

VARIATIONAL PROPERTIES OF MATRIX FUNCTIONS VIA THE GENERALIZED MATRIX-FRACTIONAL FUNCTION

JAMES V. BURKE*, YUAN GAO†, AND TIM HOHEISEL‡

Abstract. We show that many important convex matrix functions can be represented as the partial infimal projection of the generalized matrix fractional (GMF) and a relatively simple convex function. This representation provides conditions under which such functions are closed and proper as well as formulas for the ready computation of both their conjugates and subdifferentials. Particular instances yield all weighted Ky Fan norms and squared gauges on $\mathbb{R}^{n \times m}$, and as an example we show that all variational Gram functions are representable as squares of gauges. Other instances yield weighted sums of the Frobenius and nuclear norms. The scope of applications is large and the range of variational properties and insight is fascinating and fundamental. An important byproduct of these representations is that they lay the foundation for a smoothing approach to many matrix functions on the interior of the domain of the GMF function.

Key words. convex analysis, infimal projection, matrix-fractional function, support function, gauge function, subdifferential, Ky Fan norm, variational Gram function

AMS subject classifications. 68Q25, 68R10, 68U05

1. Introduction. The *generalized matrix-fractional (GMF)* function was introduced by Burke and Hoheisel in [5] where it is shown to unify a number of tools and concepts for matrix optimization including optimal value functions in quadratic programming, nuclear norm optimization, multi-task learning, and, of course, the matrix fractional function. In the present paper we expand the number of applications to include all *Ky Fan norms*, matrix *gauge functionals*, and *variational Gram functions* introduced by Jalali, Fazel and Xiao in [14]. Our analysis includes descriptions of the variational properties of these functions such as formulas for their convex conjugates and their subdifferentials.

Set $\mathbb{E} := \mathbb{R}^{n \times m} \times \mathbb{S}^n$, where $\mathbb{R}^{n \times m}$ and \mathbb{S}^n are the linear spaces of real $n \times m$ matrices and (real) symmetric $n \times n$ matrices, respectively. Given $(A, B) \in \mathbb{R}^{\ell \times n} \times \mathbb{R}^{\ell \times m}$ with $\text{rge } B \subset \text{rge } A$, recall that the GMF function φ is defined as the support function of the graph of the matrix valued mapping $Y \mapsto -\frac{1}{2}YY^T$ over the manifold $\{Y \in \mathbb{R}^{n \times m} \mid AY = B\}$, i.e., $\varphi : \mathbb{E} \rightarrow \mathbb{R} \cup \{+\infty\}$ is given by

$$(1.1) \quad \varphi(X, V) := \sup \{ \langle (Y, W), (X, V) \rangle \mid (Y, W) \in \mathcal{D}(A, B) \},$$

where

$$(1.2) \quad \mathcal{D}(A, B) := \left\{ \left(Y, -\frac{1}{2}YY^T \right) \in \mathbb{E} \mid Y \in \mathbb{R}^{n \times m} : AY = B \right\}.$$

A closed form expression for φ is derived in [5, Theorem 4.1] where it is also shown that φ is smooth on the (nonempty) interior of its domain.

Our study focuses on functions $p : \mathbb{R}^{n \times m} \rightarrow \overline{\mathbb{R}} = \mathbb{R} \cup \{\pm\infty\}$ representable as the partial infimal projection

$$(1.3) \quad p(X) := \inf_{V \in \mathbb{S}^n} \varphi(X, V) + h(V),$$

*Department of Mathematics, University of Washington, Seattle, WA 98195 (jvburke@uw.edu). Research is supported in part by the National Science Foundation under grant number DMS-1514559.

†Department of Applied Mathematics, University of Washington, Seattle, WA 98195 (yuan-gao@uw.edu).

‡McGill University, 805 Sherbrooke St West, Room1114, Montréal, Québec, Canada H3A 0B9 (tim.hoheisel@mcgill.ca)

where $h : \mathbb{S}^n \rightarrow \mathbb{R} \cup \{+\infty\}$ is closed, proper, convex. Different functions h illuminate different variational properties of the matrix X . For example, when $h := \langle U, \cdot \rangle$ for $U \in \mathbb{S}_{++}^n$ and both A and B are zero, then p is a weighted nuclear norm where the weights depend on any “square root” of U (see Corollary 4.6). Among the consequences of the representation (1.3) are conditions under which p is closed and proper as well as formulas for the ready computation of both the conjugate p^* and the subdifferential ∂p (Section 3). As an application of our general results, we give more detailed explorations in the cases where h is a support function (Section 4) or an indicator function (Section 5). We illustrate these results with specific instances. For example, we obtain all weighted squared gauges on $\mathbb{R}^{n \times m}$, cf. Corollary 5.8, as well as a complete characterization of variational Gram functions [14] and their conjugates. In addition, we show that all variational Gram functions are representable as squares of gauges, cf. Proposition 5.10. Other choices yield weighted sums of Frobenius and nuclear norms [5, Corollary 5.9]. The scope of applications is large and the range of variational properties is fascinating and fundamental.

Beyond the variational results of this paper, there is a compelling but unexplored computational aspect: Hsieh and Olsen [13] show that (1.3) with $h = \frac{1}{2}\text{tr}(\cdot)$ yields a smoothing approach to optimization problems involving the nuclear norm. More generally, observe that many matrix optimization problems take the form

$$(P) \quad \min_{X \in \mathbb{R}^{n \times m}} f(X) + p(X),$$

where $f, p : \mathbb{R}^{n \times m} \rightarrow \mathbb{R} \cup \{+\infty\}$. The function f is thought of as the primary objective and is often smooth or convex while p is typically a structure inducing convex function. Using the representation (1.3), the problem (P) can be written as

$$(1.4) \quad \min_{(X, V) \in \mathbb{E}} f(X) + \varphi(X, V) + h(V).$$

This reformulation allows one to exploit the smoothness of φ on the interior of its domain. For example, if both f and h are smooth, one can employ a damped Newton, or path following approach to solving (P). We emphasize, that this is not the goal or intent of this paper, however, our results provide the basis for future investigations along a variety of such numerical and theoretical avenues.

The paper is organized as follows: In Section 2 we provide the tools from convex analysis and some basic properties of the GMF function. Section 3 contains the general theory for partial infimal projections of the form (1.3). In Section 4 we specify h in (1.3) to be a support function of some closed, convex set $\mathcal{V} \subset \mathbb{S}^n$. In Section 5 we choose h to be the indicator of such set. In particular, this yields powerful results on variational Gram functions and Ky Fan norms in Sections 5.2 and 5.3. We close out with some final remarks in Section 6 and supplementary material in Section 7.

Notation: For a linear transformation L between finite dimensional linear spaces, we write $\text{rge } L$ and $\ker L$ for its *range* and *kernel*, respectively. For a given choice of bases, every such linear transformation has a matrix representation for some $A \in \mathbb{R}^{\ell \times n}$. Therefore, we also write $\text{rge } A$ and $\ker A$ for the *range* and *kernel*, respectively, considering A as a linear map between \mathbb{R}^n and \mathbb{R}^ℓ . Again, for $A \in \mathbb{R}^{\ell \times n}$, we set

$$\text{Ker}_r A := \{X \in \mathbb{R}^{n \times r} \mid AX = 0\} = \{X \in \mathbb{R}^{n \times r} \mid \text{rge } X \subset \ker A\},$$

$$\text{Rge}_r A := \{Y \in \mathbb{R}^{\ell \times r} \mid \exists X \in \mathbb{R}^{n \times r} : Y = AX\} = \{Y \in \mathbb{R}^{\ell \times r} \mid \text{rge } Y \subset \text{rge } A\}$$

and write $\text{Ker } A$ or $\text{Rge } A$ when the choice of r is clear. Observe that $\text{Ker}_1 A = \ker A$, $\text{Rge}_1 A = \text{rge } A$, and $(\text{Ker}_r A)^\perp = \text{Rge}_r A^T$. We equip any matrix space with the

(Frobenius) inner product $\langle X, Y \rangle := \text{tr}(X^T Y)$. The *Moore-Penrose pseudoinverse* [11] of A is denoted by A^\dagger . The set of all $n \times n$ symmetric matrices is given by \mathbb{S}^n . The positive and negative semidefinite cone are denoted by \mathbb{S}_+^n and \mathbb{S}_-^n , respectively.

For two sets S, T in the same real linear space their *Minkowski sum* is $S + T := \{s + t \mid s \in S, t \in T\}$. For $I \subset \mathbb{R}$ we also put $I \cdot S := \{\lambda s \mid \lambda \in I, s \in S\}$.

2. Preliminaries.

Tools from convex analysis. Let $(\mathcal{E}, \langle \cdot, \cdot \rangle)$ be a finite-dimensional Euclidean space with induced norm $\|\cdot\| := \sqrt{\langle \cdot, \cdot \rangle}$. The closed ϵ -ball about a point $x \in \mathcal{E}$ is denoted by $B_\epsilon(x)$. Let $S \subset \mathcal{E}$ be nonempty. The (topological) *closure* and *interior* of S are denoted by $\text{cl } S$ and $\text{int } S$, respectively. The (*linear*) *span* of S is denoted by $\text{span } S$. The *affine hull* of S , denoted $\text{aff } S$, is the intersection of all affine sets containing S , while the *convex hull* of S , denoted $\text{conv } S$, is the intersection of all convex sets containing S . Its closure (the *closed convex hull*) is $\overline{\text{conv } S} := \text{cl}(\text{conv } S)$. The *conical* and *convex conical* hull of S are given by $\text{pos } S := \{\lambda x \mid x \in S, \lambda \geq 0\}$, and $\text{cone } S := \{\sum_{i=1}^r \lambda_i x_i \mid r \in \mathbb{N}, x_i \in S, \lambda_i \geq 0\}$, respectively, with $\text{cone } S = \text{pos}(\text{conv } S) = \text{conv}(\text{pos } S)$. The closure of the latter is $\overline{\text{cone } S} := \text{cl}(\text{cone } S)$.

The *relative interior* of a convex set $C \subset \mathcal{E}$, denoted $\text{ri } C$, is the interior of C relative to its affine hull. By [2, Section 6.2], we have

$$(2.1) \quad x \in \text{ri } C \iff \text{pos}(C - x) = \text{span}(C - x).$$

The *polar set* of $S \subset \mathcal{E}$ is defined by $S^\circ := \{v \in \mathcal{E} \mid \langle v, x \rangle \leq 1 \ (x \in S)\}$, and the *horizon cone* is the closed cone $S^\infty := \{v \in \mathcal{E} \mid \exists \{\lambda_k\} \downarrow 0, \{x_k \in S\} : \lambda_k x_k \rightarrow v\}$. For a convex set $C \subset \mathcal{E}$, C^∞ coincides with the *recession cone* of the closure of C , i.e.

$$(2.2) \quad C^\infty = \{v \mid x + tv \in \text{cl } C \ (t \geq 0, x \in C)\} = \{y \mid C + y \subset C\}.$$

For $f : \mathcal{E} \rightarrow \overline{\mathbb{R}}$ its *domain* and *epigraph* are given by $\text{dom } f := \{x \in \mathcal{E} \mid f(x) < +\infty\}$ and $\text{epi } f := \{(x, \alpha) \in \mathcal{E} \times \mathbb{R} \mid f(x) \leq \alpha\}$, respectively. We say f is *proper* if $f(x) > -\infty$ for all $x \in \text{dom } f \neq \emptyset$. We call f *convex* if its epigraph $\text{epi } f$ is convex, and *closed* (or *lower semicontinuous*) if $\text{epi } f$ is closed. If f is proper, we call it *positively homogeneous* if $\text{epi } f$ is a cone, and *sublinear* if $\text{epi } f$ is a convex cone. In what follows we use the following abbreviations:

$$\Gamma(\mathcal{E}) := \{f : \mathcal{E} \rightarrow \mathbb{R} \cup \{+\infty\} \mid f \text{ proper, convex}\}, \quad \Gamma_0(\mathcal{E}) := \{f \in \Gamma(\mathcal{E}) \mid f \text{ closed}\}.$$

The *lower semicontinuous hull* $\text{cl } f$ and the *horizon function* f^∞ of f are defined through the relations $\text{cl}(\text{epi } f) = \text{epi } \text{cl } f$ and $\text{epi } f^\infty = (\text{epi } f)^\infty$, respectively. For $f \in \Gamma_0(\mathcal{E})$, f^∞ is also known as the *recession function* [15, p. 66] or the *asymptotic function* [1, 10]. The *horizon cone of a function* f is defined as $\text{hzn } f := \{x \mid f^\infty(x) \leq 0\}$, and for $f \in \Gamma_0$, we have $\text{hzn } f = \{x \mid f(x) \leq \mu\}^\infty$ for $\mu \in \mathbb{R}$ such that $\{x \mid f(x) \leq \mu\} \neq \emptyset$ [15, Theorem 8.7].

For a convex function $f : \mathcal{E} \rightarrow \mathbb{R} \cup \{+\infty\}$ its *subdifferential* at $\bar{x} \in \text{dom } f$ is given by $\partial f(\bar{x}) := \{v \in \mathcal{E} \mid f(x) \geq f(\bar{x}) + \langle v, x - \bar{x} \rangle \ (x \in \mathcal{E})\}$. For $f \in \Gamma_0(\mathcal{E})$, we have $\text{ri}(\text{dom } f) \subset \text{dom } \partial f \subset \text{dom } f$, see e.g. [15, p. 227], where $\text{dom } \partial f := \{x \in \mathcal{E} \mid \partial f(x) \neq \emptyset\}$ is the *domain of the subdifferential*.

For a function $f : \mathcal{E} \rightarrow \overline{\mathbb{R}}$ its (*Fenchel*) *conjugate* $f^* : \mathcal{E} \rightarrow \overline{\mathbb{R}}$ is given by $f^*(y) := \sup_{x \in \mathcal{E}} \{\langle x, y \rangle - f(x)\}$, and $f \in \Gamma_0(\mathcal{E})$ if and only if $f = f^{**} := (f^*)^*$ is proper.

Given a nonempty $S \subset \mathcal{E}$, its *indicator function* $\delta_S : \mathcal{E} \rightarrow \mathbb{R} \cup \{+\infty\}$ is given by $\delta_S(x) = 0$ for $x \in S$ and $+\infty$ otherwise. The indicator of S is convex if and only if

S is a convex set, in which case the *normal cone* of S at $\bar{x} \in S$ is given by $N_S(\bar{x}) := \partial\delta_S(\bar{x}) = \{v \in \mathcal{E} \mid \langle v, x - \bar{x} \rangle \leq 0 \ (x \in S)\}$. The *support function* $\sigma_S : \mathcal{E} \rightarrow \mathbb{R} \cup \{+\infty\}$ and the *gauge function* $\gamma_S : \mathcal{E} \rightarrow \mathbb{R} \cup \{+\infty\}$ of a nonempty set $S \subset \mathcal{E}$ are given respectively by $\sigma_S(x) := \sup_{v \in S} \langle v, x \rangle$ and $\gamma_S(x) := \inf \{t \geq 0 \mid x \in tS\}$. Here we use the standard convention that $\inf \emptyset = +\infty$.

Given $C \subset \mathcal{E}$ is closed and convex, the *barrier cone* of C is defined by $\text{bar } C := \text{dom } \sigma_C$. The closure of the barrier cone of C and the horizon cone are paired in polarity, i.e.

$$(2.3) \quad (\text{bar } C)^\circ = C^\infty \quad \text{and} \quad \text{cl}(\text{bar } C) = (C^\infty)^\circ.$$

For two functions $f_1, f_2 : \mathcal{E} \rightarrow \overline{\mathbb{R}}$, their *infimal convolution* is

$$(f_1 \square f_2)(x) := \inf_{y \in \mathcal{E}} \{f_1(x - y) + f_2(y)\} \quad (x \in \mathcal{E}).$$

The generalized matrix-fractional function. As noted in the introduction, the GMF function is the support function of $\mathcal{D}(A, B)$ given in (1.2). Hence, we write

$$(2.4) \quad \varphi(X, V) = \sigma_{\mathcal{D}(A, B)}(X, V)$$

and also refer to $\sigma_{\mathcal{D}(A, B)}$ as the GMF function. From [5, Theorem 4.1], we obtain the formula

$$(2.5) \quad \varphi(X, V) = \begin{cases} \frac{1}{2} \text{tr} \left(\begin{pmatrix} X \\ B \end{pmatrix}^T M(V)^\dagger \begin{pmatrix} X \\ B \end{pmatrix} \right) & \text{if} \quad \text{rge} \begin{pmatrix} X \\ B \end{pmatrix} \subset \text{rge } M(V), \ V \in \mathcal{K}_A, \\ +\infty & \text{else,} \end{cases}$$

where $(A, B) \in \mathbb{R}^{\ell \times n} \times \mathbb{R}^{\ell \times m}$ with $\text{rge } B \subset \text{rge } A$ and \mathcal{K}_A is the cone of all symmetric matrices that are positive semidefinite with respect to the subspace $\ker A$, i.e.

$$(2.6) \quad \mathcal{K}_A := \{V \in \mathbb{S}^n \mid u^T V u \geq 0 \ (u \in \ker A)\},$$

and $M(V)^\dagger$ is the Moore-Penrose pseudoinverse of the *bordered matrix*

$$(2.7) \quad M(V) = \begin{pmatrix} V & A^T \\ A & 0 \end{pmatrix}.$$

The *matrix-fractional function* [4, 9] is obtained by setting A and B to zero.

The GMF function $\varphi = \sigma_{\mathcal{D}(A, B)}$ appears in Burke and Hoheisel [5] and Burke, Hoheisel and Gao [6], where it is shown that

$$(2.8) \quad \begin{aligned} \text{dom } \varphi &= \text{dom } \partial \varphi = \left\{ (X, V) \in \mathbb{E} \mid \text{rge} \begin{pmatrix} X \\ B \end{pmatrix} \subset \text{rge } M(V), \ V \in \mathcal{K}_A \right\}, \\ \text{int}(\text{dom } \varphi) &= \left\{ (X, V) \in \mathbb{E} \mid \text{rge} \begin{pmatrix} X \\ B \end{pmatrix} \subset \text{rge } M(V), \ V \in \text{int } \mathcal{K}_A \right\} \neq \emptyset. \end{aligned}$$

For a deeper understanding of the support function φ , a description of the closed convex hull of the (nonconvex) set $\mathcal{D}(A, B)$ is critical. An arduous representation of $\overline{\text{conv}} \mathcal{D}(A, B)$ was obtained in [5, Proposition 4.3]. A much simpler and more versatile expression was proven in [6, Theorem 2], see below. The key ingredient in the newer expression is the (closed, convex) cone \mathcal{K}_A defined in (2.6), which reduces to \mathbb{S}_+^n when $A = 0$. We briefly summarize the geometric and topological properties of \mathcal{K}_A useful to our study. These follow from [6, Proposition 1] (by setting $\mathcal{S} = \ker A$).

PROPOSITION 2.1. *For $A \in \mathbb{R}^{\ell \times n}$ let $P \in \mathbb{R}^{n \times n}$ be the orthogonal projection onto $\ker A$ and let \mathcal{K}_A be given by (2.6). Then the following hold:*

- (a) $\mathcal{K}_A = \{V \in \mathbb{S}^n \mid PVP \succeq 0\}$.
- (b) $\mathcal{K}_A^\circ = \text{cone } \{-vv^T \mid v \in \ker A\} = \{W \in \mathbb{S}^n \mid W = PWP \preceq 0\}$
- (c) $\text{int } \mathcal{K}_A = \{V \in \mathbb{S}^n \mid u^T Vu > 0 \ (u \in \ker A \setminus \{0\})\}$.

The central result in Burke, Hoheisel and Gao [6] now follows.

THEOREM 2.2 ([6, Theorem 2]). *Let $\mathcal{D}(A, B)$ be given by (1.2). Then*

$$\overline{\text{conv}} \mathcal{D}(A, B) = \Omega(A, B) := \left\{ (Y, W) \in \mathbb{E} \mid AY = B \text{ and } \frac{1}{2}YY^T + W \in \mathcal{K}_A^\circ \right\}.$$

In particular, Theorem 2.2 implies that $\varphi = \sigma_{\mathcal{D}(A, B)} = \sigma_{\Omega(A, B)}$, since $\sigma_S = \sigma_{\overline{\text{conv}} S}$ for all subsets S of a Euclidean space. This identity is used throughout.

3. Infimal projections of the generalized matrix-fractional function. We now focus on infimal projections involving the GMF function. Consider

$$(3.1) \quad \psi : \mathbb{E} \rightarrow \overline{\mathbb{R}}, \quad \psi(X, V) = \varphi(X, V) + h(V),$$

where $\varphi \in \Gamma_0(\mathbb{E})$ is given in (1.1) and $h \in \Gamma_0(\mathbb{S}^n)$. Our primary object of study is the infimal projection of the sum ψ in the variable V under the standing assumption that $\text{rge } B \subset \text{rge } A$, i.e. $\{Y \in \mathbb{R}^{n \times m} \mid AY = B\} \neq \emptyset$:

$$(3.2) \quad p : \mathbb{R}^{n \times m} \rightarrow \overline{\mathbb{R}}, \quad p(X) = \inf_{V \in \mathbb{S}^n} \psi(X, V).$$

We lead with some elementary observations.

LEMMA 3.1 (Domain of p). *Let p be defined by (3.2). Then the following hold:*

- (a) p is convex.
- (b) $\text{dom } p = \{X \in \mathbb{R}^{n \times m} \mid \exists V \in \mathcal{K}_A \cap \text{dom } h : \text{rge } \begin{pmatrix} X \\ B \end{pmatrix} \subset \text{rge } M(V)\}$. In particular, $\text{dom } p \neq \emptyset$ if and only if $\text{dom } h \cap \mathcal{K}_A \neq \emptyset$.

Moreover, if $\text{dom } p \neq \emptyset$ then the following hold:

- (c) If $B = 0$ (e.g. if $A = 0$) then $\text{dom } p$ is a subspace, hence relatively open.
- (d) If $\text{rank } A = \ell$ (full row rank) and $\text{dom } h \cap \text{int } \mathcal{K}_A \neq \emptyset$, then $\text{dom } p = \mathbb{R}^{n \times m}$.
- (e) If $\text{dom } h \cap \mathcal{K}_A \neq \emptyset$ and $(\text{dom } h)^\infty \cap \mathcal{K}_A = \{0\}$, then p is proper, hence $p \in \Gamma$.

Proof. (a) The convexity follows from, e.g., [16, Proposition 2.22].

(b) We have $X \in \text{dom } p$ if and only if there is a $V \in \mathbb{S}^n$ such that $(X, V) \in \text{dom } \psi = (\text{dom } \varphi) \cap (\mathbb{R}^{n \times m} \times \text{dom } h)$. Hence the representation for $\text{dom } p$ follows from the one of $\text{dom } \varphi$ in (2.8). This representation for $\text{dom } p$ tells us that $\text{dom } p \neq \emptyset$ implies that $\text{dom } h \cap \mathcal{K}_A \neq \emptyset$. On the other hand, if $V \in \text{dom } h \cap \mathcal{K}_A$, then $(VY, V) \in \text{dom } \psi$ for any $Y \in \mathbb{R}^{n \times m}$ satisfying $AY = B$, and so $(VY, V) \in \text{dom } p \neq \emptyset$.

(c) If $B = 0$, we have $X \in \text{dom } p$ if and only if $\text{span } \{X\} \subset \text{dom } p$. Since $\text{dom } p$ is also convex, it is a subspace, see, e.g., [16, Proposition 3.8].

(d) By the description of $\text{int } \mathcal{K}_A$ in Proposition 2.1 (c), the assumptions imply that there exists $V \in \text{dom } h \cap \mathcal{K}_A$ such that $M(V)$ is invertible, see [5, Proposition 3.3]. This readily gives the desired statement in view of (b).

(e) By part (b), $\text{dom } p \neq \emptyset$. Hence let $X \in \text{dom } p$, i.e. there is a $V \in \mathcal{K}_A \cap \text{dom } h$ such that $\text{rge } \begin{pmatrix} X \\ B \end{pmatrix} \subset \text{rge } M(V)$. If $p(X) = -\infty$, there is a sequence $\{V_k \in \mathbb{S}^n \cap \text{dom } h\}$ with $\{(X, V_k) \in \text{dom } \varphi\}$ such that $\psi(X, V_k) \rightarrow -\infty$. This implies that $\varphi(X, V_k) \rightarrow -\infty$ or $h(V_k) \rightarrow -\infty$. In either case, this tells us that $\|V_k\| \rightarrow \infty$ since both φ and h are

closed and proper. Consequently, there is a subsequence $J \subset \mathbb{N}$, and a matrix $\widehat{V} \in \mathbb{S}^n$ such that $(V_v / \|V_k\|) \xrightarrow{J} \widehat{V}$. Hence $0 \neq \widehat{V} \in (\text{dom } h \cap \mathcal{K}_A)^\infty = (\text{dom } h)^\infty \cap \mathcal{K}_A$, which contradicts the hypothesis. \square

We give two examples to illustrate various statements in Lemma 3.1. The first shows that an assumption of the type in part (e) is required to establish that p is proper.

EXAMPLE 3.2 (p improper). *Let $m = n = 1$, $A = 0$, $B = 0$ and $h(v) = -v$.*

Since $v^\dagger = \begin{cases} \frac{1}{v} & \text{if } v \neq 0, \\ 0 & \text{if } v = 0, \end{cases}$ we have $\varphi(x, v) = \begin{cases} \frac{x^2}{2v} & \text{if } v > 0, \\ 0 & \text{if } v = 0, \\ +\infty & \text{if } v < 0 \end{cases}$ $((x, v) \in \mathbb{R}^2)$.

Therefore, $p \equiv -\infty$ since

$$p(x) = \inf_{v \in \mathbb{R}} \varphi(x, v) + h(v) = \inf_{v > 0} \left\{ \frac{x^2}{2v} - v \right\} = -\infty \quad (x \in \mathbb{R}).$$

The properness condition given in Lemma 3.1 (e) is revisited in Definition 3.10 where it is called *boundedness primal constraint qualification* (BPCQ). It is the strongest of the constraint qualifications we discuss.

The second example shows $\text{dom } p$ may not be relatively open if $B \neq 0$.

EXAMPLE 3.3 ($\text{dom } p$ not relatively open). *Let $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ and $b = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Then $\ker A = \text{span} \{ \begin{pmatrix} 1 \\ -1 \end{pmatrix} \}$ and $\mathcal{K}_A = \{ \begin{pmatrix} v & w \\ w & u \end{pmatrix} \mid v + u \geq 2w \}$. Moreover, put $\bar{V} := \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}$ and define $\mathcal{V} := [0, 1] \cdot \bar{V} = \{ \begin{pmatrix} 2w & w \\ w & 0 \end{pmatrix} \mid w \in [0, 1] \} \subset \mathbb{S}^2$. Then \mathcal{V} is convex and compact. Let $h \in \Gamma_0(\mathbb{S}^2)$ be any function with $\text{dom } h = \mathcal{V}$. Note that $\text{dom } h \cap \mathcal{K}_A = \mathcal{V}$. Hence*

$$\begin{aligned} x \in \text{dom } p &\iff \exists w \in [0, 1] : \begin{pmatrix} x \\ b \end{pmatrix} \in \text{rge} \begin{pmatrix} w\bar{V} & A^T \\ A & 0 \end{pmatrix} \\ &\iff \exists w \in [0, 1], r, s \in \mathbb{R}^2 : \begin{pmatrix} x \\ b \end{pmatrix} = w\bar{V}r + A^T s, \\ &\iff \exists w \in [0, 1], \lambda, \mu \in \mathbb{R} : x = w \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix} \left[\begin{pmatrix} 0 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right] + \mu \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ &\iff \exists w \in [0, 1], \gamma \in \mathbb{R} : x = w \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \gamma \begin{pmatrix} 1 \\ 1 \end{pmatrix}. \end{aligned}$$

Therefore, $\text{dom } p = [0, 1] \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \text{span} \{ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \}$, and hence $\text{ri}(\text{dom } p) = (0, 1) \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \text{span} \{ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \}$, so that $\text{dom } p$ is clearly not relatively open.

The preceding example, shows that $\text{dom } p$ may fail to be a subspace if $B \neq 0$, hence this assumption in Lemma 3.1(c) is not superfluous. On the other hand, Lemma 3.1 (d) and Example 3.18 (a) illustrate that the condition $B = 0$ is only sufficient but not necessary for $\text{dom } p$ to be a subspace.

3.1. The functions ψ , ψ^* , and their subdifferentials. The study of the infimal projection p in (3.2) requires an understanding of the properties of the function ψ from (3.1), its conjugate ψ^* , and their subdifferentials. For this we make extensive use of the condition

$$(CCQ) \quad \text{ri}(\text{dom } h) \cap \text{int } \mathcal{K}_A \neq \emptyset,$$

which we refer to as the *conjugate constraint qualification*. As a direct consequence of the *line segment principle* (cf. [15, Theorem 6.1]), we have

$$(3.3) \quad \text{ri}(\text{dom } h) \cap \text{int } \mathcal{K}_A \neq \emptyset \iff \text{dom } h \cap \text{int } \mathcal{K}_A \neq \emptyset.$$

LEMMA 3.4 (Conjugate of ψ). *Let ψ be given as in (3.1) and define*

$$(3.4) \quad \eta : (Y, W) \in \mathbb{E} \mapsto \inf_{T \in \mathbb{S}^n} h^*(W - T) + \delta_{\Omega(A, B)}(Y, T).$$

Then

$$(3.5) \quad \begin{aligned} \text{dom } \eta &= \Omega(A, B) + (\{0\} \times \text{dom } h^*) \\ &= \left\{ (Y, W) \mid AY = B, \left(-\frac{1}{2}YY^T + \mathcal{K}_A^\circ \right) \cap (W - \text{dom } h^*) \neq \emptyset \right\}, \end{aligned}$$

and the following hold:

- (a) If $\psi \not\equiv +\infty$, then $\psi \in \Gamma_0(\mathbb{E})$.
- (b) If $\text{dom } h \cap \mathcal{K}_A \neq \emptyset$ then $\psi, \psi^* \in \Gamma_0(\mathbb{E})$ with $\psi^* = \text{cl } \eta$.
- (c) Under CCQ, we have $\psi^* = \eta$. Moreover, in this case, the infimum in the definition of η is attained on the whole domain, i.e.

$$(3.6) \quad \mathfrak{S}(\bar{Y}, \bar{W}) := \underset{T \in \mathbb{S}^n}{\text{argmin}} \left\{ h^*(\bar{W} - T) \mid (\bar{Y}, T) \in \Omega(A, B) \right\}$$

is nonempty for all $(\bar{Y}, \bar{W}) \in \text{dom } \psi^*$.

- (d) Under CCQ, $\text{dom } \partial\psi^* = \{(Y, W) \mid \emptyset \neq \mathfrak{S}(Y, W)\}$ and, for every $(Y, W) \in \text{dom } \partial\psi^*$, we have

$$\partial\psi^*(Y, W) = \left\{ (X, V) \mid \begin{array}{l} \exists T \in \mathbb{S}^n : V \in \partial h^*(W - T) \cap \mathcal{K}_A, \\ \left\langle V, \frac{1}{2}YY^T + T \right\rangle = 0, \text{rge}(X - VY) \subset (\ker A)^\perp \end{array} \right\}.$$

Proof. Note that $\eta(Y, W) < +\infty$ if and only if there is a $W_1, W_2 \in \mathbb{S}^n$ such that $W = W_1 + W_2$, $(Y, W_1) \in \Omega(A, B)$ and $W_2 \in \text{dom } h^*$, or equivalently, $(Y, W) \in \Omega(A, B) + (\{0\} \times \text{dom } h^*)$, which in turn is equivalent to $AY = B$, $T \in -\frac{1}{2}YY^T + \mathcal{K}_A^\circ$ and $T \in W - \text{dom } h^*$ giving (3.5).

Define $\hat{h} : \mathbb{E} \rightarrow \bar{\mathbb{R}}$ by $\hat{h}(X, V) := h(V)$. Then $\text{dom } \hat{h} = \mathbb{R}^{n \times m} \times \text{dom } h$ and $\psi = \varphi + \hat{h} = \sigma_{\Omega(A, B)} + \hat{h}$.

- (a) The sum of two closed, proper, convex functions (here φ and \hat{h}) is closed and convex. It is proper if and (only) if the sum is not constantly $+\infty$.
- (b) The sum of two proper functions is proper if and only if the domains of both functions intersect. By (2.8), we have $\text{dom } \hat{h} \cap \text{dom } \varphi \neq \emptyset$ if and only if $\text{dom } h \cap \mathcal{K}_A \neq \emptyset$. Therefore, ψ is proper if (and only if) the latter condition holds. Combined with (a) this shows $\psi \in \Gamma_0(\mathbb{E})$, and so $\psi^* \in \Gamma_0(\mathbb{E})$. Moreover, by Appendix Theorem 7.1 (a), $\psi^*(Y, W) = \text{cl}(\delta_{\Omega(A, B)} \square \hat{h}^*)(Y, W)$. Since $\hat{h}^*(Y, W) = \delta_{\{0\}}(Y) + h^*(W)$, $(\delta_{\Omega(A, B)} \square \hat{h}^*)(Y, W) = \inf_{(Y, T) \in \Omega(A, B)} h^*(W - T) = \eta(Y, W)$, proving $\psi^* = \text{cl } \eta$.
- (c) By [5, Theorem 4.1], $\text{int}(\text{dom } \varphi) = \{(X, V) \mid V \in \text{int } \mathcal{K}_A\}$ and, by definition, $\text{ri}(\text{dom } \hat{h}) = \mathbb{R}^{n \times m} \times \text{ri}(\text{dom } h)$. Hence

$$(3.7) \quad \text{ri}(\text{dom } \hat{h}) \cap \text{ri}(\text{dom } \varphi) \neq \emptyset \iff \text{ri}(\text{dom } h) \cap \text{int } \mathcal{K}_A \neq \emptyset.$$

Theorem 7.1 (a) (applied to φ and \hat{h}), CCQ, and (3.7) imply $\psi^* = \eta$ with

$$(3.8) \quad \emptyset \neq \mathcal{T}(\bar{Y}, \bar{W}) := \underset{(Y, T), (0, W) \in \mathbb{E}}{\text{argmin}} \left\{ h^*(W) \mid (Y, T) \in \Omega(A, B), Y = \bar{Y}, \bar{W} = W + T \right\}.$$

Since

$$(3.9) \quad \begin{aligned} \mathfrak{S}(\bar{Y}, \bar{W}) &= \left\{ T \in \mathbb{S}^n \mid [(\bar{Y}, T), (0, \bar{W} - T)] \in \mathcal{T}(\bar{Y}, \bar{W}) \right\}, \text{ and} \\ \mathcal{T}(\bar{Y}, \bar{W}) &= \left\{ [(\bar{Y}, T), (0, \bar{W} - T)] \mid T \in \mathfrak{S}(\bar{Y}, \bar{W}) \right\}, \end{aligned}$$

we have $\mathfrak{S}(\bar{Y}, \bar{W}) \neq \emptyset$ if and only if $\mathcal{T}(\bar{Y}, \bar{W}) \neq \emptyset$.

(d) Observe that $\partial\varphi^* = N_{\Omega(A,B)}$ and $\partial\hat{h}^* = \mathbb{R}^{n \times m} \times \partial h^*$ with $\text{dom } \partial\hat{h}^* = \{0\} \times \text{dom } \partial h^*$. Then part (c) and Theorem 7.1 (d) (applied to φ and \hat{h}) yield

$$\begin{aligned}\partial\psi^*(Y, W) &= \left\{ (X, V) \mid \begin{array}{l} (X, V) \in \partial\varphi^*(Y_1, W_1) \cap \partial\hat{h}^*(Y_2, W_2), \\ (Y, W) = (Y_1, W_1) + (Y_2, W_2) \end{array} \right\} \\ &= \left\{ (X, V) \mid \exists T \in \mathbb{R}^{n \times m} : (X, V) \in N_{\Omega(A,B)}(Y, T), V \in \partial h^*(W - T) \right\}.\end{aligned}$$

The claim follows from the representation for $N_{\Omega(A,B)}(Y, T)$ in [6, Proposition 3]. \square

COROLLARY 3.5 (Subdifferential of ψ). *Let ψ be given by (3.1) and \mathfrak{S} by (3.6). Then the following hold:*

(a) *If $(\bar{Y}, \bar{W}) \in \partial\varphi(\bar{X}, \bar{V}) + (\{0\} \times \partial h(\bar{V}))$, then $\mathfrak{S}(\bar{Y}, \bar{W}) \neq \emptyset$ and*

$$(3.10) \quad \mathfrak{S}(\bar{Y}, \bar{W}) = \left\{ T \in \mathbb{S}^n \mid \bar{W} - T \in \partial h(\bar{V}), (\bar{Y}, T) \in \partial\varphi(\bar{X}, \bar{V}) \right\},$$

where $\partial\varphi$ is described in [6, Corollary 3.2].

(b) *Under CCQ we have*

$$\text{dom } \partial\psi = \left\{ (X, V) \mid V \in \text{dom } \partial h \cap \mathcal{K}_A, \text{rge} \begin{pmatrix} X \\ B \end{pmatrix} \subset \text{rge } M(V) \right\}.$$

Moreover, for all $(\bar{X}, \bar{V}) \in \text{dom } \partial\psi$ and all $(\bar{Y}, \bar{W}) \in \partial\psi(\bar{X}, \bar{V})$, we have $\mathfrak{S}(\bar{Y}, \bar{W}) \neq \emptyset$ and

$$(3.11) \quad \begin{aligned}\partial\psi(\bar{X}, \bar{V}) &= \partial\varphi(\bar{X}, \bar{V}) + (\{0\} \times \partial h(\bar{V})) \\ &= \{(\bar{Y}, \bar{W}) \in \mathbb{E} \mid \mathfrak{S}(\bar{Y}, \bar{W}) \neq \emptyset\}.\end{aligned}$$

Proof. Set $f_1(X, V) := \varphi(X, V)$ and $f_2(X, V) := h(V)$, so that the mapping \mathcal{T} in Theorem 7.1 is given by (3.8). Then, using (3.9), part (a) follows from Theorem 7.1 (b), and part (b) follows from Theorem 7.1 (c). \square

3.2. Infimal projection I. Let the infimal projection p be as given in (3.2). We are now in position to give a formula for p^* under CCQ.

THEOREM 3.6 (Conjugate of p and properties under CCQ). *Let p be given by (3.2). Moreover, let $\eta_0 : \mathbb{R}^{n \times m} \rightarrow \bar{\mathbb{R}}$ be given by*

$$(3.12) \quad \eta_0 : Y \mapsto \inf_{(Y, -W) \in \Omega(A, B)} h^*(W).$$

Then the following hold:

(a) $\text{dom } \eta_0 = \{Y \in \mathbb{R}^{n \times m} \mid AY = B, (-\frac{1}{2}YY^T + \mathcal{K}_A^\circ) \cap (-\text{dom } h^*) \neq \emptyset\}$
 $= \{Y \in \mathbb{R}^{n \times m} \mid (Y, 0) \in \text{dom } \eta\}$, where η is defined in (3.4).

(b) *If $\text{dom } h \cap \mathcal{K}_A \neq \emptyset$, then $p^* = \text{cl } \eta_0$, hence $\text{dom } \eta_0 \subset \text{dom } p^*$.*

(c) *If CCQ holds for p , then $\text{dom } p = \mathbb{R}^{n \times m}$ and the following hold:*

(I) $p^* = \eta_0$, i.e.

$$(3.13) \quad p^*(Y) = \inf_{(Y, -W) \in \Omega(A, B)} h^*(W).$$

Moreover, for all $Y \in \text{dom } p^$, the infimum is a minimum, i.e. there exists $W \in \text{dom } h^*$ with $(Y, -W) \in \Omega(A, B)$ such that $p^*(Y) = h^*(W)$.*

In particular, p^* is closed, proper convex under CCQ if and only if it is proper, which is the case if and only if

$$\begin{aligned}\emptyset \neq \text{dom } \psi^*(\cdot, 0) &= \{Y \mid \exists W \in \text{dom } h^* : (Y, -W) \in \Omega(A, B)\} \\ &= \{Y \mid (Y, 0) \in \Omega(A, B) + (\{0\} \times \text{dom } h^*)\},\end{aligned}$$

with $\text{dom } p^* = \text{dom } \psi^*(\cdot, 0) = \text{dom } \eta_0$.

(II) p is either (convex) finite-valued (hence $p \in \Gamma_0(\mathbb{R}^{n \times m})$) or $p \equiv -\infty$. The former is the case if and only if $\text{dom } \psi^*(\cdot, 0) \neq \emptyset$.

Proof. (a) This follows from the definition of η_0 . Also note that $\eta_0 = \eta(\cdot, 0)$.

(b) By Lemma 3.4 (b), $\psi^* \in \Gamma_0(\mathbb{E})$ with $\psi^* = \text{cl } \eta$ with η defined in (3.4). Hence, by [16, Theorem 11.23 (c)], $p^* = \psi^*(\cdot, 0)$ which establishes the given representation. The domain containment is clear as $p^* = \text{cl } \eta_0 \leq \eta_0$.

(c) Observe that $\text{dom } p = L(\text{dom } \varphi \cap \mathbb{R}^{n \times m} \times \text{dom } h)$, where $L : (X, V) \mapsto X$, see Lemma 3.1. By CCQ, we have $\text{ri}(\text{dom } h) \cap \text{int } \mathcal{K}_A \neq \emptyset$, hence

$$\begin{aligned}\text{ri}(\text{dom } \varphi \cap (\mathbb{R}^{n \times m} \times \text{dom } h)) &= \text{int}(\text{dom } \varphi) \cap (\mathbb{R}^{n \times m} \times \text{ri}(\text{dom } h)) \\ &= (\mathbb{R}^{n \times m} \times \text{int } \mathcal{K}_A) \cap (\mathbb{R}^{n \times m} \times \text{ri}(\text{dom } h)) \\ &= \mathbb{R}^{n \times m} \times (\text{int } \mathcal{K}_A \cap \text{ri}(\text{dom } h)),\end{aligned}$$

where we use [5, Theorem 4.1] to represent $\text{int}(\text{dom } \varphi)$. This now gives

$$\text{ri}(\text{dom } p) = L[\text{ri}(\text{dom } \varphi \cap \mathbb{R}^{n \times m} \times \text{dom } h)] = \mathbb{R}^{n \times m}.$$

(c.I) As in part (b), $p^* = \psi^*(\cdot, 0)$. Hence, Lemma 3.4 (c) gives the identity $p^* = \eta_0$ under CCQ as well as the attainment statement. Since ψ^* is closed, proper, convex (under CCQ) by Lemma 3.4 (b), $\psi^*(\cdot, 0)$ is, too, if and only if $\text{dom } \psi^*(\cdot, 0) \neq \emptyset$, and so the statements about $p^* = \psi^*(\cdot, 0)$ follow.

(c.II) We have $\text{dom } p = \mathbb{R}^{n \times m}$. By [15, Corollary 7.2.3] this implies that either $p \equiv -\infty$ or p is finite-valued, which shows the first statement. For the second, again as $\text{dom } p = \mathbb{R}^{n \times m}$, observe that the convex function p is finite-valued if and only if it is proper, which is true if and only if p^* is proper, so I) gives the desired statement. \square

Observe that Example 3.2 shows that the condition $\emptyset \neq \text{dom } \psi^*(\cdot, 0)$ is essential in Theorem 3.6 (c.I-c.II). Indeed, in this example, $p \equiv -\infty$ so $\text{dom } p = \mathbb{R}$, while $h = \sigma_{\{-1\}}$ and $h^* = \delta_{\{-1\}}$, $\psi^*(\cdot, 0) = p^* \equiv \infty$, and CCQ is satisfied.

We now broaden our perspective of infimal projection by embedding it into a *perturbation duality framework* in the sense of [16, Theorem 11.39] or the development in [1, Chapter 5]. Given $\bar{X} \in \mathbb{R}^{n \times m}$, define $f_{\bar{X}}$ by

$$f_{\bar{X}}(X, V) := \psi(X + \bar{X}, V) \quad ((X, V) \in \mathbb{E}),$$

and $p_{\bar{X}}$ by

$$(3.14) \quad p_{\bar{X}}(X) := \inf_{V \in \mathbb{S}^n} f_{\bar{X}}(X, V) \quad (X \in \mathbb{R}^{n \times m}).$$

Then $f_{\bar{X}}^*(Y, W) = \psi^*(Y, W) - \langle \bar{X}, Y \rangle \quad ((Y, W) \in \mathbb{E})$, [16, Equation 11(3)]. Define

$$(3.15) \quad q_{\bar{X}}(W) := -\sup_Y \{\langle \bar{X}, Y \rangle - \psi^*(Y, W)\} \quad (W \in \mathbb{S}^n).$$

Then $q_{\bar{X}}$ is a convex function that pairs in duality with $p_{\bar{X}}$ satisfying the weak duality $p_{\bar{X}}(0) \geq -q_{\bar{X}}(0)$ ($\bar{X} \in \mathbb{R}^{n \times m}$). Applying the general perturbation duality to our scenario yields the following result.

PROPOSITION 3.7 (Shifted duality for p). *Let p be defined by (3.2), let $\bar{X} \in \text{dom } p$ and $q_{\bar{X}}$ be defined by (3.15). Then the following hold:*

- (a) *If $0 \in \text{ri}(\text{dom } q_{\bar{X}})$ then $p(\bar{X}) = -q_{\bar{X}}(0) \in \mathbb{R}$, $\text{argmin} \psi(\bar{X}, \cdot) \neq \emptyset$, and $\partial q_{\bar{X}}(0) \neq \emptyset$.*
- (b) *If $\bar{X} \in \text{ri}(\text{dom } p)$ then $p(\bar{X}) = -q_{\bar{X}}(0) \in \mathbb{R}$, $\text{argmax}_Y \{\langle \bar{X}, Y \rangle - \psi^*(Y, W)\} \neq \emptyset$, and $\partial p(\bar{X}) \neq \emptyset$.*
- (c) *Under either condition $0 \in \text{ri}(\text{dom } q_{\bar{X}})$ or $\bar{X} \in \text{ri}(\text{dom } p)$, p is lsc at \bar{X} and $-q_{\bar{X}}$ is lsc at 0.*
- (d) *We have*

$$\left. \begin{aligned} & p(\bar{X}) \\ &= \psi(\bar{X}, \bar{V}), \\ &= \langle \bar{X}, \bar{Y} \rangle - \psi^*(\bar{Y}, 0), \\ &= -q_{\bar{X}}(0) \end{aligned} \right\} \iff (\bar{Y}, 0) \in \partial \psi(\bar{X}, \bar{V}) \iff (\bar{X}, \bar{V}) \in \partial \psi^*(\bar{Y}, 0).$$

Proof. Let $\bar{X} \in \text{dom } p$ and observe that $p(X + \bar{X}) = p_{\bar{X}}(X)$ ($X \in \mathbb{R}^{n \times m}$), hence, in particular, $p(\bar{X}) = p_{\bar{X}}(0) \in \mathbb{R}$. Moreover, notice that ψ and hence $f_{\bar{X}}$ is proper (hence in Γ_0) as by assumption $\bar{X} \in \text{dom } p$ exists. Applying the results [1, Theorem 5.1.2–5.1.5, Corollary 5.1.2] to the duality pair $p_{\bar{X}}$ and $q_{\bar{X}}$ and translating from $p_{\bar{X}}$ at 0 to p at \bar{X} gives all the desired statements. \square

The domain of $q_{\bar{X}}$ plays a key role in interpreting this result in a given setting. Below we provide a useful representation of this domain using the set

$$(3.16) \quad \Omega_2(A, B) := \{W \in \mathbb{S}^n \mid \exists Y : (Y, W) \in \Omega(A, B)\}.$$

LEMMA 3.8 (Domain of $q_{\bar{X}}$). *Let $\bar{X} \in \mathbb{R}^{n \times m}$ and $q_{\bar{X}}$ defined by (3.15). Then $\text{dom } q_{\bar{X}} = \Omega_2(A, B) + \text{dom } h^*$.*

Proof. Using Lemma 3.4, observe that

$$\begin{aligned} q_{\bar{X}}(W) &= \inf_Y \{\psi^*(Y, W) - \langle \bar{X}, Y \rangle\} \\ &= \inf_Y \{\eta(Y, W) - \langle \bar{X}, Y \rangle\} \\ &= \inf_{(Y, T) \in \Omega(A, B)} \{h^*(W - T) - \langle \bar{X}, Y \rangle\}. \end{aligned}$$

Therefore,

$$\text{dom } q_{\bar{X}} = \{W \in \mathbb{S}^n \mid \exists (Y, T) \in \Omega(A, B) : W - T \in \text{dom } h^*\} = \Omega_2(A, B) + \text{dom } h^*.$$

\square

We now discuss various constraint qualifications for p .

3.3. Constraint qualifications. We start our analysis with a result about the set $\Omega_2(A, B)$ from (3.16), which was used in Lemma 3.8 to represent the domain of $q_{\bar{X}}$.

LEMMA 3.9 (Properties of $\Omega_2(A, B)$). *Let $\Omega_2(A, B)$ be as in (3.16). Then we have:*

- (a) $\Omega_2(A, B)$ is closed and convex with $\Omega_2(A, B)^\infty = \mathcal{K}_A^\circ$.

(b) $\Omega_2(A, B) = \text{dom } \varphi(\bar{X}, \cdot)^*$ for all $\bar{X} \in \mathbb{R}^{n \times m}$ such that $\varphi(\bar{X}, \cdot)$ is proper.
(c) We have
 $\text{ri } \Omega_2(A, B) = \{W \mid \exists Y : AY = B, \frac{1}{2}YY^T + W \in \text{ri } (\mathcal{K}_A^\circ)\} = \text{ri } (\text{dom } \varphi(\bar{X}, \cdot)^*)$
for all \bar{X} such that $\varphi(\bar{X}, \cdot)$ is proper.

Proof. (a) With the linear map $T : (Y, W) \mapsto W$ we have $\Omega_2(A, B) = T(\Omega(A, B))$. Therefore $\Omega_2(A, B)$ is convex. By [6, Proposition 10], we have $\Omega(A, B)^\infty = \{0\} \times \mathcal{K}_A^\circ$, and so $\ker T \cap \Omega(A, B)^\infty = \{0\}$ giving the remainder of (a) by [16, Theorem 3.10].

(b) Recall from [5, Theorem 4.1] that $\text{int } (\text{dom } \sigma_\varphi) = \{(X, V) \in \mathbb{E} \mid V \in \text{int } \mathcal{K}_A\}$, Thus we can apply Proposition 7.2 to $\bar{g} := \varphi(\bar{X}, \cdot)$ to infer that

$$\bar{g}^*(W) = \inf_{Y:(Y,W) \in \Omega(A,B)} \langle -\bar{X}, Y \rangle \quad (W \in \mathbb{S}^n).$$

This proves the claim.

(c) Observe that $\text{ri } \Omega_2(A, B) = \text{ri } T(\Omega(A, B)) = T(\text{ri } \Omega(A, B))$ and use [6, Proposition 8] to get the first representation. The second one follows from (b). \square

We now define the constraint qualifications central to our study. Note that CCQ was previously introduced in Section 3.1.

DEFINITION 3.10 (Constraint qualifications). *Let p be given by (3.2). We say that p satisfies*

- (i) PCQ: if $0 \in \text{ri } (\Omega_2(A, B) + \text{dom } h^*)$;
- (ii) strong PCQ (SPCQ): if $0 \in \text{int } (\Omega_2(A, B) + \text{dom } h^*)$;
- (iii) boundedness PCQ (BPCQ): if $\text{dom } h \cap \mathcal{K}_A \neq \emptyset$ and $(\text{dom } h)^\infty \cap \mathcal{K}_A = \{0\}$;
- (iv) CCQ: if $\text{ri } (\text{dom } h) \cap \text{int } \mathcal{K}_A \neq \emptyset$.
- (v) strong CCQ (SCCQ): if CCQ is satisfied and $\emptyset \neq \text{dom } \psi^*(\cdot, 0)$, or equivalently,

$$(3.17) \quad \begin{aligned} \emptyset \neq \Xi(A, B) &:= \left\{ Y \in \mathbb{R}^{n \times m} \mid AY = B, \frac{1}{2}YY^T \in \text{dom } h^* + \mathcal{K}_A^\circ \right\} \\ &= \left\{ Y \in \mathbb{R}^{n \times m} \mid (Y, 0) \in \Omega(A, B) + (\{0\} \times \text{dom } h^*) \right\}. \end{aligned}$$

The notation PCQ stands for *primal constraint qualification* while CCQ stands for *conjugate constraint qualification*. Theorem 3.6 and Lemma 3.8, respectively, give the following useful implications:

$$(3.18) \quad \begin{aligned} \text{CCQ} &\implies \text{dom } p^* = \Xi(A, B) \\ \text{SCCQ} &\implies \text{dom } p^* = \Xi(A, B) \neq \emptyset. \end{aligned}$$

The following results clarify the relations between the various constraint qualifications. We lead with characterizations of PCQ and BPCQ.

LEMMA 3.11 (Characterizations of (B)PCQ). *Let p be given by (3.2) and $\bar{X} \in \text{dom } p$, and set*

$$(3.19) \quad \psi_{\bar{X}} := \psi(\bar{X}, \cdot) \quad (\bar{X} \in \mathbb{R}^{n \times m}).$$

(a) The following are equivalent:

- (i) $0 \in \text{ri } (\text{dom } \psi_{\bar{X}}^*)$;
- (ii) PCQ holds for p ;
- (iii) $\exists Y \in \mathbb{R}^{n \times m} : AY = B, \frac{1}{2}YY^T \in \text{ri } (\mathcal{K}_A^\circ + \text{dom } h^*)$.

In addition, similar characterizations of SPCQ hold by substituting the interior for the relative interior.

(b) BPCQ holds for p if and only if $\text{dom } h \cap \mathcal{K}_A$ is nonempty and bounded.

Proof. (a) Defining $\varphi_{\bar{X}} := \varphi(\bar{X}, \cdot)$, we find that $\varphi_{\bar{X}}^* = \text{cl}(\varphi_{\bar{X}}^* \square h^*)$ and therefore $\text{ri}(\text{dom } \psi_{\bar{X}}^*) = \text{ri}(\text{dom } \varphi_{\bar{X}}^* + \text{dom } h^*) = \text{ri}(\Omega_2(A, B) + \text{dom } h^*)$, see Lemma 3.9 (c). This proves the first two equivalences. The third follows readily from the representation of $\text{ri}(\Omega(A, B))$ from [6, Proposition 8].

(b) Follows readily from [16, Theorem 3.5, Proposition 3.9]. \square

We point out that, under PCQ, Lemma 3.11 shows that the objective functions $\psi(\bar{X}, \cdot)$ ($\bar{X} \in \text{dom } p$) occurring in the definition of p in (3.2) are *weakly coercive* [1, Definition 3.2.1] when proper, see [1, Theorem 3.2.1]. This tells us that the infimum in (3.2) is attained under PCQ if finite [1, Proposition 3.2.2, Theorem 3.4.1], a fact that is stated again (and derived alternatively) in Theorem 3.15. Under SPCQ, the objective functions $\psi(\bar{X}, \cdot)$ ($\bar{X} \in \text{dom } p$) are *level-bounded* (or *coercive*), in which case the $\text{argmin} \psi(\bar{X}, \cdot)$ is nonempty and compact (and clearly convex). Finally, it was shown in Lemma 3.1 (e) that p is closed proper convex under BPCQ.

The next result shows the relations between the different notions of PCQ.

LEMMA 3.12. *Let p be given by (3.2). Then the following hold:*

(a) $BPCQ \implies SPCQ \implies PCQ$.

(b) *If $\text{int}(\text{dom } h^*) \cap \text{int}(-\Omega_2(A, B)) \neq \emptyset$, then PCQ and SPCQ are equivalent.*

Proof. (a) The first implication can be seen as follows: If BPCQ holds then $\text{dom } \psi_{\bar{X}} \subset \text{dom } h \cap \mathcal{K}_A$ is bounded (and nonempty exactly if $\bar{X} \in \text{dom } p$). Therefore $\psi_{\bar{X}}$ is level-bounded for all $\bar{X} \in \text{dom } p$, i.e. $0 \in \text{int}(\text{dom } \psi_{\bar{X}}^*)$ ($\bar{X} \in \text{dom } p$), see e.g. [16, Theorem 11.8]. In view of Lemma 3.11 (a) this implies that SPCQ holds.

The second implication is trivial.

(b) This follows directly from the definitions. \square

We now provide characterizations for CCQ.

LEMMA 3.13 (Characterizations of CCQ). *Let p be given by (3.2). Then*

(i) $\text{dom } h \cap \text{int } \mathcal{K}_A \neq \emptyset \iff$ (ii) CCQ holds for $p \iff$ (iii) $(-\mathcal{K}_A^\circ) \cap \text{hzn } h^* = \{0\}$.

Proof. The first equivalence was previously observed in (3.3). The second equivalence can be seen as follows: We apply [15, Corollary 16.2.2] (to $f_1 := h$ and $f_2 := \delta_{\mathcal{K}_A}$). This result tells us that $\text{ri}(\text{dom } h) \cap \text{int } \mathcal{K}_A \neq \emptyset$ if and only if there does not exist a matrix $W \in \mathbb{S}^n$ such that

$$(3.20) \quad (h^*)^\infty(W) + \sigma_{\mathcal{K}_A}(-W) \leq 0 \quad \text{and} \quad (h^*)^\infty(-W) + \sigma_{\mathcal{K}_A}(W) > 0.$$

Since $\sigma_{\mathcal{K}_A}(-W) = \delta_{\mathcal{K}_A^\circ}(-W)$, the first of these conditions is equivalent to the condition $W \in (-\mathcal{K}_A^\circ) \cap \text{hzn } h^*$. In particular, we can infer that $(-\mathcal{K}_A^\circ) \cap \text{hzn } h^* = \{0\}$ gives the inconsistency of (3.20) and thus establishes (iii) \Rightarrow (ii).

The second condition in (3.20) implies $W \neq 0$. Thus, in view of Proposition 2.1 (b), $0 \neq -W \in \mathcal{K}_A^\circ \subset \mathbb{S}_+^n$, and hence $W \notin \mathcal{K}_A^\circ$. Thus, every nonzero element of the set $(-\mathcal{K}_A^\circ) \cap \text{hzn } h^*$ satisfies (3.20). Thus, the nonexistence of a W satisfying (3.20) implies that $(-\mathcal{K}_A^\circ) \cap \text{hzn } h^* = \{0\}$, which altogether proves the result. \square

Note that for any proper, convex function f we always have $\text{hzn } f \subset (\text{dom } f)^\infty$ which, in view of Lemma 3.13, implies that the condition

$$(3.21) \quad (-\mathcal{K}_A^\circ) \cap (\text{dom } h^*)^\infty = \{0\}$$

is stronger than CCQ. However, (3.21) is not used in our study.

3.4. Infimal projection II. We return to our analysis of the infimal projection defining p in (3.2). The following result shows that the two key conditions appearing in Proposition 3.7, $0 \in \text{ri}(\text{dom } q_{\bar{X}})$ and $\bar{X} \in \text{ri}(\text{dom } p)$, correspond nicely to the constraint qualifications studied in Section 3.3.

COROLLARY 3.14. *Let p be defined by (3.2), let $\bar{X} \in \text{dom } p$ and $q_{\bar{X}}$ be defined by (3.15). Then the following hold:*

- (a) *PCQ holds for p if and only if $0 \in \text{ri}(\text{dom } q_{\bar{X}})$;*
- (b) *If CCQ holds, then $\bar{X} \in \text{ri}(\text{dom } p)$.*

Proof. (a) Follows immediately from Lemma 3.8 and the definition of PCQ.

(b) Under CCQ we have $\text{dom } p = \mathbb{R}^{n \times m}$ (see the proof of Theorem 3.6 (c.II)), hence (b) follows. \square

As a consequence of Corollary 3.14 and Proposition 3.7 we can add to the properties of p proven in Theorem 3.6.

THEOREM 3.15 (Properties of p under PCQ). *Let p , defined in (3.2), be such that PCQ is satisfied and $\text{dom } h \cap \mathcal{K}_A \neq \emptyset$ (i.e. $\text{dom } p \neq \emptyset$). Let $q_{\bar{X}}$ be given by (3.15). Then the following hold:*

- (a) $p \in \Gamma_0(\mathbb{R}^{n \times m})$;
- (b) $\text{argmin}_V \psi(\bar{X}, V) \neq \emptyset$ ($\bar{X} \in \text{dom } p$) (primal attainment);
- (c) $p(\bar{X}) = -q_{\bar{X}}(0)$ ($\bar{X} \in \text{dom } p$) (zero duality gap).

Proof. Let $\bar{X} \in \text{dom } p$. Under PCQ, by Corollary 3.14, we have $0 \in \text{ri}(\text{dom } q_{\bar{X}})$. Hence, by Proposition 3.7 (a), there is a $\bar{V} \in \mathbb{S}^n$ such that $p(\bar{X}) = \psi(\bar{X}, \bar{V})$, and so, by Proposition 3.7 (c), p is lsc at \bar{X} with $p(\bar{x}) \in \mathbb{R}$. The discussion in [1, p. 153] tells us that p is, in fact, closed, proper, convex.

Finally, the equality $p(\bar{X}) = -q_{\bar{X}}(0)$, also follows from Proposition 3.7 (a). \square

Theorem 3.15 can be proven entirely without the shifted duality framework in Proposition 3.7 by using the linear projection $L : (X, V) \rightarrow X$ used implicitly throughout our study. It can be seen that $p = L\psi$ is a *linear image* in the sense described in [15, p. 38]. Then [15, Theorem 9.2] gives all statements from Proposition 3.15 after realizing that the constraint qualification in [15, Theorem 9.2], which reads

$$(3.22) \quad \psi(0, V) > 0 \quad \text{or} \quad \psi^\infty(0, -V) \leq 0 \quad (V \in \mathbb{S}^n),$$

since $\ker L = \{0\} \times \mathbb{S}^n$, is equivalent to PCQ in this setting. However, we chose to derive Theorem 3.15 from the shifted duality scheme since this assists in the subdifferential analysis.

The next result follows readily from the foregoing study.

COROLLARY 3.16. *Let p be given by (3.2) and η_0 by (3.12). If PCQ and CCQ are satisfied for p then the following hold:*

- (a) *SCCQ holds and p is finite-valued.*
- (b) *(primal attainment) $p \in \Gamma_0(\mathbb{R}^{n \times m})$ is finite-valued and for all $\bar{X} \in \mathbb{R}^{n \times m}$ there exists \bar{V} such that $p(\bar{X}) = \psi(\bar{X}, \bar{V})$.*
- (c) *(dual attainment) $p^* = \eta_0$ and for all $\bar{Y} \in \text{dom } p^*$ there exists \bar{W} such that $(\bar{Y}, \bar{W}) \in \Omega(A, B)$ and $p^*(\bar{Y}) = h^*(-\bar{W})$.*

Proof. (a) Follows readily from Lemma 3.11 a) and the definition of SCCQ.

(b) By (a), SCCQ holds, so the first statement follows from Theorem 3.6 (c). The second is due to Theorem 3.15 (b).

(c) Since SCCQ holds, see (b), Theorem 3.15 (c) applies.

The table below summarizes most of our findings so far. Here $\bar{X} \in \text{dom } p$.

Consequence\Hypoth.	PCQ	SPCQ	BPCQ	CCQ	SCCQ	PCQ+CCQ
$p \in \Gamma_0 \vee p \equiv -\infty$	✓	✓	✓	✓	✓	✓
$p \in \bar{\Gamma}_0$	✓	✓	✓		✓	✓
$p(\bar{X}) = -q_{\bar{X}}(0)$	✓	✓	✓	✓ ¹	✓	✓
$\text{argmin } \psi(\bar{X}, \cdot) \neq \emptyset$	✓	✓	✓			✓
$\text{argmin } \psi(\bar{X}, \cdot)$ compact		✓	✓ ²			✓
$\text{dom } p = \mathbb{R}^{n \times m}$				✓	✓	✓
$\underset{(\bar{Y}, T) \in \Omega(A, B)}{\text{argmin}} h^*(-T) \neq \emptyset$				✓	✓	✓

In view of Proposition 3.7 (b) and Corollary 3.14 one might be inclined to think that using CCQ instead of the pointwise condition $\bar{X} \in \text{ri}(\text{dom } p)$ is excessively strong. However, computing the relative interior of $\text{dom } p$ without CCQ is problematic, cf. the derivations in the proof of Theorem 3.6 (c) under CCQ. Hence, we do not consider constraint qualifications weaker than CCQ.

We now turn our attention to subdifferentiation of p .

PROPOSITION 3.17 (Subdifferential of p). *Let p be given by (3.2). Then the following hold:*

(a) *Under SCCQ, $\text{dom } p = \text{dom } \partial p = \mathbb{R}^{n \times m}$ and we have*

$$(3.23) \quad \partial p(\bar{X}) = \underset{Y}{\text{argmax}} \{ \langle \bar{X}, Y \rangle - \inf_{(Y, T) \in \Omega(A, B)} h^*(-T) \},$$

which is nonempty and compact.

(b) *Under PCQ equation (3.23) holds, and, for $\bar{X} \in \text{dom } p$, we have*

$$\begin{aligned} \partial p(\bar{X}) &= \{ \bar{Y} \mid \exists \bar{V} : (\bar{Y}, 0) \in \partial \psi(\bar{X}, \bar{V}) \} \\ &= \{ \bar{Y} \mid \exists \bar{V} : (\bar{X}, \bar{V}) \in \partial \psi^*(\bar{Y}, 0) \} \\ &= \{ \bar{Y} \mid \exists \bar{V} : p(\bar{X}) = \psi(\bar{X}, \bar{V}) = \langle \bar{X}, \bar{Y} \rangle - p^*(\bar{Y}) \}. \end{aligned}$$

(c) *Under PCQ and CCQ, $\text{dom } p = \text{dom } \partial p = \mathbb{R}^{n \times m}$ and we have*

$$\partial p(\bar{X}) = \{ Y \mid \exists \bar{V}, \bar{T} : -\bar{T} \in \partial h(\bar{V}), (Y, \bar{T}) \in \partial \varphi(\bar{X}, \bar{V}) \},$$

which is nonempty and compact.

Proof. (a) Under SCCQ, p is convex and finite-valued (hence closed and proper), therefore $\text{dom } p = \text{dom } \partial p = \mathbb{R}^{n \times m}$ with $\partial p(X)$ compact for all $X \in \mathbb{R}^{n \times m}$. The representation (3.23) follows from [15, Theorem 23.5] and the fact that the closure for p^* can be dropped in the argmax problem.

(b) Under PCQ we also have that $p \in \Gamma_0$, hence the same reasoning as in (a) gives (3.23). We now prove the remainder: For the first identity notice that (see e.g. [10, Chapter D, Corollary 4.5.3])

$$\partial p(\bar{X}) = \{ Y \mid (Y, 0) \in \partial \psi(\bar{X}, \bar{V}) \} \quad (\bar{V} \in \underset{V}{\text{argmin}} \psi(\bar{X}, V)),$$

¹ $p(\bar{X}) \equiv -\infty$ is possible.

²BPCQ also implies that $\text{dom } \psi(\bar{X}, \cdot)$ is bounded.

the latter argmin set being nonempty due to what was argued above. The ' \subset '-inclusion is hence clear. For the reverse inclusion invoke the results in [16, Example 10.12] to see that if $(Y, 0) \in \psi(\bar{X}, \bar{V})$ then $\bar{V} \in \operatorname{argmin}_V \psi(\bar{X}, V)$.

The second identity in (c) is clear from [15, Theorem 23.5] as $\psi \in \Gamma_0(\mathbb{E})$.

The third follows from Proposition 3.7 in combination with Corollary 3.14 and recalling that $\psi^*(\bar{Y}, 0) = p^*(\bar{Y})$.

(c) Apply Corollary 3.5 to the first representation in (b). \square

For $\bar{X} \in \operatorname{rbd}(\operatorname{dom} p)$ the subdifferential $\partial p(\bar{X})$ can be empty. Moreover, it is unbounded if $\bar{X} \notin \operatorname{int}(\operatorname{dom} p)$. The latter may even occur under BPCQ as the following example shows.

EXAMPLE 3.18. Let $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $b = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ so that $\mathcal{K}_A = \{(v w) \mid u \geq 0\}$. Defining $h := \delta_{\mathcal{V}}$ for $\mathcal{V} := \{(v 0) \mid u \leq 0, v \in [0, 1]\}$ we hence find that $\operatorname{dom} h \cap \mathcal{K}_A = \{(v 0) \mid v \in [0, 1]\}$ and $\operatorname{dom} h \cap \operatorname{int} \mathcal{K}_A = \emptyset$, so that CCQ is violated but BPCQ (hence (S)PCQ) holds. We find that

$$\begin{aligned} x \in \operatorname{dom} p &\iff \exists V \in \mathcal{V} \cap \mathcal{K}_A : \begin{pmatrix} x \\ b \end{pmatrix} \in \operatorname{rge} \begin{pmatrix} V & A^T \\ A & 0 \end{pmatrix} \\ &\iff \exists v \in [0, 1], r, s \in \mathbb{R}^2 : \begin{pmatrix} x \\ b \end{pmatrix} = \begin{pmatrix} v & 0 \\ 0 & 0 \end{pmatrix} r + \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} s, \\ &\iff \exists v \in [0, 1], \rho, \sigma \in \mathbb{R} : x = \begin{pmatrix} v & 0 \\ 0 & 0 \end{pmatrix} \left[\begin{pmatrix} 1 \\ 0 \end{pmatrix} + \rho \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right] + \sigma \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ &\iff x \in \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}. \end{aligned}$$

Therefore we have $\operatorname{dom} p = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}$. In particular, $\operatorname{dom} p$ is a proper subspace of \mathbb{R}^2 , hence relatively open with empty interior. Therefore $\partial p(x)$ is nonempty and unbounded for any $x \in \operatorname{dom} p$.

4. Infimal projection with a support function. We now study the case where h is a support function:

$$(4.1) \quad p(X) := \inf_{V \in \mathbb{S}^n} \varphi(X, V) + \sigma_{\mathcal{V}}(V),$$

where \mathcal{V} is a given closed, convex subset of \mathbb{S}^n . Our first task is to interpret the constraint qualifications of Section 3.3 when $h = \sigma_{\mathcal{V}}$. Here, and for the remainder of this section, the choice $h = \sigma_{\mathcal{V}}$ implies that $\operatorname{dom} h = \operatorname{bar} \mathcal{V}$ and $\operatorname{dom} h^* = \mathcal{V}$.

LEMMA 4.1 (Constraint qualifications for (4.1)). *Let p be given by (4.1). Then the following hold:*

(a) (CCQ) *The conditions*

$$(4.2) \quad \operatorname{bar} \mathcal{V} \cap \operatorname{int} \mathcal{K}_A \neq \emptyset,$$

$$(4.3) \quad \mathcal{V}^\infty \cap (-\mathcal{K}_A^\circ) = \{0\},$$

$$(4.4) \quad \operatorname{cl}(\operatorname{bar} \mathcal{V}) - \mathcal{K}_A = \mathbb{S}^n$$

are each equivalent to CCQ for p in (4.1). Moreover, if CCQ holds, then SCCQ holds if and only if

$$(4.5) \quad \emptyset \neq \Xi(A, B) = \{Y \mid (Y, 0) \in \Omega(A, B) + (\{0\} \times \mathcal{V})\},$$

where $\Xi(A, B)$ is defined in (3.17).

(b) (PCQ) *PCQ holds for p if and only if*

$$(4.6) \quad \operatorname{pos}(\Omega_2(A, B) + \mathcal{V}) = \operatorname{span}(\Omega_2(A, B) + \mathcal{V}),$$

where $\Omega_2(A, B)$ is defined in (3.16).

(c) (BPCQ) The conditions

$$(4.7) \quad \bar{\mathcal{V}} \cap \mathcal{K}_A \neq \emptyset \text{ and } \text{cl}(\bar{\mathcal{V}}) \cap \mathcal{K}_A = \{0\},$$

$$(4.8) \quad \bar{\mathcal{V}} \cap \mathcal{K}_A \text{ is nonempty and bounded,}$$

$$(4.9) \quad \bar{\mathcal{V}} \cap \mathcal{K}_A \neq \emptyset \text{ and } \mathcal{V}^\infty + \mathcal{K}_A^\circ = \mathbb{S}^n$$

are each equivalent to BPCQ for p , hence imply (4.6).

Proof. Observe that with $h = \sigma_{\mathcal{V}}$ we have $\text{dom } h = \bar{\mathcal{V}}$ and $\text{hzn } h^* = \mathcal{V}^\infty$.

(a) (4.2) is condition (i) in Lemma 3.13 for $h = \sigma_{\mathcal{V}}$, while (4.3) is condition (iii). Employing the results in [3, Section 3.3, Exercise 16]) we have that (4.3) holds if and only if $\text{cl}(\bar{\mathcal{V}} - \mathcal{K}_A) = \mathbb{S}^n$. The final statement follows from (3.17) in the definition of SCCQ.

(b) This is an application of (2.1) and the definition of PCQ.

(c) As the horizon cone of any cone is its closure, we see that (4.7) is exactly BPCQ (for $h = \sigma_{\mathcal{V}}$), while the equivalence to (4.8) follows from Lemma 3.11 (b). The equivalence of (4.9) to the former follows from the fact that (4.7) holds if and only if $\text{cl}(\mathcal{V}^\infty + \mathcal{K}_A^\circ) = \mathbb{S}^n$, see [3, Section 3.3, Exercise 16]), where the closure can be dropped by interpreting [15, Theorem 6.3] accordingly. \square

The additivity of support functions tells us that

$$(4.10) \quad p(X) = \inf_{V \in \mathbb{S}^n} \sigma_{\Sigma}(X, V) \quad (X \in \mathbb{R}^{n \times m}),$$

where

$$(4.11) \quad \Sigma := \Omega(A, B) + \{0\} \times \mathcal{V} \subset \mathbb{E}.$$

In particular, this implies that $p(\lambda X) = \lambda p(X)$, for all $\lambda > 0$ and $p(X_1 + X_2) \leq p(X_1) + p(X_2)$. Hence, if p is proper, it is a support function. In addition, by (3.17), $\Xi(A, B) = \{Y \mid (Y, 0) \in \Sigma\}$ is the set featured in (3.17), (3.18), and (4.5).

PROPOSITION 4.2. *Let p be given by (4.1). Then the following hold:*

- (a) $p \in \Gamma_0(\mathbb{R}^{n \times m})$ (i.e. $p = p^{**}$) under condition (4.6), and, hence, under any of the conditions (4.7)-(4.9). Moreover, this is also true under any condition in (4.2)-(4.4) if, in addition, (4.5) or (4.6) holds, in which case p is finite-valued.
- (b) $p^* = \delta_{\text{cl}\Sigma}(\cdot, 0)$ where the closure is superfluous (i.e. Σ is closed) under any of the conditions (4.2)-(4.4), in which case $p^* = \delta_{\Xi(A, B)}$.
- (c) If any of (4.2)-(4.4) hold then $p \equiv -\infty$ or $p = \sigma_{\Xi(A, B)}$ is finite-valued. The latter is the case if and only if (4.5) holds, which is valid under (4.6).

Proof. (a) The first statement follows from Lemma 4.1 and Theorem 3.15. The second uses Lemma 4.1, Theorem 3.6 (c) and Corollary 3.16.

(b) By [16, Exercise 3.12] and [6, Proposition 10], Σ is closed if $(-\mathcal{K}_A^\circ) \cap \mathcal{V}^\infty = \{0\}$, i.e. under any condition in (4.2)-(4.4), see Lemma 4.1 (a). Moreover, $p^* = \sigma_{\Sigma}^*(\cdot, 0) = \delta_{\text{cl}\Sigma}(\cdot, 0)$, see [16, Proposition 11.23 (c)].

(c) Follows from (a), (b) and Theorem 3.6 c II), as well as Corollary 3.16. \square

4.1. The case $B = 0$. We now consider the case when $B = 0$. Recall from [6, Theorem 11] that this implies that $\sigma_{\Omega(A, 0)}$ is a gauge function. Similarly, if $0 \in \mathcal{V}$, then $\sigma_{\mathcal{V}}$ is also a gauge, in fact, $\sigma_{\mathcal{V}} = \gamma_{\mathcal{V}^\circ}$, cf. [16, Example 11.19].

This combination of assumptions has interesting consequences when the geometries of the sets \mathcal{V} and $-\mathcal{K}_A^\circ$ are compatible in the following sense.

DEFINITION 4.3 (Cone compatible gauges). *Given a closed, convex cone $K \subset \mathcal{E}$, we define an ordering on \mathcal{E} by $x \preceq_K y$ if and only if $y - x \in K$. A gauge γ on \mathcal{E} is said to be compatible with this ordering if*

$$\gamma(x) \leq \gamma(y) \text{ whenever } 0 \preceq_K x \preceq_K y.$$

The following lemma provides a characterization of cone compatible gauges and provides a very useful tool for determining if a gauge is compatible with a given cone.

LEMMA 4.4 (Cones and compatible gauges). *Let $0 \in C \subset \mathcal{E}$ be a closed, convex set, and let $K \subset \mathcal{E}$ be a closed, convex cone. Then γ_C is compatible with the ordering \preceq_K if and only if $K \cap (y - K) \subset C$ ($y \in K \cap C$).*

Proof. Note that, for $y \in K$, we have $K \cap (y - K) = \{x \mid 0 \preceq_K x \preceq_K y\}$. Suppose that γ_C is compatible with K , and let $y \in C \cap K$. If $x \in K \cap (y - K)$, then $\gamma_C(x) \leq \gamma_C(y) \leq 1$, and, consequently, $K \cap (y - K) \subset C$.

Next suppose $K \cap (y - K) \subset C$ for all $y \in K \cap C$, and let $x, y \in \mathcal{E}$ be such that $0 \preceq_K x \preceq_K y$. Then, $y \in K$ and $x \in K \cap (y - K)$. We need to show that $\gamma_C(x) \leq \gamma_C(y)$. If $\gamma_C(y) = +\infty$, this is trivially the case, so we may as well assume that $\gamma_C(y) =: \bar{t} < +\infty$. If $\bar{t} > 0$, then $\bar{t}^{-1}y \in C \cap K$ and $\bar{t}^{-1}x \in K \cap (\bar{t}^{-1}y - K) \subset C$. Hence, $\gamma_C(\bar{t}^{-1}y) = 1 \geq \gamma_C(\bar{t}^{-1}x)$, and so, $\gamma_C(x) \leq \gamma_C(y)$ as desired. In turn, if $\bar{t} = 0$, then $ty \in K \cap C$ ($t > 0$), so that $tx \in K \cap (ty - K) \subset C$ ($t > 0$), i.e., $x \in C^\infty$ and so $\gamma_C(x) = 0$. \square

COROLLARY 4.5 (Infimal projection with a gauge function). *Let p be given by (4.1) where \mathcal{V} is a nonempty, closed, convex subset of \mathbb{S}^n . Suppose that $B = 0$. Under any of the conditions (4.2)-(4.4) we have:*

- (a) $p^* = \delta_{\Xi(A, 0)}$, where $\Xi(A, 0) = \{Y \mid AY = 0, \exists W \in \mathcal{V} : AW = 0, \frac{1}{2}YY^T \preceq W\}$.
- (b) If $0 \in \mathcal{V}$ and $\gamma_{\mathcal{V}}$ is compatible with the ordering induced by $-\mathcal{K}_A^\circ$, then

$$(4.12) \quad p^*(Y) = \delta_{\{Y \mid AY = 0, \gamma_{\mathcal{V}}(\frac{1}{2}YY^T) \leq 1\}}(Y) = \delta_{(-\mathcal{K}_A^\circ) \cap \mathcal{V}}\left(\frac{1}{2}YY^T\right).$$

Proof. (a) This follows from Proposition 4.2, (4.5) with $B = 0$, and using the representation of \mathcal{K}_A in Proposition 2.1.

(b) First observe that $-\mathcal{K}_A^\circ = \{W \in \mathbb{S}_+^n \mid \text{rge } W \subset \ker A\}$, see Proposition 2.1 (b), recall that $\text{rge } Y = \text{rge } YY^T$ ($Y \in \mathbb{R}^{n \times m}$) and, since $0 \in \mathcal{V}$, $V \in \mathcal{V}$ if and only if $\gamma_{\mathcal{V}}(V) \leq 1$. Exploiting these facts and the compatibility hypothesis, we see that

$$\begin{aligned} Y \in \Xi(A, 0) &\iff AY = 0, \exists W \in \mathcal{V} : AW = 0, \frac{1}{2}YY^T \preceq W \\ &\implies AY = 0, \exists W \in \mathcal{V} : \gamma_{\mathcal{V}}(W) \geq \gamma_{\mathcal{V}}\left(\frac{1}{2}YY^T\right) \\ &\iff AY = 0, \gamma_{\mathcal{V}}\left(\frac{1}{2}YY^T\right) \leq 1 \\ &\iff AY = 0, \frac{1}{2}YY^T \in \mathcal{V} \\ &\iff \text{rge } YY^T \subset \ker A, \frac{1}{2}YY^T \in \mathcal{V} \\ &\iff \frac{1}{2}YY^T \in (-\mathcal{K}_A^\circ) \cap \mathcal{V}. \end{aligned}$$

Conversely, we have $\frac{1}{2}YY^T \in (-\mathcal{K}_A^\circ) \cap \mathcal{V} \iff AY = 0$, $Y \in \mathcal{K}_A$, and $\frac{1}{2}YY^T \in \mathcal{V}$. Taking $W = \frac{1}{2}YY^T$, we see that $Y \in \Xi(A, 0)$. Therefore (b) follows from (a). \square

When the support function h is taken to be a linear functional, we obtain the following remarkable result. Here $\|\cdot\|_*$ denotes the nuclear norm¹.

COROLLARY 4.6 (h linear). *Let $p : \mathbb{R}^{n \times m} \rightarrow \overline{\mathbb{R}}$ be defined by*

$$p(X) = \inf_{V \in \mathbb{S}^n} \varphi(X, V) + \langle \bar{U}, V \rangle$$

for some $\bar{U} \in \mathbb{S}_+^n \cap \text{Ker}_n A$ and set $C(\bar{U}) := \{Y \in \mathbb{R}^{n \times m} \mid \frac{1}{2}YY^T \preceq \bar{U}\}$. Then:

- (a) $p^* = \delta_{C(\bar{U})}$ is closed, proper, convex.
- (b) $p = \sigma_{C(\bar{U})} = \gamma_{C(\bar{U})^\circ}$ is sublinear, finite-valued, nonnegative and symmetric (i.e. a seminorm).
- (c) If $\bar{U} \succ 0$ with $2\bar{U} = LL^T$ ($L \in \mathbb{R}^{n \times n}$) and $A = 0$ then $p = \sigma_{C(\bar{U})} = \|L^T(\cdot)\|_*$, i.e. p is a norm with $C(\bar{U})^\circ$ as its unit ball and $\gamma_{C(\bar{U})}$ as its dual norm.
- (d) If $\bar{U} \succ 0$, then $C(\bar{U})$ and $C(\bar{U})^\circ$ are compact, convex, symmetric² with 0 in their interior, thus $\text{pos } C(\bar{U}) = \text{pos } C(\bar{U})^\circ = \mathbb{S}^n$.

Proof. (a) Observe that $h := \langle \bar{U}, \cdot \rangle = \sigma_{\{\bar{U}\}}$. Hence the machinery from above applies with $\mathcal{V} = \{\bar{U}\}$. As \mathcal{V} is bounded, CCQ is trivially satisfied (cf. (4.2)-(4.4)). Note that $0 \in C(\bar{U}) \neq \emptyset$. Given $Y \in C(\bar{U})$, we must have $\text{rge } Y \subset \ker A$ since otherwise there is a nonzero $z \in (\ker A)^\perp$ with $Y^T z \neq 0$ yielding $0 < \|Y^T z\|_2^2 \leq 2z^T \bar{U} z = 0$. Consequently, $C(\bar{U}) = \{Y \in \mathbb{R}^{n \times m} \mid AY = 0, \frac{1}{2}YY^T - \bar{U} \in \mathcal{K}_A^\circ\} = \Xi(A, 0) \neq \emptyset$, and the result follows from Proposition 4.2 (b).

(b) This follows from [15, Theorem 14.5], part (a), and the fact that $0 \in C(\bar{U})$.

(c) Consider the case $\bar{U} = \frac{1}{2}I$: By part (a), we have $p^* = \delta_{\{Y \mid YY^T \preceq I\}}$. Observe that $\{Y \mid YY^T \preceq I\} = \{Y \mid \|Y\|_2 \leq 1\} =: \mathbb{B}_\Lambda$ is the closed unit ball of the spectral norm. Therefore, $p = \sigma_{\mathbb{B}_\Lambda} = \|\cdot\|_{\mathbb{B}_\Lambda^\circ} = \|\cdot\|_*$.

To prove the general case suppose that $2\bar{U} = LL^T$. Then it is clear that $C(\bar{U}) = \{Y \mid L^{-1}Y \in C(\frac{1}{2}I)\}$, and therefore

$$\begin{aligned} p(X) &= \sigma_{C(\bar{U})}(X) \\ &= \sup_{Y: L^{-1}Y \in C(\frac{1}{2}I)} \langle Y, X \rangle \\ &= \sup_{L^{-1}Y \in C(\frac{1}{2}I)} \langle L^{-1}Y, L^T X \rangle \\ &= \sigma_{C(\frac{1}{2}I)}(L^T X) \\ &= \|L^T X\|_*. \end{aligned}$$

Here the first identity is due to part (b) (with $A = 0$) and the last one follows from the special case considered at the start of the proof.

(d) Follows from (c) using [15, Theorem 15.2]. \square

We point out that Corollary 4.6 generalizes the nuclear norm smoothing result by Hsieh and Olsen [13, Lemma 1] and complements [5, Theorem 5.7].

5. h is an indicator function. We now suppose that the function h in (3.1) is the indicator $h := \delta_{\mathcal{V}}$ for some nonempty, closed, and convex set $\mathcal{V} \in \mathbb{S}^n$:

$$(5.1) \quad p(X) = \inf_{V \in \mathbb{S}^n} \varphi(X, V) + \delta_{\mathcal{V}}(V).$$

¹For a matrix T the nuclear norm $\|T\|_*$ is the sum of its singular values.

²We say the set $S \subset \mathcal{E}$ symmetric if $S = -S$.

We begin by interpreting the constraint qualifications from Section 3.3. Here, and for the remainder of this section, $h = \delta_{\mathcal{V}}$ and so $\text{dom } h = \mathcal{V}$ and $\text{dom } h^* = \text{bar } \mathcal{V}$.

LEMMA 5.1 (Constraint qualifications for (5.1)). *Let p be given by (5.1). Then the following hold:*

(a) (CCQ) *The conditions*

$$(5.2) \quad \mathcal{V} \cap \text{int } \mathcal{K}_A \neq \emptyset,$$

$$(5.3) \quad \overline{\text{cone } \mathcal{V}} - \mathcal{K}_A = \mathbb{S}^n$$

are each equivalent to CCQ for p . Moreover, if CCQ holds, then SCCQ holds if and only if

$$(5.4) \quad \emptyset \neq \Xi(A, B) = \{Y \in \mathbb{R}^{n \times m} \mid (Y, 0) \in \Omega(A, B) + (\{0\} \times \text{bar } \mathcal{V})\}.$$

(b) (PCQ) *The PCQ holds for p if and only if*

$$(5.5) \quad \text{pos}(\Omega_2(A, B)) + \text{bar } \mathcal{V} = \text{span}(\Omega_2(A, B) + \text{bar } \mathcal{V}).$$

(c) (BPCQ) *The conditions*

$$(5.6) \quad \mathcal{V} \cap \mathcal{K}_A \neq \emptyset \text{ and } \mathcal{V}^\infty \cap \mathcal{K}_A = \{0\},$$

$$(5.7) \quad \mathcal{V} \cap \mathcal{K}_A \neq \emptyset \text{ is bounded,}$$

$$(5.8) \quad \mathcal{V} \cap \mathcal{K}_A \neq \emptyset \text{ and } \text{bar } \mathcal{V} + \mathcal{K}_A^\circ = \mathbb{S}^n$$

are each equivalent to BPCQ for p , hence imply (5.5).

Proof. (a) First, observe that, with $h = \delta_{\mathcal{V}}$, condition (i) in Lemma 3.13 is exactly (5.2). By the same lemma this is equivalent to $\text{hzn } \sigma_{\mathcal{V}} \cap (-\mathcal{K}_A^\circ) = \{0\}$. Moreover, since $\sigma_{\mathcal{V}} = \sigma_{\mathcal{V}}^\infty$, we have $\text{hzn } \sigma_{\mathcal{V}} = \{V \mid \sigma_{\mathcal{V}}(V) \leq 0\} = (\text{cone } \mathcal{V})^\circ$. Invoking the results in [3, Section 3.3, Exercise 16 (a)] implies that $\text{hzn } \sigma_{\mathcal{V}} \cap (-\mathcal{K}_A^\circ) = \{0\}$ if and only if $\text{cl}(\overline{\text{cone } \mathcal{V}} - \mathcal{K}_A) = \mathbb{S}^n$, where the closure in the latter statement can clearly be dropped, e.g. by interpreting [15, Theorem 6.3] accordingly.

(b) Use (2.1) to infer that PCQ holds for p if and only if

$$\text{pos}(\Omega_2(A, B)) + \text{bar } V = \text{pos}(\Omega_2(A, B) + \text{bar } V) = \text{span}(\Omega_2(A, B) + \text{bar } \mathcal{V}).$$

(c) The equivalences of BPCQ, (5.6), and (5.7) are clear. Since \mathcal{V}^∞ and $\text{cl}(\text{bar } \mathcal{V})$ are paired in polarity, see (2.3), [3, Section 3.3, Exercise 16 (a)] implies that $\mathcal{V}^\infty \cap \mathcal{K}_A = \{0\}$ if and only if $\text{cl}(\text{bar } \mathcal{V} + \mathcal{K}_A^\circ) = \mathbb{S}^n$, where the closure in the latter statement can be dropped as in (a). This establishes all equivalences. \square

The following result provides sufficient conditions for p being closed, proper, convex when h is an indicator function.

COROLLARY 5.2. *Let p be given by (5.1). Then $p \in \Gamma_0(\mathbb{R}^{n \times m})$ under any of the following conditions:*

- (i) (5.4) holds along with either (5.2) or (5.3).
- (ii) (5.5) holds.
- (iii) Any one of (5.6)-(5.8) holds.

Proof. Follows from Lemma 5.1 and Theorem 3.6 (c) and Theorem 3.15, respectively. \square

The case $A = 0$ and $B = 0$ is of particular interest in applications to variational Gram functions in Section 5.2.

COROLLARY 5.3. *Let p be given as in (5.1) with $A = 0$ and $B = 0$ so that $\mathcal{K}_A = \mathbb{S}_+^n$ and $\mathcal{K}_A^\circ = \mathbb{S}_-^n$. Assume that $\mathcal{V} \cap \mathbb{S}_+^n \neq \emptyset$. Then*

$$PCQ \iff SPCQ \iff \mathbb{S}_-^n + \text{bar } \mathcal{V} = \mathbb{S}^n \iff BPCQ.$$

Moreover, $p \in \Gamma_0(\mathbb{R}^{n \times m})$ under any of following conditions:

- (i) $(SCCQ) \{Y \in \mathbb{R}^{n \times m} \mid \exists T \in \text{bar } \mathcal{V} : \frac{1}{2}YY^T \preceq T\} \neq \emptyset$ and $\mathcal{V} \cap \mathbb{S}_{++}^n \neq \emptyset$;
- (ii) $(PCQ) \mathbb{S}_-^n + \text{bar } \mathcal{V} = \mathbb{S}^n$;
- (iii) $((B/S)PCQ) \emptyset \neq \mathcal{V} \cap \mathbb{S}_+^n$ is bounded.

Proof. First note that $\Xi(0, 0) = \{Y \in \mathbb{R}^{n \times m} \mid \exists T \in \text{bar } \mathcal{V} : \frac{1}{2}YY^T \preceq T\}$ and $\Omega_2(0, 0) = \mathbb{S}_-^n = \mathcal{K}_A^\circ$. The first statement now follows from Lemma 5.1 and the definition of PCQ and SPCQ, respectively, since the span of a set with interior is the whole space. The remaining implications follow from Corollary 5.2 and Lemma 5.1. \square

We directly compute the conjugate p^* using techniques from [5, Theorem 3.2].

THEOREM 5.4 (Infimal projection with an indicator function). *Let p be given by (5.1). Assume that*

$$(5.9) \quad \emptyset \neq \text{dom}(\varphi + \delta_{\mathcal{V}}) = \left\{ (X, V) \in \mathbb{E} \mid V \in \mathcal{V} \cap \mathcal{K}_A \text{ and } \text{rge} \begin{pmatrix} X \\ B \end{pmatrix} \subset \text{rge } M(V) \right\}.$$

Then $p^* : \mathbb{R}^{n \times m} \rightarrow \overline{\mathbb{R}}$ is given by

$$p^*(Y) = \frac{1}{2} \sigma_{\mathcal{V} \cap \mathcal{K}_A} (YY^T) + \delta_{\{Z \mid AZ=B\}} (Y).$$

In particular, for $A = 0$ and $B = 0$ we obtain $p^*(Y) = \frac{1}{2} \sigma_{\mathcal{V} \cap \mathbb{S}_+^n} (YY^T)$.

Proof. By (2.4) and our assumption that $\emptyset \neq \text{dom}(\varphi + \delta_{\mathcal{V}})$, we have

$$\begin{aligned} p^*(Y) &= \sup_X \left[\langle X, Y \rangle - \inf_V \varphi(X, V) + \delta_{\mathcal{V}}(V) \right] \\ &= \sup_V \sup_X \left[\langle X, Y \rangle - \sigma_{\Omega(A, B)}(X, V) - \delta_{\mathcal{V}}(V) \right] \\ &= \sup_{V \in \mathcal{V} \cap \mathcal{K}_A} \sup_{\text{rge} \begin{pmatrix} X \\ B \end{pmatrix} \subset \text{rge } M(V)} \langle X, Y \rangle - \frac{1}{2} \text{tr} \left(\begin{pmatrix} X \\ B \end{pmatrix}^T M(V)^\dagger \begin{pmatrix} X \\ B \end{pmatrix} \right), \end{aligned}$$

for $Y \in \mathbb{R}^{n \times m}$. Since $\text{rge} \begin{pmatrix} X \\ B \end{pmatrix} \subset \text{rge } M(V)$, we make the substitution $M(V) \begin{pmatrix} U \\ W \end{pmatrix} = \begin{pmatrix} X \\ B \end{pmatrix}$ to obtain

$$\begin{aligned} p^*(Y) &= \sup_{V \in \mathcal{V} \cap \mathcal{K}_A} \sup_{\substack{U, W \\ AU=B}} \text{tr} \left(-\frac{1}{2} \begin{pmatrix} U \\ W \end{pmatrix}^T M(V) \begin{pmatrix} U \\ W \end{pmatrix} + Y^T (VU + A^T W) \right) \\ &= \sup_{V \in \mathcal{V} \cap \mathcal{K}_A} - \sum_{i=1}^m \inf_{\substack{u_i, w_i \\ Au_i=b_i}} \left(\frac{1}{2} \begin{pmatrix} u_i \\ w_i \end{pmatrix}^T M(V) \begin{pmatrix} u_i \\ w_i \end{pmatrix} - y_i^T V u_i - w_i^T A y_i \right) \\ &= \sup_{V \in \mathcal{V} \cap \mathcal{K}_A} - \sum_{i=1}^m \inf_{\substack{u_i, w_i \\ Au_i=b_i}} \left(\frac{1}{2} u_i^T V u_i - \langle V y_i, u_i \rangle + \langle w_i, b_i - A y_i \rangle \right) \\ &= \sup_{V \in \mathcal{V} \cap \mathcal{K}_A} - \sum_{i=1}^m \left[\inf_{\substack{u_i \\ Au_i=b_i}} \left(\frac{1}{2} u_i^T V u_i - \langle V y_i, u_i \rangle \right) + \inf_{w_i} (\langle w_i, b_i - A y_i \rangle) \right] \\ &= \delta_{\{Z \mid AZ=B\}}(Y) + \sup_{V \in \mathcal{V} \cap \mathcal{K}_A} - \sum_{i=1}^m \inf_{\substack{u_i \\ Au_i=b_i}} \left(\frac{1}{2} u_i^T V u_i - \langle V y_i, u_i \rangle \right), \end{aligned}$$

where the final equality follows since $\delta_{\{y \mid Ay = b_i\}}(y_i) = \sup_{w_i} \langle w_i, Ay_i - b_i \rangle$ ($i = 1, \dots, m$). By hypothesis $\text{rge } B \subset \text{rge } A$, and so, by [5, Theorem 3.2]

$$-\frac{1}{2} \begin{pmatrix} Vy_i \\ b_i \end{pmatrix}^T M(V)^\dagger \begin{pmatrix} Vy_i \\ b_i \end{pmatrix} = \inf_{Au_i = b_i} \left(\frac{1}{2} u_i^T V u_i - \langle Vy_i, u_i \rangle \right) \quad (i = 1, \dots, m),$$

Therefore, when $AY = B$, we have

$$\begin{aligned} p^*(Y) &= \sup_{V \in \mathcal{V} \cap \mathcal{K}_A} -\sum_{i=1}^m -\frac{1}{2} \begin{pmatrix} Vy_i \\ b_i \end{pmatrix}^T M(V)^\dagger \begin{pmatrix} Vy_i \\ b_i \end{pmatrix} && \left(\text{where } Ay_i = b_i \text{ so } \begin{pmatrix} Vy_i \\ b_i \end{pmatrix} = M(V) \begin{pmatrix} y_i \\ 0 \end{pmatrix} \right) \\ &= \sup_{V \in \mathcal{V} \cap \mathcal{K}_A} \frac{1}{2} \sum_{i=1}^m \left(M(V) \begin{pmatrix} y_i \\ 0 \end{pmatrix} \right)^T M(V)^\dagger \left(M(V) \begin{pmatrix} y_i \\ 0 \end{pmatrix} \right) \\ &= \sup_{V \in \mathcal{V} \cap \mathcal{K}_A} \frac{1}{2} \sum_{i=1}^m \begin{pmatrix} y_i \\ 0 \end{pmatrix}^T M(V) \begin{pmatrix} y_i \\ 0 \end{pmatrix} \\ &= \sup_{V \in \mathcal{V} \cap \mathcal{K}_A} \frac{1}{2} \sum_{i=1}^m y_i^T V y_i \\ &= \sup_{V \in \mathcal{V} \cap \mathcal{K}_A} \frac{1}{2} \text{tr}(Y^T V Y), \end{aligned}$$

which proves the general expression for p^* . The case $A = 0, B = 0$ follows. \square

COROLLARY 5.5. *Let p be given by (5.1). If SCCQ holds, i.e.,*

$\mathcal{V} \cap \text{int } \mathcal{K}_A \neq \emptyset$ and $\{Y \in \mathbb{R}^{n \times m} \mid (Y, 0) \in \Omega(A, B) + (\{0\} + \text{bar } \mathcal{V})\} \neq \emptyset$,
then

$$\partial p(\bar{X}) = \operatorname{argmax}_Y \{\langle \bar{X}, Y \rangle - \inf_{(Y, T) \in \Omega(A, B)} \sigma_{\mathcal{V}}(-T)\}$$

is nonempty and compact for all $\bar{X} \in \mathbb{R}^{n \times m}$. Alternatively, if $\mathcal{V} \cap \text{int } \mathcal{K}_A \neq \emptyset$ (CCQ) and

$\text{pos } \Omega_2(A, B) + \text{bar } \mathcal{V} = \text{span}(\Omega_2(A, B) + \text{bar } \mathcal{V})$ (PCQ)
hold, then

$$\partial p(\bar{X}) = \{\bar{Y} \mid \exists \bar{V}, \bar{T} : -\bar{T} \in N_{\mathcal{V}}(\bar{V}), (\bar{Y}, \bar{T}) \in \partial \varphi(\bar{X}, \bar{V})\}$$

is nonempty and compact for all $\bar{X} \in \mathbb{R}^{n \times m}$.

Proof. This follows from Proposition 3.17 in combination with Lemma 5.1. \square

5.1. $B = 0$ and $0 \in \mathcal{V}$. We now consider the important special case of p given by (5.1) where $0 \in \mathcal{V}$ and $B = 0$. In this case p turns out to be a squared gauge function, see Corollary 5.8. We start with a technical lemma.

LEMMA 5.6. *Let $C, K \subset \mathbb{E}$ be nonempty, convex with K being a cone. Then $(C + K)^\circ = C^\circ \cap K^\circ$. If $C + K$ is closed with $0 \in C$, then $(C^\circ \cap K^\circ)^\circ = C + K$. In particular, the set $C + K$ is closed if C and K are closed and $K \cap (-C^\infty) = \{0\}$.*

Proof. Clearly, $C^\circ \cap K^\circ \subset (C + K)^\circ$. Conversely, if $z \in (C + K)^\circ$, then $\langle z, x + ty \rangle \leq 1$ for all $x \in C$, $y \in K$, and $t > 0$. Multiplying this inequality by t^{-1} and letting $t \rightarrow \infty$, we see that $z \in K^\circ$. By letting $t \downarrow 0$, we see that $z \in C^\circ$.

Now assume that $C + K$ is closed with $0 \in C$. Then $C + K$ is closed and convex with $0 \in C + K$. Hence, by [15, Theorem 14.5], $C + K = (C + K)^{\circ\circ} = (C^\circ \cap K^\circ)^\circ$.

The final statement of the lemma follows from [15, Corollary 9.1.1]. \square

The first result in this section is concerned with a representation of the conjugate p^* under the standing assumptions.

COROLLARY 5.7 (The gauge case I). *Let p be given by (5.1) with $0 \in \mathcal{V}$ and $B = 0$ and let P be the orthogonal projection onto $\ker A$. Moreover, let*

$$\mathcal{S} := \{W \in \mathbb{S}^n \mid \text{rge } W \subset \ker A\} = \{W \in \mathbb{S}^n \mid W = PWP\}.$$

Assume that

$$\emptyset \neq \left\{ (X, V) \in \mathbb{E} \mid V \in \mathcal{V} \cap \mathcal{K}_A \text{ and } \text{rge } \begin{pmatrix} X \\ 0 \end{pmatrix} \subset \text{rge } M(V) \right\}.$$

Then the following hold:

(a) We have

$$p^*(Y) = \frac{1}{2} \sigma_{(\mathcal{V} \cap \mathcal{K}_A) + \mathcal{S}^\perp} (YY^T) = \frac{1}{2} \gamma_{(\mathcal{V} \cap \mathcal{K}_A)^\circ \cap \mathcal{S}} (YY^T)$$

where $\mathcal{S}^\perp = \{V \in \mathbb{S}^n \mid PVP = 0\}$. In particular, p^* is positively homogeneous of degree 2.

(b) If $\mathcal{V}^\circ + \mathcal{K}_A^\circ$ is closed (e.g. when $\mathcal{K}_A^\circ \cap -(\text{cone } \mathcal{V})^\circ = \{0\}$) then

$$(5.10) \quad p^*(Y) = \frac{1}{2} \gamma_{(\mathcal{V}^\circ \cap \mathcal{S}) + \mathcal{K}_A^\circ} (YY^T),$$

where $\text{dom } p^* = \{Y \mid YY^T \in \text{cone } (\mathcal{V}^\circ \cap \mathcal{S}) + \mathcal{K}_A^\circ\}$.

Proof. (a) By Theorem 5.4, we have

$$\begin{aligned} p^*(Y) &= \frac{1}{2} \sigma_{\mathcal{V} \cap \mathcal{K}_A} (YY^T) + \delta_{\{Z \mid AZ=0\}}(Y) \\ &= \frac{1}{2} \sigma_{\mathcal{V} \cap \mathcal{K}_A} (YY^T) + \frac{1}{2} \delta_{\mathcal{S}} (YY^T) \\ &= \frac{1}{2} \sigma_{\mathcal{V} \cap \mathcal{K}_A} (YY^T) + \frac{1}{2} \sigma_{\mathcal{S}^\perp} (YY^T) \\ &= \frac{1}{2} \sigma_{(\mathcal{V} \cap \mathcal{K}_A) + \mathcal{S}^\perp} (YY^T) \\ &= \frac{1}{2} \gamma_{(\mathcal{V} \cap \mathcal{K}_A)^\circ \cap \mathcal{S}} (YY^T). \end{aligned}$$

Here the first equality uses Theorem 5.4, the second equality follows from the fact that $\text{rge } Y = \text{rge } YY^T$, the third can be seen from [16, Example 7.4], and the final equivalence follows from [15, Theorem 14.5] and Lemma 5.6.

(b) If $\mathcal{V}^\circ + \mathcal{K}_A^\circ$ is closed, then Lemma 5.6 also tells us that $(\mathcal{V} \cap \mathcal{K}_A)^\circ = \mathcal{V}^\circ + \mathcal{K}_A^\circ$. Since $\mathcal{K}_A^\circ \subset \mathcal{S}$, see Lemma 2.1 (b), we have $(\mathcal{V}^\circ + \mathcal{K}_A^\circ) \cap \mathcal{S} = (\mathcal{V}^\circ \cap \mathcal{S}) + \mathcal{K}_A^\circ$ which, using (a), gives the first equivalence in (5.10). \square

Our final goal is to show that p , under the standing assumption in this section, is a squared gauge. Here we denote by \mathbb{B}_F the (closed) unit ball in the Frobenius norm.

COROLLARY 5.8 (The gauge case II). *Let p be as in Theorem 5.4 with $0 \in \mathcal{V}$ and $B = 0$, and assume that (5.9) holds. Let $P \in \mathbb{R}^{n \times n}$ be the orthogonal projector on $\ker A$ and define the (closed, convex) sets*

$$\mathcal{V}_A^{1/2} := \{L \in \mathbb{R}^{n \times n} \mid LL^T \in P(\mathcal{V} \cap \mathcal{K}_A)P\}, \quad \mathcal{F} := \left\{ LZ \mid L \in \mathcal{V}_A^{1/2}, Z \in \mathbb{B}_F \right\},$$

and the subspace $\mathcal{U} := \text{Ker}_m A$.³ Then

$$p = \frac{1}{2} \gamma_{\mathcal{F} + \mathcal{U}^\perp}^2 \quad \text{and} \quad p^* = \frac{1}{2} \gamma_{\mathcal{F}^\circ \cap \mathcal{U}}^2.$$

In particular, for $A = 0$ and $\mathcal{F} := \{LZ \mid LL^T \in \mathcal{V} \cap \mathbb{S}_+^n, Z \in \mathbb{B}_F\}$ we obtain

$$p = \frac{1}{2} \gamma_{\mathcal{F}}^2 \quad \text{and} \quad p^* = \gamma_{\mathcal{F}^\circ}^2.$$

Proof. For all $Y \in \mathbb{R}^{n \times m}$, by Theorem 5.4 and the definition of \mathcal{U} , we have

$$p^*(Y) = \frac{1}{2} \sigma_{\mathcal{V} \cap \mathcal{K}_A}(YY^T) + \delta_{\mathcal{U}}(Y) = \frac{1}{2} \sup_{V \in \mathcal{V} \cap \mathcal{K}_A} \langle PVP, YY^T \rangle + \delta_{\mathcal{U}}(Y).$$

In turn, by the definitions of $\mathcal{V}_A^{1/2}$ and the Frobenius norm, the latter equals

$$\frac{1}{2} \sup_{L \in \mathcal{V}_A^{1/2}} \langle LL^T, YY^T \rangle + \delta_{\mathcal{U}}(Y) = \frac{1}{2} \sup_{L \in \mathcal{V}_A^{1/2}} \|L^T Y\|_F^2 + \delta_{\mathcal{U}}(Y).$$

On the other hand, by the monotonicity and continuity of $t \in \mathbb{R}_+ \mapsto t^2$ as well as the self-duality of the Frobenius norm, we find that the second term can be written as

$$\frac{1}{2} \left[\sup_{L \in \mathcal{V}_A^{1/2}} \|L^T Y\|_F \right]^2 + \delta_{\mathcal{U}}(Y) = \frac{1}{2} \left[\sup_{(Z, L) \in \mathbb{B}_F \times \mathcal{V}_A^{1/2}} \langle L^T Y, Z \rangle \right]^2 + \delta_{\mathcal{U}}(Y).$$

Using the definition of \mathcal{F} and the convention $(+\infty)^2 = +\infty$, we can rewrite this equivalence as $\frac{1}{2} \sigma_{\mathcal{F}}(Y)^2 + \delta_{\mathcal{U}}(Y) = \frac{1}{2} [\sigma_{\mathcal{F}}(Y) + \delta_{\mathcal{U}}(Y)]^2$. All in all, using the latter, [16, Example 11.4], and [16, Example 11.19] and the polar cone calculus from, e.g., [3, p. 70], we conclude that

$$p^*(Y) = \frac{1}{2} [\sigma_{\mathcal{F}}(Y) + \delta_{\mathcal{U}}(Y)]^2 = \frac{1}{2} [\sigma_{\mathcal{F}}(Y) + \sigma_{\mathcal{U}^\perp}(Y)]^2 = \frac{1}{2} \sigma_{\mathcal{F} + \mathcal{U}^\perp}^2(Y) = \frac{1}{2} \gamma_{\mathcal{F}^\circ \cap \mathcal{U}}^2(Y).$$

This gives the representation for p^* ; the one for p follows from [15, Corollary 15.3.1]. \square

5.2. Variational Gram Functions. Given a closed, convex set $\mathcal{V} \subset \mathbb{S}^n$ define

$$(5.11) \quad \Phi_{\mathcal{V}} : \mathbb{R}^{n \times m} \rightarrow \overline{\mathbb{R}}, \quad \Phi_{\mathcal{V}}(Y) := \frac{1}{2} \sigma_{\mathcal{V} \cap \mathbb{S}_+^n}(YY^T).$$

These functions are called *variational Gram functions* (VGF) and were introduced by Jalali, Fazel and Xiao [14]. They have received attention in the machine learning community due to their orthogonality promoting properties when used as penalty functions, cf. [14].

Note that the definition (5.11) explicitly intersects \mathcal{V} with the positive semidefinite cone \mathbb{S}_+^n while Jalali, Fazel and Xiao [14] employ the standing assumption that $\Phi_{\mathcal{V}} = \Phi_{\mathcal{V} \cap \mathbb{S}_+^n}$. These (equivalent) conventions guarantee that $\Phi_{\mathcal{V}}$ is convex. We also scale by $\frac{1}{2}$ since $\Phi_{\mathcal{V}}$ is positively homogeneous of degree 2.

As an immediate consequence of Theorem 5.4, $\Phi_{\mathcal{V}} = p^*$ where p is defined in (5.1) with $A = 0$, $B = 0$ and $\mathcal{V} \cap \mathbb{S}_+^n \neq \emptyset$. In addition, the constraint qualifications dramatically simplify in this case. We have already seen in Corollary 5.3 that PCQ, SPCQ and BPCQ are all equivalent for VGFs. We now observe that CCQ and SCCQ are also equivalent.

³Hence $\mathcal{U}^\perp = \text{Rge}_m A^T$.

LEMMA 5.9 (CCQ=SCCQ for VGFs). *Let $\Phi_{\mathcal{V}}$ be given by (5.11) with $\mathcal{V} \subset \mathbb{S}^n$. Then the condition $\mathcal{V} \cap \mathbb{S}_+^n \neq \emptyset$ is equivalent to (5.9), and (5.4) is satisfied with $\Phi_{\mathcal{V}} = p^*$ where $A = 0$, $B = 0$ and p defined in (5.1). In particular, CCQ and SCCQ are equivalent where CCQ is given by $\mathcal{V} \cap \mathbb{S}_{++}^n \neq \emptyset$.*

Proof. First note that $0 \in \Xi(0, 0) = \{Y \mid \exists W \in \text{bar } \mathcal{V} : \frac{1}{2}YY^T \preceq W\}$ since $0 \in \text{bar } \mathcal{V}$. The relationship between $\Phi_{\mathcal{V}}$ and p is given in Theorem 5.4. \square

Lemma 5.9 and the results of the previous section allow us to refine [14, Proposition 4].

PROPOSITION 5.10 (Conjugate of VGFs and VGFs as Squared Gauges). *Let $\Phi_{\mathcal{V}}$ be given by (5.11). Under either of the assumptions*

- (i) (CCQ) $\mathcal{V} \cap \mathbb{S}_{++}^n \neq \emptyset$,
- (ii) (PCQ) $\mathcal{V} \cap \mathbb{S}_+^n \neq \emptyset$ is bounded (or equivalently $\mathbb{S}^n + \text{bar } \mathcal{V} = \mathbb{S}^n$),

we have

$$\Phi_{\mathcal{V}}^*(X) = \inf_V \sigma_{\Omega(0,0)}(X, V) + \delta_{\mathcal{V}}(V) = \frac{1}{2} \inf_{\substack{V \in \mathcal{V} \cap \mathbb{S}_+^n : \\ \text{rge } X \subset \text{rge } V}} \text{tr}(X^T V^\dagger X) \quad (X \in \mathbb{R}^{n \times m}).$$

Under (i), $\Phi_{\mathcal{V}}^*$ is finite-valued, and under (ii), $\Phi_{\mathcal{V}}$ is finite-valued. In addition, if $0 \in \mathcal{V}$ we also have

$$\Phi_{\mathcal{V}} = \frac{1}{2} \gamma_{\mathcal{F}}^2 \quad \text{and} \quad \Phi_{\mathcal{V}}^* = \frac{1}{2} \gamma_{\mathcal{F}}^2$$

with $\mathcal{F} = \{LZ \mid LL^T \in \mathcal{V} \cap \mathbb{S}_+^n, Z \in \mathbb{B}_F\}$.

Proof. Lemma 5.9 tells us that assumption (i) is equivalent to SCCQ, and Corollary 5.3 tells us that assumption (ii) is equivalent to BPCQ. Hence, by Theorem 5.4, either assumption (i) or (ii) implies that $\Phi_{\mathcal{V}}^* = p^{**} = p$. The remainder is now follows from the definition of p , equation (2.5), and Corollary 5.8. \square

Next consider the subdifferential of a VGF when defined by (5.11). Although, a VGF is always convex, we take the *convex-composite* perspective, see e.g. [7], since a VGF is simply the composition of a closed, proper, convex function $\sigma_{\mathcal{V} \cap \mathbb{S}_+^n}$ and a nonlinear map $H : Y \mapsto YY^T$. The *basic constraint qualification* for the composition $\Phi_{\mathcal{V}} = \frac{1}{2} \sigma_{\mathcal{V} \cap \mathbb{S}_+^n} \circ H$ at a point $\bar{Y} \in \text{dom } \Phi_{\mathcal{V}}$ is given by

$$(BCQ) \quad N_{\text{dom } \sigma_{\mathcal{V} \cap \mathbb{S}_+^n}}(\bar{Y}\bar{Y}^T) \cap (\text{Ker}_n \bar{Y}^T) = \{0\}.$$

It is well-known that this condition is essential for a full subdifferential calculus of convex-composite functions [16]. We now show that this condition is intimately linked to condition (ii) in Corollary 5.3.

LEMMA 5.11 (BPCQ=PCQ=BCQ for VGFs). *Let $\Phi_{\mathcal{V}}$ be as in (5.11) and assume that $\mathbb{S}_+^n \cap \mathcal{V} \neq \emptyset$. Then the following are equivalent:*

- (i) *There exists $\bar{Y} \in \text{dom } \Phi_{\mathcal{V}}$ such that BCQ holds;*
- (ii) *((B)PCQ) $\mathcal{V}^\infty \cap \mathbb{S}_+^n = \{0\}$ (or equivalently $\mathcal{V} \cap \mathbb{S}_+^n$ is bounded);*
- (iii) *BCQ holds at every $\bar{Y} \in \text{dom } \Phi_{\mathcal{V}}$.*

Proof. 'i) \Rightarrow (ii)': Let $\bar{V} \in \mathbb{S}_+^n \cap \mathcal{V}$ and assume (ii) is violated, i.e. there exists $0 \neq W \in (\mathcal{V} \cap \mathbb{S}_+^n)^\infty = \mathcal{V}^\infty \cap \mathbb{S}_+^n$. By (2.2), we have

$$(5.12) \quad V_t := \bar{V} + tW \in \mathcal{V} \cap \mathbb{S}_+^n \quad (t > 0).$$

Now, take any $\bar{Y} \in \text{dom } \Phi_{\mathcal{V}}$. Then, for all $t > 0$, we have

$$\begin{aligned} +\infty &> \Phi_{\mathcal{V}}(\bar{Y}) \\ &= \sup_{V \in \mathbb{S}_+^n \cap \mathcal{V}} \langle V, \bar{Y}\bar{Y}^T \rangle \\ &\geq \langle V_t, \bar{Y}\bar{Y}^T \rangle \\ &\geq t \langle W, \bar{Y}\bar{Y}^T \rangle. \end{aligned}$$

Since $W \succeq 0$, we have $\langle \bar{Y}\bar{Y}^T, W \rangle = \text{tr}(\bar{Y}^T W \bar{Y}) \geq 0$. In view of the above chain of inequalities this implies $\langle W, \bar{Y}\bar{Y}^T \rangle = 0$ and as $W, \bar{Y}\bar{Y}^T \in \mathbb{S}_+^n$ this gives $W\bar{Y}\bar{Y}^T = 0$. Since $\text{rge } \bar{Y} = \text{rge } \bar{Y}\bar{Y}^T$ this implies $W\bar{Y} = 0$ or, equivalently, $\bar{Y}^T W = 0$. Therefore, we have $0 \neq W \in (\mathcal{V} \cap \mathbb{S}_+^n)^\infty \cap (\text{Ker}_n \bar{Y}^T)$. Now, observe that $N_{\text{dom } \sigma_{\mathcal{V} \cap \mathbb{S}_+^n}}(Z) = (\mathcal{V} \cap \mathbb{S}_+^n)^\infty$ for any $Z \in \text{dom } \sigma_{\mathcal{V} \cap \mathbb{S}_+^n}$, see e.g. [16]. This shows that BCQ is violated at \bar{Y} . Since $\bar{Y} \in \text{dom } \Phi_{\mathcal{V}}$ was chosen arbitrarily, this establishes the desired implication. '(ii) \Rightarrow (iii)': If $\mathcal{V} \cap \mathbb{S}_+^n$ is bounded, then $\text{dom } \sigma_{\mathcal{V} \cap \mathbb{S}_+^n} = \mathbb{S}^n$, and so, for every $\bar{Y} \in \text{dom } \Phi_{\mathcal{V}}$, $N_{\text{dom } \sigma_{\mathcal{V} \cap \mathbb{S}_+^n}}(\bar{Y}\bar{Y}^T) = \{0\}$ giving the desired implication.

'(iii) \Rightarrow (i)': Obvious. \square

We now derive the formula for the subdifferential of the VGF from (5.11).

PROPOSITION 5.12. *Let $\Phi_{\mathcal{V}}$ be given by (5.11). Then*

$$\partial\Phi_{\mathcal{V}}(\bar{Y}) \supset \{\bar{V}\bar{Y} \mid \bar{V} \in \mathcal{V} \cap \mathbb{S}_+^n : \langle \bar{V}, \bar{Y}\bar{Y}^T \rangle = \Phi_{\mathcal{V}}(\bar{Y})\} \quad (\bar{Y} \in \text{dom } \Phi_{\mathcal{V}}).$$

If $\mathbb{S}_+^n \cap \mathcal{V}$ is nonempty and bounded, equality holds and $\text{dom } \Phi_{\mathcal{V}} = \mathbb{R}^{n \times m}$.

Proof. Combine Lemma 5.11 with [16, Theorem 10.6], [16, Corollary 8.25] and the fact that for $H : Y \rightarrow YY^T$ we have $\nabla H(Y)^*V = 2VY$ for all $(Y, V) \in \mathbb{E}$. \square

We next consider an example.

EXAMPLE 5.13 (Failure of subdifferential calculus for VGF). *Let $\mathcal{V} := \text{pos } \{I\} \subset \mathbb{S}^n$, put $m := 1$ and let $H : Y \mapsto YY^T$. Then clearly condition (i) in Proposition 5.10 holds, but condition (ii) and hence the BCQ fails. We have*

$$(5.13) \quad \sigma_{\mathcal{V} \cap \mathbb{S}_+^n}(W) = \sup_{\alpha \geq 0} \alpha \text{tr}(W) = \delta_{\{U \in \mathbb{S}^n \mid \text{tr}(U) \leq 0\}}(W) \quad (W \in \mathbb{S}^n).$$

Hence, we obtain $\text{dom } \Phi_{\mathcal{V}} = \{0\}$ and $\nabla H(0)^* \partial\sigma_{\mathcal{V} \cap \mathbb{S}_+^n}(0) = \{0\}$. On the other hand, we have $\Phi_{\mathcal{V}} = \frac{1}{2}\sigma_{\mathcal{V} \cap \mathbb{S}_+^n} \circ H = \delta_{\{0\}}$. Therefore,

$$\partial\Phi_{\mathcal{V}}(0) = N_{\{0\}}(0) = \mathbb{R}^{n \times m} \supsetneq \{0\} = \nabla H(0)^* \partial\sigma_{\mathcal{V} \cap \mathbb{S}_+^n}(0).$$

Example 5.13 establishes various things: First, it shows that condition (i) in Proposition 5.10 does not yield equality in the subdifferential formula for VGFs. It also illustrates that equality in the subdifferential formula may fail tremendously in the absence of BCQ, even for a convex-composite which is, in fact, convex.

Jalali, Fazel and Xiao [14] employ great effort to compute the conjugate of a (convex) VGF, cf. the proof of [14, Proposition 7]. However, a slightly refined version of [14, Proposition 7] follows immediately from our analysis.

PROPOSITION 5.14 (Subdifferential of $\Phi_{\mathcal{V}}^*$). *Let $\Phi_{\mathcal{V}}$ be given by (5.11).*

(a) *((S)CCQ)* If $\mathcal{V} \cap \mathbb{S}_{++}^n \neq \emptyset$, $\text{dom } \partial\Phi_{\mathcal{V}}^* = \text{dom } \Phi_{\mathcal{V}}^*$ and

$$\partial\Phi_{\mathcal{V}}^*(\bar{X}) = \operatorname{argmax}_Y \left\{ \langle \bar{X}, Y \rangle - \inf_{\frac{1}{2}YY^T \preceq T} \sigma_{\mathcal{V} \cap \mathbb{S}_+^n}(T) \right\}.$$

(b) *((B)PCQ)* If the set $\mathcal{V} \cap \mathbb{S}_+^n$ is nonempty and bounded, $\text{dom } \partial\Phi_{\mathcal{V}}^* = \text{dom } \Phi_{\mathcal{V}}^*$ and we have

$$\partial\Phi_{\mathcal{V}}^*(\bar{X}) = \left\{ \bar{Y} \mid \begin{array}{l} \exists \bar{V} \in \mathcal{V} \cap \mathbb{S}_+^n : \text{rge } \bar{X} \subset \text{rge } \bar{V}, \\ \Phi_{\mathcal{V}}^*(\bar{X}) = \frac{1}{2} \operatorname{tr} (\bar{X}^T \bar{V}^\dagger \bar{X}) = \langle \bar{X}, \bar{Y} \rangle - \Phi_{\mathcal{V}}(\bar{Y}), \end{array} \right\}$$

for all $\bar{X} \in \text{dom } \Phi_{\mathcal{V}}^*$.

Proof. (a) By Lemma 5.9, PCQ=SCCQ and $\Phi_{\mathcal{V}} = p^*$. The subdifferential formula follows from Proposition 3.17 (a) (see in particular the third identity in (c)).

(b) The fact that $\text{dom } \partial\Phi_{\mathcal{V}}^* = \text{dom } \Phi_{\mathcal{V}}^*$ is due to the fact that the latter is a subspace, hence relatively open, cf. Lemma 3.1 (c). The remainder follows from Lemma 5.9 and Proposition 3.17 (c). \square

5.3. VGFs and squared Ky Fan norms. For $p \geq 1$, $1 \leq k \leq \min\{m, n\}$, the *Ky Fan* (p, k) -norm [12, Ex. 3.4.3] of a matrix $X \in \mathbb{R}^{n \times m}$ is defined as

$$\|X\|_{p,k} = \left(\sum_{i=1}^k \sigma_i^p \right)^{1/p},$$

where σ_i are the singular values of X sorted in nonincreasing order. In particular, the $(p, \min\{m, n\})$ -norm is the Schatten- p norm and the $(1, k)$ -norm is the standard Ky Fan k -norm, see [12]. For $1 \leq p \leq \infty$, denote the closed unit ball for $\|\cdot\|_{p,k}$ by $\mathbb{B}_{p,k} := \{X \mid \|X\|_{p,k} \leq 1\}$. For $1 \leq p \leq \infty$, define $s := p/2$. Then, for $2 \leq p \leq \infty$, we have

$$\begin{aligned} \frac{1}{2} \|X\|_{p,k}^2 &= \frac{1}{2} \left[\sum_{i=1}^k (\sigma_i^2)^s \right]^{1/s} \\ &= \frac{1}{2} \|XX^T\|_{s,k} = \frac{1}{2} \sigma_{\mathbb{B}_{s,k}^\circ}(XX^T) = \frac{1}{2} \sigma_{\mathbb{B}_{s,k}^\circ \cap \mathbb{S}_+^n}(XX^T) \\ &= \frac{1}{2} \Omega_{\mathbb{B}_{s,k}^\circ}(X), \end{aligned}$$

where the first equality follows from the definition of s , the second from the definition of the singular values, the third from properties of gauges and their polars, the fourth from the equivalence $\langle V, XX^T \rangle = \sum_{j=1}^m x_j^T V x_j$ with the x_j 's the columns of X , and the final from (5.11). For the Schatten norms, where $k = \min\{n, m\}$ we have $\mathbb{B}_{s,k}^\circ = \mathbb{B}_{\hat{s},k}$, where \hat{s} satisfies $\frac{1}{s} + \frac{1}{\hat{s}} = 1$, see [11]. For other values of k , the representation of $\mathbb{B}_{s,k}^\circ$ can be significantly more complicated, e.g. see [8].

6. Final remarks. We studied partial infimal projections of the generalized matrix-fractional function with a closed, proper, convex function $h : \mathbb{S}^n \rightarrow \overline{\mathbb{R}}$. Sufficient conditions for closedness and properness as well as representations of both the conjugate and the subdifferential of the infimal projections under the associated essential constraint qualifications. The general results were applied to the cases when h is a support or an indicator function of a closed, convex set in \mathbb{S}^n . These results

revealed close connections to a range of important convex functions on $\mathbb{R}^{n \times m}$. In particular, the infimal projection with linear functionals yielded smoothing variational representations for the family of scaled nuclear norms, while the infimal projection with an indicator is often a squared gauge. As a special case, it was shown that the conjugate of the infimal projection coincides with a variational Gram function (VGF) of the underlying set. Hence the variational calculus for VGFs follows easily as a consequence of our general study. In all of these cases, the infimal projection opens the door to new smoothing approaches to a range of nonsmooth optimization problems on $\mathbb{R}^{n \times m}$ using the representation (1.4).

7. Appendix. In what follows we use the *direct sum* of functions $f_i : \mathcal{E} \rightarrow \mathbb{R} \cup \{+\infty\}$ ($i = 1, \dots, m$) which is defined by

$$\oplus_{i=1}^m f_i : \mathcal{E}^m \rightarrow \mathbb{R} \cup \{+\infty\}, \quad \oplus_{i=1}^m f_i(x_1, \dots, x_m) = \sum_{i=1}^m f_i(x_i).$$

THEOREM 7.1 (Extended sum rule). *Let $f_i \in \Gamma_0(\mathcal{E})$ ($i = 1, \dots, m$) and set $f := \sum_{i=1}^m f_i$. Then the following hold:*

(a) *The conjugate of f is given by $f^* = \text{cl}(f_1^* \square f_2^* \square \dots \square f_m^*)$. Under the condition*

$$(7.1) \quad \bigcap_{i=1}^m \text{ri}(\text{dom } f_i) \neq \emptyset$$

we have $f^ = f_1^* \square f_2^* \square \dots \square f_m^*$ which is closed, proper and convex and*

$$\emptyset \neq \mathcal{T}(z) := \text{argmin} \left\{ \sum_{i=1}^m f_i^*(z^i) \mid z = \sum_{i=1}^m z^i \right\} \quad (z \in \text{dom } f^*).$$

(b) *If $\bar{z} \in \sum_{i=1}^m \partial f_i(\bar{x})$, then $\mathcal{T}(\bar{z}) \neq \emptyset$ and*

$$\mathcal{T}(\bar{z}) = \left\{ (z^1, \dots, z^m) \mid \bar{z} = \sum_{i=1}^m z^i, z^i \in \partial f_i(\bar{x}), i = 1, \dots, m \right\}.$$

(c) *Under (7.1) we have $\partial f = \sum_{i=1}^m \partial f_i$, $\text{dom } \partial f = \bigcap_{i=1}^m \text{dom } \partial f_i$ and*

$$\begin{aligned} \partial f(\bar{x}) &= \left\{ \sum_{i=1}^m z^i \mid z^i \in \partial f_i(\bar{x}), i = 1, \dots, m \right\} \\ &= \{ \bar{z} \mid (z^1, \dots, z^m) \in \mathcal{T}(\bar{z}), z^i \in \partial f_i(\bar{x}), i = 1, \dots, m \} \quad (\bar{x} \in \text{dom } \partial f). \end{aligned}$$

(d) *Under (7.1), $f^* = f_1^* \square f_2^* \square \dots \square f_m^*$, $\text{dom } \partial f^* = \{z \mid \emptyset \neq \mathcal{T}(z)\} \neq \emptyset$, and*

$$\partial f^*(\bar{z}) = \left\{ \sum_{i=1}^m \partial f_i^*(z^i) \mid \bar{z} = \sum_{i=1}^m z^i \right\} \quad (\bar{z} \in \text{dom } \partial f^*).$$

Proof. (a) See [15, Theorem 16.4].

(b) Let $L : \mathcal{E}^m \rightarrow \mathcal{E}$ be defined by $L(z^1, \dots, z^m) = \sum_{i=1}^m z^i$. Then its adjoint $L^* : \mathcal{E} \rightarrow \mathcal{E}^m$ is given by $L^*(x) = (x, \dots, x)$ ($x \in \mathcal{E}$). Let $\bar{z} \in \sum_{i=1}^m \partial f_i(\bar{x})$, and take any $z^i \in \partial f_i(\bar{x})$ ($i = 1, \dots, m$) such that $\bar{z} = \sum_{i=1}^m z^i$. By [15, Theorem 23.5],

$\bar{x} \in \partial f_i^*(z^i)$ ($i = 1, \dots, m$). Hence, by [15, Theorem 23.8, 23.9] and [2, Proposition 16.8] we obtain

$$0 \in \text{rge } L^* + \partial f_1^*(z^1) \times \dots \times \partial f_m^*(z^m) \subset \partial(\delta_{\{0\}}(L(\cdot) - \bar{z}) + \bigoplus_{i=1}^m f_i^*)(z^1, \dots, z^m).$$

Therefore, $(z^1, \dots, z^m) \in \mathcal{T}(\bar{z})$, and we have

$$\emptyset \neq \left\{ (z^1, \dots, z^m) \mid \bar{z} = \sum_{i=1}^m z^i, z^i \in \partial f_i(\bar{x}), i = 1, \dots, m \right\} \subset \mathcal{T}(\bar{z}).$$

To see the reverse inclusion, let $(z^1, \dots, z^m) \in \mathcal{T}(\bar{z})$. By assumption and again [15, Theorem 23.8], we have $\bar{z} \in \sum_{i=1}^m \partial f_i(\bar{x}) \subset \partial f(\bar{x})$. By [15, Theorem 23.5] and the fact that $f^*(\bar{z}) = \sum_{i=1}^m f_i^*(z^i)$, we have

$$\sum_{i=1}^m \langle z^i, \bar{x} \rangle = \langle \bar{z}, \bar{x} \rangle = f^*(\bar{z}) + f(\bar{x}) = \sum_{i=1}^m (f_i^*(z^i) + f_i(\bar{x})),$$

so that $0 = \sum_{i=1}^m (f_i^*(z^i) + f_i(\bar{x}) - \langle z^i, \bar{x} \rangle)$. By the Fenchel-Young inequality, $f_i^*(z^i) + f_i(\bar{x}) - \langle z^i, \bar{x} \rangle \geq 0$ ($i = 1, \dots, m$), hence equality must hold for each $i = 1, \dots, m$, or equivalently $z^i \in \partial f_i(\bar{x})$ ($i = 1, \dots, m$). This establishes the reverse inclusion.

(c) The first two consequences follow from [15, Theorem 23.8]. For the third, the first equivalence simply follows from the fact that $\partial f = \sum_{i=1}^m \partial f_i$. To see the second equivalence, let $\bar{z} \in \partial f(\bar{x})$. Then, by part (b), $\mathcal{T}(\bar{z}) \neq \emptyset$, and, for every $(z^1, \dots, z^m) \in \mathcal{T}(\bar{z})$, we have $z^i \in \partial f_i(\bar{x})$, $i = 1, \dots, m$. Hence,

$$\partial f(\bar{x}) \subset \{ \bar{z} \mid (z^1, \dots, z^m) \in \mathcal{T}(\bar{z}), z^i \in \partial f_i(\bar{x}), i = 1, \dots, m \}.$$

The reverse inclusion follows from the first equivalence.

(d) By (a), $f^* = f_1^* \square f_2^* \square \dots \square f_m^* \in \Gamma_0(\mathcal{E})$ and $\mathcal{T}(z) \neq \emptyset$ for all $z \in \text{dom } f^*$.

Let us first suppose that $\bar{z} \in \text{dom } \partial f^* \subset \text{dom } f^*$, then $\mathcal{T}(\bar{z}) \neq \emptyset$. Let $\bar{x} \in \partial f^*(\bar{z})$. By [15, Theorem 23.5], $\bar{z} \in \partial f(\bar{x})$. By part (c), this is equivalent to the existence of $z^i \in \partial f_i(\bar{x})$ such that $\bar{z} = \sum_{i=1}^m z^i$, which, by [15, Theorem 23.5], is equivalent to $\bar{x} \in \{ \bigcap_{i=1}^m \partial f_i^*(z^i) \mid \bar{z} = \sum_{i=1}^m z^i \}$. Hence $\partial f^*(\bar{z}) \subset \{ \bigcap_{i=1}^m \partial f_i^*(z^i) \mid \bar{z} = \sum_{i=1}^m z^i \}$.

On the other hand, let $\bar{x} \in \{ \bigcap_{i=1}^m \partial f_i^*(z^i) \mid \bar{z} = \sum_{i=1}^m z^i \}$. Then, by [15, Theorem 23.5] we have $\bar{z} \in \partial f(\bar{x})$. But then, again by [15, Theorem 23.5], $\bar{x} \in \partial f^*(\bar{y})$. Finally, suppose that $(z^1, \dots, z^m) \in \mathcal{T}(\bar{z}) \neq \emptyset$. Then, as in part (a), $0 \in \text{rge } L^* + \partial f_1^*(z^1) \times \dots \times \partial f_m^*(z^m)$, or equivalently, there is an \bar{x} such that $\bar{x} \in \bigcap_{i=1}^m \partial f_i^*(z^i)$ with $\bar{z} = \sum_{i=1}^m z^i$, i.e., $\bar{x} \in \partial f^*(\bar{z})$. This completes the proof. \square

PROPOSITION 7.2 (Partial conjugates). *Let $f \in \Gamma(\mathcal{E}_1 \times \mathcal{E}_2)$ and $\bar{x} \in \mathcal{E}_1$ be such that $\bar{g} := f(\bar{x}, \cdot)$ is proper and $\bar{x} \in \text{ri } L(\text{dom } f)$, where $L : (x, v) \mapsto x$. Then*

$$\bar{g}^*(w) = \inf_{z:(z,w) \in \text{dom } f^*} [f^*(z, w) - \langle \bar{x}, z \rangle].$$

Proof. By [15, Theorem 6.6], $\text{ri } L(\text{dom } f) = L(\text{ri dom } f)$, so the hypothesis implies the existence of a $\bar{w} \in \mathcal{E}_2$ such that $(\bar{x}, \bar{w}) \in \text{ri dom } f$. By [15, Theorem 16.4],

$$\begin{aligned} \bar{g}^*(w) &= \sup_v \{ \langle v, w \rangle - f(\bar{x}, w) \} \\ &= \sup_{(x,v)} \{ \langle (x, v), (0, w) \rangle - (f + \delta_{\{\bar{x}\} \times \mathcal{E}_2})(x, v) \} \\ &= (f + \delta_{\{\bar{x}\} \times \mathcal{E}_2})^*(0, w) \\ &= \text{cl}(f^* \square \sigma_{\{\bar{x}\} \times \mathcal{E}_2})(0, w), \end{aligned}$$

where the closure can be dropped if $\text{ri}(\text{dom } f) \cap \text{ri}(\text{dom } \delta_{\{\bar{x}\} \times \mathcal{E}_2}) \neq \emptyset$. But this intersection is nonempty by hypothesis since $(\bar{x}, \bar{w}) \in \{\bar{x}\} \times \mathcal{E}_2 = \text{ri}(\text{dom } \delta_{\{\bar{x}\} \times \mathcal{E}_2})$. Hence

$$\begin{aligned}\bar{g}^*(w) &= (f^* \square \sigma_{\{\bar{x}\} \times \mathcal{E}_2})(0, w) \\ &= \inf_{(z,u)} \{f^*(z, u) + \langle \bar{x}, 0 - z \rangle + \delta_{\{0\}}(w - u)\} \\ &= \inf_{z:(z,w) \in \text{dom } f^*} \{f^*(z, w) - \langle \bar{x}, z \rangle\}.\end{aligned}$$

REFERENCES

- [1] A. AUSLENDER AND M. TEBOULLE: *Asymptotic Cones and Functions in Optimization and Variational Inequalities*. Springer Monographs in Mathematics, Springer, New York 2003.
- [2] H.H. BAUSCHKE AND P.L. COMBETTES, *Convex analysis and Monotone Operator Theory in Hilbert Spaces*. CMS Books in Mathematics, Springer-Verlag, 2011.
- [3] J.M. BORWEIN AND A.S. LEWIS: *Convex Analysis and Nonlinear Optimization. Theory and Examples*. CMS Books in Mathematics, Springer-Verlag, New York, 2000.
- [4] S. BOYD AND L. VANDENBERGH: *Convex Optimization*. Cambridge University Press, 2004.
- [5] J. V. BURKE AND T. HOHEISEL, *Matrix support functionals for inverse problems, regularization, and learning*. SIAM Journal on Optimization 25, 2015, pp. 1135–1159.
- [6] J. V. BURKE, Y. GAO AND T. HOHEISEL: *Convex Geometry of the Generalized Matrix-Fractional Function*. SIAM J. Optim., 28, 2018, pp. 2189–2200.
- [7] J.V. BURKE AND R.A. POLIQUIN: *Optimality conditions for non-finite valued convex composite functions*. Mathematical Programming 57, 1992, pp. 103–120.
- [8] X. V. DOAN AND S. VAVASIS: *Finding the largest low-rank clusters with Ky Fan 2-k-norm and ℓ_1 -norm*. arXiv:1403.5901, 2015.
- [9] J. DATTORO: *Convex Optimization & Euclidean Distance Geometry*. Meβoo Publishing USA, Version 2014.04.08, 2005.
- [10] J.-B. HIRIART-URRRUTY AND C. LEMARÉCHAL: *Fundamentals of Convex Analysis*. Grundlehren Text Editions, Springer, Berlin, Heidelberg, 2001.
- [11] R.A. HORN AND C.R. JOHNSON: *Matrix Analysis*. Cambridge University Press, New York, N.Y., 1985.
- [12] R.A. HORN AND C. R. JOHNSON: *Topics in Matrix Analysis*. Cambridge University Press, New York, N.Y., 1991.
- [13] C.-J. HSIEH AND P. OLSEN: *Nuclear Norm Minimization via Active Subspace Selection*. JMLR W&CP 32 (1), 2014, pp. 575–583.
- [14] A. JALALI, M. FAZEL, AND L. XIAO: *Variational Gram functions: Convex analysis and optimization*. SIAM Journal on Optimization 27(4), 2017, pp. 2634–2661.
- [15] R.T. ROCKAFELLAR, *Convex analysis*, Princeton University Press, 1970.
- [16] R.T. ROCKAFELLAR AND R.J.-B. WETS, *Variational analysis*, vol. 317, Springer, 1998.