


Background. Our main goal is to infer an unobserved state

sequence x1, . . . , xN from noisy observations y1, . . . , yN using

the model:

x1 = x0 + w1

xk = Gkxk−1 + wk, k = 2, . . . , N

yk = Hkxk + vk, k = 1, . . . , N,

xk ∈ Xk, each Xk polyhedral,

(1)

where x0 is a given initial state estimate, Gk and Hk are linear

process and measurement models, y1, . . . , yN are observations,

and Xk specify additional information through constraints. The

framework of [15] assumes that wk and vk are mutually inde-

pendent random variables with known nonsingular covariances

Qk and Rk, and that they follow from log-concave distributions;

in particular they may be non-Gaussian.

Synthesizing all of this information gives the problem

min
x1∈X1,...,xn∈XN

∑

k

ρp(Q
−1/2
k (Gkxk − xk−1))

+ ρm(R
−1/2
k (Hkxk − yk)),

(2)

with ρp and ρm convex penalties. Using (2) provides estimates

that are robust to outliers and can follow sudden changes in the

state. Most of the inference- or optimization-based work in the

convex dynamic setting is a special case of (2). Many examples,

including robust penalties and constraints, are collected in [15].

We now extend to singular covariances Rk (for errors vk)

and Qk (for innovations wk). These models specify key use

cases, particularly for innovations (process) modeling, briefly

summaried below (see [16] for a more detailed discussion).

Deterministic integrals. Most models in robotics, particularly

in navigation, use integration to model process relationships

between state variables (e.g. when position, velocity, and accel-

eration are part of the state). Any deterministic integral yields a

singular process model. The simplest example (with position a

direct integral of stochastic velocity) is used to create Figure 1.

Nuisance parameters. Unknown constants that need calibra-

tion (such as fixed instrument biases) require special modeling

in the nonsingular paradigm (2). With singular models, we can

augment the state in order to infer these parameters.

Auto-regressive models and correlated errors. State-space

models are broadly used in auto-regressive, moving average,

and time series models [17]. These elements also appear in

general smoothing models, particularly to deal with correlated

measurement errors [18].

All three examples are accessible in the classic linear Gaus-

sian setting. The KF need not invert Q or R, and provides the

minimum variance estimate for both singular and nonsingular

models [19]. Some algorithms rely on precise knowledge of

the error structure or explicit equality constraints [20, 21, 22].

Correlated errors are dealt with by augmenting the state and

using a singular model [18]. None of these techniques gener-

alize to singular models in the setting of (2), and some naive

generalizations fail dramatically (Figure 1).

This paper builds on the reformulation of [16] for singular

models. We develop a systematic approach and test it using a

navigation model with a real-world mooring dataset. We show

how robust statistics, singular models, and constraints can be

systematically used to overcome a range of challenges simul-

taneously present in the dataset: (1) outliers, (2) deterministic

relationships between states, (3) measurement biases, and (4)

coarsely discretized observations.

The paper proceeds as follows. Section II summarizes the

singular formulation of [16] and relevant optimization algo-

rithms. Section III develops the key modeling elements to

address common data challenges. Section IV presents the

navigation models. Section V shows how the model elements

come together to analyze the target mooring dataset, and obtain

a high fidelity track from low-fidelity observations. Section VI

concludes with discussion and future work.

II. ROBUST SINGULAR FORMULATION AND ALGORITHM

We reformulate the robust smoothing problem to seamlessly

allow both singular and nonsingular covarinace models for er-

rors and innovations. The resulting problem can be solved with

any primal-dual algorithm. We show how to apply the classic

Douglas-Rachford splitting (DRS) algorithm (see e.g. [23, 24])

to the reformulated problem.

Problem (2) can be reformulated by introducing auxiliary

variables uk and tk to represent pre-whitened innovations and

measurement residuals:

min
x,u,t

∑

k

ρp(uk) + ρm(tk) + ρs(xk)

s.t. Q
1/2
k uk = Gkxk − xk−1

R
1/2
k tk = Hkxk − yk

(3)

where ρs(xk) may be taken as the convex indicator function to

recover the constraints in (2):

ρs(xk) =

{
0 xk ∈ Xk

∞ xk 6∈ Xk.

When Qk and Rk are invertible, we can solve for uk, tk and

recover (2). Otherwise, problem (3) is well-posed while (2) is

not. We can write (3) in compact form

min
z

ρ(z) s.t. Az = ŵ,

ρ(z) =

N∑

k=1

ρp(uk) + ρm(tk) + ρs(xk).
(4)

where

zT =
(
uT
1 tT1 xT

1 . . . uT
N tTN xT

N

)

ŵT =
(
xT
0 yT1 0 yT2 . . . 0 yTN

)
,

(5)

A =




D1 0 . . . 0

B1 D2 0
...

0
. . .

. . . 0
0 0 BN−1 DN




, (6)



and

Di =

(
Q

1/2
i 0 I

0 R
1/2
i Hi

)
, Bj =

(
0 0 −Gj+1

0 0 0

)
.

The variables are ordered in such a way that A is block

bi-diagonal. If all observations zi lie in the range of Hi, the

constraint Az = ŵ will be feasible [16].

The problem (4) is a convex optimization problem and can

be solved using a variety of techniques. We show that the DRS

algorithm is straightforward to implement, and preserves the

computational complexity of the classic KF/RTS algorithms

because of the way A is structured in (6).

Given a convex function f , its convex conjugate f∗ is given

by

f∗(y) = sup
x
〈x, y〉 − f(x),

and its proximal operator with step α, denoted by proxαf (see

e.g. [25]) is given by:

proxαf (ζ) = argmin
x

1

2α
‖ζ − x‖2 + f(x). (7)

For a long list of objectives, prox operators are available

in closed form or are efficiently computable. In particular this

is the case when ρp, ρm, ρs form any subset of the numerous

elements briefly surveyed in Section III. It is actually the prox

of ρ∗ that appears in the DRS iteration (Algorithm 1) rather

than the prox of ρ, but these are linked by the simple formula

proxρ(z) + proxρ∗(z) = z.

To specify the algorithm, we let g(z) be the indicator of the

affine feasible region Az = ŵ:

g(z) =

{
0 Az = ŵ

∞ Az 6= ŵ

Problem (4) can now be written simply as

min
z

ρ(z) + g(z)

which is a natural template for DRS, detailed in Algorithm 1.

Algorithm 1 Douglas-Rachford Splitting (DRS)

Input: Initialize at any z0, ζ0.

1: loop

2: zk = proxτg(z
k−1 − τζk−1)

3: ζk = proxσρ∗(ζk−1 + σ(2zk − zk−1))
return zk

To implement Algorithm 1 we need proximal operators

of ρp, ρm, and ρs. Eight common piecewise linear-quadratic

(PLQ) penalties are shown in Figure 2, and their proximal

operators are summarized in Table I.

The proximal operator for g is given by

proxg(η) = argmin
Az=ŵ

1

2
||η − z||2

(a) quadratic (b) 1-norm

(c) quantile, τ = 0.3 (d) huber, κ = 1

(e) quantile huber (f) vapnik, ε = 0.5

(g) hubnick (h) elastic net

Fig. 2: Common piecewise linear-quadratic (PLQ) losses.

which is a least squares problem with affine constraints. Solving

it efficiently leverages the structure of (6). In particular we need

to solve a single structured linear system
[
I AT

0 AAT

] [
z

ν

]
=

[
η

Aη − ŵ

]
(8)

where AAT is block tridiagonal and does not change between

iterations. In our implementation, we need only compute a

single block bidiagonal factorization once, which can then be

used to solve (8) in O(n2N) operations in each iteration, no

more expensive than a single matrix-vector multiply.

For piecewise-linear quadratic ρ [26, 15], DRS converges to

an optimal solution at a local linear rate [16], which does not

depend on the condition number of A. A good initialization

makes DRS competitive with the fastest available solvers, even

second order methods with quadratic local rates [15].

III. MODELING ELEMENTS

The proposed framework has three complementary mod-

eling elements: singular covariance matrices Q and R; pro-

cess/measurement penalties ρp, ρm; and constraints ρs on the

state. In this section, we show a range of choices for each

element, and compute the operators required for Algorithm 1.

Singular covariances can be used to capture affine constraints,

auto-regressive structure, integrated errors, and bias.



• Affine constraints using singular R. the ith element of the

state at time k is known exactly, add row
[
0 . . . 0 1︸︷︷︸

i

0 . . . 0
]

to the measurement model Hk, a row and column of zeros

to Rk, and the known value as the last element of zk.

• Bias with singular Q. A common model for bias is to

include it as a non-varying component across the state:

x̃k =

[
xk

b

]
, Q̃k =

[
Q 0
0 0

]
.

• Correlated noise using singular Q. Correlated noise wk is

typically modeled by [27]

wk = Mwk−1 + βk, βk ∼ N(0, Q).

Here too we can augment the state and use a singular

process variance:

x̃k =

[
xk

wk

]
, G̃k =

[
Gk I

0 M

]
, Q̃k =

[
0 0
0 Qk

]
.

Piecewise linear-quadratic (PLQ) Penalties. The proposed

framework allows process innovations, measurement residu-

als, and state regularization to come from any convex prox-

friendly penalty. To keep the exposition simple, we collect eight

commonly used convex piecewise linear-quadratic penalties in

Figure 2, and compute their prox operators in Table I. The

penalties can be thought of in terms of three features:

• Behavior at origin: nonsmooth features encourage exact

fitting of the quantity being measured, while deadzones

are appropriate for discretized observations.

• Tail growth: asymptotically linear penalties are more tol-

erant of large inputs. Applied to measurements, this gives

robustness to outliers; applied to innovations, it gives an

ability to quickly track evolving trends.

• Asymmetry: allows handling of special cases where under-

estimating is qualitatively different from over-estimating.

Constraints. It is very convenient to enforce simple constraints

on the state estimates xk. If we take ρs(x) = δX(x) then

the prox operator proxρs
is simply the projection onto the set

X . Box constraints are a very common type of constraints

that enforce known bounds on the state, and have a trivial

projection. The proposed framework allows us to use any

convex region that has a computationally efficient projection.

IV. NAVIGATION MODEL

We use a constant-velocity kinematic model that is ap-

propriate for many underwater vehicle applications, where

accelerations are heavily damped and trajectories are often long

straight lines (e.g. for transit or survey work). When the attitude

is known or changing slowly, the model can be linearized

effectively. For a vehicle that is well-instrumented in attitude,

the uncertainty in position (and the x-y states in particular)

is typically orders of magnitude larger than the uncertainty in

attitude. Thus, in practice, we often simplify the full nonlinear

TABLE I: Prox operators of common PLQ penalties.
Penalty f proxαf (z) Ref.

1
2
‖x‖2, Fig. 2a 1

1+α
z [28, 29]

‖x‖1, Fig. 2b sign(z)� (|z| − α)+ [30, 31]

qτ , Fig. 2c

{
zi − α(1− τ) zi > α(1− τ)

zi + ατ zi < −ατ

0 else

[32, 33]

hκ, Fig. 2d α
α+κ

z + κ
α+κ

prox(α+κ)‖·‖1
(z) [34]

qτ,κ, Fig. 2e α
α+κ

z + κ
α+κ

prox(α+κ)qτ
(z) [35]

vε, Fig. 2f





zi − α zi > ε+ α

ε ε < zi ≤ α+ ε

zi −ε ≤ zi ≤ ε

−ε −ε− α < zi ≤ −ε

zi + ατ zi < −α− ε.

[36]

hubnik-κ, Fig. 2g α
α+κ

z + κ
α+κ

prox(α+κ)vε
(z) [37, 38]

e-net, Fig. 2h prox α

1+2α
‖·‖1

(
1

1+2α
z
)

[39]

vehicle process model to track only position states (x, y, z),
while assuming that the attitude states (r, p, h) are directly

available from the most recent sensor measurements. To make

the model linear, the position and its derivatives are referenced

to the local-level frame.

An effective model must counteract biases, outliers, and data

discretization in the IMU data. We develop this model using

the elements of the proposed framework.

Process model. To incorporate linear acceleration measure-

ments from an IMU, we track linear velocities and linear

acceleration in the state vector:

xs = [x, y, z, ẋ, ẏ, ż, ẍ, ÿ, z̈]>. (9)

The linear kinematic process model is given by

ẋs =




0 I 0
0 0 I

0 0 0




︸ ︷︷ ︸
Fs

xs +




0
I

0




︸ ︷︷ ︸
Gs

ws, (10)

where ws ∼ N (0, Qs) is zero-mean Gaussian noise. The linear

process model (10) is discretized using a Taylor series:

xsk+1
= Fskxsk + wsk (11)

Fsk = eFsT ≈≈




I IT 1

2
IT 2

0 I IT

0 0 I


 ,

where I in (11) denotes the 3 × 3 identity matrix, and the

higher order terms are identically zero because of the structure

of Fs. We model the process covariance as if the error were

the next term in the Taylor series approximation, a technique

suggested by [40]. More precisely we set covariance to be the

outer product, ΓTΓ where

Γ =
[
1

3!
IT 3 1

2!
IT 2 IT

]

This leads to a rank 3 covariance for a 9×9 matrix for a model

that comprises position, velocity, and acceleration.

Given this covariance structure, the process model will

penalize changes in acceleration. As the vehicle travels in a
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