
Activity Detection And Modeling Using Smart Meter Data:
Concept And Case Studies

Hao Wang1, Gonzague Henri1,2, Chin-Woo Tan1, Ram Rajagopal1
1 Department of Civil and Environmental Engineering, Stanford University, CA 94305, USA

2 Total, R&D, USA
Emails: haowang6@stanford.edu, gonzague.henri@total.com, {tancw,ramr}@stanford.edu

Abstract— Electricity consumed by residential consumers
counts for a significant part of global electricity consumption
and utility companies can collect high-resolution load data
thanks to the widely deployed advanced metering infrastruc-
ture. There has been a growing research interest toward appli-
ance load disaggregation via nonintrusive load monitoring. As
the electricity consumption of appliances is directly associated
with the activities of consumers, this paper proposes a new and
more effective approach, i.e., activity disaggregation. We present
the concept of activity disaggregation and discuss its advantage
over traditional appliance load disaggregation. We develop a
framework by leverage machine learning for activity detection
based on residential load data and features. We show through
numerical case studies to demonstrate the effectiveness of the
activity detection method and analyze consumer behaviors
by time-dependent activity modeling. Last but not least, we
discuss some potential use cases that can benefit from activity
disaggregation and some future research directions.

I. INTRODUCTION

A. Background

Thanks to the widespread deployment of smart meters,
high volumes of residential load data have been collected and
made available to both consumers and utility companies. In
the United States (US) alone, more than 65 million smart
meters have been installed by 2015 and the number of
installations is expected to be 90 million by 2020 [1]. For
consumers, having access to the real-time load data help
them better understand their load patterns and wisely plan
the consumption to conserve energy and save electric bills,
especially under a time-of-use tariff structure [2]. For utility
companies, analyzing consumer load data enables better
residential load forecasting and engagement of consumers
in the planning and operation of the system, for example
through demand response programs [3]. Therefore, smart
meter data analytics opens up new opportunities to both
consumers and utility companies toward a smart grid.

Various analytical techniques have been developed to
analyze smart meter data through machine learning [4]. For
example, a long short-term memory model was used to
forecast the load of individual residential households in the
short term [5]. An adaptive K-means method was proposed
to identify representative load profiles of consumers and
characterize consumers’ lifestyles [6]. A recent study in [7]
took a further step and developed a deep neural network
model to reveal the connection between consumers’ load

patterns and their socioeconomic characteristics including
age, income, and educational level. But the aforementioned
studies in [5], [6], [7], despite their applications (e.g., load
forecasting, load segmentation, and load pattern prediction),
all focused on the aggregated load of consumers. However,
appliances play a significant role in the total electricity
consumption of residential consumers [8]. Kavousian et al.
in [9] found that specific appliances like refrigerators and
entertainment devices are highly associated with greater daily
minimum electricity load, and in contrast, electric water
heaters and dryers contribute significantly to daily maximum
consumption. To encourage consumers to change consump-
tion behaviors and save energy, it is essential to disaggregate
and monitor electricity consumption at the appliance level.

Several load disaggregation approaches have been devel-
oped to provide detailed energy consumption of consumers.
To this end, a load disaggregation algorithm was developed in
[10] to decompose smart meter data into discrete pulses, each
of which is associated with a registered appliance. The study
in [11] measured energy consumption down to appliances
(e.g., lighting, refrigerator, and microwave) to identify inef-
ficient devices. Among different categories of disaggregation
approaches, non-intrusive load monitoring (NILM) methods
have attracted a lot of attention to disaggregate total load
into the individual load of appliances [12]. But traditional
NILM for appliance load disaggregation did not achieve high
accuracy and has come to a halt due to its inherent draw-
backs. Some argued in [12] that it is impractical to identify
appliance load solely based on the measurement of load
signal at a single point. Also, from the perspective of utility, it
is challenging to engage consumers by solely providing split-
up appliance consumption because there lacks interactive
interpretation between consumers’ behaviors and appliance
consumption. Aiming at these problems, in this paper, we
propose a more interactive and less complex approach toward
load disaggregation, namely activity disaggregation. Detect-
ing daily activities of consumers is promising to achieve
higher accuracy and gain insights into consumer behaviors,
based on which utilities and consumers can improve their
operations and satisfaction, respectively.

B. Main Results

This paper proposes the use of smart grid data to un-
veil consumer behaviors in terms of activities. Given the



exploratory nature of the work, we present the idea of
activity disaggregation and develop a framework for activity
detection. Using realistic load data from Pecan Street [13],
we show some numerical results on activity detection and
modeling, which shed light on analyzing consumer behav-
iors. Specifically, we summarize the main body of this paper
as follows.

• In Section II, we review existing studies on load disag-
gregation and analyze its major drawbacks that motivate
us to study activity disaggregation. We present the con-
cept of activity detection and discuss its advantages over
traditional appliance load detection and disaggregation.

• In Section III, we develop a framework that leverages
multiple data resources, feature engineering, and ma-
chine learning techniques for activity detection. We also
discuss activity modeling approaches to the understand-
ing of consumer behavior.

• In Section IV, we take house-cooling as an example
to validate our proposed activity detection framework
using multiple features in both time and frequency
domains. We also show the activity modeling based
on realistic data and discuss potential use cases for
consumers and the utility.

• In Section V, we summarize this work and discuss some
future research directions.

II. OVERVIEW OF LOAD DISAGGREGATION AND
MOTIVATION

We review related work on load disaggregation and discuss
our motivation toward activity disaggregation.

A. Related Works

Firstly proposed by Hart in [14], NILM aims to find
the energy consumption for individual appliances and is
essentially a single channel blind source separation problem.
As a highly underdetermined problem, it is challenging to
decompose the aggregated load into many appliance loads.
In the past decade, many NILM methods have been proposed
for residential consumers and can be classified into two cat-
egories [15]. The first category of NILM methods [16], [17]
rely on event detection, for example, on and off transition
of appliances and change of operational modes or states
of appliances. However, there is an underlying assumption
that the load change is caused by only one appliance, but
such an assumption often does not hold in practice. The
second category of NILM methods in [18], [19] assumes that
the aggregated load is a mixture of a number of unknown
load signals, each of which is associated with an appliance.
Therefore, the second category method aims to recover
the detailed split-up appliance consumption. However, their
performance is highly dependent on the sampling frequency
and smart meters often do not support such high-frequency
data sampling and storage [20]. For more related works,
readers can be referred to the survey papers in [12], [21].

B. Motivation

Although some existing NILM approaches could poten-
tially disaggregate some appliances in specific settings and
improve energy efficiency, the existing studies often suffer
from
• low disaggregation accuracy,
• and difficulty in interpreting appliance use and engaging

consumers.
and thus motivate our study of activity detection.

For example, using Pecan street load data, we show in
Fig. 1 that the energy consumption of furnace (air handler)
and air compressor are perfectly matched in time but their
consumption is different from time to time. This suggests
that the load changes are associated with both furnace and
air compressor and thus the aforementioned disaggregation
methods can easily fail in this case. In fact, both furnace and
air compressor reflect the same activity of house heating and
thus we are motivated to study activity disaggregation instead
of separated appliance load disaggregation.
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Fig. 1. Energy consumption of furnace and air conditioning.

The idea of activity recognition has been studied in the
healthcare area to detect emergency situations [22] by mon-
itoring daily activities and movements of patients. But such
recognition techniques often rely on extra sensor devices and
thus are intrusive and can be costly. Other studies, e.g., [23],
built probabilistic models of activities that are associated
with energy consumption. But the consumer behaviors are
so diverse and there lacks a generic model to work for
personalized consumption behaviors. Different from existing
works, we restrict our work to be non-intrusive but aim to
take full advantage of different features of load signals (e.g.,
in the time domain and frequency domain) and external
information (e.g., weather) to detect activities and model
activities to benefit utility service and consumer experience.

III. ACTIVITY DETECTION AND MODELING

The energy consumption of different appliances is often
associated with certain activities such as food preparation,
relaxation, and cleaning. Our aim is to discover consumer
activities using smart meter data. As shown in Fig. 2, doing
each activity can involve the use of multiple appliances.
When preparing food, consumers may use oven and/or mi-
crowave. For laundry, it is typical to operate cloth-washer and
then a dryer. We will present a framework to extract features
from load data and external information (e.g., weather) and
detect activities. Then we present different activity modeling
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Fig. 2. Activities and associated appliances.

approaches. For example, activities such as grooming, food
preparing, and doing laundry are usually regular routines. We
will develop time-dependent modeling to illustrate detected
activities to get insights into consumer behaviors.

A. Activity Detection

Fig. 3 shows the overview of the framework for activity de-
tection, which consists of two major parts: feature extraction
and classification model. Note that different activities may
demand different features and models for effective detection,
therefore, we do not specify the detection method in this
section but propose the general framework. We will show
a case study in Section IV to validate this framework for a
specific task.

The activity detection algorithm receives the data from
the smart meters and other sources (e.g., weather). Note that
the smart meter data can have different resolutions (e.g., 15
minutes, 1 minute, and 1 second) depending on the setup.
We primarily rely on smart meter data, but also try to include
other available information like temperature, which is proven
to be correlated with energy consumption. When processing
the load data, we aim to extract effective features as the input
of the classification model. Those features can be the first-
order derivative of total load and the variance of the load in
a time interval. We call them time-domain features and they
are usually good indicators of timing and energy intensity
of activities. Besides, load patterns can also be captured
by frequency analysis, e.g., fast Fourier transform (FFT).
FFT can convert the load signal in the time domain to a
representation in the frequency domain and thus provide new
insights that are invisible in the time domain. Having a set of
features extracted, we will choose and train a classification
model and such a model can be based on logistic regression,
random forest, support vector machine (SVM), and deep
neural networks [24], depending on the specific detection
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B. Activity Modeling
After detecting residential activities from load data, we

need to create models to analyze activities and generate
insights. There has been a number of models attempting
to analyze customers’ behaviors, e.g., in [6]. For example,
Kwac et al. in [6] developed a clustering-based method to
segment customers’ lifestyles based on their load data, but
such lifestyles do not differentiate customers’ activities.

We introduce two approaches to activity modeling. One
approach is to model the relationship between a set of activity
and the time (e.g., hours of a day and different seasons) with
a view to understanding how different activities exhibit time-
dependent characteristics. Specifically, time dependence [26]
refers to the high occurrence of the same activity over the
same periods (e.g., hours of a day). From the perspective
of behavioral science, understanding the timing of activities
helps the study of social practices of consumers in terms
of the ordering and overlapping over time. From the engi-
neering perspective, understanding the timing of activities
can contribute to load shifting and demand management.
System peak load is a result of high consumption from
activities at the aggregated level and we can identify the
critical activities that contribute most to the system peak and
then design proper demand management schemes to mitigate
the problem.

The other approach is to model the relationship among
different activities based on their timing sequence. Social
practice theory suggests that consumers’ activities should be
treated in a holistic manner to reflect the patterns, e.g., daily
routines [26]. Understanding how consumers’ routines are
embedded can provide useful insights into the interpretation
and predictability of everyday-life activities. To this end,
the sequences of detected activities can be constructed as
Markov-chain-like transitions of states (i.e., activities) as
shown in Fig. 4. We take five activities (including sleeping,
grooming, food preparing, doing laundry, and dish washing)
as an illustrative example. Each arrow indicates a transition
from one activity to another and is associated with a probabil-
ity showing the likelihood of transition. We will numerically
present a case using realistic load data in Section IV.

1It’s worth mentioning that in a practical setting, the detection algorithm
is expected to work on a set of activities of a large number of consumers
but the available training data can be limited. Therefore, transfer learning
[25] can be a promising technique to transfer knowledge across tasks (of
activity detection) and improve the effectiveness of the detection algorithm.
We will consider transfer-learning-based techniques in our future work.



IV. CASE STUDIES

In this section, we will present case studies based on real-
istic load data from Pecan Street [13]. We acquire 1-minute
load data of 160 consumers with their load of appliances in
2017 and bundle appliances as the corresponding activities
according to Fig. 2. In the following, we will show some
preliminary results of activity detection and modeling.

A. Activity Detection Case Study

We take house cooling/heating as an example and tailor
a detection algorithm following the framework in Fig. 3.
Specifically, we consider minute-level load data of con-
sumers and the temperature profiles as the input. We extract
features in both time domain and frequency domain (via
FFT). The time-domain features consist of the first-order
derivative, variance of minute-level load profiles in every
hour. We take the first ten elements of the amplitude spectrum
as frequency-domain features. For the classification model,
we choose SVM.2 We split the data into 70% for training and
the rest for validation and test. The goal is to identify whether
there is house cooling/heating activity in each detection
window (i.e., hour) solely based on the aggregated load and
additionally available information (e.g., the temperature in
this case study). We aim to show the effectiveness of different
features in the detection performance by comparing four
cases: Method 1 (using frequency-domain features alone),
Method 2 (using time-domain features alone), Method 3
(using both frequency-domain and time-domain features but
not temperature), and Method 4 (using all available features).

We evaluate the performance of the proposed algorithm
by the following metrics: accuracy, precision, and recall.
In the detection outcomes, we denote true positive, true
negative, false positive, and false negative as TP, TN, FP,
and FN, respectively. Then, accuracy, precision, and recall
are calculated as

Accuracy =
TP+TN

TP+TN+FP+FN
,

Precision =
TP

TP+FP
,

Recall =
TP

TP+FN
.

We first show the performance metrics of the compared
methods. The results show that only using frequency-domain
features or time-domain features are less effective in detect-
ing cooling operations, e.g., 55.3% and 57.3% of recall for
Method 1 and Method 2, respectively. Mixing frequency-
domain and time-domain features significantly improves the
performance and adding temperature further boosts the per-
formance to achieve 98.3% of accuracy.

We also use the trained Method 4 to perform the detection
on the aggregated load of two randomly selected consumers
(#994 and #871) on August 1-7, 2017. Table I shows the
detection results and we see that Method 4 achieves high
accuracy and perfect precision and there is only one FN in

2To serve the illustrative purpose, we do not discuss the performance of
different classification models but will consider in the future work.
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Fig. 5. Performance comparisons accuracy, precision, and recall.

TABLE I
DETECTION RESULTS OF CONSUMERS (#994 AND #871).

Consumers Accuracy Precision Recall
#994 99.40 100 99.10
#871 99.40 100 99.32

Test on Aug. 1-7 2017 of User # 994 
 
true 
pred   0   1 
   0  57   1 
   1   0 110 
> accuracy_2 <- sum(diag(ac_table_2))/sum(ac_table_2) 
> accuracy_2 
[1] 0.9940476 
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Fig. 6. Energy consumption profiles, house-cooling ground truth, and
detection results of consumer (#994) in August 1-7, 2017.

both tests. We further plot the aggregated load, ground-truth
status, and detection results over time for consumers #994
in Fig. 6. We see that the only one FN occurs at Hour 35
and the rest of detection results are accurate compared with
the ground truth.

B. Activity Modeling Case Study

We also take Consumer #994 as an example to numerically
show the activity modeling. Fig. 7 depicts the distribution of
time-dependent activities over 24 hours based on historical
data. We see that food preparing and dish washing show
similar time dependences and have the highest occurrence
in the evening time. Therefore, they are identified as critical
activities and proper intervention can help shave the system
peak. Doing laundry and house cooling exhibit opposite
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patterns. Note that different consumers may exhibit very
diverse distributions. Per the illustrative example in Fig.
2, we also calculate the transition matrix P for Consumer
#1042 based on the historical data in May 2017 as follows.
We define the activity state space as {Sleeping, Grooming,
Food-Preparing, Dish-Washing, Doing Laundry}. From the
transition matrix, we see that from sleeping, the residents
have a higher probability to prepare food (i.e., breakfast) di-
rectly. The residents usually do the laundry and dish-washing
before sleep. The showed activity modeling approaches can
be helpful in understanding consumer behaviors and improve
utility services.

P =


0 1/6 5/6 0 0
0 0 1/2 1/4 1/6

1/12 5/12 3/10 1/5 0
4/7 0 0 3/7 0
0 0 0 1/2 1/2


V. CONCLUSIONS

In this paper, we presented the concept of activity dis-
aggregation and discussed its potential advantages over
traditional appliance load disaggregation. We developed a
machine-learning-based framework to detect activities by
leveraging different features, and validated the framework
through a case study on house cooling/heating. We also
discussed two approaches to activity modeling and showed
numerical examples.

For future work, we will extend the results for more
activities and develop use cases to enable both utilities and
consumers to benefit from activity detection and modeling
techniques.
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