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Abstract

Though large multilocus genomic data sets have led to overall improvements in phylogenetic inference, they have posed the new

challenge of addressing conflicting signals across the genome. In particular, ancestral population structure, which has been uncov-

ered in a number of diverse species, can skew gene tree frequencies, thereby hindering the performance of species tree estimators.

Here we develop a novel maximum likelihood method, termed TASTI (Taxa with Ancestral structure Species Tree Inference), that can

infer phylogenies under such scenarios, and find that it has increasing accuracy with increasing numbers of input gene trees,

contrasting with the relatively poor performances of methods not tailored for ancestral structure. Moreover, we propose a supertree

approach that allows TASTI to scale computationally with increasing numbers of input taxa. We use genetic simulations to assess

TASTI’s performance in the three- and four-taxon settings and demonstrate the application of TASTI on a six-species Afrotropical

mosquito data set. Finally, we have implemented TASTI in an open-source software package for ease of use by the scientific

community.

Key words: consistency, discordance, phylogenetics, structure, TASTI.

Introduction

Large multilocus data sets are becoming ever more common

in systematic biology (Cranston et al. 2009; Song et al.

2012; Song et al. 2012; Salichos and Rokas 2013;

DeGiorgio et al. 2014; Fontaine et al. 2015; Peters et al.

2017). However, even with these more substantial data

sets, the presence of gene tree discordance, in which inferred

gene tree topologies conflict across loci, can be problematic

when making phylogenetic inference. A major source of gene

tree discordance is incomplete lineage sorting, which occurs

when sampled lineages fail to coalesce, or find a common

ancestor, in the first population in which they are able to do

so. Accordingly, several statistically consistent methods for

species tree inference that are robust to incomplete lineage

sorting under the multispecies coalescent model have been

developed (Kubatko et al. 2009; Degnan et al. 2009; Liu, Yu,

and Pearl 2010; Mossel and Roch 2010; Helmkamp et al.

2012; Jewett and Rosenberg 2012; Wu 2012; Mirarab et al.

2014; Mirarab and Warnow 2015).

The multispecies coalescent assumes that each modern

and ancestral species is unstructured and has a constant pop-

ulation size and that each pair of lineages within a given an-

cestral species has an equal probability of coalescing (Nakhleh

2013). Under these assumptions, incomplete lineage sorting

leads to symmetries in gene tree distributions for any species

tree, regardless of the number of taxa. For example, if a pair of

taxa A and B are sister species on a species tree, then for all

other species X, species A and X and species B and X have the

same probability of being sister taxa in a gene tree (Allman

et al. 2011). In the face of some form of gene flow between

species, such as hybridization, continuous migration, or hori-

zontal gene transfer, asymmetries in gene tree distributions

can arise (Yu et al. 2011, 2012; Leach�e et al. 2014; Sol�ıs-

Lemus et al. 2016; Tian and Kubatko 2016; Long and

Kubatko 2018). As such, asymmetries in gene tree distribu-

tions are often attributed to gene flow between species

(McGuire et al. 2007; Escobar et al. 2012; Marcussen et al.

2014).
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Despite the common crediting of asymmetries in gene tree

distribution to interspecies gene flow, they can also emerge in

the absence of such gene flow when ancestral populations

are structured (Slatkin and Pollack 2008). In this case, gene

flow does not occur between taxa, but rather between demes

within taxa. There are several hypothesized examples of struc-

tured ancestral species (Garrigan et al. 2005; Thalmann et al.

2006; White et al. 2009), and genomic signatures of ancestral

structure have been uncovered in a number of diverse line-

ages, including mouse (White et al. 2009) and yeast (Yu et al.

2012). Still, many methods for inferring species trees from

multilocus data are not robust to ancestral structure and

can be proven to be positively misleading (DeGiorgio and

Rosenberg 2016). DeGiorgio and Rosenberg (2016) demon-

strate that exceptions to this rule are the maximum likelihood

estimators of the species tree implemented in GLASS (Mossel

and Roch 2010), STEM (Kubatko et al. 2009), and Maximum

Tree (Liu, Yu, and Pearl 2010); however, these algorithms

underperform on empirical data when gene trees are inferred

rather than known.

Here we detail an algorithm named TASTI (Taxa with

Ancestral structure Species Tree Inference), a maximum

likelihood method for inferring three-taxon species tree

topologies when ancestral species are structured. We

demonstrate that by explicitly incorporating the potential

for population structure into a multispecies coalescent

framework, the method is robust to population structure,

and its performance typically does not significantly erode

when applied to empirical data. Finally, we propose an

approach to infer species tree topologies under ancestral

population structure for an arbitrarily large number of

species. We acknowledge that our method, which gener-

alizes the standard multispecies coalescent, contains its

own oversimplifications of ancestry, but maintain that it

is a step in relaxing the common assumption of unstruc-

tured ancestral populations used in phylogenetics. We

show via simulations in the three- and four-taxon settings

that TASTI outperforms competing methods MP-EST (Liu,

Yu, and Edwards 2010), STELLS2 (Pei and Wu 2017), and

STEM2.0 (Kubatko et al. 2009, hereafter referred to as

STEM) when population structure is present, but remains

competitive under the unstructured multispecies

coalescent.

Materials and Methods

Modeling Three Species with Ancestral Population
Structure

In this section, we describe a model relating three species with

population structure in each ancestral population and use it to

construct probabilities of gene trees given a set of model

parameters. In our model, the topologies ððabÞcÞ and

((AB)C) denote a gene tree and species tree, respectively,

with sister species A and B and outgroup C. Figure 1a depicts

a species tree with topology ((AB)C), in a configuration such

that species B and C descend from the same ancestral

subpopulation.

The species tree in our two-subpopulation model is charac-

terized as follows. Divergence times, measured in expected

number of mutations per site, are denoted s ¼ ðs1; s2), where

the internalbranch lengths2 � s1 isofparticular interest. Forall

ancestral species X, hX;j ¼ 4NX ;jl, where NX;j is the effective

population size of subpopulation j in ancestral species X, and l
is the mutation rate per site per generation. The mutation-

scaled coalescent rates within subpopulations of ancestral spe-

cies are inversely proportional to their respective values de-

scribed in the vector h ¼ ðhAB;1; hAB;2; hABC;1; hABC;2Þ.
Migration occurs between subpopulations at mutation-scaled

rates according to the vector M ¼ ðMAB;1;MAB;2;MABC;1;

MABC;2Þ, where MX ;j is the rate at which lineages move to

subpopulation j when in ancestral species X. Specifically, we

define MX ;j ¼ 4NX ;jmX ;j=hX ;j, where mX ;j is the fraction of

subpopulation j in ancestral species X made up of migrants

from its complementary subpopulation each generation.

Our method partitions the species tree into three dis-

tinct time transects on the intervals ½0; s1Þ; ½s1; s2Þ, and

½s2;1Þ. During the interval ½0; s1), we assume extant

populations to be unstructured. Along the internal

branch ½s1; s2Þ, we introduce ancestral subpopulations

such that migration and coalescence events may occur

between the two lineages from sister species A (origi-

nating in subpopulation 1) and B (originating in subpop-

ulation 2). In the final interval ½s2;1Þ, the lineage from

species C is introduced into subpopulation 2. This setting

matches the one presented by Slatkin and Pollack

(2008), up to the first coalescence event. Migration

and coalescence events occur until lineages from each

species find their most recent common ancestor (MRCA),

which may only happen between two lineages when

they are in the same subpopulation. Since we are in

essence estimating the waiting times until some occur-

rence, the distribution of migration and coalescent

events can be modeled using an exponential distribution

parametrized by an instantaneous rate matrix (Hobolth

et al. 2011; Tian and Kubatko 2016). This parameteriza-

tion yields the matrix exponential eQ ¼
P1

k¼0 Qk=k!,

whose (i, j)th entry is denoted ðeQÞij.

Instantaneous Rate Matrices for the Model

The migration and coalescence of lineages within a structured

population can be explicitly modeled using instantaneous rate

matrices. For time to the first coalescence T1 2 ½s1; s2Þ, where

migration and coalescence can only occur for a pair of line-

ages, one from species A and one from species B, we define

the instantaneous rate matrix QAB.
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a1b2 a2b1 a1b1 a2b2 ðabÞ1 ðabÞ2

QAB:¼

a1b2

a2b1

a1b1

a2b2

ðabÞ1

ðabÞ2

� 0 MAB;1 MAB;2 0 0

0 � MAB;1 MAB;2 0 0

MAB;2 MAB;2 � 0 cAB;1 0

MAB;1 MAB;1 0 � 0 cAB;2

0 0 0 0 � MAB;2

0 0 0 0 MAB;1 �

2666666666666666664

3777777777777777775

:

(1)

In our notation, aibj indicates that the lineage (denoted a)

from species A is currently in subpopulation i and the lineage

(denoted b) from species B is currently in subpopulation j,

where i; j 2 f1;2g. Further, ðabÞi indicates that lineages a

and b have coalesced and are in subpopulation i, where

i 2 f1; 2g. We refer to these states in the coalescent history

as states 1 through 6 (i.e., states a1b2 through ðabÞ2) of QAB.

The coalescence rate in subpopulation i is cAB;i ¼ 2=hAB;i, and

the dashes along the diagonal represent the negative sum of

the elements of the corresponding row, such that each row

sums to zero (Kingman 1982). One can see that this matrix

embeds several assumptions. First, we only allow for one

event at any given instant. For example, we do not permit a

lineage in one subpopulation and a lineage in another sub-

population to migrate simultaneously. Additionally, once lin-

eages coalesce, they cannot uncoalesce. Under our model, at

time s1, lineages from species A are in subpopulation 1, and

lineages from species B are in subpopulation 2.

The interval ½s2;1Þ is described using one of two possible

instantaneous rate matrices. If the first coalescence is yet to

occur, then the 20� 20 matrix QABC governs the dynamics. In

the interest of space, this matrix is left to supplementary figure

S1, Supplementary Material online. We should note, how-

ever, that because any two lineages are equally likely to coa-

lesce in states when all three lineages are in subpopulation i,

the rate of coalescence in subpopulation i in these scenarios is

3

2

 !
cABC;i ¼ 3cABC;i , with cABC;i ¼ 2=hABC;i. Under our

model, at time s2, the lineage c from species C must be in

subpopulation 2, whereas lineages a and b from species A

and B, or the coalesced lineage (ab), could be in either sub-

population. Above the root, once the first coalescence has

occurred, the generic instantaneous rate matrix QXY models

the dynamics. Letting X be a coalesced pair of lineages and Y

be the remaining lineage, we have

x1y2 x2y1 x1y1 x2y2 ðxyÞ1 ðxyÞ2

QXY :¼

x1y2

x2y1

x1y1

x2y2

ðxyÞ1

ðxyÞ2

� 0 MABC;1 MABC;2 0 0

0 � MABC;1 MABC;2 0 0

MABC;2 MABC;2 � 0 cABC;1 0

MABC;1 MABC;1 0 � 0 cABC;2

0 0 0 0 � MABC;2

0 0 0 0 MABC;1 �

2666666666666666664

3777777777777777775

;

(2)

BA C

MAB,2

MAB,1

MABC,1

MABC,2

θAB,1 θAB,2

θABC,1 θABC,2

τ2

τ1

(a) (b)

FIG. 1.—Modeling ancestral population structure. (a) Model of the relationships among species A, B, and C with divergence times s1 and s2. Ancestral

species belong to one of two subpopulations of scaled coalescent rates hX ;k with migration between subpopulations at rates MAB;1 and MAB;2 below the root

and MABC;1 and MABC;2 above the root. Lineages from species A descend from subpopulation 1, whereas lineages from species B and C descend from

subpopulation 2. (b) Incorporating population structure into the model increases the number of possible paths lineages from species A, B, and C might take

to find their most recent common ancestor. For example, assuming that lineages from species A merge into subpopulation 1 and lineages from species B and

C merge into subpopulation 2, a gene tree where lineages from species A and B coalesce first may arise from eight possible histories, as depicted here.
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where x represents a lineage from coalesced pair X and y

represents the lineage from species Y, and the same assump-

tions as for matrix QAB hold. These states are similarly re-

ferred to as states 1 through 6 (i.e., x1y2 through ðxyÞ2) of

QXY.

Probability Distributions of Gene Tree Topologies under
the Model

We treat the dynamics in our model as a continuous-time

Markov process that describes the waiting times between

events. It follows that the waiting time to a given event is

distributed exponentially with rate matrix Q, where events

are independent as a consequence of the memoryless

property of the exponential distribution (Ross 2014,

Chapter 5).

Let T1 and T2 be random variables denoting the times to

the first and second coalescence going backward in time,

respectively. Further, let G and r be random variables denot-

ing the gene tree and species tree topologies, respectively.

With the set of parameters X ¼ fr; s;M; hg, let f1ðt1; t2; gj
XÞ be the joint density of gene tree G¼ g and coalescence

times T1 ¼ t1 and T2 ¼ t2 when 0 � s1 � t1 < s2 � t2.

Further, let fjðt1; t2; gjjXÞ; j 2 f2;3;4g, be the joint density

of gene tree G¼ gj and coalescence times T1¼ t1 and T2¼ t2
when 0 � s1 � s2 � t1 < t2, where g2 ¼ ððabÞcÞ;
g3 ¼ ððbcÞaÞ, and g4 ¼ ððacÞbÞ. Note that f1ðt1; t2; gjXÞ
does not accumulate mass for G 6¼ ððabÞcÞ because only lin-

eages from species A and B can coalesce along the internal

branch ½s1; s2Þ.
We can split the joint probability densities into a product

of marginal densities hAB;ij and hABC;ij of going from i line-

ages to j lineages in the internal branch and the branch

above the root, respectively, because the waiting times to

coalescence events are independent. These marginal densi-

ties describe each possible coalescent history through all of

the coalescent states described by instantaneous rate matri-

ces QAB; QXY, and QABC. In order to cohesively describe the

different coalescent histories, we introduce mapping func-

tions /1;/2; and /3 that map coalescent states between,

respectively, QAB and QXY; QXY and QABC, and QAB and

QABC, as follows:

/1ðsÞ ¼ f
1 if s ¼ 5

4 if s ¼ 6
; (3)

/2ðsÞ ¼ f

5 if s ¼ 1

6 if s ¼ 2

2 if s ¼ 3

8 if s ¼ 4

; (4)

/3ðsÞ ¼ f

3 if s 2 f9;13;17g

1 if s 2 f10;14; 18g

2 if s 2 f11;15; 19g

4 if s 2 f12;16; 20g

: (5)

The function /1ðsÞ maps a coalesced state s in matrix QAB

to a corresponding state in matrix QXY (e.g., mapping

state 5 in QAB, where lineages a and b are coalesced in

subpopulation 1, into corresponding state 1 of QXY , where

the coalesced lineage is in subpopulation 1 and lineage c is

in subpopulation 2). The function /2ðsÞ maps uncoalesced

state s in matrix QAB to a corresponding state in matrix

QABC (e.g., mapping state 4 in QAB, where lineages a and

b are both in subpopulation 2, to state 8 in QABC, where

all uncoalesced lineages are in subpopulation 2). The func-

tion /3ðsÞ maps a coalesced state s in matrix QABC to a

corresponding state in matrix QXY (e.g., mapping state 19

in QABC, where lineages b and c are coalesced in subpop-

ulation 2 and lineage a is in subpopulation 1, to state 2 in

QXY , where the coalesced lineage is in subpopulation 2

whereas the remaining lineage is in subpopulation 1). As

one example, to capture the path to a common ancestor

between the three lineages drawn in the top left of

Figure 1b, we see that the system is in state 5 of QAB

[ðabÞ1] before speciation time s2. Therefore at this time,

/1ð5Þ is invoked to capture that lineages a and b coa-

lesced along the internal branch in subpopulation 1,

whereas the remaining lineage is also in subpopulation 2.

This mapping takes us from state 5 of QAB to state 1 of

QXY [ðx1y2Þ], where here a and b are represented by co-

alesced lineage x, and c is represented by lineage y.

Put symbolically, let cAB;s and cABC;s be the coales-

cence rates leading to state s. For example, if the

system has n lineages in subpopulation i, and a coa-

lescence is about to occur there, then the rate of co-

alescence is cAB;s ¼
n

2

 !
cAB;i for the internal branch

and cABC;s ¼
n

2

 !
cABC;i above the root. The marginal

densities that describe the possible coalescent histories

are

f1ðt1;t2;gjXÞ¼
X6

s1¼5

hAB;21ðt1�s1;s1jXÞ

�
"X6

s2¼5

ðeQABðs2�t1ÞÞs1s2
hABC;21ðt2�s2;/1ðs2ÞjXÞ

#
�1fg¼ððabÞcÞ and 0�s1�t1<s2�t2g

;

(6)
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f2ðt1;t2;gjXÞ¼
X4

s1¼1

hAB;22ðs2�s1;s1jXÞ

�
"X12

s2¼9

hABC;32ðt1�s2;/2ðs1Þ;s2jXÞ

�hABC;21ðt2�t1;/3ðs2ÞjXÞ
#

1fg¼ððabÞcÞ

and 0�s2�t1<t2g;

f3ðt1; t2;gjXÞ ¼
X4

s1¼1

hAB;22ðs2 � s1; s1jXÞ

�
" X16

s2¼13

hABC;32ðt1 � s2;/2ðs1Þ; s2jXÞ

� hABC;21ðt2 � t1;/3ðs2ÞjXÞ
#

1fg¼ððacÞbÞ

and 0� s2 � t1 < t2g;

f4ðt1; t2;gjXÞ ¼
X4

s1¼1

hAB;22ðs2 � s1; s1jXÞ

�
" X20

s2¼17

hABC;32ðt1 � s2;/2ðs1Þ; s2jXÞ

� hABC;21ðt2 � t1;/3ðs2ÞjXÞ
#

1fg¼ððbcÞaÞ

and 0� s2 � t1 < t2g; ð9Þ
where

hAB;21ðt; sjXÞ ¼ cAB;sðeQABtÞ1s

hAB;22ðt; sjXÞ ¼ ðeQABtÞ1s

hABC;21ðt; sjXÞ ¼ cABC;1ðeQABCtÞs5 þ cABC;2ðeQABCtÞs6:
hABC;32ðt; s1; s2jXÞ: ¼ cABC;sðeQABCtÞs1s2

:

(10)

For hAB;21ðt; sjXÞ and hAB;22ðt; sjXÞ, s represents the state of

the system, according to instantaneous rate matrix QAB, at time

t. Specifically, s 2 f5; 6g for hAB;21 and s 2 f1;2;3; 4g for

hAB;22. For hABC;32ðt; s1; s2jXÞ, s1 and s2 represent the states

at time 0 and at time t, respectively. That is, s1 2 f5;6; 7;8g
and s2 2 f9; 10; . . . ;20g. Similarly, for hABC;21ðt; sjXÞ, s rep-

resents the state of the system at t¼ 0, with s 2 f1;2;3;4g.
Though long, equations (6)–(9) are simply capturing the

probability density of all coalescent histories (fig. 1b).

It follows that the probability of observing gene tree topol-

ogy G given the model parameters X can be computed from

these densities as:

P½G ¼ ððabÞcÞjX� ¼
ð1

s2

ðs2

s1

f1ðt1; t2; ððabÞcÞjXÞdt1dt2

þ
ð1

s2

ðt2

s2

f2ðt1; t2; ððabÞcÞjXÞdt1dt2;

(11)

P½G ¼ ððacÞbÞjX � ¼
ð1

s2

ðt2

s2

f3ðt1; t2; ððacÞbÞjXÞdt1dt2;

(12)

P½G ¼ ððbcÞaÞjX � ¼
ð1

s2

ðt2

s2

f4ðt1; t2; ððbcÞaÞjXÞdt1dt2:

(13)

Maximum Likelihood Parameter Estimation

It is possible to compute the likelihood from a set of align-

ments fA1;A2; . . . ;AKg at K independent loci as

LðX; A1;A2; . . . ;AKÞ ¼
YK
i¼1

ð
G

P½Ai jG� � fðGjXÞdG; (14)

where P½AijG� is the probability of observing the ith align-

ment Ai given gene tree G. The reason that we integrate

over gene tree G rather than sum over gene trees is that a

gene tree in this context represents a topology together with

branch lengths, where the distribution over branch lengths is

continuous. Although the likelihood is tractable, it is compu-

tationally challenging and changes with the choice of sub-

stitution model used to compute the term P½AijG� (Hey and

Nielsen 2007). As such, it is common practice in likelihood

methods to use estimated gene trees, bg1; bg2; . . . ;bgK , as in-

put data, and treat these data as known. Assuming the col-

lection of K inferred gene trees are independent, the

likelihood of the model may be computed as

LðX; bg1;bg2; . . . ;bgKÞ ¼
YK
i¼1

fðbgi jXÞ: (15)

Denoting X2r ¼ X n frg as the parameter set X excluding

the species tree topology r, then for a fixed configuration of

species tree topology r, we search over all possible values of

unknown parameters in X�r to maximize the log likelihood.

Thus, each configuration of the species tree topology is linked

with its own set of maximum likelihood estimates bX�r. We

infer the species tree and associated parameter estimates bX
that give rise to the largest associated likelihood.

It must be emphasized that in this scenario of ancestral

structure with two subpopulations, although the three possi-

ble species tree topologies are ((AB)C), ((AC)B), and ((BC)A),

there are six total species tree model configurations in which

species branch from ancestral subpopulations. The reason is

that for each species tree topology ððXYÞZÞ relating species X,

Y, and Z, it is possible that either Y and Z or X and Z descend

from the same ancestral subpopulation. Therefore, we must

find the maximum likelihood parameter estimates for six con-

figurations of the species tree.

Extension to n Taxa

With three species, there are only three species tree topolo-

gies and two configurations of each topology to consider.
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However, as the number of taxa grows, the number of avail-

able topologies, which grows in complexity at a rate propor-

tional to the double factorial of the number of taxa n

(Felsenstein 2004), makes direct application of our method

computationally infeasible. However, as illustrated in figure 2,

dividing the n-taxon problem into multiple subproblems can

ameliorate this burden. Because a rooted n-taxon tree is char-

acterized by its set of rooted triples (Steel 1992), we can im-

plement a supertree approach (DeGiorgio and Degnan 2010)

to estimate the n-taxon species tree topology. This tactic

reduces computation time to the order of
n

3

 !
times the

original complexity of the problem on three taxa.

Implementation

TASTI jointly optimizes over divergence times and migration

rates, though the computation varies depending on the type

of input data—that is, gene tree topologies with, or without,

branch lengths. From this point forward, for simplicity and

clarity, we drop the “hats” on our estimates for gene trees,

as we treat them as fully known.

We first consider the case when branch lengths are included

to make inference. Under this scenario, estimated coalescence

times t1 and t2 are already fixed, eliminating the need to

integrate out their values and permitting direct computation

of the probability density given X. For coalescence times t1i

and t2i of gene tree gi, computing the likelihood reduces to

LðX ; g1;g2; . . . gKÞ ¼
YK
i¼1

X4

j¼1

fjðt1i; t2i;gijXÞ: (16)

On the other hand, when simply inputting gene tree topolo-

gies, we can decrease the size of the parameter space by

optimizing over the length of the internal branch, rather

than estimating each divergence time separately, because

our model assumes no coalescence occurs in the interval

½0; s1Þ. The problem posed in equations (11)–(13) also reduces

to integrating only over t1, as the coalescence event at t1
uniquely determines the topology of the tree. Given data

y ¼ ðnab;nac;nbcÞ, where nxy represents the number of

three-taxon gene tree topologies in a sample displaying clade

fx, yg for lineages x and y from species X and Y, we can

compute the likelihood under X as

LðX; yÞ ¼ P½G ¼ ððabÞcÞjX�nab � P½G ¼ ððbcÞaÞjX�nbc

� P½G ¼ ððacÞbÞjX�nac :

(17)

To implement a constrained optimization procedure, we first

need to derive bounds on our unknowns. First, we consider

A B C D

A C B D

A B C D

A C D

A B D C B D

A C B

Infer n-taxon
gene tree at
each locus

Extract all n choose 3 3-taxon
trees displayed by inferred

n-taxon gene tree

A B C

A B D

A C D

B C D

Use TASTI to infer 3-taxon species
tree using the 3-taxon gene trees

across all loci

A B C D

Use supertree method
to infer n-taxon 

species tree

Step 1 Step 2 Step 3 Step 4

FIG. 2—Schematic of a supertree approach for inferring n-taxon species tree topologies under a model of ancestral population structure. (Step 1) At

each locus, infer a rooted n-taxon (here n¼4) gene tree. (Step 2) For each gene tree, extract the set of
n

3

 !
(here equaling four) rooted three-taxon gene

trees compatible with each n-taxon gene tree. (Step 3) For a given set of three taxa (e.g., species A, B, and C), apply TASTI to infer a rooted three-taxon

species tree under a model of ancestral population structure by using all three-taxon gene trees with the given set of taxa across all loci. (Step 4) Given the set

of
n

3

 !
(here equaling four) rooted three-taxon species trees inferred by TASTI, use a supertree approach to infer a rooted n-taxon species tree topology for

the full set of n taxa.
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the migration rate. Recall that the migration rate is given by

M ¼ 4Nm=h, where m 2 ð0; 1�: This formulation gives rise to

a lower bound of M> 0 when m is arbitrarily close to 0, since

m¼ 0 would imply no migration between subpopulations

and thus would prevent the process from stopping.

Similarly, we have an upper bound on M of 4N=h when

m¼ 1. As the migration rate grows toward its upper bound,

the species ancestry becomes effectively unstructured, gener-

alizing our model to the standard multispecies coalescent.

If branch lengths are used as input, then the estimated

coalescence times determine the bounds on the speciation

times. Let fT11; T12; . . . ; T1Kg and fT21; T22; . . . ; T2Kg be the

collections of first and second coalescent times at K loci, re-

spectively, going backward in time. Then by our model con-

struction, s1 2 ½0;minfT11; T12; . . . ; T1Kg� and

s2 2 ½s1;minfT21; T22; . . . :T2Kg�. In a maximum likelihood

framework, if branches of a gene tree in the sample are

uninformative, it is then possible to encounter a “star tree”

scenario in which s1 ¼ s2 ¼ 0. Here, we cannot resolve the

relationship among the taxa and are left to infer the unre-

solved species tree topology (ABC). Additional details regard-

ing the implementation of the optimization procedure are

discussed in the supplementary section “Parameter

Estimation for Gene Trees with Branch Lengths,”

Supplementary Material online.

When only topologies are considered, however, the inter-

nal branch length is no longer bounded by the set of observed

divergence times. Therefore, we bound the length of the in-

ternal branch of the species tree in a manner similar in spirit to

other methods that assume some minimum level of incom-

plete lineage sorting (Than et al. 2008; Wu 2012). To do this,

we claim it is reasonable to search only over internal branch

lengths that allow for some reasonable level of gene tree

discordance (Hudson 1983; Tajima 1983; Pamilo and Nei

1988). This is done because as the length of the internal

branch of the species tree increases, the probability of discor-

dance in the presence of population structure, even with low

migration rates, goes to zero. Letting s represent the length of

the internal branch, this probability of discordance is com-

puted by

P½G 6¼ r� ¼ 2

3
e�2s=h: (18)

We propose that the lowest reasonable level of discordance

to assume is P½G 6¼ r� ¼ 0:05, implying that out of 100 sam-

pled loci, only five will exhibit discordance.

With topology data only, an analysis of three taxa with

TASTI takes approximately 10 min, regardless of the number

of observed loci. When including branch lengths, the running

time grows with the number of observed loci. As the number

n of taxa grows, complexity is multiplied by the number
n

3

 !
of rooted triples, but the computing task is trivially

parallelizable across these triples (see supplementary fig. S2,

Supplementary Material online).

Results

In this section, we aim to examine the performance and

robustness of our proposed method using various forms of

input data and compare this performance with existing

methods MP-EST (Liu, Yu, and Edwards 2010), STELLS2

(Pei and Wu 2017), and STEM (Kubatko et al. 2009). MP-

EST is a pseudo-likelihood approach based on triples of taxa,

whereas STELLS2 and STEM are likelihood approaches based

on gene tree topologies and gene tree topologies with

branch lengths, respectively. We selected these methods

for comparison specifically because they are state-of-the-art

methods for estimating species trees from gene trees which

1) operate within the maximum likelihood paradigm but 2)

do not assume any sort of structure or other inter- or intra-

species gene flow. For TASTI, we considered using gene tree

topologies with and without branch lengths in cases where

the input data are both inferred and known with certainty.

The gene trees in our simulations were generated using the

coalescent simulator ms (Hudson 2002). To simulate se-

quence alignments conditional on these gene trees, we

employed Seq-Gen (Rambaut and Grass 1997) to generate

1-kilobase (kb) and 0.5-kb-long sequences (with an addi-

tional outgroup sequence) under the HKY substitution model

(Hasegawa et al. 1985) with a transition–transversion ratio of

4.6 and base frequencies A, T, C, and G, respectively, equal

to 0.3, 0.3, 0.2, and 0.2.

From these simulated sequences, we used dnamlk of

PHYLIP under the HKY substitution model (Felsenstein

1989) to infer gene trees using maximum likelihood assum-

ing a molecular clock with a transition–transversion ratio of

4.6 and empirical base frequencies. We applied this pipeline

to create samples of 100 replicates of K independent loci,

where K ranged from 10 to 104, under fixed species tree

topology ((AB)C). We let MAB;1 ¼ MAB;2 ¼ MABC;1 ¼ MABC;2

¼ M and hAB;1 ¼ hAB;2 ¼ hABC;1 ¼ hABC;2 ¼ h. We set a

constant effective population size of N ¼ 5� 104 across

both subpopulations and employed a per-site per-genera-

tion mutation rate of l ¼ 2:5� 10�8, yielding h ¼ 0:005.

When gene tree topologies were used as input, this resulted

in a bound on the length of the internal branch of the

species tree of s2 � s1 � 6:5� 10�3 mutation units, as de-

rived from equation (18). We focus on this case, with a

short internal branch, as it is a challenging scenario which

helps elucidate method performance under the most ex-

treme settings. We do, however, further evaluate the per-

formance of TASTI in cases with longer internal branch

lengths (see, e.g., table 1, fig. 4, or supplementary fig.

S9, Supplementary Material online). These parameter set-

tings were inspired by the great ape data set of Burgess

and Yang (2008).
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Ancestral Population Structure Alters Expected Gene Tree
Distributions

Although symmetries among the distribution of gene tree

topologies are expected under the standard multispecies co-

alescent (Allman et al. 2011), population structure skews this

distribution, as lineages above the root are no longer guaran-

teed to have equal probability of coalescing (Slatkin and

Pollack 2008). In supplementary figure S3, Supplementary

Material online, distributions of gene trees are plotted for

varying levels of migration when the internal branch is 6:5

�10�3 mutation units. Indeed, as M ! 4N=h—the scenario

under which our model reduces to the standard multispecies

coalescent—this symmetry between topologies ððbcÞaÞ and

ððacÞbÞ is present. However, as the migration rate

decreases, the distribution skews toward a dominant ððbcÞaÞ
topology, and symmetry between gene tree topologies ððbcÞaÞ
and ððacÞbÞ no longer persists. Further, although estimated

gene tree topologies (supplementary fig. S3c, Supplementary

Material online) obey the same large-sample distribution as

the topologies known exactly (supplementary fig. S3a,

Supplementary Material online), there is an increased

variability in their distribution across samples, which in

general is detrimental to inference (Casella and Berger

2002, Chapter 10).

TASTI incorporates the possibility for these skewed distri-

butions of gene tree topologies. In what follows, we demon-

strate that TASTI provides reasonable estimates of the true

species tree topology under conditions in which other meth-

ods have previously failed (DeGiorgio and Rosenberg 2016).

We simulated data as described at the start of this section,

assuming a species tree with speciation times s1 ¼ 2:5

�10�3 and s2 ¼ 2:75� 10�3 mutation units. This setting,

with such a short internal branch, makes correct inference

especially challenging. In order to understand the effects of

various evolutionary parameters on TASTI’s performance, we

first conduct a detailed exploration of the method’s accuracy.

A summary of TASTI’s accuracy is in figure 3, whereas tables

of median parameter estimates and 95% confidence intervals

are in supplementary tables S1 and S2, Supplementary

Material online, respectively. Summaries of additional simula-

tions studying the performance of TASTI against MP-EST,

STELLS2, and STEM under a variety of different simulation

settings are in figure 4.

Our results drive home several key points. First, phyloge-

netic inference methods are sensitive to the quality of input

data, and TASTI taking gene tree topologies as input tends to

be more robust to stochasticity encountered in practice than

when gene tree branch length information is incorporated

into TASTI’s input as well. However, if accurate data on

gene tree branch lengths are available, then TASTI will natu-

rally perform better when this information is included rather

than obscured. This is especially true when multiple candidate

species trees are equally likely under a model of gene tree

topologies alone. Furthermore, when species trees have lon-

ger internal branch lengths, then more accurate input data

can be estimated, yielding more reliable downstream infer-

ence of the complete species trees. Lastly, although TASTI is

typically competitive with alternative methods under the stan-

dard multispecies coalescent, it is the only method that exhib-

its favorable performance in the presence of ancestral

population structure.

Gene Tree Topology Data Permit Accurate, Robust Species
Tree Inference

The first column of figure 3 shows the performance of TASTI

with exact gene tree topologies for data input across all in-

vestigated levels of migration. In the case of no ancestral

structure (M ¼ 4N=h), we obtain consistent estimates of

the true species tree even with a small number of sampled

loci. Similarly, when the ancestral populations are structured

with M¼ 5, TASTI’s species tree estimate begins favoring the

truth over alternative topologies fairly quickly. In contrast,

with a combination of a higher rate of migration between

subpopulations (M¼ 50) and a short internal branch of the

species tree, the effects of ancestral population structure be-

gin to break down. Consequently, the distribution of gene

tree topologies resembles one we would expect under the

standard multispecies coalescent with sister species B and C,

such that TASTI is led to infer the dominant gene tree topol-

ogy ((BC)A) as the true species tree. When migration is at its

lowest (M¼ 0.5), and especially with few sampled loci, the

Table 1

Accuracy of the Maximum Likelihood Estimator as a Function of Migration Rate M ¼ 4Nm=h

Exact Topologies Inferred Topologies Exact Gene Trees Inferred Gene Trees

M ((AB)C) ((BC)A) ((AC)B) ((AB)C) ((BC)A) ((AC)B) ((AB)C) ((BC)A) ((AC)B) ((AB)C) ((BC)A) ((AC)B)

0.5 60 23 17 63 19 18 84 0 16 75 0 25

5 73 27 0 75 25 0 94 0 6 93 0 7

50 77 23 0 75 25 0 94 0 6 91 0 9

4N=h 74 13 13 52 25 23 100 0 0 84 5 11

NOTE.—Accuracy is based on the percentage of 100 simulated replicates of 103 loci that inferred a specific species tree topology under a scenario with s1 ¼ 2:5� 10�3 and
s2 ¼ 5:25� 10�3.
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data do not convey any detectable signal in the distribution of

topologies. That is, nearly all of the observed topologies are of

the form ððbcÞaÞ, and the true species tree is difficult to de-

termine. Interestingly, though ððbcÞaÞ is by far the dominant

gene tree in these input data, ((BC)A) is never TASTI’s esti-

mated maximum likelihood species tree. This result is

expounded upon in supplementary section “Bounding the

Length of the Internal Branch of the Species Tree in the

Low Signal Setting,” Supplementary Material online.

The second column of figure 3 illustrates TASTI’s accuracy

when gene tree topologies are no longer known with cer-

tainty, but rather, are inferred from 1-kb sequences. A com-

parison of these results with those in the first column suggests

that TASTI is robust to noise incurred in the process of gene

tree inference. Although accuracy in general is reduced, the

overall trends are still present. For the no structure setting, and

when ancestral populations are structured with M¼ 5, TASTI

still favors the true species tree topology ((AB)C), but with less
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FIG. 3.—Accuracy of the maximum likelihood estimator of r as a function of the number of input gene trees. Accuracy is based on the proportion of 100

simulated replicates of K loci (before filtering “star trees”), with K ranging from 10 to 104, where our method inferred a specific species tree topology under a

scenario with s1 ¼ 2:5� 10�3 and s2 ¼ 2:75� 10�3.
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immediacy and certainty as is found in the case when topol-

ogies are known exactly. When M¼ 50, TASTI goes from

slowly favoring the misleading species tree topology ((BC)A)

to quickly being positively misleading for ((BC)A). Interestingly,

when migration is at its lowest, the gene tree distribution

skews toward a more frequent occurrence of ððabÞcÞ
than ððacÞbÞ when compared against the distribution of

gene tree topologies which are known exactly. This in turn

improves TASTI’s accuracy.

Knowledge of Gene Tree Branch Lengths Improves
Estimation

Incorporating branch length data from input gene trees can

improve inference under TASTI, as knowledge about presence

or absence of symmetries in the distribution of gene tree to-

pologies may sometimes be insufficient for making the cor-

rect judgment. The performance of TASTI when gene tree

topologies with branch lengths are known with certainty,

displayed in the third column of figure 3, provides a bench-

mark best case that TASTI can hope to achieve under our

highly challenging simulation settings. In the case when an-

cestral populations are not structured, we see perfect perfor-

mance by TASTI with few input loci. With ancestral structure,

we still achieve good performance under each level of migra-

tion, with weaker trends as structure between subpopulations

increases. Remarkably, although TASTI’s estimate of the spe-

cies tree topology is inconsistent when M¼ 50, the addition

of branch lengths rescues inference. Another advantage of

using branch lengths is that we eliminate the need to set an

upper bound on the length of the internal branch heuristically,

as the estimated gene trees determine this automatically.

Using estimated gene trees and branch lengths introduces

increased variability into the model when compared with the

noise introduced by only using estimated topologies. In gen-

eral, although we obtain fairly accurate species tree estimates

using gene tree data known with certainty, the overall trend is

that TASTI experiences a larger reduction in accuracy from

FIG. 4.—Accuracy of TASTI, MP-EST, STELLS2, and STEM when estimating the true species tree topology r as a function of the number of input gene

trees. Accuracy is based on the proportion of 100 simulated replicates of K loci with K ranging from 10 to 103. In these simulations, we only use inferred gene

tree topologies as input to TASTI. Comparisons are made across four internal branch lengths (Ds ¼ s2 � s1) in cases when populations are both structured

and unstructured and when gene trees are estimated from both 1- and 0.5-kb sequences.
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using estimated gene trees than it does from using estimated

topologies alone. For example, we can see that under the

standard multispecies coalescent, though we obtained near-

perfect performance when branch lengths were known with

certainty, the variability in the estimated branch lengths

greatly reduces TASTI’s accuracy. This trend is apparent across

all migration rates, but it increases in severity as population

structure decreases. This is consequent to the claim that if

gene tree branch lengths are shorter, they are more difficult

to estimate accurately (DeGiorgio and Degnan 2014). This

notion is explored more deeply in the following section.

Species Trees with Longer Total Branch Length Permit
Better Inference

Our simulations test the accuracy of TASTI under a highly

challenging scenario where the internal branch of the species

tree is excessively short. With a short internal branch under

ancestral population structure, the chance of observing gene

trees concordant with the species tree decreases. Additionally,

for a fixed migration rate and divergence time s1, the time to

the MRCA among lineages in the phylogeny decreases on

average with a decreasing internal branch length. These

shorter gene tree branch lengths make accurate gene tree

inference more difficult, as loci become less informative be-

cause fewer mutations will have occurred among the species

(DeGiorgio and Degnan 2014).

The impact of the short gene tree branch lengths can be

seen directly by comparing the accuracy of TASTI when ap-

plied to gene trees known with certainty as opposed to when

it is applied to inferred gene trees (fig. 3, third and fourth

columns). When migration is low, gene tree branch lengths

are longer, and hence more informative. Thus, in lower-

migration settings (e.g., when M¼ 0.5 or M¼ 5), we can

infer more accurate gene trees and branch lengths than in

higher-migration scenarios. However, when migration is high

(e.g., when M¼ 50) or when the ancestral species are un-

structured, gene tree branch lengths are much shorter,

thereby leading to less accurately inferred divergence times.

We can see that the accuracy of TASTI suffers the most when

gene tree branch lengths are inferred under the no ancestral

structure and high migration scenarios. Meanwhile, species

tree inference is not dramatically affected when migration is

low.

With this in mind, we tested the influence of noisy gene

trees on TASTI’s performance in two ways. First, we consid-

ered the effect of less accurate input gene trees by following

an identical simulation protocol to the one described above,

with the exception that we inferred gene trees from 0.5 kb

instead of 1-kb-long regions. Results display similar, though

slightly worsened, performance when compared with our

original simulations (compare fig. 3 and supplementary fig.

S4, Supplementary Material online). We also tested the accu-

racy of TASTI with a longer internal branch of the true species

tree, such that the time to the MRCA is on average longer. To

evaluate this scenario, we simulated 100 replicates of 103 loci

using the same parameters and protocols as previously de-

scribed, with the exception that we increased the age s2 of

the species tree root. Specifically, we employed divergence

times of s1 ¼ 2:5� 10�3 and s2 ¼ 5:25� 10�3. As

expected, we observe the same trends as in our original sim-

ulations (fig. 3) but with overall more accurate species tree

inference (table 1). This is still a challenging setting, noting

that the probabilities of observing concordant gene trees are

3:62� 10�3; 3:46� 10�2, 0.236, and 0.596 for M¼ 0.5, 5,

50, and 4N=h, respectively, with the longer internal branch

length. This can be compared against concordance probabil-

ities of 1:83� 10�3; 1:75� 10�2, 0.122, and 0.366 for

M¼ 0.5, 5, 50, and 4N=h, respectively, with the shorter in-

ternal branch length.

Although our study operated on gene trees inferred by

maximum likelihood, the use of Bayesian methods to infer

gene trees may alleviate these concerns by improving gene

tree estimates and decreasing the chance of estimating gene

trees with branches of length zero (DeGiorgio and Degnan

2014). Alternatively, it is possible that imposing a constraint

on a minimum value on s2 � s1 when using whole gene trees

would avoid the deleterious effects of gene trees with poorly

estimated branch lengths.

Comparison of Competing Methods in the Three-Taxon
Setting

We used simulations to compare TASTI with three other

methods for inferring species trees from gene trees: MP-

EST, STELLS2, and STEM. We designed the study similarly to

the one presented in figure 3, examining the methods’ col-

lective performance over varying internal branch lengths and

levels of population structure. Specifically, we let (s2 � s1Þ 2
f2:5� 10�4; 5:0 �10�3; 1:0� 10�3; 2:0� 10�3g mutation

units and M 2 f5;4N=hg. We only investigate the more re-

alistic case of estimated gene trees as input, where gene trees

were inferred from 0.5 and 1-kb-long sequences. For TASTI,

we study the setting where gene tree topologies are used as

input. Other details of the simulations, including parameters N

and h, remain the same as in previous simulations.

Results (fig. 4) show the proportion of times out of 100

replicate simulations that each method inferred the correct

species tree for the given parameter settings. Comparing be-

tween the top two rows, we see that TASTI’s accuracy

increases with more accurate input topologies and with a

longer internal branch, where the signals are stronger.

Meanwhile, all other methods nearly always infer the wrong

species tree topology nearly (or exactly) 100% of the time,

demonstrating that MP-EST, STELLS2, and STEM are not ro-

bust to ancestral population structure.

The bottom two rows, on the other hand, evaluate all

methods when the populations are unstructured. Here,
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MP-EST and STELLS2 show the same consistent performance;

TASTI is competitive with these two methods. Though STEM is

known to perform well when gene trees are known exactly,

we see that this method is not robust to empirical data and

therefore underperforms, especially when the gene trees are

inferred from shorter sequences (Leach�e and Rannala 2011;

DeGiorgio and Degnan 2014). An exception is that, as the

internal branch length grows longer, sometimes a structured

species tree topology becomes more likely than the unstruc-

tured ((AB)C) topology under TASTI. This occurs when sto-

chasticity in the observed data results in asymmetries in the

observed distribution of gene tree topologies. Options that

would remedy the unidentifiability in this case are to limit

the length of the internal branch using some sort of external

information or to include divergence times in the analysis. As

these options may not always be possible, we recognize this

issue as a drawback of TASTI.

Accuracy of the Supertree Approach Applied to Four Taxa

With the wide availability of multilocus sequence data from a

number of species (Johnson et al. 2013; Lin et al. 2014; Yang

et al. 2015; Shen et al. 2016), it is common practice to con-

struct species-level phylogenies for more than three taxa.

However, when performing model-based species tree estima-

tion, the inference problem becomes increasingly complex

and computationally difficult (Drummond and Rambaut

2007; Liu and Pearl 2007; Heled and Drummond 2010; Wu

2012). We therefore chose to evaluate the performance of

TASTI for an increased problem size. Using again the identical

simulation protocol, we generated data assuming a four-

taxon species tree with fixed species tree topology

(((AB)C)D) and speciation times s1 ¼ 1:25� 10�2; s2 ¼
1:375� 10�2, and s3 ¼ 1:5� 10�2 mutation units. Species

A originated from subpopulation 1 whereas species B, C, and

D originated from subpopulation 2, as depicted in figure 5.

We again set a constant effective population size of N ¼ 5

�104 across both of these subpopulations and considered

both the unstructured ancestral population case as well as

the case with symmetric migration rate of M¼ 5 between

subpopulations in ancestral species.

To infer four-taxon species trees, we followed the proce-

dure depicted in figure 2. For each simulated replicate, we

extracted the
4

3

 !
¼ 4 rooted triples displayed by each four-

taxon gene tree at each of the K simulated loci. That is, at

every locus, we extracted the rooted gene tree (topology with

corresponding branch lengths) associated with each set of

three species, such that we obtained rooted gene trees for

the sets of taxa fa, b, cg, fa, b, dg, fa, c, dg, and fb, c, dg. For

each set of three species, we estimated a three-taxon species

tree topology using TASTI based upon the set of rooted triples

for that set of three species across the K simulated loci. This

procedure yielded
4

3

 !
¼ 4 three-taxon species tree topol-

ogy estimates. These four triples were then used to construct

a supertree using the modified mincut supertree algorithm

(Page 2002).

We chose to use the modified mincut supertree algorithm

based on six properties it exhibits (Page 2002; Semple and

Steel 2003). First, any species that is in one of the input gene

trees is also in the inferred supertree. Second, if a tree exists

that could display each input tree as a subtree, then the super-

tree will display each of these trees. Third, the order in which

gene tree topologies are provided to the algorithm does not

affect its supertree estimate. Fourth, changing the labeling of

species in the set of input trees will produce the same output

supertree with the set of relabeled species. Fifth, the algo-

rithm runs in polynomial time as a function of the number

of input species n. Finally, nestings that are not contradicted

are also displayed in the supertree. Though we employ a

specific supertree algorithm here, other supertree approaches

may have complementary desirable properties that could lead

to improvements in performance. However, an extensive as-

sessment of the wide diversity of supertree algorithms

(Wilkinson et al. 2005) is beyond the scope of this article.

In general, the most frequently inferred species tree to-

pologies are the true topology (((AB)C)D) and the partially

unresolved topology ((AB)CD) (supplementary fig. S9,

Supplementary Material online). These unresolved trees oc-

cur as a consequence of the supertree construction algo-

rithm when inferred triples are in conflict. We further

investigated the performance of TASTI by examining the

BA C

τ2

τ3

τ1

D

MABC,1

MABC,2

MAC,1

MAB,2

MABCD,1

MABCD,2

FIG. 5.—Model four-taxon species tree used in our supertree simula-

tions, displaying the relationships among species A, B, C, and D, with

divergence times s1, s2, and s3. Ancestral species belong to one of two

subpopulations with migration between subpopulations at rates MAB;1

and MAB;2 directly ancestral to species A and B, MABC;1 and MABC;2 directly

ancestral to the split of species A and B with species C, and MABCD;1 and

MABCD;2 above the root. Lineages from species A descend from subpop-

ulation 1, whereas lineages from species B, C, and D descend from sub-

population 2. Under our simulation scenarios, we set MX;i ¼ MY ;j ¼ M for

all species X and Y and for all subpopulations i and j.
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mean Robinson–Foulds (RF) distance (Robinson and Foulds

1981) between the inferred species tree topology and the

true topology for each set of 100 replicates given K simu-

lated loci. We followed the procedure of DeGiorgio and

Degnan (2014) and defined the RF distance as the sum of

the number of false positive clades and false negative clades

between the inferred topology and the true topology, such

that the distance metric applies to multifurcating trees.

Mean RF distances, numbers of false positive clades, and

numbers of false negative clades across all simulations are

summarized in supplementary figure S10, Supplementary

Material online. Results show that false negative clades oc-

cur more frequently than false positive clades. This result

indicates that the largest errors of this approach are due to

partially unresolved species trees, rather than species trees

displaying incorrect clades. Further, RF distance decreases as

the number of input loci increases, with the exception of

species tree estimates based on inferred gene trees with

branch lengths.

Comparing Accuracy of Multiple Methods Applied to Four
Taxa

In order to place the above results in better context, we

compared TASTI with MP-EST, STELLS2, and STEM in the

four-taxon setting as well. We followed the same protocol

for simulation that was used in the section “Accuracy with

the Supertree Approach Applied to Four Taxa.” In each sim-

ulation, we assumed equispaced divergence times (e.g.,

s3 � s2 ¼ s2 � s1) along an asymmetric species tree. The sim-

ulations include settings where the divergence times are sep-

arated by one of 2:5� 10�4; 5:0� 10�4; 1:0� 10�3, or

2:0� 10�3 mutation units. We considered the structured

case with migration rate M¼ 5 and the unstructured case.

We applied this comparison only to inferred gene trees, where

the gene trees were estimated from 1- and 0.5-kb sequences.

For TASTI, we only used gene tree topologies as input.

The results from this simulation, summarized using the RF

distance in figure 6, behave as expected (the same simula-

tions, described by number of false positive clades and false

negative clades, are reported in supplementary figs. S7 and

S8, Supplementary Material online, respectively). The top two

rows, showing simulations when the populations are struc-

tured, indicate that MP-EST, STELLS2, and STEM behave sim-

ilarly poorly; each method on average infers a tree that is as

far away in RF distance from the true tree as possible. TASTI,

on the other hand gets closer to the true tree, in particular as

the internal branches grow longer. In the unstructured case,

although TASTI, MP-EST and STELLS2 are all competitive,

STELLS2 uniformly performs the best. TASTI and MP-EST

FIG. 6.—Accuracy of the competing methods’ estimators of r as a function of the number of input gene trees in the four-taxon setting. Accuracy is

based on the average RF distance between the estimated and true species trees across 100 simulated replicated of K loci, with K ranging from 10 to 103. We

considered a migration rate M¼5 as well as the unstructured scenario.
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perform very similarly because MP-EST takes a pseudolikeli-

hood approach that, like TASTI, is also based in rooted triples.

Because STEM is sensitive to noisy data, this method again

underperforms relative to the other three. As observed in the

three-taxon simulations in figure 4, we note one exception

where TASTI underperforms when the internal branch length

grows but the populations are unstructured. The driver of

TASTI’s underperformance remains the same, resulting in an

increase in false negative clades (supplementary fig. S8,

Supplementary Material online), though TASTI performs simi-

larly to MP-EST and STELLS2 with regard to false positive clades

(supplementary fig. S7, Supplementary Material online).

Application to Data from the Anopheles gambiae Complex

The Anopheles gambiae complex comprised several morpho-

logically indistinguishable yet genetically different species of

mosquitos living in sympatry in sub-Saharan Africa (Davidson

1962). Though the species belonging to the A. gambiae com-

plex are closely related, only a small fraction of them possess

significant malaria vectorial capacity. Studying their ancestry is

critical as it may lead to key insights regarding how evolution-

ary history affects the development of traits that drive suc-

cessful malaria vectors (Neafsey et al. 2015). Fontaine et al.

(2015) originally studied six species in this complex: Anopheles

arabiensis, Anopheles coluzzii, A. gambiae sensu stricto,

Anopheles melus, Anopheles merus, and Anopheles quad-

riannulatus. In their work, they identified that two of the

most important malaria vectors in the complex, A. arabiensis

and A. gambiae, are in fact not the most closely related.

However, the similarities in their genome could be attributed

to introgression between them found on their autosomes.

Wen, Yu, Hahn, et al. (2016) built on the analyses of

Fontaine et al. (2015) by applying a phylogenetic network

model to the Anopheles data.

Previously, however, Lehmann et al. (1998) found signifi-

cant evidence for population structure within the A. gambiae

complex. They note that, though anopheline species are

broadly present across Africa, there are regions where pop-

ulations generally cannot establish, thereby isolating some

subpopulations. Moreover, though studies have found

anopheline species to be fairly homogenous over long ranges

within a given environment, different ecoclimatological envi-

ronments (e.g., dry savanna vs. humid coast) were found to

drive selection, suggesting that the anopheline species may

exhibit population structure across different environments

(Lehmann et al. 1997). Given the evidence for population

structure, and that the phylogenetic signals found in this

data set are more complex than one expects to find assuming

incomplete lineage sorting in panmictic ancestral populations

alone, we deemed this a viable system in which to apply

TASTI. In what follows, we conduct analyses of the autosomes

for the A. gambiae complex, using a seventh species, A. chris-

tyi, as an outgroup.

A single individual from each of the six species was se-

quenced at high coverage. Wen, Yu, Hahn, et al. (2016)

subset these high-coverage samples to generate indepen-

dent genomic regions. Because TASTI also assumes inde-

pendent loci, we used these alignments as input. After

subsetting by Wen, Yu, Hahn, et al. (2016), an ample

2,791 independent alignments across the autosomes with

an estimated mean length of 3.4 kb remained in this data

set (figure S1 of Wen, Yu, Hahn, et al. [2016] shows a his-

togram of locus lengths). Following the procedures of both

Fontaine et al. (2015) and Wen, Yu, Hahn, et al. (2016), we

estimated maximum likelihood gene tree topologies under

the GTRþGamma model at each locus using RAxML

(Stamatakis 2014). Supplementary figure S11,

Supplementary Material online, displays the distributions

of input rooted triples estimated in this manner, revealing

asymmetries among some of the distributions of topologies.

Following Wen, Yu, Hahn, et al. (2016), we also generated

100 bootstrap alignments at each locus and estimated the

maximum likelihood topology for each bootstrap replicate.

These bootstraps can be used to account for uncertainty in

gene tree topology estimates, analogous to the Bayesian

approach described by Yu et al. (2012). Briefly, let K be

the number of loci, and for each locus k, let gk1; gk2; . . . ;

gkq be the q different gene tree topologies estimated at that

locus from the bootstrap alignments. Denote ak1; ak2; . . . ;

akq as the proportion of times that gene tree topologies 1;

2; . . . ;q were, respectively, inferred from these alignments

at locus k, such that
Pq

i¼1 aki ¼ 1. Then, letting G be the set

of all gene tree topologies computed across the bootstrap

replicates across K loci, we define for each g 2 G the sum of

bootstrap probabilities associated with all loci whose topol-

ogy is g as pg. That is, for each g 2 G, we have pg ¼
PK

k¼1

akg such that
P

g2G pg ¼ K. Let 1fT display T 0g be an indica-

tor random variable that takes the value 1 if tree topology T
displays tree topology T 0, and 0 otherwise. We thus modify

the likelihood of a species tree in equation (17) to be

LðX; yÞ ¼ P½G ¼ ððabÞcÞjX�dððabÞcÞ � P½G ¼ ððbcÞaÞjX�dððbcÞaÞ

� P½G ¼ ððacÞbÞjX�dððacÞbÞ ;

(19)

where
y ¼ ðdððabÞcÞ;dððacÞbÞ;dððbcÞaÞÞ (20)

and
dððxyÞzÞ ¼

X
g2G

pg1fg displays ððxyÞzÞg (21)

denotes the sum of probabilities of gene trees displaying the

rooted triple ððxyÞzÞ, such that dððxyÞzÞ þ dððxzÞyÞ þ dððyzÞxÞ ¼ K.

To conduct our analyses, we first needed to obtain an es-

timate for the diversity parameter h ¼ 4Nl. Fontaine et al.
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(2015) sequenced several individuals from each of the six spe-

cies under study in the complex at lower coverage. We com-

puted the mean pairwise sequence difference bp (Tajima 1983)

within populations after filtering out indels using VCFtools

(Danecek et al. 2011). Recalling that E½bp� ¼ h (Tajima

1983), we proceeded by using bp as an estimate of h. Across

the genome, however, the estimate of h within each species

in the complex varied by over an order of magnitude (from�
1:4� 10�4 in Anopheles melas to �1:4� 10�3 in A. ara-

biensis). To approximate the ancestral estimates of h, for

any triple analyzed, we selected the maximum of the three

corresponding estimates of h as the value to pass to TASTI.

The maximum was chosen to be robust to the bottleneck

Fontaine et al. (2015) suspected to have occurred in the re-

cent ancestry of some species in the complex.

Estimates of the effective population size of anopheline

species are highly variable in the literature (Taylor et al.

1993; Michel et al. 2006; Hodges et al. 2013). We therefore

considered supplying TASTI effective population sizes across

different orders of magnitude. By fitting a model with

N 2 f103; 104;105g, we found that our results were robust

to effective population size. This is reasonable, since while the

choice of h directly affects the coalescent rate in the evolu-

tionary process, the effective population size in essence only

sets an upper bound on the migration rate. Analyses pre-

sented here assume an effective population size of N ¼ 104

across all populations.

We applied TASTI to the original data set as well as 100

replicate data sets created by bootstrapping the original align-

ments. Parameter estimates with 95% confidence intervals

for each estimated triple are shown in supplementary table

S6, Supplementary Material online. Because bM lies on a con-

tinuum from complete structure to no structure, we used a

testing procedure based on a parametric bootstrap to identify

which triplets were estimated to be structured. The details of

the testing procedure are in Algorithm 1, and the P-values

indicating support for ancestral structure over the unstruc-

tured case are in supplementary table S6, Supplementary

Material online. Note that even though we simulate bootstrap

replicate gene tree sets under the best-fit structured popula-

tion model from TASTI, the two least frequent gene tree to-

pologies are set to have the same expected counts to mimic

the symmetry expected under the null hypothesis of no struc-

ture. We applied this procedure to each set of rooted triples

setting the number of bootstrap samples to B¼ 100.

Our results are concordant with earlier findings, indicating

ancestral structure is frequently found among species belong-

ing to the A. gambiae complex. We identified four triplets that

are exceptions to this rule based on the testing procedure in

Algorithm 1 with a ¼ 0:01: ((CG)L), ((CG)R), ((LR)C), and

((LR)G). These results support a claim that the pairs A. coluzzii

and A. gambiae, and A. melus and A. merus, derive from

panmictic ancestral populations. The full six-species estimated

species tree topology with branch confidence determined by

bootstraps is presented in figure 7. Our analysis returns the

nearly fully resolved species tree ((A. coluzzii, A. gambiae), (A.

arabiensis, (A. melus, A. quadriannulatus), A. merus)) with

strong bootstrap support for the clades.

In line with previous work, we estimated a well-supported

clade between species A. coluzzii and A. gambiae. Though

our analysis and the analyses of both Fontaine et al. (2015)

and Wen, Yu, Hahn, et al. (2016) do not fully agree on the

placement of the remaining four species in the phylogeny,

because all three analyses assume a different model, the final

results need not agree. It is notable, though, that the phylog-

eny inferred by TASTI in fact most resembles the phylogeny

deduced from the X chromosome by Fontaine et al. (2015).

The X chromosome of the anopheline species does not harbor

signals of introgression (Fontaine et al. 2015), so the species

tree constructed from those gene trees may be more reliable

in that the underlying evolutionary process is simpler to tease

out. That TASTI infers a phylogeny from the autosomal data

which is similar to that of the X chromosome is a reassuring

result; however, identifying the correct model to assume is a

nontrivial task which deserves thorough investigation in the

future.

Discussion

In this article, we developed TASTI, an algorithm that can

be used to infer species trees from gene trees when a

group of taxa’s ancestral populations are structured,

which offers the possibility to operate on larger numbers

of taxa with a supertree approach. TASTI improves upon

previous approaches (e.g., GLASS, STEM, and Maximum

Algorithm 1 Testing H0:5 panmictic populations versus

H1 : 5 nonpanmictic populations among taxa x, y, and z

using a parametric bootstrap

1: Define B:¼ # of parametric bootstrap samples

2: for b in 1 to B do

3: Simulate 2,791 gene tree topologies based on bM andbs2 � bs1 obtained from analysis of bootstrapped align-

ments (supplementary table S6, Supplementary Material

online)

4: Define observed counts Ob ¼ ðnxy ;nxz ;nyzÞ
5: Define i:¼ argmaxfObg
6: Define expected counts Eb ¼ ðmaxfObg;meanfOb

�ig;
meanfOb

�igÞ
7: Compute Pb according to multinomial goodness-of-fit

test based on the observed and expected counts using a v2

distribution with 1 degree of freedom

8: Define Pxyz:¼ P1; . . . ; PB combined into one P-value using

Simes’ procedure (Simes 1986)

9: Reject H0 when Pxyz � a
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Tree) that accurately infer trees under this scenario (pro-

vided input trees are known with certainty) because it

exhibits robustness to empirical data.

We recognize TASTI makes some simplifying assumptions

about ancestral structure. Although the assumed persistent

population structure may not be entirely realistic, it is plausible

for this model to approximate signals of ancestral population

structure that arise from organisms experiencing periodic sep-

aration based on environmental changes such as glaciations

and sea level fluctuations (Toms et al. 2014) or limited off-

spring dispersal (Habets et al. 2006, 2007). Moreover, the

assumption of no more than two subpopulations may for

some species be insufficient. Additionally, even with only

two subpopulations, one could forseeably introduce more

complex species tree orientations by considering other ways

in which an ancestry could be structured. However, for this

model, such intricacies would come at the cost of total

unidentifiability of the species tree model. This issue for phy-

logenetic inference has been discussed at length and is not

unique to TASTI (Chang 1996; Evans and Warnow 2004; Ho

and An�e 2014; Xu and Yang 2016).

A substantial amount of recent research has focused on

advancing models for estimating reticulate evolutionary histo-

ries caused by events such as hybridization and continuous

gene flow (Huson et al. 2005; Baum 2007; Meng and

Kubatko 2009; Gerard et al. 2011; Yu et al. 2014; Sol�ıs-

Lemus and An�e 2016; Tian and Kubatko 2016; Wen and

Nakhleh 2017; Hey et al. 2018; Long and Kubatko 2018).

To contrast, our extensive simulations support the idea that

asymmetries in gene tree topology distributions not observed

under the standard multispecies coalescent, which are fre-

quently attributed to interspecies gene flow, also arise under

ancestral population structure (Slatkin and Pollack 2008).

However, such asymmetries in gene tree topology distribu-

tions are likely to be generated only under settings where the

degree M of gene flow relative to the time s between species

divergences is small. Consider the internal branch of our struc-

tured population three-taxon model with topology ((AB)C).

The waiting time to the first migration event (either from

the first or the second subpopulation) is exponentially distrib-

uted with rate 2m, where m is the per-generation migration

rate. Following DeGiorgio and Rosenberg (2016), the proba-

bility of no migration event on the internal branch of length t

generations (i.e., neither lineage migrates) is expð�2mtÞ
¼ expð�2MsÞ, where M ¼ 4Nm=h and s ¼ th=ð2NÞ are

scaled in mutation units. Moreover, the probability that the

first event above the root is a coalescence event that would

lead to gene tree topology ððbcÞaÞ is expð�2mtÞ=ð6Nmþ 1Þ
¼ expð�2MsÞ=ð3Mh=2þ 1Þ, which is arbitrarily close to one

for M small enough with fixed s. This result indicates that

asymmetries in gene tree distributions will manifest in scenar-

ios when Ms is small—that is, when gene flow between

subpopulations is infrequent on the time scale separating spe-

cies splits.

Though population structure is often explored in anal-

yses of evolutionary histories (e.g., F-statistics such as FST

[Wright 1949; Weir and Cockerham 1984] and software

such as STRUCTURE [Pritchard et al. 2000] for exploring

population structure enjoy widespread use), model-based

approaches incorporating such structure within species

inference frameworks have been lacking. Our analyses

of the A. gambiae complex data further demonstrate,

when comparing to the work of Wen, Yu, Hahn, et al.

(2016) and Fontaine et al. (2015), that similar phylogenies

can be inferred when assuming either a reticulate history

or ancestral population structure. Indeed, the identifiabil-

ity of such histories given gene tree topologies alone is

severely limited or impossible. An investigation via com-

prehensive simulation studies of how distributions of gene

tree branch lengths differ under various evolutionary

assumptions such as hybridization and population struc-

ture may provide key insights into selection of an appro-

priate evolutionary model.

A promising alternative, especially in the absence of external

information, would reformulate TASTI in terms of a hypothesis

test. That is, it may be meaningful to test for significant con-

fidence in ancestral structure versus unstructured populations

using a bootstrapping approach. Moreover, a different test

could assess the likelihood of ancestral structure versus hybrid-

ization, though addressing such a question may be challenging

based on topology data alone. Further work remains in exam-

ining how phylogenetic signals differ under these various

An.coluzzii

An.gambiae

An.arabiensis

An.melus

An.quadriannulatus

An.merus

FIG. 7.—Species tree topology for the Anopheles gambiae complex

estimated by applying the modified mincut supertree algorithm to the set

of all distinct three-species tree topologies inferred by TASTI, with boot-

strap branch support obtained from 100 bootstrap replicates. The propor-

tion of gray in each pie chart corresponds to the degree of support for

each clade. That is, a fully gray chart implies 100% bootstrap support for a

given clade.
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modeling assumptions, such that an appropriate model may

be determined on a case-by-case basis.

If possible, external information or expert opinion can be

used to aid in model performance. In the case of identifiability,

external knowledge can be supplied to restrict the domain of

certain free parameters, namely the divergence times, such

that the model becomes identifiable (Huelsenbeck et al.

2008). Models equally likely to produce a given distribution

of gene tree topologies can further be evaluated by more

closely examining branch lengths or molecular sequences

(Yu and Nakhleh 2015). External information in the form of

Bayesian prior distributions can boost the performance of

gene tree inference as well (Huelsenbeck and Ronquist

2001; Huelsenbeck et al. 2004). The more accurate the input

data, the closer TASTI gets to achieving optimal performance.

This is especially crucial when using data on gene trees with

branch lengths. Simultaneous estimation of genes trees and

the species tree from multilocus data in a Bayesian hierarchical

framework has also proven effective and popular (Liu and

Pearl 2007; Liu 2008; Heled and Drummond 2010; Wen,

Yu, and Nakhleh 2016; Zhang et al. 2017), and an extension

of TASTI to such a framework may be powerful.

Some avenues are available to reduce computation time

and improve performance in analyses with larger numbers

of species. Maximum pseudolikelihood methods based on

groups of rooted triples have been proposed both for the

standard multispecies coalescent with incomplete lineage sort-

ing (Liu, Yu, and Pearl 2010) and with hybridization (Yu and

Nakhleh 2015; Sol�ıs-Lemus and An�e 2016). These approaches

have been shown to reduce computational burden, an impor-

tant feature given that, even with greatly diminishing the com-

putational task using a supertree approach, TASTI’s

computation time grows with the number of taxa at a rate

of
n

3

 !
. Thus, a pseudolikelihood method for taxa with an-

cestral population structure would be a useful extension to our

work. Finally, although we find favorable performance of the

modified mincut supertree algorithm of Page (2002), the ef-

fect of alternative supertree construction algorithms

(Wilkinson et al. 2005) could nevertheless be explored.

Data Availability

Independent alignments of high-depth samples from the

Anopheles gambiae complex, first generated by Wen, Yu,

Hahn, et al. (2016), are available from the Dryad Digital

Repository: http://dx.doi.org/10.5061/dryad.tn47c. The VCF

files for low-depth samples from the A. gambiae complex,

detailed by Fontaine et al. (2015), are also available from

the Dryad Digital Repository: http://dx.doi.org/10.5061/

dryad.f4114. An R package, called TASTI, containing the func-

tions used to implement the core analyses presented here is

available for download from https://github.com/hillarykoch/

TASTI.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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