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Abstract—A design technique for free-standing planar meta-
surfaces comprising an array of subwavelength resonant inclu-
sions on an irregular grid is presented. The local E-field is
evaluated as a sum of discrete and continuous contributions
from neighboring and far-separated elements, respectively. The
dimension of each resonator is determined from the polarizability
relation. Free from the limitations associated with unit-cell
analysis and design under periodic boundary conditions, the
new design technique allows use of irregular grids for functional
electromagnetic surfaces.

I. INTRODUCTION

Periodic Green’s functions and periodic boundary condi-
tions (PBCs) in numerical analysis have enabled development
and maturation of functional periodic electromagnetic struc-
tures, such as photonic/electromagnetic bandgap materials,
metamaterials, and metasurfaces [1]. By relaxing the condition
of identical cells, position-dependent wave-matter interaction
can by synthesized for a variety of wave transformation
applications [2]. While efficient unit-cell analysis enabled by
PBCs allows accurate prediction of mutual coupling, it forces
the grid for cell placement to be regular and planar.

Depending on the application, a regular grid may not be
optimal or even possible, necessitating use of an irregular
grid. This is most evident in doubly-curved conformal sur-
faces. Efforts have been reported to address conformal grid
generation [3], element design for curved surfaces [4], as well
as irregular patterning and surface impedance retrieval [5].
However, to date, mutual coupling effect between elements
on irregular grids has not been properly taken into account in
element designs.

In this paper, a design technique for resonant inclusions on a
planar irregular grid for functional surfaces is presented. Each
resonator is designed from the polarizability definition and the
local E-field is computed as a sum of discrete and continuous
source contributions. As an example, a fully reflecting surface
in free space on an irregular grid is designed and numerically
tested.

II. POINT-DIPOLE ANALYSIS AND DESIGN

Electrically small resonant inclusions may be approximated
as point dipoles. The strength of the induced dipole moment
p is related to the exciting local E-field Eloc via the electric
polarizability α as

p = αEloc, (1)
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Fig. 1. Individual resonator design approach. (a) The electric polarizability
of a planar end-loaded PEC dipole, normalized by the free-space permittivity
ε0, with respect to the electrical dimension (λ = free-space wavelength). The
strip width is w = a/5. (b) Partition of the metasurface plane into discrete
and continuous contribution regions and the respective E-field contributions
Edisc and Esheet at a dipole location (red dot).

where p and Eloc refer to their respective component along
the dipole axis. As an example, Fig. 1(a) plots α of a
perfect electric conductor (PEC) strip dipole in terms of the
dimension a around resonance from FEKO simulation. The
dimension of a resonator can be determined once the desired
dipole moment and the local E-field are known. For a thin
planar metasurface in free space, synthesis of a particular
reflection (r) or transmission (t) coefficient under a plane-
wave illumination corresponds to realizing a specific average
surface current density Js. If a dipole moment p is in a
cell with an area S, we have Js = jωp/S in an ejωt time
convention.

Consider a metasurface comprising elements on an irregular
grid. Since element placement is not periodic, traditional
synthesis techniques using unit-cell analysis are not applicable.
We resort to (1), where the local E-field is a superposition of
external and interaction fields, written as Eloc = Eext + Eint.
Furthermore, the interaction field is decomposed as Eint =
Esheet + Edisc, as illustrated in Fig. 1(b). At a dipole position
under consideration (red dot), fields from all other resonators
are split into contributions from neighboring and far-separated
elements inside and outside a disc of radius R centered at the
dipole, respectively.

This decomposition and analytical evaluation of Esheet led to
efficient and accurate evaluation of the interaction constant for
planar regular arrays [6]. The same strategy can be employed
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Fig.2. Designofanexampleirregulargrid.(a)Anirregular-gridsupercell
containing36nodesincludingapentagonalcellatnode9.Fixednodes
duringgridgenerationareindicatedasredcircles.(b)Elementpositionsin
aninfiniteplanararray.Thesupercellin(a)(redcircles)issurroundedby
regularhexagonalgridpointsextendingtoinfinity.

tofindthelocation-dependentlocalE-fieldsfordipoleson
anirregulargrid.Thesheetcontributionfromthecontinuous,
homogeneouscurrentJsisequalto[6]

Esheet=−Js
η

4
1−

1

jkR
ejkR, (2)

wherek=2π/λandη≈377Ωarethefree-spacewavenum-
berandintrinsicimpedance,respectively.TheE-fieldfromthe
neighboringelementsinsidethedisc,Edisc,isevaluatedasa
superpositionofindividualresonatorcontributions,assuming
thateachresonatorbehavesasapointdipole.

III.NUMERICALEXAMPLE

Aplanarirregulargridtogether withindividualdipole
elementsaredesignedandtested.Figure2(a)showsaregular
hexagonalsupercell withasideof3λ/8thatincludesa
pentagonalcellwithasideofp0=λ/8attheorigin.Fora
givenmetasurfaceresponse,thedesignobjectiveistofindthe
dimensionsofthe36dipolestoperformidenticallyasagroup
ofidenticaldipolesonaregularhexagonalgrid.Thecomplete
nodepositionsinthexy-planeareshowninFig.2(b),which
isaunionoftheirregular-gridsupercell(redcircles)anda
regularhexagonalgrid(bluecircles).
Foradipolewitha=0.045m,unit-cellFEKOsimulation
usingahexagonalcellofasidep0revealsthattheinfinite
periodicarrayfullyreflectsanormallyincidentplanewaveat
f=790MHz.Itisnowdesiredthatthesamefullreflection
isreproducedusingthegridinFig.2(b).Asareference,the
point-dipoleanalysisisperformedontheperiodichexagonal
gridtofindthedipoledimensiona.Itisfoundthatthepoint-
dipoleanalysisoverestimatesthedipoledimensionby10.0%.
ProceedingtothegridinFig.2(b),Elociscalculatedat

allgridpointsusingR =500p0andisobservedtovary
appreciably withrespecttoposition.Theretrieveddipole
dimensionsareindicatedinFig.1(a)togetherwiththeasso-
ciatednodenumbers.Afterapplyinga10%correctiontothe
retrieveddimensions,theirregular-gridsupercellismodeledin
FEKOandscatteringofanormally-incidentplanewavewith
Eext=̂xejkz
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Fig.3.Simulationofthereflectingmetasurfaceusingthesupercellmethod.
(a)Magnitudeoftheinducedsurfacecurrent.(b)Reflectionandtransmission
magnitudesforthreecases:theregular-gridsupercell(red),theirregular-
gridsupercellwithall-identicalunmodifieddipoledimension(green),and
theirregular-gridsupercellwithindividuallytailoreddipoles(blue).

method).TheinducedcurrentdensityshowninFig.3(a)
exhibitsdipole-to-dipolevariations,asexpected.Fig.3(b)
comparesFEKOresultsfor|r|,|t|forthreeconfigurations,
wheretheinsetshowsthedirectionsofthesevenpropagating
Floquetmodesin(u,v)=(sinθcosφ,sinθsinφ). Whenthe
dipolesareplacedontheirregulargridwithoutadjusting
theirdimensions,significantundesiredpropagating modes
appear.Incontrast,individuallydesigneddipolessuppressall
propagatinghigher-ordermodestolowlevelsbelow−40dB,
demonstratingtheeffectivenessofthepoint-dipoleanalysis
anddesignforirregulargrids.

IV.CONCLUSION

Adesignapproachforfree-standingplanarmetasurfaces
comprisingdipoleresonatorsonanirregulargridhasbeen
presented.Forsynthesizingaparticularscatteringresponse,
thefundamentalpolarizabilitydefinitionisutilized,wherethe
excitinglocalE-fieldisefficientlyevaluatedasasumofnearby
discreteandfar-separatedcontinuoussourcecontributions.
Anexampleplanar metasurfacedesignforfullreflection
demonstratedtheeffectivenessoftheproposedtechnique.
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