 0.

Consequently, C(Ū) =
{
Y ∈ Rn×m

∣∣ AY = 0, 1
2Y Y

T − Ū ∈ K◦
A

}
= Ξ(A, 0) 6= ∅, and

the result follows from Proposition 4.2 (b).

(b) This follows from [15, Theorem 14.5], part (a), and the fact that 0 ∈ C(Ū).

(c) Consider the case Ū = 1
2I: By part (a), we have p∗ = δ{Y | Y Y T�I }. Observe that{

Y
∣∣ Y Y T � I

}
= {Y | ‖Y ‖2 ≤ 1} =: BΛ is the closed unit ball of the spectral norm.

Therefore, p = σBΛ
= ‖ · ‖B◦

Λ
= ‖ · ‖∗.

To prove the general case suppose that 2Ū = LLT . Then it is clear that C(Ū) ={
Y
∣∣ L−1Y ∈ C( 12I)

}
, and therefore

p(X) = σC(Ū)(X)

= sup
Y :L−1Y ∈C( 1

2
I)

〈Y, X〉

= sup
L−1Y ∈C( 1

2
I)

〈
L−1Y, LTX

〉

= σC( 1
2
I)(L

TX)

= ‖LTX‖∗.

Here the first identity is due to part (b) (with A = 0) and the last one follows from
the special case considered at the start of the proof.
(d) Follows from (c) using [15, Theorem 15.2].

We point out that Corollary 4.6 generalizes the nuclear norm smoothing result by
Hsieh and Olsen [13, Lemma 1] and complements [5, Theorem 5.7]

5. h is an indicator function. We now suppose that the function h in (3.1) is
the indicator h := δV for some nonempty, closed, and convex set V ∈ Sn:

(5.1) p(X) = inf
V ∈Sn

ϕ(X,V ) + δV(V ).

1For a matrix T the nuclear norm ‖T‖∗ is the sum of its singular values.
2We say the set S ⊂ E symmetric if S = −S.
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We begin by interpreting the constraint qualifications from Section 3.3. Here, and for
the remainder of this section, h = δV and so domh = V and domh∗ = barV.

Lemma 5.1 (Constraint qualifications for (5.1)). Let p be given by (5.1). Then
the following hold:

(a) (CCQ) The conditions

V ∩ intKA 6= ∅,(5.2)

cone V − KA = Sn(5.3)

are each equivalent to CCQ for p. Moreover, if CCQ holds, then SCCQ holds
if and only if

(5.4) ∅ 6= Ξ(A,B) =
{
Y ∈ Rn×m | (Y, 0) ∈ Ω(A,B) + ({0} × barV)

}
.

(b) (PCQ) The PCQ holds for p if and only if

(5.5) pos (Ω2(A,B)) + barV = span (Ω2(A,B) + barV).

(c) (BPCQ) The conditions

V ∩ KA 6= ∅ and V∞ ∩ KA = {0},(5.6)

V ∩ KA 6= ∅ is bounded,(5.7)

V ∩ KA 6= ∅ and barV +K◦
A = Sn(5.8)

are each equivalent to BPCQ for p, hence imply (5.5).

Proof. (a) First, observe that , with h = δV , condition (i) in Lemma 3.13 is exactly
(5.2). By the same lemma this is equivalent to hznσV ∩ (−K◦

A) = {0}. Moreover,
since σV = σ∞

V , we have hznσV = {V | σV(V ) ≤ 0} = (cone V)◦. Invoking the results
in [3, Section 3.3, Exercise 16 (a)] implies that hznσV ∩ (−K◦

A) = {0} if and only
if cl (cone V − KA) = Sn, where the closure in the latter statement can clearly be
dropped, e.g. by interpreting [15, Theorem 6.3] accordingly.

(b) Use (2.1) to infer that PCQ holds for p if and only if

pos (Ω2(A,B)) + barV = pos (Ω2(A,B) + barV ) = span (Ω2(A,B) + barV).

(c) The equivalences of BPCQ, (5.6), and (5.7) are clear. Since V∞ and cl (barV) are
paired in polarity, see (2.3), [3, Section 3.3, Exercise 16 (a)] implies that V∞ ∩ KA =
{0} if and only if cl (barV +K◦

A) = Sn, where the closure in the latter statement can
be dropped as in (a). This establishes all equivalences.

The following result provides sufficient conditions for p being closed, proper, convex
when h is an indicator function.

Corollary 5.2. Let p be given by (5.1). Then p ∈ Γ0(R
n×m) under any of the

following conditions:
(i) (5.4) holds along with either (5.2) or (5.3).
(ii) (5.5) holds.
(iii) Any one of (5.6)-(5.8) holds.

Proof. Follows from Lemma 5.1 and Theorem 3.6 (c) and Theorem 3.15, respec-
tively.
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The case A = 0 and B = 0 is of particular interest in applications to variational Gram
functions in Section 5.2.

Corollary 5.3. Let p be given as in (5.1) with A = 0 and B = 0 so that
KA = Sn+ and K◦

A = Sn−. Assume that V ∩ Sn+ 6= ∅. Then
PCQ ⇐⇒ SPCQ ⇐⇒ Sn− + barV = Sn ⇐⇒ BPCQ.

Moreover, p ∈ Γ0(R
n×m) under any of following conditions:

(i) (SCCQ)
{
Y ∈ Rn×m

∣∣ ∃ T ∈ barV : 1
2Y Y

T � T
}
6= ∅ and V ∩ Sn++ 6= ∅;

(ii) (PCQ) Sn− + barV = Sn;
(iii) ((B/S)PCQ) ∅ 6= V ∩ Sn+ is bounded.

Proof. First note that Ξ(0, 0) =
{
Y ∈ Rn×m

∣∣ ∃ T ∈ barV : 1
2Y Y

T � T
}

and
Ω2(0, 0) = Sn− = K◦

A. The first statement now follows from Lemma 5.1 and the
definition of PCQ and SPCQ, resepectively, since the span of a set with interior is the
whole space. The remaining implications follow from Corollary 5.2 and Lemma 5.1.

We directly compute the conjugate p∗ using techniques from [5, Theorem 3.2].

Theorem 5.4 (Infimal projection with an indicator function). Let p be given by
(5.1). Assume that

(5.9) ∅ 6= dom (ϕ+δV) =

{
(X,V ) ∈ E

∣∣∣∣ V ∈ V ∩ KA and rge

(
X

B

)
⊂ rgeM(V )

}
.

Then p∗ : Rn×m → R is given by
p∗(Y ) = 1

2σV∩KA

(
Y Y T

)
+ δ{Z | AZ=B } (Y ) .

In particular, for A = 0 and B = 0 we obtain p∗(Y ) = 1
2σV∩Sn

+

(
Y Y T

)
.

Proof. By (2.4) and our assumption that ∅ 6= dom (ϕ+ δV), we have

p∗(Y ) = sup
X

[
〈X,Y 〉 − inf

V
ϕ(X,V ) + δV(V )

]

= sup
V

sup
X

[
〈X,Y 〉 − σΩ(A,B)(X,V )− δV(V )

]

= sup
V ∈V∩KA

sup
rge (XB)⊂rgeM(V )

〈X, Y 〉 −
1

2
tr

((
X

B

)T

M(V )†
(
X

B

))
,

for Y ∈ Rn×m. Since rge
(
X
B

)
⊂ rgeM(V ), we make the substitutionM(V )

(
U
W

)
=
(
X
B

)

to obtain

p∗(Y ) = sup
V ∈V∩KA

sup
U,W

AU=B

tr

(
−
1

2

(
U

W

)T

M(V )

(
U

W

)
+ Y T (V U +ATW )

)

= sup
V ∈V∩KA

−
m∑

i=1

inf
ui,wi

Aui=bi

(
1

2

(
ui
wi

)T

M(V )

(
ui
wi

)
− yTi V ui − wT

i Ayi

)

= sup
V ∈V∩KA

−
m∑

i=1

inf
ui,wi

Aui=bi

(
1

2
uTi V ui − 〈V yi, ui〉+ 〈wi, bi −Ayi〉

)

= sup
V ∈V∩KA

−
m∑

i=1

[
inf

Aui=bi

(
1

2
uTi V ui − 〈V yi, ui〉

)
+ inf

wi

(〈wi, bi −Ayi〉)

]

= δ{Z | AZ=B }(Y ) + sup
V ∈V∩KA

−
m∑

i=1

inf
Aui=bi

(
1

2
uTi V ui − 〈V yi, ui〉

)
,
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where the final equality follows since δ{y | Ay=bi }(yi) = supwi
〈wi, Ayi − bi〉 (i =

1, . . . ,m). By hypothesis rgeB ⊂ rgeA, and so, by [5, Theorem 3.2]

−
1

2

(
V yi
bi

)T

M(V )†
(
V yi
bi

)
= inf

Aui=bi

(
1

2
uTi V ui − 〈V yi, ui〉

)
(i = 1, . . . ,m),

Therefore, when AY = B, we have

p∗(Y ) = sup
V ∈V∩KA

−
m∑

i=1

−
1

2

(
V yi
bi

)T

M(V )†
(
V yi
bi

) (
where Ayi = bi so(
V yi

bi

)
=M(V )

(
yi

0

)
)

= sup
V ∈V∩KA

1

2

m∑

i=1

(
M(V )

(
yi
0

))T

M(V )†
(
M(V )

(
yi
0

))

= sup
V ∈V∩KA

1

2

m∑

i=1

(
yi
0

)T

M(V )

(
yi
0

)T

= sup
V ∈V∩KA

1

2

m∑

i=1

yTi V yi

= sup
V ∈V∩KA

1

2
tr (Y TV Y ),

which proves the general expression for p∗. The case A = 0, B = 0 follows.

Corollary 5.5. Let p be given by (5.1). If SCCQ holds, i.e.,
V ∩ intKA 6= ∅ and {Y ∈ Rn×m | (Y, 0) ∈ Ω(A,B) + ({0}+ barV)} 6= ∅,

then
∂p(X̄) = argmax

Y
{
〈
X̄, Y

〉
− inf

(Y,T )∈Ω(A,B)
σV(−T )}

is nonempty and compact for all X̄ ∈ Rn×m. Alternatively, if V ∩ intKA 6= ∅ (CCQ)
and

posΩ2(A,B) + barV = span (Ω2(A,B) + barV) (PCQ)
hold, then

∂p(X̄) =
{
Ȳ
∣∣ ∃V̄ , T̄ : −T̄ ∈ NV(V̄ ), (Ȳ , T̄ ) ∈ ∂ϕ(X̄, V̄ )

}

is nonempty and compact for all X̄ ∈ Rn×m.

Proof. This follows from Proposition 3.17 in combination with Lemma 5.1.

5.1. B = 0 and 0 ∈ V. We now consider the important special case of p given
by (5.1) where 0 ∈ V and B = 0. In this case p turns out to be a squared gauge
function, see Corollary 5.8. We start with a technical lemma.

Lemma 5.6. Let C,K ⊂ E be nonempty, convex with K being a cone. Then
(C +K)◦ = C◦ ∩K◦. If C +K is closed with 0 ∈ C, then (C◦ ∩K◦)◦ = C +K. In
particular, the set C +K is closed if C and K are closed and K ∩ (−C∞) = {0}.

Proof. Clearly, C◦ ∩ K◦ ⊂ (C + K)◦. Conversely, if z ∈ (C + K)◦, then
〈z, x+ ty〉 ≤ 1 for all x ∈ C, y ∈ K, and t > 0. Multiplying this inequality by
t−1 and letting t→ ∞, we see that z ∈ K◦. By letting t ↓ 0, we see that z ∈ C◦.

Now assume that C +K is closed with 0 ∈ C. Then C +K is closed and convex
with 0 ∈ C +K. Hence, by [15, Theorem 14.5], C +K = (C +K)◦◦ = (C◦ ∩K◦)◦.

The final statement of the lemma follows from [15, Corollary 9.1.1].
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The first result in this section is concerned with a representation of the conjugate p∗

under the standing assumptions.

Corollary 5.7 (The gauge case I). Let p be given by (5.1) with 0 ∈ V and
B = 0 and let P be the orthogonal projection onto kerA. Moreover, let

S := {W ∈ Sn | rgeW ⊂ kerA} = {W ∈ Sn |W = PWP } .

Assume that
∅ 6=

{
(X,V ) ∈ E

∣∣∣ V ∈ V ∩ KA and rge
(
X
0

)
⊂ rgeM(V )

}
.

Then the following hold:
(a) We have

p∗(Y ) =
1

2
σ(V∩KA)+S⊥

(
Y Y T

)
=

1

2
γ(V∩KA)◦∩S

(
Y Y T

)

where S⊥ = {V ∈ Sn | PV P = 0}. In particular, p∗ is positively homoge-
neous of degree 2.

(b) If V◦ +K◦
A is closed (e.g. when K◦

A ∩ −(cone V)◦ = {0}) then

(5.10) p∗(Y ) =
1

2
γ(V◦∩S)+K◦

A

(
Y Y T

)
,

where dom p∗ =
{
Y
∣∣ Y Y T ∈ cone (V◦ ∩ S) +K◦

A

}
.

Proof. (a) By Theorem 5.4, we have

p∗(Y ) =
1

2
σV∩KA

(
Y Y T

)
+ δ{Z | AZ=0}(Y )

=
1

2
σV∩KA

(
Y Y T

)
+

1

2
δS
(
Y Y T

)

=
1

2
σV∩KA

(
Y Y T

)
+

1

2
σS⊥

(
Y Y T

)

=
1

2
σ(V∩KA)+S⊥

(
Y Y T

)

=
1

2
γ(V∩KA)◦∩S

(
Y Y T

)
.

Here the first equality uses Theorem 5.4, the second equality follows from the fact
that rgeY = rgeY Y T , the third can be seen from [16, Example 7.4], and the final
equivalence follows from [15, Theorem 14.5] and Lemma 5.6.

(b) If V◦ + K◦
A is closed, then Lemma 5.6 also tells us that (V ∩ KA)

◦ = V◦ + K◦
A.

Since K◦
A ⊂ S, see Lemma 2.1 (b), we have (V◦ + K◦

A) ∩ S = (V◦ ∩ S) + K◦
A which,

using (a), gives the first equivalence in (5.10).

Our final goal is to show that p, under the standing assumption in this section, is a
squared gauge. Here we denote by BF the (closed) unit ball in the Frobenius norm.

Corollary 5.8 (The gauge case II). Let p be as in Theorem 5.4 with 0 ∈ V and
B = 0, and assume that (5.9) holds. Let P ∈ Rn×n be the orthogonal projector on
kerA and define the (closed, convex) sets

V
1/2
A :=

{
L ∈ Rn×n

∣∣ LLT ∈ P (V ∩ KA)P
}
, F :=

{
LZ

∣∣∣ L ∈ V
1/2
A , Z ∈ BF

}
,
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and the subspace U := KermA.
3 Then

p =
1

2
γ2F+U⊥ and p∗ =

1

2
γ2F◦∩U .

In particular, for A = 0 and F :=
{
LZ

∣∣ LLT ∈ V ∩ Sn+, Z ∈ BF

}
we obtain

p =
1

2
γ2F and p∗ = γ2F◦ .

Proof. For all Y ∈ Rn×m, by Theorem 5.4 and the definition of U , we have

p∗(Y ) =
1

2
σV∩KA

(Y Y T ) + δU (Y ) =
1

2
sup

V ∈V∩KA

〈
PV P, Y Y T

〉
+ δU (Y ).

In turn, by the definitions of V
1/2
A and the Frobenius norm, the latter equals

1

2
sup

L∈V
1/2
A

〈
LLT , Y Y T

〉
+ δU (Y ) =

1

2
sup

L∈V
1/2
A

‖LTY ‖2F + δU (Y ).

On the other hand, by the monotonicity and continuity of t ∈ R+ 7→ t2 as well as the
self-duality of the Frobenius norm, we find that the second term can be written as

1

2


 sup
L∈V

1/2
A

‖LTY ‖F



2

+ δU (Y ) =
1

2


 sup
(Z,L)∈BF×V

1/2
A

〈
LTY, Z

〉


2

+ δU (Y ).

Using the definition of F and the convention (+∞)2 = +∞, we can rewrite this

equivalence as 1
2σF (Y )2 + δU (Y ) = 1

2 [σF (Y ) + δU (Y )]
2
. All in all, using the latter,

[16, Example 11.4], and [16, Example 11.19] and the polar cone calculus from, e.g.,
[3, p. 70], we conclude that

p∗(Y )=
1

2
[σF (Y ) + δU (Y )]

2
=

1

2
[σF (Y ) + σU⊥(Y )]

2
=

1

2
σ2
F+U⊥(Y )=

1

2
γ2F◦∩U (Y ).

This gives the representation for p∗; the one for p follows from [15, Corollary 15.3.1].

5.2. Variational Gram Functions. Given a closed, convex set V ⊂ Sn define

(5.11) ΦV : Rn×m → R, ΦV(Y ) :=
1

2
σV∩Sn

+
(Y Y T ).

These functions are called variational Gram functions (VGF) and were introduced
by Jalali, Fazel and Xiao [14]. They have received attention in the machine learning
community due to their orthogonality promoting properties when used as penalty
functions, cf. [14].

Note that the definition (5.11) explicitly intersects V with the positive semidefinite
cone Sn+ while Jalali, Fazel and Xiao [14] employ the standing assumption that ΦV =
ΦV∩Sn

+
. These (equivalent) conventions guarantee that ΦV is convex. We also scale

by 1
2 since ΦV is positively homogeneous of degree 2.
As an immediate consequence of Theorem 5.4, ΦV = p∗ where p is defined in

(5.1) with A = 0, B = 0 and V ∩ Sn+ 6= ∅. In addition, the constraint qualifications
dramatically simplify in this case. We have already seen in Corollary 5.3 that PCQ,
SPCQ and BPCQ are all equivalent for VGFs. We now observe that CCQ and SCCQ
are also equivalent.

3Hence U⊥ = RgemA
T .
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Lemma 5.9 (CCQ=SCCQ for VGFs). Let ΦV be given by (5.11) with V ⊂ Sn.
Then the condition V ∩ Sn+ 6= ∅ is equivalent to (5.9), and (5.4) is satisfied with
ΦV = p∗ where A = 0, B = 0 and p defined in (5.1). In particular, CCQ and SCCQ
are equivalent where CCQ is given by V ∩ Sn++ 6= ∅.

Proof. First note that 0 ∈ Ξ(0, 0) =
{
Y
∣∣ ∃W ∈ barV : 1

2Y Y
T �W

}
since 0 ∈

barV. The relationship between ΦV and p is given in Theorem 5.4.

Lemma 5.9 and the results of the previous section allow us to refine [14, Propo-
sition 4].

Proposition 5.10 (Conjugate of VGFs and VGFs as Squared Gauges). Let ΦV

be given by (5.11). Under either of the assumptions
(i) (CCQ) V ∩ Sn++ 6= ∅,
(ii) (PCQ) V ∩ Sn+ 6= ∅ is bounded (or equivalently Sn− + barV = Sn),

we have

Φ∗
V(X) = inf

V
σΩ(0,0)(X,V ) + δV(V ) =

1

2
inf

V ∈V∩S
n
+:

rgeX⊂rgeV

tr
(
XTV †X

)
(X ∈ Rn×m).

Under (i), Φ∗
V is finite-valued, and under (ii), ΦV is finite-valued. In addition, if

0 ∈ V we also have

ΦV =
1

2
γ2F◦ and Φ∗

V =
1

2
γ2F

with F =
{
LZ

∣∣ LLT ∈ V ∩ Sn+, Z ∈ BF

}
.

Proof. Lemma 5.9 tells us that assumption (i) is equivalent to SCCQ, and Corol-
lary 5.3 tells us that assumption (ii) is equivalent to BPCQ. Hence, by Theorem 5.4,
either assumption (i) or (ii) implies that Φ∗

V = p∗∗ = p. The remainder is now follows
from the definition of p, equation (2.5), and Corollary 5.8.

Next consider the subdifferential of a VGF when defined by (5.11). Although, a
VGF is always convex, we take the convex-composite perspective, see e.g. [7], since
a VGF is simply the composition of a closed, proper, convex function σV∩Sn

+
and a

nonlinear map H : Y 7→ Y Y T . The basic constraint qualification for the composition
ΦV = 1

2σV∩Sn
+
◦H at a point Ȳ ∈ domΦV is given by

(BCQ) NdomσV∩Sn
+

(Ȳ Ȳ T ) ∩ (KernȲ
T ) = {0}.

It is well-known that this condition is essential for a full subdifferential calculus of
convex-composite functions [16]. We now show that this condition is intimately linked
to condition (ii) in Corollary 5.3.

Lemma 5.11 (BPCQ=PCQ=BCQ for VGFs). Let ΦV be as in (5.11) and as-
sume that Sn+ ∩ V 6= ∅. Then the following are equivalent:

(i) There exists Ȳ ∈ domΦV such that BCQ holds;
(ii) ((B)PCQ) V∞ ∩ Sn+ = {0} (or equivalently V ∩ Sn+ is bounded);
(iii) BCQ holds at every Ȳ ∈ domΦV .

Proof. ’(i)⇒(ii)’: Let V̄ ∈ Sn+ ∩ V and assume (ii) is violated, i.e. there exists
0 6=W ∈ (V ∩ Sn+)

∞ = V∞ ∩ Sn+. By (2.2), we have

(5.12) Vt := V̄ + tW ∈ V ∩ Sn+ (t > 0).
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Now, take any Ȳ ∈ domΦV . Then, for all t > 0, we have

+∞ > ΦV(Ȳ )

= sup
V ∈Sn

+
∩V

〈
V, Ȳ Ȳ T

〉

≥
〈
Vt, Ȳ Ȳ

T
〉

≥ t
〈
W, Ȳ Ȳ T

〉
.

Since W � 0, we have
〈
Ȳ Ȳ T , W

〉
= tr (Ȳ TWȲ ) ≥ 0. In view of the above chain of

inequalities this implies
〈
W, Ȳ Ȳ T

〉
= 0 and as W, Ȳ Ȳ T ∈ Sn+ this gives WȲ Ȳ T = 0.

Since rge Ȳ = rge Ȳ Ȳ T this implies WȲ = 0 or, equivalently, Ȳ TW = 0. Therefore,
we have 0 6= W ∈ (V ∩ Sn+)

∞ ∩ (KernȲ
T ). Now, observe that NdomσV∩Sn

+

(Z) =

(V ∩ Sn+)
∞ for any Z ∈ domσV∩Sn

+
, see e.g. [16]. This shows that BCQ is violated at

Ȳ . Since Ȳ ∈ domΦV was chosen arbitrarily, this establishes the desired implication.
’(ii)⇒(iii)’: If V∩Sn+ is bounded, then domσV∩Sn

+
= Sn, and so, for every Ȳ ∈ domΦV ,

NdomσV∩Sn
+

(Ȳ Ȳ T ) = {0} giving the desired implication.

’(iii)⇒(i)’: Obvious.

We now derive the formula for the subdifferential of the VGF from (5.11).

Proposition 5.12. Let ΦV be given by (5.11). Then

∂ΦV(Ȳ ) ⊃
{
V̄ Ȳ

∣∣ V̄ ∈ V ∩ Sn+ :
〈
V̄ , Ȳ Ȳ T

〉
= ΦV(Ȳ )

}
(Ȳ ∈ domΦV).

If Sn+ ∩ V is nonempty and bounded, equality holds and domΦV = Rn×m.

Proof. Combine Lemma 5.11 with [16, Theorem 10.6], [16, Corollary 8.25] and
the fact that for H : Y → Y Y T we have ∇H(Y )∗V = 2V Y for all (Y, V ) ∈ E.

We next consider an example.

Example 5.13 (Failure of subdifferential calculus for VGF). Let V := pos {I} ⊂
Sn, put m := 1 and let H : Y 7→ Y Y T . Then clearly condition (i) in Proposition 5.10
holds, but condition (ii) and hence the BCQ fails. We have

(5.13) σV∩Sn
+
(W ) = sup

α≥0
αtr (W ) = δ{U∈Sn | tr (U)≤0}(W ) (W ∈ Sn).

Hence, we obtain domΦV = {0} and ∇H(0)∗∂σV∩Sn
+
(0) = {0}. On the other hand,

we have ΦV = 1
2σV∩Sn

+
◦H = δ{0}. Therefore,

∂ΦV(0) = N{0}(0) = Rn×m ) {0} = ∇H(0)∗∂σV∩Sn
+
(0).

Example 5.13 establishes various things: First, it shows that condition (i) in Propo-
sition 5.10 does not yield equality in the subdifferential formula for VGFs. It also
illustrates that equality in the subdifferential formula may fail tremendously in the
absence of BCQ, even for a convex-composite which is, in fact, convex.

Jalali, Fazel and Xiao [14] employ great effort to compute the conjugate of a
(convex) VGF, cf. the proof of [14, Proposition 7]. However, a slightly refined version
of [14, Proposition 7] follows immediately from our analysis.

Proposition 5.14 (Subdifferential of Φ∗
V). Let ΦV be given by (5.11).
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(a) ((S)CCQ) If V ∩ Sn++ 6= ∅, dom ∂Φ∗
V = domΦ∗

V and

∂Φ∗
V(X̄) = argmax

Y

{
〈
X̄, Y

〉
− inf

1
2
Y Y T�T

σV∩Sn
+
(T )

}
.

(b) ((B)PCQ) If the set V ∩ Sn+ is nonempty and bounded, dom ∂Φ∗
V = domΦ∗

V

and we have

∂Φ∗
V(X̄) =



Ȳ

∣∣∣∣∣∣

∃V̄ ∈ V ∩ Sn+ : rge X̄ ⊂ rge V̄ ,

Φ∗
V(X̄) =

1

2
tr
(
X̄T V̄ †X̄

)
=
〈
X̄, Ȳ

〉
− ΦV(Ȳ ),





for all X̄ ∈ domΦ∗
V .

Proof. (a) By Lemma 5.9, PCQ=SCCQ and ΦV = p∗. The subdifferential formula
follows from Proposition 3.17 (a) (see in particular the third identity in (c)).

(b) The fact that dom ∂Φ∗
V = domΦ∗

V is due to the fact that the latter is a subspace,
hence relatively open, cf. Lemma 3.1 (c). The remainder follows from Lemma 5.9 and
Proposition 3.17 (c).

5.3. VGFs and squared Ky Fan norms. For p ≥ 1, 1 ≤ k ≤ min{m,n}, the
Ky Fan (p,k)-norm [12, Ex. 3.4.3] of a matrix X ∈ Rn×m is defined as

‖X‖p,k =

(
k∑

i=1

σp
i

)1/p

,

where σi are the singular values of X sorted in nonincreasing order. In particular,
the (p,min{m,n})-norm is the Schatten-p norm and the (1, k)-norm is the standard
Ky Fan k-norm, see [12]. For 1 ≤ p ≤ ∞, denote the closed unit ball for ‖ · ‖p,k by
Bp,k := {X | ‖X‖p,k ≤ 1}. For 1 ≤ p ≤ ∞, define s := p/2. Then, for 2 ≤ p ≤ ∞, we
have

1

2
‖X‖2p,k =

1

2

[
k∑

i=1

(σ2
i )

s

]1/s

=
1

2
‖XXT ‖s,k =

1

2
σB◦

s,k
(XXT ) =

1

2
σB◦

s,k∩Sn
+
(XXT )

=
1

2
ΩB◦

s,k
(X),

where the first equality follows from the definition of s, the second from the definition
of the singular values, the third from properties of gauges and their polars, the fourth
from the equivalence

〈
V, XXT

〉
=
∑m

j=1 x
T
j V xj with the xj ’s the columns of X, and

the final from (5.11). For the Schatten norms, where k = min{n,m} we have B◦
s,k =

Bŝ,k, where ŝ satisfies
1
s +

1
ŝ = 1, see [11]. For other values of k, the representation of

B◦
s,k can be significantly more complicated, e.g. see [8].

6. Final remarks. We studied partial infimal projections of the generalized
matrix-fractional function with a closed, proper, convex function h : Sn → R. Suffi-
cient conditions for closedness and properness as well as representations of both the
conjugate and the subdifferential of the infimal projections under the associated es-
sential constraint qualifications. The general results were applied to the cases when
h is a support or an indicator function of a closed, convex set in Sn. These results
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revealed close connections to a range of important convex functions on Rn×m. In par-
ticular, the infimal projection with linear functionals yielded smoothing variational
representations for the family of scaled nuclear norms, while the infimal projection
with an indicator is often a squared gauge. As a special case, it was shown that the
conjugate of the infimal projection coincides with a variational Gram function (VGF)
of the underlying set. Hence the variational calculus for VGFs follows easily as a con-
sequence of our general study. In all of these cases, the infimal projection opens the
door to new smoothing approaches to a range of nonsmooth optimization problems
on Rn×m using the representation (1.4).

7. Appendix. In what follows we use the direct sum of functions fi : E →
R ∪ {+∞} (i = 1, . . . ,m) which is defined by

⊕m
i=1fi : E

m → R ∪ {+∞}, ⊕m
i=1fi(x1, . . . , xm) =

m∑

i=1

fi(xi).

Theorem 7.1 (Extended sum rule). Let fi ∈ Γ0(E) (i = 1, . . . ,m) and set
f :=

∑m
i=1 fi. Then the following hold:

(a) The conjugate of f is given by f∗ = cl (f∗1 �f
∗
2 �· · ·�f∗m). Under the condition

(7.1)

m⋂

i=1

ri (dom fi) 6= ∅

we have f∗ = f∗1 � f∗2 � · · · � f∗m which is closed, proper and convex and

∅ 6= T (z) := argmin

{
m∑

i=1

f∗i (z
i)

∣∣∣∣∣ z =
m∑

i=1

zi

}
(z ∈ dom f∗).

(b) If z̄ ∈
∑m

i=1 ∂fi(x̄), then T (z̄) 6= ∅ and

T (z̄) =

{
(z1, . . . , zm)

∣∣∣∣∣ z̄ =
m∑

i=1

zi, zi ∈ ∂fi(x̄), i = 1, . . . ,m

}
.

(c) Under (7.1) we have ∂f =
∑m

i=1 ∂fi, dom ∂f =
⋂m

i=1 dom ∂fi and

∂f(x̄) =

{
m∑

i=1

zi
∣∣ zi ∈ ∂fi(x̄), i = 1, . . . ,m

}

=
{
z̄
∣∣ (z1, . . . , zm) ∈ T (z̄), zi ∈ ∂fi(x̄) i = 1, . . .m

}
(x̄ ∈ dom ∂f).

(d) Under (7.1), f∗ = f∗1 � f∗2 � · · · � f∗m, dom ∂f∗ = {z | ∅ 6= T (z)} 6= ∅, and

∂f∗(z̄) =

{
m⋂

i=1

∂f∗i (z
i)

∣∣∣∣∣ z̄ =
m∑

i=1

zi

}
(z̄ ∈ dom ∂f∗).

Proof. (a) See [15, Theorem 16.4].

(b) Let L : Em → E be defined by L(z1, . . . , zm) =
∑m

i=1 z
i. Then its adjoint L∗ :

E → Em is given by L∗(x) = (x, . . . , x) (x ∈ E). Let z̄ ∈
∑m

i=1 ∂fi(x̄), and take
any zi ∈ ∂fi(x̄) (i = 1, . . . ,m) such that z̄ =

∑m
i=1 z

i. By [15, Theorem 23.5],
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x̄ ∈ ∂f∗i (z
i) (i = 1, . . . ,m). Hence, by [15, Theorem 23.8, 23.9] and [2, Proposition

16.8] we obtain

0 ∈ rgeL∗ + ∂f∗1 (z
1)× · · · × ∂f∗m(zm) ⊂ ∂(δ{0} (L(·)− z̄) +⊕m

i=1f
∗
i )(z

1, . . . , zm).

Therefore, (z1, . . . , zm) ∈ T (z̄), and we have

∅ 6=

{
(z1, . . . , zm)

∣∣∣∣∣ z̄ =
m∑

i=1

zi, zi ∈ ∂fi(x̄), i = 1, . . . ,m

}
⊂ T (z̄).

To see the reverse inclusion, let (z1, . . . , zm) ∈ T (z̄). By assumption and again [15,
Theorem 23.8], we have z̄ ∈

∑m
i=1 ∂fi(x̄) ⊂ ∂f(x̄). By [15, Theorem 23.5] and the

fact that f∗(z̄) =
∑m

i=1 f
∗
i (z

i), we have

m∑

i=1

〈
zi, x̄

〉
= 〈z̄, x̄〉 = f∗(z̄) + f(x̄) =

m∑

i=1

(f∗i (z
i) + fi(x̄)),

so that 0 =
∑m

i=1(f
∗
i (z

i)+fi(x̄)−
〈
zi, x̄

〉
). By the Fenchel-Young inequality, f∗i (z

i)+

fi(x̄)−
〈
zi, x̄

〉
≥ 0 (i = 1, . . . ,m), hence equality must hold for each i = 1, . . . ,m, or

equivalently zi ∈ ∂fi(x̄) (i = 1, . . . ,m). This establishes the reverse inclusion.

(c) The first two consequences follow from [15, Theorem 23.8]. For the third, the
first equivalence simply follows from the fact that ∂f =

∑m
i=1 ∂fi. To see the second

equivalence, let z̄ ∈ ∂f(x̄). Then, by part (b), T (z̄) 6= ∅, and, for every (z1, . . . , zm) ∈
T (z̄), we have zi ∈ ∂fi(x̄), i = 1, . . . ,m. Hence,

∂f(x̄) ⊂
{
z̄
∣∣ (z1, . . . , zm) ∈ T (z̄), zi ∈ ∂fi(x̄), i = 1, . . . ,m

}
.

The reverse inclusion follows from the first equivalence.

(d) By (a), f∗ = f∗1 � f∗2 � · · · � f∗m ∈ Γ0(E) and T (z) 6= ∅ for all z ∈ dom f∗.
Let us first suppose that z̄ ∈ dom ∂f∗ ⊂ dom f∗, then T (z̄) 6= ∅. Let x̄ ∈ ∂f∗(z̄).

By [15, Theorem 23.5], z̄ ∈ ∂f(x̄). By part (c), this is equivalent to the existence
of zi ∈ ∂fi(x̄) such that z̄ =

∑m
i=1 z

i, which, by [15, Theorem 23.5], is equivalent to
x̄ ∈

{⋂m
i=1 ∂f

∗
i (z

i)
∣∣ z̄ =

∑m
i=1 z

i
}
. Hence ∂f∗(z̄) ⊂

{⋂m
i=1 ∂f

∗
i (z

i)
∣∣ z̄ =

∑m
i=1 z

i
}
.

On the other hand, let x̄ ∈
{⋂m

i=1 ∂f
∗
i (z

i)
∣∣ z̄ =

∑m
i=1 z

i
}
. Then, by [15, Theorem

23.5] we have z̄ ∈ ∂f(x̄). But then, again by [15, Theorem 23.5], x̄ ∈ ∂f∗(ȳ). Finally,
suppose that (z1, . . . , zm) ∈ T (z̄) 6= ∅. Then, as in part (a), 0 ∈ rgeL∗+∂f∗1 (z

1)×· · ·×
∂f∗m(zm), or equivalently, there is an x̄ such that x̄ ∈

⋂m
i=1 ∂f

∗
1 (z

i) with z̄ =
∑m

i=1 z
i,

i.e., x̄ ∈ ∂f∗(z̄). This completes the proof.

Proposition 7.2 (Partial conjugates). Let f ∈ Γ(E1 × E2) and x̄ ∈ E1 be such
that ḡ := f(x̄, ·) is proper and x̄ ∈ riL(dom f), where L : (x, v) 7→ x. Then

ḡ∗(w) = inf
z:(z,w)∈dom f∗

[f∗(z, w)− 〈x̄, z〉].

Proof. By [15, Theorem 6.6], riL(dom f) = L(ri dom f), so the hypothesis implies
the existence of a w̄ ∈ E2 such that (x̄, w̄) ∈ ri dom f . By [15, Theorem 16.4],

ḡ∗(w) = sup
v
{〈v, w〉 − f(x̄, w)}

= sup
(x,v)

{〈(x, v), (0, w)〉 − (f + δ{x̄}×E2
)(x, v)}

= (f + δ{x̄}×E2
)∗(0, w)

= cl (f∗ � σ{x̄}×E2
)(0, w),
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where the closure can be dropped if ri (dom f) ∩ ri (dom δ{x̄}×E2
) 6= ∅. But this inter-

section is nonempty by hypothesis since (x̄, w̄) ∈ {x̄} × E2 = ri (dom δ{x̄}×E2
). Hence

ḡ∗(w) = (f∗ � σ{x̄}×E2
)(0, w)

= inf
(z,u)

{f∗(z, u) + 〈x̄, 0− z〉+ δ{0}(w − u)}

= inf
z:(z,w)∈dom f∗

{f∗(z, w)− 〈x̄, z〉}.
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