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Abstract1

Positive selection causes beneficial alleles to rise to high frequency, resulting in a selective2

sweep of the diversity surrounding the selected sites. Accordingly, the signature of a selective3

sweep in an ancestral population may still remain in its descendants. Identifying signatures of4

selection in the ancestor that are shared among its descendants is important to contextualize5

the timing of a sweep, but few methods exist for this purpose. We introduce the statistic SS-6

H12, which can identify genomic regions under shared positive selection across populations and7

is based on the theory of the expected haplotype homozygosity statistic H12, which detects8

recent hard and soft sweeps from the presence of high-frequency haplotypes. SS-H12 is distinct9

from comparable statistics because it requires a minimum of only two populations, and properly10

identifies and differentiates between independent convergent sweeps and true ancestral sweeps,11

with high power and robustness to a variety of demographic models. Furthermore, we can apply12

SS-H12 in conjunction with the ratio of statistics we term H2Tot and H1Tot to further classify13

identified shared sweeps as hard or soft. Finally, we identified both previously-reported and novel14

shared sweep candidates from human whole-genome sequences. Previously-reported candidates15

include the well-characterized ancestral sweeps at LCT and SLC24A5 in Indo-Europeans, as well16

as GPHN worldwide. Novel candidates include an ancestral sweep at RGS18 in sub-Saharan17

Africans involved in regulating the platelet response and implicated in sudden cardiac death,18

and a convergent sweep at C2CD5 between European and East Asian populations that may19

explain their different insulin responses.20
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Introduction1

Alleles under positive selection increase in frequency in a population toward fixation, causing nearby linked2

neutral variants to also rise to high frequency. This process results in selective sweeps of the diversity3

surrounding selected sites, and these sweeps can be hard or soft [Hermisson and Pennings, 2005, Pennings4

and Hermisson, 2006a,b, Hermisson and Pennings, 2017]. Under hard sweeps, beneficial alleles exist on a5

single haplotype at the time of selection, which rises to high frequency with the selected variants. In contrast,6

soft sweeps occur when beneficial alleles are present on multiple haplotypes, each of which increases in7

frequency with the selected variants. Thus, individuals carrying the selected alleles do not all share a common8

haplotypic background. The signature of a selective sweep, hard or soft, is characterized by elevated linkage9

disequilibrium (LD) on either side of the beneficial mutation, and elevated expected haplotype homozygosity10

[Maynard Smith and Haigh, 1974, Sabeti et al., 2002, Schweinsberg and Durrett, 2005]. Thus, the signature11

of a selective sweep decays with distance from the selected site as mutation and recombination erode tracts12

of sequence identity produced by the sweep, returning expected haplotype homozygosity and LD to their13

neutral levels [Messer and Petrov, 2013].14

Various approaches exist to detect signatures of selective sweeps in single populations, but few methods15

can identify sweep regions shared across populations, and these methods primarily rely on allele frequency16

data as input. Existing methods to identify shared sweeps [Bonhomme et al., 2010, Fariello et al., 2013,17

Racimo, 2016, Librado et al., 2017, Peyrégne et al., 2017, Cheng et al., 2017, Johnson and Voight, 2018]18

leverage the observation that study populations sharing similar patterns of genetic diversity at a putative site19

under selection descend from a common ancestor in which the sweep occurred. Such approaches therefore20

infer a sweep ancestral to the study populations from what may be coincidental (i.e., independent) signals.21

Moreover, many of these methods require data from at least one reference population in addition to the22

study populations, and of these, most may be misled by sweeps in their set of reference populations. These23

constraints may therefore impede the application of these methods to study systems that do not fit these24

model assumptions or data requirements.25

Identifying sweeps common to multiple populations provides an important layer of context that specifies26

the branch of a genealogy on which a sweep is likely to have occurred. In this way, the timing and types27

of pressures that contributed to particular signals among sampled populations can become clearer. For28

example, identifying sweeps that are shared ancestrally among all populations within a species highlights the29

selective events that contributed to their most important modern phenotypes. On a smaller scale, methods to30

identify shared sweeps can be leveraged to distinguish signatures of local adaptation in particular populations31

[Librado and Orlando, 2018]. In contrast, single-population tests would provide little information about the32

timing and therefore relative importance of detected sweeps. More generally, tests tailored to the detection33

3



of sweeps within samples drawn from multiple populations are likely to have higher power to detect such1

events than are tests that do not account for sample complexity [Bonhomme et al., 2010, Fariello et al.,2

2013], underscoring the usefulness of multi-population approaches.3

Accordingly, the breadth of questions that can be addressed using shared sweep approaches covers a4

variety of topics and organisms. Among the most fundamental examples of local adaptation seen ancestrally5

in related populations are those related to diet and metabolism, which can reflect important responses to6

changes in nutritional availability. An example of such adaptation is the shift toward eating rice in East7

Asian populations [Cheng et al., 2017]. Supplementing this idea, characterizing the attributes of shared8

sweeps in related populations can uncover the number of adaptive events underlying an observed phenotype,9

such as the number of times selection for reduced insulin sensitivity among cave-dwelling populations of the10

fish Astyanax mexicanus has occurred [Riddle et al., 2018], or whether convergent resistance to industrial11

pollutants seen in populations of the flower Mimulus guttatus derives from ancestral standing variation [Lee12

and Coop, 2017]. Increasingly, the availability of ancient genomes is allowing for the construction of time13

transect datasets [Lindo et al., 2016, Librado et al., 2017] which can be used not only to lend support to14

hypotheses generated from modern data, but infer the point in time at which a shared sweep may have15

emerged. Such sweeps may have important implications for understanding domestication events [Librado16

et al., 2017, Pendleton et al., 2018], the emergence of particular cultural traits such as human fishing and17

farming practices [Chaplin and Jablonski, 2013, Snir et al., 2015, Marciniak and Perry, 2017], and the18

complex relationships between modern populations such as those of South Asia described in Metspalu et al.19

[2011].20

To address the constraints of current methods, we developed SS-H12, an expected haplotype21

homozygosity-based statistic that detects shared selective sweeps from a minimum of two sampled pop-22

ulations (see Materials and Methods). Beyond simply detecting shared sweeps, SS-H12 uses haplotype data23

to classify sweep candidates as either ancestral (shared through common ancestry) or convergent (occurring24

independently; Figure 1). SS-H12 is based on the theory of H12 [Garud et al., 2015, Garud and Rosenberg,25

2015], a summary statistic that measures expected homozygosity in haplotype data from a single population.26

H12 has high power to detect recent hard and soft selective sweeps due to its unique formulation. For a27

genomic window containing I distinct haplotypes, H12 is defined as28

H12 = (p1 + p2)2 +

I∑
i=3

p2
i , (1)

where pi is the frequency of the ith most frequent haplotype, and p1 ≥ p2 ≥ · · · ≥ pI . The two largest29

haplotype frequencies are pooled into a single value to reflect the presence of at least two high-frequency30

haplotypes under a soft sweep. Meanwhile, the squares of the remaining haplotype frequencies are summed31
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to reflect the probability of drawing two copies of the third through Ith most frequent haplotypes at random1

from the population. Thus, H12 yields similar values for hard and soft sweeps. The framework of the single-2

population statistic also distinguishes hard and soft sweeps using the ratio H2/H1 [Garud et al., 2015, Garud3

and Rosenberg, 2015], where H1 =
∑I

i=1 p
2
i is the expected haplotype homozygosity, and where H2 = H1−p2

14

is the expected haplotype homozygosity omitting the most frequent haplotype. H2/H1 is small under hard5

sweeps because the second through Ith frequencies are small, as the beneficial alleles exist only on a single6

haplotypic background. Accordingly, H2/H1 is larger for soft sweeps [Garud et al., 2015], and can therefore7

be used to classify sweeps as hard or soft, conditioning on an elevated value of H12.8

Using simulated genetic data, we show that SS-H12 has high power to detect recent shared sweeps in9

population pairs, displaying a similar range of detection to H12. Additionally, we demonstrate that SS-10

H12 correctly differentiates between recent ancestral and convergent sweeps, generally without confusing11

the two. Furthermore, we extended the application of SS-H12 to an arbitrary number of populations K12

(see Materials and Methods), finding once again that our approach classifies sweeps correctly and with high13

power. Moreover, the SS-H12 approach retains the ability to distinguish between hard and soft shared sweeps14

by inferring the number of distinct sweeping haplotypes (see Materials and Methods). Finally, our analysis15

of whole-genome sequences from global human populations recovered previously-identified sweep candidates16

at the LCT and SLC24A5 genes in Indo-European populations, corroborated recently-characterized sweeps17

that emerged from genomic scans with the single-population approach [Harris et al., 2018], such as RGS18 in18

African and P4HA1 in Indo-European populations, and uncovered novel shared sweep candidates, such as the19

convergent sweeps C2CD5 between Eurasian populations and PAWR between European and sub-Saharan20

African populations.21

Materials and Methods22

Constructing SS-H1223

Here, we formulate SS-H12 using the principles of H12 applied to a sample consisting of multiple populations.24

SS-H12 provides information about the location of a shared sweep on the phylogenetic tree relating the25

sampled populations. SS-H12 is computed from multiple statistics that quantify the diversity of haplotypes26

within each population, as well as within the pool of the populations, therefore making use of the haplotype27

frequency spectrum and measures of shared haplotype identity to draw inferences. Consider a pooled sample28

consisting of haplotypes from K = 2 populations, in which a fraction γ of the haplotypes derives from29

population 1 and a fraction 1 − γ derives from population 2. For the pooled sample, we define the total-30

sample expected haplotype homozygosity statistic H12Tot within a genomic window containing I distinct31
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haplotypes as1

H12Tot = (x1 + x2)2 +

I∑
i=3

x2
i , (2)

where xi = γp1i + (1 − γ)p2i, x1 ≥ x2 ≥ · · · ≥ xI , is the frequency of the ith most frequent haplotype in2

the pooled population, and where p1i and p2i are the frequencies of this haplotype in populations 1 and 2,3

respectively. That is, xi, p1i, and p2i refer to the same haplotype, indexed according to its frequency in the4

pooled sample. The value of H12Tot is therefore large at the genomic regions of shared sweeps because the5

overall haplotypic diversity at such loci is small, reflecting the reduced haplotypic diversity of component6

populations.7

Next, we seek to define a statistic that classifies the putative shared sweep as ancestral or convergent8

between the pair of populations. To do this, we define a statistic fDiff =
∑I

i=1(p1i − p2i)
2, which measures9

the sum of the squared difference in the frequency of each haplotype between both populations. fDiff takes10

on values between 0, for population pairs with identical haplotype frequencies, and 2, for populations that11

are each fixed for a different haplotype. The former case is consistent with an ancestral sweep scenario,12

whereas the latter is consistent with a convergent sweep—though we caution that genetic drift can also13

produce extreme values of fDiff, which is unlikely to be problematic provided test populations are closely14

enough related.15

From the summary statistics H12Tot (based on the haplotype frequency spectrum) and fDiff (quantifying16

shared haplotype identity), we now define SS-H12, which measures the extent to which an elevated H12Tot is17

due to shared ancestry. First, we specify a statistic that quantifies the shared sweep, H12Anc = H12Tot−fDiff.18

The value of H12Anc lies between -1 for convergent sweeps, and 1 for ancestral sweeps, with a typically19

negative value near 0 in the absence of a sweep. H12Anc is therefore easy to interpret because convergent20

sweeps on non-identical haplotypes cannot generate positive values, and ancestral sweep signals that have21

not eroded due to the effects of recombination and mutation cannot generate negative values. Because22

a sufficiently strong and complete sweep in one population (divergent sweep; Figure 1) may also generate23

negative values of H12Anc with elevated magnitudes distinct from neutrality, we introduce a correction factor24

that yields SS-H12 by dividing the minimum value of H12 between a pair of populations by the maximum25

value. This modification allows SS-H12 to overlook spurious signals driven by strong selection in a single26

population by reducing their prominence relative to true shared sweep signals. Applying this correction27

factor yields SS-H12, which is computed as28

SS-H12 = H12Anc ×
min[H12(1),H12(2)]

max[H12(1),H12(2)]
, (3)

6



where H12(1) and H12(2) are the H12 values for populations 1 and 2, respectively. The correction factor1

has a value close to 1 for shared sweeps of either type, but a small value for divergent sweeps. Thus,2

the corrected SS-H12 is sensitive only to shared sweeps, while maintaining a small magnitude value under3

neutrality. We note that the performance of SS-H12 is dependent upon the size of the sample, requiring4

sufficient captured haplotypic diversity to distinguish sweeps from the neutral background, similarly to H125

and other haplotype-based methods. Therefore, while our analyses concern large simulated and empirical6

sample sizes around n = 100 per population, we expect that n = 25 per population will provide enough7

resolution to detect sweeps given a similar, broadly mammalian demographic history [Harris et al., 2018].8

We now extend SS-H12 to diploid unphased multilocus genotype (MLG) data as SS-G123. Results for9

SS-G123 experiments appear in the subsection Detection and classification of shared sweeps from unphased10

data. The ability to analyze MLGs is important because haplotype data are often unavailable for non-model11

organisms. To generate MLGs from our original unphased data, we manually merged an individual’s two12

haplotypes into a single MLG. In this way, we were able to directly assess the effects of phasing on our13

inferences. MLGs are character strings as are haplotypes, but in contrast to a haplotype, each character14

within the MLG may take one of three values representing a homozygous reference, homozygous alternate,15

or heterozygous genotype. The definition of SS-G123 is analogous to that of SS-H12:16

SS-G123 = G123Anc ×
min[G123(1),G123(2)]

max[G123(1),G123(2)]
, (4)

where G123 is the MLG equivalent of H12 [Harris et al., 2018] computed as G123 = (q1 +q2 +q3)2 +
∑J

j=4 q
2
j17

(for J distinct MLGs and q1 ≥ q2 ≥ · · · ≥ qJ). G123(1) and G123(2) are G123 respectively computed18

in populations 1 and 2, G123Anc = G123Tot − gDiff, G123Tot = (y1 + y2 + y3)2 +
∑J

j=4 y
2
j , and gDiff =19 ∑J

j=1(q1j − q2j)
2; note that yj = γq1j + (1 − γ)q2j . Finally, we note that both the haplotype- and MLG-20

based approaches are compatible with an arbitrary number of sampled populations K, and demonstrate this21

in Part 1 of the Supplementary Note.22

General simulation parameters23

We first tested the power of SS-H12 (phased haplotypes) and SS-G123 (unphased MLGs) to detect shared24

selective sweeps on simulated multilocus sequence data. We generated all data as haplotypes using the25

forward-time simulator SLiM 2 [version 2.6; Haller and Messer, 2017], which follows a Wright-Fisher model26

[Hartl and Clark, 2007] and can reproduce complex demographic and selective scenarios. For the first set27

of experiments (“power simulations” of Table 1), we simulated population pairs following human-inspired28

parameters [Takahata et al., 1995, Nachman and Crowell, 2000, Payseur and Nachman, 2000, Terhorst et al.,29

2017, Narasimhan et al., 2017]. To account for the variation in recombination rates across natural genomes,30
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we drew recombination rates r at random from an exponential distribution with maximum truncated at1

3r [Schrider and Kern, 2017, Mughal and DeGiorgio, 2019]. We created the joint demographic history for2

simulated two-population models from empirical whole genome polymorphism data [Auton et al., 2015] using3

smc++ [version 1.13.1; Terhorst et al., 2017]. The populations in our models were the CEU—Utah residents4

with northern and western European ancestry—paired with either the GIH, Gujarati Indians from Houston,5

or the YRI, Yoruba individuals from Ibadan in Southern Nigeria (Table 1). We additionally examined the6

performance of our approach to detect shared sweeps in a generalized mammalian model (Table 2, first7

row) for samples drawn from K ∈ {2, 3, 4, 5} populations to determine the effect of sampling more than two8

populations. We describe this in detail in Part 1 of the Supplementary Note.9

Our smc++ protocol was as follows: we first extracted polymorphism data separately for a subset of10

ns = 27 individuals from each study population from the source VCF file using the function vcf2smc,11

selecting two individuals uniformly at random to be distinguished individuals within their sample. Dis-12

tinguished individuals are used to compute the conditional site frequency spectrum during each round of13

model optimization [Terhorst et al., 2017]. During the conversion step, we also masked out regions with14

missing data using the accessibility masks provided by the 1000 Genomes Project Consortium [Auton et al.,15

2015]. Following this, we generated each model with the estimate function, choosing a thinning parameter16

of 1000 log10 ns. Using model estimates for the component populations jointly with polymorphism data17

extracted for samples containing individuals from both populations (ns = 27 for each for a total of 54), we18

generated models for population pairs.19

Simulations generated under all aforementioned schemes lasted for an unscaled duration of 20N gener-20

ations. This consisted of a burn-in period of 10N generations to produce equilibrium levels of variation in21

which the ancestor to the sampled modern populations was maintained at size N = 104 diploids [Messer,22

2013], and another 10N generations during which population size was allowed to change (in the case of23

two-population experiments). We note that population split events occurred within the latter 10N genera-24

tions of the simulation. As is standard for forward-time simulations [Yuan et al., 2012, Ruths and Nakhleh,25

2013], we scaled all parameters by a factor Λ = 20 to reduce simulation runtime, dividing the population26

size and duration of the simulation by Λ, and multiplying the mutation and recombination rates, as well as27

the selection coefficient (s), where applicable, by Λ. Thus, scaled simulations maintained the same expected28

levels of genetic variation as would unscaled simulations.29

Selection experiment procedures30

Across our simulation scenarios, we examined three classes of sweeps, consisting of ancestral, convergent, and31

divergent. For ancestral sweeps, we introduced a selected allele to one or more randomly-drawn haplotypes32
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in the ancestor of all sampled populations (i.e., more anciently than any population split), which ensured1

that the same selective event was shared in the histories of the populations. This meant ancestral sweeps2

were constrained to occur at selection time t more ancient than the root time τ of the set of sampled3

populations. For convergent sweeps, we simultaneously introduced the selected mutation independently in4

each extant population at the time of selection, after the split had occurred. Finally, divergent sweeps5

comprised scenarios in which the sweep event occurred in fewer than all sampled populations, such that at6

least one did not experience a sweep, but at least one did experience a sweep. Accordingly, convergent and7

divergent sweeps were defined as those for which t was more recent than the root time τ of the set of sampled8

populations. Across all simulations, we conditioned on the maintenance of at least one copy of the selected9

allele in any affected population after its introduction.10

To generate distributions of SS-H12 and SS-G123 for power analysis, we scanned 100 kb of sequence11

data from simulated individuals using a sliding window approach, as in Harris et al. [2018]. Although sweep12

footprints are likely to extend much farther than 100 kb [Gillespie, 2004, Hermisson and Pennings, 2017], we13

chose our sequence length in order to focus on haplotype frequency distortions surrounding the epicenter of14

the sweep, which necessarily contains the genomic window of maximum signal on which we base inferences.15

Moreover, the use of a larger simulated region is likely to downwardly bias the ratio of true positives to16

false positives by providing a greater possibility of generating SS-H12 values of large magnitude by chance17

under neutrality. We demonstrate this effect in Figure S2 by simulating one Mb sequences following the18

same protocol as for the 100 kb sequences, and see little overlap in their |SS-H12| distributions. Trends in19

power would nonetheless remain similar, but with this in mind, and considering that SS-H12 does not make20

use of polymorphism data lying outside of the analysis window, we determined that our choice of a 100 kb21

simulated region was appropriate for our present purposes.22

We computed statistics in 20 (CEU-YRI) or 40 kb (CEU-GIH and generalized mammalian models)23

windows, advancing the window by increments of one kb across the simulated chromosome for a total of 6124

(CEU-GIH, generalized) or 81 (CEU-YRI) windows. For each replicate, we retained the value of SS-H12 or25

SS-G123 from the window of maximum absolute value as the score. We selected window sizes sufficiently26

large to overcome the effect of short-range LD in the sample, which may produce a signature of expected27

haplotype homozygosity resembling a sweep [Garud et al., 2015]. We measured the decay of LD for SNPs28

in neutral replicates separated by one to 100 kb at one kb intervals using mean r2 and found that LD falls29

below half its original value on average at our chosen window sizes. In practice, it is important to choose30

window sizes that satisfy such a constraint to control against false positives. Our choice of window sizes here31

also matched those for empirical scans. For all parameter sets, we generated 103 sweep replicates and 103
32

neutral replicates with identical numbers of sampled populations, sample sizes, and split times.33
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Overall, our chosen experimental protocols across performance evaluation experiments comprised a broad1

spectrum of sweeps (Tables 1 and 2). We varied selection strength and start time, as well as population split2

time, which we expect has covered relevant models for hypothesized selective sweeps in recent human history3

[Przeworski, 2002, Sabeti et al., 2007, Beleza et al., 2012, Jones et al., 2013, Clemente et al., 2014, Fagny4

et al., 2014]. Our primary goal was to evaluate the ability of SS-H12 and SS-G123 to identify hard selective5

sweeps from a de novo mutation and soft sweeps from selection on standing genetic variation, for both strong6

(s = 0.1) and moderate (s = 0.01) strengths of selection. These settings were equivalent to those from the7

experimental approach of Harris et al. [2018] for single-population statistics, and correspond to scenarios for8

which those statistics have power under the specific mutation rate, recombination rate, effective size, and9

simulated sequence length we tested here. For all selection scenarios, we placed the beneficial allele at the10

center of the simulated chromosome, and introduced it only once, constraining the selection start time, but11

not the selection end time. For hard and soft sweeps, we allowed the selected allele to rise in frequency toward12

fixation, but with no guarantee of reaching fixation. Indeed, most s = 0.01 simulations did not reach fixation13

under our parameters for sweeps more recent than t = 2500 generations before sampling, while most s = 0.114

simulations have fixed by the time of sampling for all parameter sets. To specify soft sweep scenarios, we15

conditioned on the selected allele being present in the population on ν = 4 or 8 distinct (scaled) haplotypes16

at the start of selection, without defining the number of selected haplotypes remaining in the population at17

the time of sampling, as long as the selected allele was not lost.18

Classifying sweeps as hard or soft19

The SS-H12 approach can distinguish shared sweeps as hard or soft, conditioning on the value of the expected20

homozygosity ratio statistic, H2Tot/H1Tot. This ratio derives from H2/H1 of Garud et al. [2015] and is21

computed similarly, but using pooled population frequencies. We define H1Tot =
∑I

i=1 x
2
i and H2Tot =22

H1Tot − x2
1, with xi defined as in Equation 2. Likewise, for MLGs, we have the ratio G2Tot/G1Tot, with23

G1Tot =
∑J

j=1 y
2
j and G2Tot = G1Tot − y2

1 (see explanation of Equation 4). As with the single-population24

statistic, the H2Tot/H1Tot and G2Tot/G1Tot ratios are larger for soft sweeps and smaller for hard sweeps,25

following the same logic (see Introduction). A larger sample size is necessarily required to properly classify26

sweeps as hard or soft because hard and soft sweeps resemble each other to a greater degree than sweeps27

and neutrality. As with the single-population approach [Harris et al., 2018], we expect that a minimum of28

n ≈ 100 haplotypes per population is sufficient to resolve harder sweeps from softer sweeps under demographic29

histories comparable to that of humans.30

As in Harris et al. [2018], we employed an approximate Bayesian computation (ABC) approach to31

demonstrate the ability of SS-H12 (SS-G123), in conjunction with the H2Tot/H1Tot (G2Tot/G1Tot) statistic,32
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to classify shared sweeps as hard or soft from the inferred number of sweeping haplotypes ν (Table 1,1

“hard/soft classification”). Hard sweeps derive from a single sweeping haplotype, while soft sweeps consist2

of at least two sweeping haplotypes. Whereas the single-population approach [Garud et al., 2015, Garud3

and Rosenberg, 2015, Harris et al., 2018] identified hard and soft sweeps from their occupancy of paired4

(H12, H2/H1) values, we presently use paired (|SS-H12|, H2Tot/H1Tot) and (|SS-G123|, G2Tot/G1Tot) values5

to classify shared sweeps. We defined a 100× 100 grid corresponding to paired (|SS-H12|, H2Tot/H1Tot) or6

(|SS-G123|, G2Tot/G1Tot) values with each axis bounded by [0.005, 0.995] at increments of 0.01, and assigned7

the most probable value of ν to each test point in the grid.8

We define the most probable ν for a test point as the most frequently-observed value of ν from the9

posterior distribution of 5× 106 sweep replicates within a Euclidean distance of 0.1 from the test point. For10

each replicate, we drew ν ∈ {0, 1, . . . , 16} uniformly at random, as well as s ∈ [0.005, 0.5] uniformly at random11

from a log-scale. Across ancestral and convergent sweep scenarios for K = 2 sampled sister populations, we12

generated replicates for the CEU-GIH and CEU-YRI models. Thus, an understanding of the demographic13

history of study populations is required to classify sweeps as hard or soft (this is also true when evaluating14

the significance of candidate results; see Empirical analysis procedures). As previously, ancestral sweeps15

were more ancient than τ , while convergent sweeps were more recent. We drew sweep times t uniformly at16

random from ranges as described in Table 1. Simulated haplotypes were of length 40 kb (CEU-GIH) or 2017

kb (CEU-YRI), corresponding to the window size for method performance evaluations, because in practice a18

value of ν would be assigned to a candidate sweep based on its most prominent associated signal. All other19

parameters were identical to previous experiments using these demographic models (Table 1).20

Testing performance across diverse scenarios21

We additionally observed the effects of potentially common scenarios that deviate from the basic model de-22

fined in previous sections to determine whether these deviations could mislead SS-H12. First, we examined23

the effect of admixture from a distantly-related donor on one of the two sampled populations under the24

simplified demographic model (Table 2, “admixture, distant donor”). Second, we simulated a scenario in25

which a pair of sister populations experiences a sweep, followed by unidirectional admixture from one sister26

to the other, once again under the simplified model (Table 2, “admixture, inter-sister”). Next, we provided27

greater depth to previous experiments by varying the relative sample sizes of the simulated populations28

(Table 2, “uneven sample sizes”), and varying the time at which convergent sweeps occurred in either popu-29

lation, keeping one fixed and changing the other (otherwise identical to generalized mammalian model). To30

provide context on the effect of tree topology, we also simulated a K = 4 scenario as a star tree, in which31

all populations split from the common ancestor simultaneously at time τ (otherwise identical to generalized32
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mammalian model). Finally, we generated samples under long-term background selection (Table 1, “back-1

ground selection”), which is known to yield similar patterns of diversity to sweeps [Charlesworth et al., 1993,2

1995, Seger et al., 2010, Nicolaisen and Desai, 2013, Cutter and Payseur, 2013, Huber et al., 2016], following3

the CEU-GIH and CEU-YRI models.4

For the distant-donor admixture experiments, we simulated single pulses of admixture at fractions be-5

tween 0.05 and 0.4, at intervals of 0.05, from a diverged unsampled donor (τanc = 2×104, one coalescent unit),6

τadm = 200 generations prior to sampling. Admixture follows a strong sweep (s = 0.1; σ = 4Nes = 4000),7

which occurred at either t = 1400 (ancestral) or t = 600 (convergent and divergent). We simulated three8

different scenarios of admixture into the sampled target population from the donor population, where the9

target and its sister were separated by τ = 1000 generations. The scenarios consisted of admixture from a10

highly-diverse donor population (N = 105, tenfold larger than the sampled population), which may obscure11

a sweep signature in the sampled target, and from a low-diversity donor population (N = 103, 1/10 the12

size of the sampled population), which may produce a sweep-like signature in the target, in addition to13

an intermediately-diverse donor population (N = 104, equal to the size of the sampled population). For14

divergent sweeps here, the population experiencing the sweep was the target. In the inter-sister admixture15

experiment, a pair of equally-sized sister populations (N = 104 diploids) splits τ = 1000 generations ago.16

Parameters are identical to the previous experiment (Table 2), except that admixture occurs between the17

sister populations. We modeled two divergent admixture scenarios, one in which the selected allele was18

adaptive in only the original population, and one where it was identically adaptive in both.19

In further experiments under the simplified model, we sought to determine the manner in which changes20

to our basic model assumptions changed the performance of SS-H12. First, we reduced the sample size of21

one of the populations from n2 = 100 diploids to n2 = 20, n2 = 40, or n2 = 60, while increasing the size22

of the other population (n1) to maintain n1 + n2 = 200, keeping all other parameters identical to previous23

experiments. This distorted γ in the computation of xi (Equation 2), yielding a new γ′ = 180/(180 + 20) =24

0.9, γ′ = 160/(160 + 40) = 0.8, or γ′ = 140/(140 + 60) = 0.7, respectively, up from γ = 0.5 originally.25

Second, for convergent sweeps and equal sample sizes n = 100, we modeled unequal sweep start times, with26

t1, the time of selection in population 1, fixed at 800 generations prior to sampling, paired with a variable27

t2 ∈ {200, 400, 600, 800}. This provided a more realistic scenario than identical start times, which should28

not be expected a priori. Third, we tested the susceptibility of SS-H12 to detecting and classifying sweeps29

on K = 4 populations under a star tree model (τ = 1000). Here, all sister populations are equally related,30

having radiated simultaneously from their common ancestor. With this model, we assessed the extent to31

which the tree topology may influence shared sweep inference.32
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Our background selection simulations followed the same protocol as in previous work [Cheng et al.,1

2017]. At the start of the simulation, we introduced a centrally-located 11-kb gene composed of UTRs (5’2

UTR of length 200 nucleotides [nt], 3’ UTR of length 800 nt) flanking a total of 10 exons of length 1003

nt separated by introns of length one kb. Strongly deleterious (s = −0.1) mutations arose throughout the4

course of the simulation across all three genomic elements under a gamma distribution of fitness effects with5

shape parameter 0.2 at rates of 50%, 75%, and 10% for UTRs, exons, and introns, respectively. The sizes of6

the genic elements follow human mean values [Mignone et al., 2002, Sakharkar et al., 2004]. To enhance the7

effect of background selection on the simulated chromosome, we also reduced the recombination rate within8

the simulated gene by two orders of magnitude to r = 10−10 per site per generation.9

Empirical analysis procedures10

We applied SS-H12 and SS-G123 to human empirical data from the 1000 Genomes Project Consortium11

[Auton et al., 2015]. We scanned all autosomes for signatures of shared sweeps in nine population pairs12

using 40 kb windows advancing by increments of four kb for samples of non-African populations, and 20 kb13

windows advancing by two kb for any samples containing individuals from any African population. We based14

these window sizes on the interval over which LD, measured as r2, decayed beyond less than half its original15

value relative to pairs of loci separated by one kb. As in Harris et al. [2018], we filtered our output data by16

removing analysis windows containing fewer than 40 SNPs, equal to the expected number of SNPs under the17

extreme case in which a selected allele has swept across all haplotypes except for one, leaving two lineages18

[Watterson, 1975]. Following Huber et al. [2016], we also divided all chromosomes into non-overlapping bins19

of length 100 kb and assigned to each bin a mean CRG100 score [Derrien et al., 2012], which measures site20

mappability and alignability. We removed windows within bins whose mean CRG100 score was below 0.9,21

with no distinction between genic and non-genic regions. Thus, our overall filtering strategy was identical to22

that of Harris et al. [2018]. We then intersected remaining candidate selection peaks with the coordinates23

for protein- and RNA-coding genes from their hg19 coordinates.24

For each genomic analysis window of each population pair analysis, we assigned a p-value. To do this, we25

first generated 3× 107 neutral replicate simulations in ms [Hudson, 2002] under appropriate two-population26

demographic histories inferred from smc++, using our aforementioned protocol and parameters described in27

Table 1. We initially computed a window’s p-value as the proportion of neutral replicate |SS-H12| values28

exceeding the |SS-H12| associated with that window. Because some comparisons yielded windows with p = 0,29

meaning that no neutral replicate exceeded their |SS-H12| value, we first performed a linear regression of30

− log10(p) and |SS-H12| through the origin, and predicted the p-value of each window according to the31

inferred relationship. We demonstrate the linear relationship between − log10(p) and |SS-H12| by significant32
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and strong Pearson correlation (Table S1). However, we found by QQ-plot that the distribution of empirical1

p-values was inflated relative to the theoretical expectation of uniform distribution [Klammer et al., 2009].2

To determine our inflation factor λ, which measures the extent to which empirical p-values are inflated3

relative to the theoretical, we used a linear regression approach [Yang et al., 2011]. Here, we performed4

a linear regression, through the origin, of the χ2 quantile function evaluated for our uncorrected p-values,5

as a function of χ2 quantiles derived from a vector of uniform probabilities. We adjusted our uncorrected6

χ2 quantiles, dividing by λ, and used their χ2 probabilities as our calibrated p-values (Figure S3). Our7

Bonferroni-corrected, genome-wide significance cutoff for a population pair at the α = 0.05 threshold was8

p < α/106 = 5 × 10−8, adjusting for an assumed one million independent test sites in the human genome9

[Altshuler et al., 2008].10

Additionally, we determined whether the maximum associated |SS-H12| (the score), and therefore p-value,11

of a gene was related to the recombination rate of the genomic region in which it resided. We determined this12

by computing the Spearman correlation between the maximum SS-H12 of a gene, and the recombination rate13

(cM/Mb) within the genomic analysis window of maximum signal associated with that gene [International14

HapMap Consortium et al., 2007]. Furthermore, we observed the effect of model misspecification on critical15

SS-H12 values. To do this, we compared the distribution of SS-H12 simulated under the nine appropriate16

smc++-inferred non-equilibrium demographic models, and the distribution under models with equal FST to17

the correct models, but with constant sizes of N = 104 diploids per population throughout the simulation.18

We computed mean FST [Wright, 1943, 1951] across 1000 neutral replicates of size 20 or 40 kb under the19

smc++-derived models, and used these values to solve the equation τ = 4NFST/(1 − FST) [Slatkin, 1991],20

where τ is the split time in generations between population pairs in each misspecified model.21

We assigned the most probable ν for each sweep candidate following the same protocol as previously22

(Table 1, “hard/soft classification”), generating 5×106 replicates of sweep scenarios in SLiM 2 under smc++-23

inferred demographic histories for ancestral and convergent sweeps. Once again, t > τ for ancestral sweep24

scenarios and t < τ for convergent sweep scenarios, where τ is defined by the specific demographic history25

of the sample. The CEU-GIH and CEU-YRI replicates used here were identical to those in the prior clas-26

sification experiments (Classifying sweeps as hard or soft). Sequence length for each replicate was identical27

to analysis window length for equivalent empirical data (20 or 40 kb), because in practice we assign ν to28

windows of this size. For both p-value and most probable ν assignment, we used an alternative per-site29

per-generation recombination rate of r = 3.125× 10−9 [Terhorst et al., 2017], finding that this more closely30

matched the distribution of |SS-H12| (|SS-G123|) values in the empirical data. Using these simulations in31

combination with 106 neutral simulations of the matching length, we determined the 1% false discovery rate32

(FDR) cutoffs for |SS-H12|. To do this, we drew a random sample of 106 selection simulations to construct33
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a total sample of 2× 106 replicates, half neutral and half sweep. The 1% FDR cutoff was the |SS-H12| value1

for which 1% of the 2×106 replicates exceeding that value were neutral, and 99% were sweeps. We repeated2

this process 103 times to get a distribution of cutoffs based on our simulations.3

Data availability4

To make the results of our work maximally accessible, we have uploaded all rel-5

evant scripts, as well as all outputs from analyses, into a Dryad repository6

(https://datadryad.org/stash/share/tqLw6lJN0uqtyfvj46INlHHGg0nAbFKmsxiFVJ0a0SM). Our upload7

is divided into directories labeled to match the broad directions of our research in this manuscript:8

simulations using the smc++-derived CEU-GIH and CEU-YRI models, simulations using the simplified9

mammalian model for K ∈ {2, 3, 4, 5} sampled populations, admixture model simulations, background10

selection simulations, misspecified model simulations, simulations to infer ν, simulations to assign p-values,11

and scans of the 1000 Genomes data. Outside of the latter two batteries of simulations, we provide all12

of the raw SLiM-simulated outputs in addition to analyses on those simulations. For simulations to infer13

ν and p-value simulations, we only retain the summary statistics from windows of maximum signal for14

each replicate because each scenario featured at least 106 replicates. Our summary files condense those15

simulations into single, more manageable, documents for reader reference. In addition to simulations16

and scripts, we have also included the builds of ms and SLiM used for simulations, and our SS-X1217

software package. We affirm that the results of all analyses deriving from our data, using the scripts,18

replicates, and summary files within our Dryad repository, are present within this manuscript’s figures and19

tables. Supplementary materials, consisting of Tables S1-S21, Figures S1-S46, and Supplementary Note20

Figures SN1-SN7, are available online through FigShare.21

Results22

We evaluated the ability of SS-H12 to differentiate among the simulated scenarios of shared selective sweeps,23

sweeps unique to only one sampled population, and neutrality, using the signature of expected haplotype24

homozygosity in samples consisting of individuals from two or more populations. Although our formulation25

of SS-H12 does not explicitly constrain the definition of a population, we define a population as a discrete26

group of individuals that mate more often with each other than they do with individuals from other discrete27

groups, and the models we considered here represent extreme examples in which there is no gene flow between28

populations after their split.29

We performed simulations using SLiM 2 [Haller and Messer, 2017] under human-inspired parameters30

[Takahata et al., 1995, Nachman and Crowell, 2000, Payseur and Nachman, 2000, Terhorst et al., 2017,31

15



Narasimhan et al., 2017] for diploid populations of fluctuating size (N) under non-equilibrium models, as1

well as constant-size models, subject to changing selection start times (t) and strengths (s), across differing2

split times (τ) between sampled populations. Additionally, we evaluated the robustness of SS-H12 to a3

variety of potentially-confounding deviations from the basic simulation parameters (such as equal sample4

sizes, no admixture, and asymmetric tree topology). We then used an approximate Bayesian computation5

(ABC) approach in the same manner as Harris et al. [2018] to demonstrate our ability to distinguish between6

shared hard and soft sweeps in samples from multiple populations. Finally, we show that SS-H12 recovers7

previously-hypothesized signatures of shared sweeps in human whole-genome sequences [Auton et al., 2015],8

while also uncovering novel candidates. We supplement results from SS-H12 analyses with results using9

SS-G123 in Detection and classification of shared sweeps from unphased data. See Materials and Methods, as10

well as Tables 1 and 2, for further explanation of experiments. We include a summary of the major results11

in Table 3.12

Detection of ancestral and convergent sweeps with SS-H1213

We conducted experiments to examine the ability of SS-H12 to not only identify shared sweep events among14

two or more sampled populations (K ≥ 2), but categorize them as shared due to common ancestry, or due15

to convergent evolution. Across all scenarios, we scanned 100 kb simulated chromosomes using a 20 or 4016

kb sliding window with a step size of one kb, which was sufficient to analyze sweeps in single populations17

[Harris et al., 2018]. These windows provide an interval over which neutral pairwise LD, measured with r2,18

decays below half of the value for loci one kb apart (Figure S4), and so we do not expect elevated values19

of SS-H12 due to background LD. For each sweep scenario, we studied power at 1% and 5% false positive20

rates (FPRs) for detecting shared selective sweeps (Figures 2, 3, S5-S9, and SN1-SN3) as a function of time21

at which beneficial alleles arose, under scenarios of ancestral, convergent, and divergent sweeps.22

First, we simulated scenarios in which an ancestral population split into K = 2 descendant populations23

using a realistic non-equilibrium model based on the history of the human CEU (European descent) and24

GIH (South Asian descent) populations, which we inferred from variant calls [Auton et al., 2015] with smc++25

[Terhorst et al., 2017] (Figure S10). We began with scenarios of strong (s = 0.1) hard (ν = 1 sweeping26

haplotype) sweeps starting between 200 and 4000 generations prior to sampling and applied an analysis27

window of size 40 kb (Figure 2). Our CEU-GIH model features a split time of τ = 1100 generations prior28

to sampling, which matches prior estimates of the split time between Eurasian human populations [Gravel29

et al., 2011, Gronau et al., 2011, Schiffels and Durbin, 2014]. This series of experiments illustrates the range30

of sweep start times over which SS-H12 can detect prominent selective sweeps. SS-H12 has high power31
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for recent strong shared sweeps starting between 400 and 2500 generations prior to sampling, with power1

dropping rapidly for shared sweeps older than 2500 generations (Figure 2).2

As expected, the distribution of SS-H12 for detectable convergent sweeps centered on negative values3

(Figure 2, left column), whereas the SS-H12 distributions of ancestral sweeps centered on positive values4

(Figure 2, center column). The vast majority of such replicates had the correct sign, underscoring the5

consistency with which SS-H12 correctly classifies shared sweeps (Figure S11, top). However, in the rare event6

that identical haplotypes convergently experience an identical sweep, a positive value of SS-H12 emerges at7

the locus under selection, with larger values expected for more recent sweeps. Conversely, detectable ancestral8

sweeps are highly unlikely to yield negative SS-H12 values in closely-related populations, as SS-H12 is acutely9

sensitive to the presence of shared haplotypes in the sample even as the signal decays. We also found that10

the power of SS-H12 to detect convergent sweeps was uniformly greater than for ancestral sweeps because11

convergent sweeps are more recent events, with the selected haplotype not yet eroding due to the effect12

of mutation and recombination, as with older ancestral sweeps. Additionally, because we compute power13

from the distribution of maximum |SS-H12| values for each sweep scenario, this means that the magnitude14

of SS-H12 for replicates of shared sweeps must exceed the magnitude under neutrality for the sweep to be15

detected, which for any combination of t and s is more likely for convergent than ancestral sweeps.16

To further characterize the performance of SS-H12 for hard sweeps, we repeated experiments on simulated17

samples from K = 2 populations both for more anciently-diverged populations (larger τ), and for weaker18

sweeps (smaller s). SS-H12 maintains excellent power to distinguish strong shared sweeps from neutrality19

for a model based on the more ancient split between CEU and the sub-Saharan African YRI population20

(Figure 3; 20 kb window), while keeping s = 0.1. We inferred τ = 3740 for this model using smc++ [Terhorst21

et al., 2017] (Figure S10), and this estimate fits existing estimates of split times between African and non-22

African human populations [Gravel et al., 2011, Gronau et al., 2011, Schiffels and Durbin, 2014]. Notably,23

the signal of ancestral sweeps remains elevated across many of the tested CEU-YRI sweep scenarios. Power24

stayed above 0.6 for sweeps more recent than t = 4500 generations before sampling, representing a range of25

sweep sensitivity approximately 1500 generations wider than that of the CEU-GIH model. This is because26

it is easier to detect selective sweeps in more diverse genomic backgrounds [Harris et al., 2018], such as that27

of the YRI population. Despite this, we observed a greater proportion of ancestral sweeps with spuriously28

negative values of SS-H12 in the CEU-YRI model than in the CEU-GIH model because over 3740 generations,29

the two simulated populations had sufficient time to accumulate unique mutations and recombination events30

that differentiated their common high-frequency haplotypes (Figure S12, top).31

Reducing the selection coefficient to s = 0.01 for both models had the effect of shifting the range of t over32

which SS-H12 had power to detect shared sweeps. Because weakly-selected haplotypes rise to high frequency33
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more slowly than strongly-selected haplotypes, there is a greater delay between the selection start time and1

the time at which a shared sweep can be detected for smaller values of s. Thus, SS-H12 reaches a maximum2

power to detect moderate shared sweeps (s = 0.01) for older values of t, additionally maintaining this power3

for less time than for strong sweeps under both models (top rows of Figures 2 and 3). The misclassification4

rate for shared sweeps is also greater for weaker sweeps, especially for convergent sweeps in the CEU-GIH5

model and ancestral sweeps in the CEU-YRI model (Figures S13 and S14, top).6

Because the single-population statistic H12 has power to detect both hard and soft sweeps, we next7

performed analogous experiments for simulated soft sweep scenarios. Maintaining values of t, τ , and s8

identical to those for hard sweep experiments, we simulated soft sweeps as selection on standing genetic9

variation for ν = 4 and ν = 8 distinct sweeping haplotypes (Figures S5-S8). We found that trends in the10

power of SS-H12 to detect shared soft sweeps remained consistent with those for hard sweeps. However,11

the power of SS-H12 for detecting soft sweeps, as well as classification ability (Figures S11-S14, middle and12

bottom rows), were attenuated overall relative to hard sweeps, proportionally to the number of sweeping13

haplotypes, with a larger drop in power for older sweeps and little to no effect on power for more recent14

sweeps. Our observations therefore align with results for the single-population H12 statistic [Garud et al.,15

2015, Harris et al., 2018]. Thus, the ability to detect a sweep derives from the combination of s, t, and ν, with16

stronger recent sweeps on fewer haplotypes being easiest to detect, and detectable over larger timespans.17

We contrast our results for shared sweeps across population pairs with those for divergent sweeps,18

which we present in parallel (right columns of Figures 2, 3, and S5-S8). Across identical values of t as for19

each convergent sweep experiment, we found that divergent sweeps, in which only one of the two simulated20

sampled populations experiences a sweep (t < τ), are not visible to SS-H12 for any combination of simulation21

parameters. To understand the properties of divergent sweeps relative to shared sweeps, we compared the22

distributions of their SS-H12 values at peaks identified from the maximum values of |SS-H12| for each23

replicate. We observed that the distributions of the divergent sweeps remain broadly unchanged from one24

another under all parameter combinations, and closely resemble the distribution generated under neutrality,25

as all are centered on negative values with small magnitude, and have small variance. Thus, the use of a26

correction factor that incorporates the values of H12 from each component population in the sample (see27

Equation 3) provides an appropriate approach for preventing sweeps that are not shared from appearing28

as outlying signals. In the absence of correction, the shared sweep statistic (properly termed H12Anc),29

incorrectly treats the reduced haplotype diversity around the site under selection in one population as the30

locus of a convergent sweep, owing to the large disparities in haplotype frequencies between the sampled31

populations (right columns of Figures S15 and S16). We additionally explore the properties of SS-H12 on32

18



a simplified demographic history with constant population size, and up to K = 5 sampled populations1

(Figure S1), intended as a more general mammalian model, in Part 1 of the Supplementary Note.2

In addition to detecting shared sweeps under a variety of scenarios with high power, we also found3

that detecting sweeps with SS-H12 provides more power than performing multiple independent analyses4

across populations with the single-population statistic H12 [Garud et al., 2015]. To demonstrate this, we5

reanalyzed our simulated CEU-GIH and CEU-YRI replicates (Figures 2 and 3), assessing the ability of H126

to simultaneously detect an outlying sweep signal in both populations. That is, we measured the power of7

H12 at the 0.5% FPR (Bonferroni-corrected for multiple testing [Neyman and Pearson, 1928], providing the8

entire experiment with a 1% FPR cutoff) to detect an outlying sweep in the CEU sample and in either the9

GIH (Figure S17) or YRI (Figure S18) samples. For the most recent convergent hard sweeps, joint analysis10

with H12 has equivalent power to SS-H12 analysis, but the power of H12 never matches that of SS-H12 for11

ancestral hard sweeps, and for the majority of tested soft sweeps (ν = 4 and ν = 8), regardless of timing.12

These trends persisted even for SS-H12 computed from half-sized samples (thus, matching the sample sizes13

of individual H12 analyses), indicating that avoiding multiple testing with SS-H12 analysis is likely to yield14

a greater return on sampling effort, especially as the number of sampled populations K increases.15

Performance of SS-H12 across diverse scenarios16

Admixture17

Because SS-H12 relies on a signal of elevated expected haplotype homozygosity, it may be confounded by non-18

adaptive processes that alter levels of population-genetic diversity. For this reason, we examined the effect19

of admixture on the power of SS-H12 in the context of ancestral, convergent, and divergent strong (s = 0.1)20

sweeps between population pairs. Parameters were derived from the simplified mammalian model (Table 2).21

For the first set of experiments (termed distant-donor), one sampled population (the target) receives gene22

flow from a diverged, unsampled donor outgroup population (Figures 4 and S19). Admixture occurred as a23

single unidirectional pulse 200 generations before sampling, and in the case of the divergent sweep, occurred24

specifically in the population experiencing the sweep. The donor split from the common ancestor of the two25

sampled populations (the target and its unadmixed sister) 2 × 104 generations before sampling—within a26

coalescent unit of the sampled populations, similar to the relationship between Neanderthals and modern27

humans [Juric et al., 2016, Harris and Nielsen, 2016]—and had an effective size either one-tenth, identical28

to, or tenfold the size of the target. Although the donor does not experience selection, extensive gene flow29

from a donor with low genetic diversity may resemble a sweep. Correspondingly, gene flow from a highly30

diverse donor may obscure sweeps. The second admixture scenario we examined featured only the two sister31
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populations separated by τ = 1000 generations, wherein one admixed into the other 200 generations prior1

to sampling, as previously (inter-sister admixture; see Supplementary Note, Part 2).2

As expected, gene flow from a distant donor into the target population distorted the SS-H12 distribution3

of the two-population sample relative to no admixture (Figure 4), and this distortion was proportional to the4

level of admixture from the donor, as well as the donor population’s size. Ancestral sweeps were the most5

likely to be misclassified following admixture from a donor of small effective size (N = 103; Figure 4, top row),6

increasingly resembling convergent sweeps as the rate of gene flow increased (though ultimately with little7

change in power to detect the shared sweep; Figure S19, top row). The confounding effect of admixture8

on ancestral sweep inference emerges because low-diversity gene flow into one population yields a differing9

signal of elevated expected haplotype homozygosity in each population, spuriously resembling a convergent10

sweep. In contrast, the distributions of SS-H12 values and the power of SS-H12 for convergent and divergent11

sweeps remained broadly unchanged relative to no admixture under low-diversity admixture scenarios (Fig-12

ures 4 and S19, top rows). Because two populations subject to convergent or divergent sweeps are already13

extensively differentiated, further differentiation due to admixture does not impact the accuracy of sweep14

timing classification using SS-H12.15

For intermediate donor effective size (N = 104; Figures 4 and S19, middle rows), the magnitudes of16

both the ancestral and convergent sweep signals attenuate toward neutral levels, and the power of SS-H1217

wanes as the admixture proportion increases. This is because the genetic diversity in the target population18

increases to levels resembling neutrality, overall yielding a pattern spuriously resembling a divergent sweep19

that SS-H12 cannot distinguish from neutrality. Accordingly, the magnitude and power of SS-H12 under a20

divergent sweep scenario following admixture scarcely change under the N = 104 scenario. As the effective21

size of the donor population grows large (N = 105; Figures 4 and S19, bottom rows), SS-H12 becomes more22

robust to the effect of admixture for shared sweeps, accurately identifying ancestral and convergent sweeps23

with high power at greater admixture proportions relative to the N = 104 scenario. However, the power24

of SS-H12 spuriously rises to 1.0 for divergent sweeps under the N = 105 admixture scenario. Both the25

increased robustness to admixture for the ancestral and convergent sweeps, as well as the elevated power26

for divergent sweeps, result from a reduction in the magnitude of SS-H12 under neutrality for the N = 105
27

admixture scenario relative to N = 104, which does not occur for the sweep scenarios. That is, |SS-H12|28

remains similar across the N = 105 and N = 104 admixture scenarios for sweeps, while |SS-H12| for the29

neutral background is smaller, meaning that any sweep, even a divergent sweep, is more prominent for larger30

donor population sizes.31

20



Different sample sizes1

Next, we performed experiments to understand the effect of deviating from basic parameters of the simplified2

unadmixed mammalian model, changing one parameter at a time. First, we generated replicates for K = 23

populations containing an overall sample size of n = 200 diploids representing the sum of component sample4

sizes n1 and n2, modifying these such that more individuals were sampled from one subpopulation than the5

other. This therefore changed the value of γ = n1/(n1 + n2) for the computation of xi (see Equation 2).6

We simulated values of γ = 0.7 (n1 = 140, n2 = 60), 0.8 (n1 = 160, n2 = 40), or 0.9 (n1 = 180, n2 = 20) in7

contrast to the standard γ = 0.5 (n1 = n2 = 100; as seen in Figure S9). Regardless of γ, we found that trends8

in power for shared sweeps (ν = 1, s = 0.1) were consistent with one another, and that the distribution of9

SS-H12 values yielded the expected sign—negative for convergent sweeps and positive for ancestral sweeps—10

suggesting that sample composition should not generally affect these inferences (Figure S20-S22). We also11

observed a slight, spurious increase in power for divergent sweeps (occurring in population 1) that was most12

prominent for γ = 0.9, but visible at t = 200 for all three γ > 0.5 scenarios. This effect emerged as a13

result of two factors. First, strong sweeps have not established by t = 200, meaning that the sampled sister14

populations are not yet extensively differentiated at this point and have somewhat closer values H12 to one15

another than for older sweeps. Second, smaller sample sizes for either subpopulation translate to reduced16

haplotypic diversity in the sample overall, resulting in elevated magnitudes of SS-H12. Thus, while extreme17

distortions in γ and smaller sample sizes may yield more prominent divergent sweeps, their signature remains18

minor, rendering them highly unlikely to yield outlying signals relative to shared sweeps. We subsequently19

tested power and classification ability for convergent sweeps initiating at different timepoints on the simplified20

mammalian tree, as well as for a deviation to the bifurcating tree assumption by simulating a star phylogeny21

with K = 4 subpopulations (see Supplementary Note, Part 3).22

Background selection23

Finally, we observed the effect of long-term background selection on the neutral distribution of SS-H12 val-24

ues (Figure S23). Background selection may yield signatures of genetic diversity resembling selective sweeps25

[Charlesworth et al., 1993, 1995, Seger et al., 2010, Nicolaisen and Desai, 2013, Cutter and Payseur, 2013,26

Huber et al., 2016], though previous work suggests that background selection does not drive particular hap-27

lotypes to high frequency [Enard et al., 2014, Harris et al., 2018]. Our two background selection scenarios for28

samples from K = 2 populations, with τ = 1100 (CEU-GIH model) and 3740 (CEU-YRI model) generations,29

were performed as described in the Materials and Methods, following the protocol of Cheng et al. [2017].30

Briefly, we simulated a 100-kb sequence featuring a centrally-located 11-kb gene consisting of exons, introns,31

and untranslated regions, across which deleterious variants arose randomly throughout the entire simulation32
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period. In agreement with our expectations, we found that background selection is unlikely to confound1

inferences from SS-H12, yielding only marginally larger values of |SS-H12| than does neutrality (Figure S23).2

Accordingly, SS-H12 does not classify background selection appreciably differently from neutrality.3

Classifying shared sweeps as hard or soft from the number of sweeping haplotypes4

Because the primary innovation of the single-population approach is its ability to classify sweeps as hard or5

soft from paired (H12, H2/H1) values, we evaluated the corresponding properties of our current approach for6

samples consisting of K = 2 populations (Figure 5). Here, we color a space of paired (|SS-H12|, H2Tot/H1Tot)7

values, each bounded by [0.005, 0.995], according to the inferred most probable number of sweeping haplo-8

types ν for each point in the space. Similarly to the approach of Harris et al. [2018], we inferred the most9

probable ν using an approximate Bayesian computation (ABC) approach in which we determined the pos-10

terior distribution of ν from 5× 106 replicates of sweep scenarios with ν ∈ {0, 1, . . . , 16} and s ∈ [0.005, 0.5],11

both drawn uniformly at random for each replicate (the latter drawn from a log-scale), and where ν = 012

simulations are neutral replicates. A test point in (|SS-H12|, H2Tot/H1Tot) space was assigned a value of13

ν based on the most frequently occurring ν among simulations whose (|SS-H12|, H2Tot/H1Tot) coordinates14

were within a Euclidean distance of 0.1 from that test point (see Materials and Methods). We were able to15

classify recent shared sweeps as hard or soft, but found our current approach to have somewhat different16

properties to the single-population approach.17

For ancestral sweep scenarios and τ = 1100 generations (t ∈ [1140, 3000], CEU-GIH model), the pattern18

of paired (|SS-H12|, H2Tot/H1Tot) values generally followed that of single-population analyses [Harris et al.,19

2018] (Figure 5, top-left). For a given value of |SS-H12|, smaller values of H2Tot/H1Tot were generally20

more probable for ancestral sweeps from smaller ν, and inferred ν increased with H2Tot/H1Tot. This fit our21

expectations because, as the number of ancestrally sweeping haplotypes in the pooled population increases,22

the value of H2Tot increases relative to H1Tot. Additionally, ancestral sweeps from larger ν (softer sweeps)23

are unlikely to generate large values of |SS-H12| or small values of H2Tot/H1Tot, and the most elevated24

values of |SS-H12| were rarely associated with more than four sweeping haplotypes. Accordingly, harder and25

softer ancestral sweeps yielded distinct probability densities of |SS-H12| and H2Tot/H1Tot from one another26

(Figure S24, left column).27

We note, however, the presence of paired values inferred to derive from ν = 1 for some intermediate28

values of H2Tot/H1Tot, as well as the presence of points with inferred ν ≥ 4 at smaller H2Tot/H1Tot. This29

may indicate that among ancestral sweep replicates for the CEU-GIH model, weaker hard sweep signals may30

occasionally be difficult to resolve from stronger soft sweep signals, as both should yield intermediate levels31

of haplotypic diversity. The difficulty in resolving this region of the plot also derives from the low number of32
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nearby observations (within a Euclidean distance of 0.1) from which to make inferences, despite the higher1

than average support for these observations (Figure S26, top row). Additionally, the next-most likely ν for2

most points tended to be an immediately adjacent value (for example, if ν = 4, then the next most likely ν3

is either 3 or 5; Figure S27, top row). Under simulated CEU-YRI ancestral sweep scenarios (t ∈ [3780, 5000],4

τ = 3740; Figure 5, top right), we observed a broadly similar pattern of inferred ν. However, the increased5

age of sweeps relative to the CEU-GIH model resulted in more erratic inferences across intermediate |SS-H12|6

paired with intermediate H2Tot/H1Tot, smaller mean |SS-H12| and larger mean H2Tot/H1Tot across all classes7

(Figure S25, left column), and somewhat less support for inferences throughout the plot (Figures S28 and S29,8

top row). Our approach still maintains a clear tendency to infer sweeps with smaller H2Tot/H1Tot as hard,9

thereby preserving its basic classification ability.10

The convergent sweep experiments yielded distinctly different occupancies and distributions of possible11

paired (|SS-H12|, H2Tot/H1Tot) values relative to ancestral sweeps, and provided greater resolution and12

inferred support among the tested values of ν, showing little irregularity in the assignment of ν (bottom13

rows of Figures 5, and S26-S29). In addition, trends in the occupancy of hard and soft sweeps were generally14

concordant between replicates for both the CEU-GIH (τ = 1100, t ∈ [200, 1060]) and CEU-YRI (τ = 3740,15

t ∈ [200, 3700]) models, though |SS-H12| was larger on average for CEU-GIH (Figures S24 and S25, right16

columns). For these experiments, we simulated simultaneous independent sweeps, either both soft or both17

hard, allowing each population to follow a unique but comparable trajectory. Thus, there were always18

at least two sweeping haplotypes in the pooled population. Accordingly, convergent hard sweeps, unlike19

ancestral hard sweeps, are primarily associated with large values of |SS-H12| and intermediate values of20

H2Tot/H1Tot. Furthermore, strong convergent sweeps of any sort could not generate small H2Tot/H1Tot21

values unless |SS-H12| was also small. Even so, convergent sweeps from larger ν occupy a distinct set of22

paired (|SS-H12|, H2Tot/H1Tot) values that is shifted either toward smaller |SS-H12|, larger H2Tot/H1Tot, or23

both, demonstrating that the accurate and consistent inference of ν is possible for convergent sweeps. Unlike24

for ancestral sweeps or single-population analyses, we observed that the smallest values of H2Tot/H1Tot25

paired with the smallest values of |SS-H12| were associated with neutrality, representing scenarios in which26

similar highly diverse haplotype frequency spectra arose in both populations by the time of sampling.27

Application of SS-H12 to human genetic data28

We applied SS-H12 to whole-genome sequencing data from global human populations in phase 3 of the 100029

Genomes Project [Auton et al., 2015], which is ideal as input because it contains large sample sizes and30

no missing genotypes at polymorphic sites. We searched for shared sweep signals within the RNA- and31

protein-coding genes of geographically proximate and distant human population pairs, performing various32
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comparisons of unadmixed European, South Asian, East Asian, and Sub-Saharan African populations (Ta-1

bles S4-S12). We scanned with sliding analysis windows of 40 kb with a step size of four kb for samples with2

non-African populations, or 20 kb with step size two kb otherwise, to overcome the effect of short-term LD3

(Figure S30). For the top 40 outlying candidate shared sweeps among population pairs, we assigned p-values4

from a neutral distribution of 106 replicates following human demographic models inferred from smc++ (see5

Materials and Methods). Our Bonferroni-corrected genome-wide significance threshold [Neyman and Pear-6

son, 1928] for single comparisons was 5× 10−8 (Altshuler et al. [2008]; we did not assess significance across7

multiple global-scale tests). We additionally inferred the maximum posterior estimates on ν ∈ {1, 2, . . . , 16}8

for each top candidate from a distribution of 5 × 106 simulated convergent or ancestral sweep replicates,9

depending on our classification of the candidate from the sign of SS-H12, following the same smc++-derived10

models. We categorized sweeps from ν = 1 as hard, and sweeps from ν ≥ 2 as soft. By using both neutral11

and sweep simulations, we were also able to assign 1% false discovery rate (FDR) |SS-H12| cutoffs for each12

population pair comparison (Table S2).13

Overview of genome-wide trends14

Across all comparisons, we found that ancestral hard sweeps comprised the majority of prominent candidates15

at RNA- and protein-coding genes, regardless of population pair. Many of these candidate ancestral sweeps16

were detected with H12 in single populations [Harris et al., 2018], including novel sweeps at RGS18 in the17

sub-Saharan African pair of YRI and LWK (Luhya people from Webuye, Kenya; ν = 1; previously identified18

in YRI; Figure 6, second row) and at P4HA1 between the European CEU and South Asian GIH populations19

(ν = 1; previously identified in GIH, though as a soft sweep; Figure S32, middle row). We also observed20

a dearth of large-magnitude negative values in Tables S4-S12, with prominent convergent sweep candidates21

only occurring between the most diverged population pairs. These consisted of C2CD5 between CEU and22

the East Asian JPT population (Japanese in Tokyo; ν = 1), PAWR between Indo-European populations23

CEU and GIH with the sub-Saharan African YRI population (small and almost-significant for the CEU-YRI24

comparison, p = 6.6×10−8, ν = 1 for both comparisons; Tables S7 and S9), and MPHOSPH9 and EXOC6B25

between JPT and YRI (both with ν = 1). Regardless of genome-wide significance threshold, our 1% FDR26

cutoffs for |SS-H12| indicate that the outlying values we identified in our scans were much more likely for27

sweeps than for neutrality, especially for more distantly-related populations, which are unlikely to produce28

high-magnitude SS-H12 values in the absence of a sweep (Table S2). Supporting this pattern, we observed29

that the proportion of genic windows greater the 1% FDR cutoff was uniformly higher than the proportion30

of non-genic windows exceeding the cutoff (Table S2).31
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Our observations also reflect the broader pattern that negative SS-H12 values are rare between closely-1

related populations. Indeed, the majority of SS-H12 values at protein-coding genes between populations2

from the same geographic region are positive, and this distribution shifts toward negative values for more3

differentiated population pairs, consisting primarily of intermediate-magnitude negative values between the4

YRI and non-African populations (Figure S31). Our present results are also consistent with the H12-based5

observations of Harris et al. [2018] in single populations, in that we found a greater proportion of hard6

sweeps than soft sweeps among outlying sweep candidates in humans, though both were present between7

all population pairs. We additionally found that the maximum |SS-H12| associated with a gene had a8

significantly negative Spearman correlation with its recombination rate regardless of population comparison,9

consistent with previous observations [O’Reilly et al., 2008] and highlighting a secondary pattern potentially10

responsible for observed genome-wide SS-H12 values (Table S3).11

The top shared sweep candidates comprised genes that have been described in greater detail in the12

literature [Bersaglieri et al., 2004, Sabeti et al., 2007, Gerbault et al., 2009, Liu et al., 2013], including13

LCT and the surrounding cluster of genes on chromosome 2 including MCM6, DARS, and R3HDM1 in the14

European CEU-GBR (GBR: English and Scottish) pair (ν = 1 for all; Table S4), reflecting selection for the15

lactase persistence phenotype. We also recovered the sweep on the light skin pigmentation phenotype in16

Indo-Europeans [Sabeti et al., 2007, Coop et al., 2009, Mallick et al., 2013, Liu et al., 2013] for comparisons17

between the CEU population with GBR (Table S4; almost-significant with p = 8.1 × 10−8 and ν = 1)18

and GIH (Table S5; p = 2.40 × 10−8, ν = 1). Although the selected allele for this sweep is thought to19

lie within the SLC24A5 gene encoding a solute carrier [Lamason et al., 2005], the CRG100 filter that we20

applied to our data removed SLC24A5, but preserved the adjacent SLC12A1, which we use as a proxy for the21

expected signal. Finally, we find KIAA0825 as a top candidate across comparisons between the CEU and22

GIH (Table S5; ν = 1), YRI and CEU (Table S7; p = 2.71× 10−8, ν = 1), YRI and LWK (Table S8, ν = 1),23

JPT and YRI (Table S10; p = 1.13 × 10−8, ν = 1), and GIH and YRI (Table S9; p = 2.12 × 10−9, ν = 1)24

populations. Although the function of KIAA0825 has not yet been characterized, it is a previously-reported25

sweep candidate ancestral to the split of African and non-African human populations [Racimo, 2016].26

Specific sweep candidates of interest27

Across all population comparisons, the top shared sweep candidates at RNA- and protein-coding genes28

comprised both hard and soft sweeps, yielding a wide range of H2Tot/H1Tot values. This emphasizes the29

multitude of sweep histories that have shaped shared variation among human populations. In Figure 6, we30

highlight four distinct results that capture the diversity of sweeps we encountered in our analysis, each31

generating wide, well-defined SS-H12 peaks. We first examine GPHN, which we found as an outlying32
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candidate shared soft sweep in the East Asian JPT and KHV (Kinh of Ho Chi Minh City in Vietnam)1

populations (ν = 2; Table S12). GPHN encodes the scaffold protein gephyrin, which has been the subject2

of extensive study due to its central role in regulating the function of neurons, among the many other3

diverse functions of its splice variants [Ramming et al., 2000, Lencz et al., 2007, Tyagarajan and Fritschy,4

2014]. GPHN has received attention as the candidate of a recent selective sweep ancestral to the human5

out-of-Africa migration event [Voight et al., 2006, Williamson et al., 2007, Park, 2012], which has resulted6

in the maintenance of two high-frequency haplotypes worldwide [Climer et al., 2015]. Although not meeting7

the genome-wide significance threshold, we see that a large signal peak is centered over GPHN, and the8

underlying haplotype structure shows two high-frequency haplotypes at similar frequency in the pooled9

population and in the individual populations (Figure 6, top row).10

Next, we recovered RGS18 as a top novel outlying ancestral sweep candidate in the sub-Saharan African11

LWK and YRI populations. RGS18 occurs as a significant sweep in the YRI population [Harris et al.,12

2018] and correspondingly displays a single shared high-frequency haplotype between the LWK and YRI13

populations (Figure 6, second row), matching our assignment of this locus as a hard sweep (ν = 1). RGS1814

has been implicated in the development of hypertrophic cardiomyopathy, a leading cause of sudden cardiac15

death in American athletes of African descent [Maron et al., 2003, Chang et al., 2007]. Between the CEU16

and YRI populations, we found another novel shared sweep at SPRED3 (Figure 6, third row; significant17

p = 2.01× 10−9, ν = 1), which encodes a protein that suppresses cell signaling in response to growth factors18

[Kato et al., 2003]. Although elevated levels of observed homozygosity at this gene have previously been19

reported in European and sub-Saharan African populations separately [Granka et al., 2012, Ayub et al.,20

2013], these observations have not previously been tied to one another. Once again, we see the pattern of21

an ancestral shared sweep wherein a single haplotype predominates within both populations, but with even22

noticeably less background variation than what we observed in the aforementioned LWK-YRI comparison.23

Finally, we present the novel convergent hard sweep candidate that we uncovered at C2CD5 (also known24

as CDP138 ) between the CEU and JPT populations. As expected of a convergent sweep, the SS-H12 peak25

here is large in magnitude but negative, corresponding to the presence of a different high-frequency haplotype26

in each population, each of which is also at high frequency in the pooled population. Notably, both haplotypes27

exist in both populations (Figure 6, bottom row). The protein product of C2CD5 is involved in insulin-28

stimulated glucose transport [Xie et al., 2011, Zhou et al., 2018], and the insulin response is known to differ29

between European and East Asian populations [Kodama et al., 2013]. Therefore, our discovery of C2CD530

is in agreement with the results of Kodama et al. [2013], and illustrates the importance of differentiating31

ancestral and convergent sweeps in understanding the adaptive histories of diverse populations.32
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We also highlight our discovery of PAWR (Figure S33, top) as another outlying novel convergent hard1

sweep candidate with complementary clinical support, for comparisons between GIH and CEU with YRI. The2

protein product of PAWR is involved in promoting cancer cell apoptosis, and is implicated in the development3

of prostate cancer [Yang et al., 2013]. Because mutations within and adjacent to PAWR have been specifically4

implicated in the development of prostate cancer among individuals of African descent [Bonilla et al., 2011],5

our identification of a candidate convergent sweep at PAWR is consistent with the observation of elevated6

prostate cancer rates for populations with African ancestry [Kheirandish and Chinegwundoh, 2011, Shenoy7

et al., 2016].8

To further validate our identified sweep candidates, we also constructed signal plots and pegas [Paradis,9

2010] haplotype networks for each highlighted gene outside of Figure 6, grouping these into inferred ancestral10

(Figure S32) and convergent sweeps (Figure S33). Prominent ancestral sweeps—SPIDR (p = 3.49× 10−11,11

CEU-JPT), SLC12A1 (p = 2.40 × 10−8, CEU-GIH), P4HA1, KIAA0825 (p = 2.13 × 10−9, GIH-YRI),12

and LCT—were characterized by the presence of one or two high-frequency haplotypes in the population13

pool, divided between either component population in approximately equal proportions. The non-sweeping14

minor haplotypes also present in the sample generally differed from the sweeping haplotypes at one to15

two sites, and frequently only observed once (mostly omitted, as we removed haplotypes with fewer than16

six copies from the network). Minor haplotypes observed at higher frequencies were often shared between17

both populations (SLC12A1, LCT, and RGS18 ) and may also be representative of persistent ancestral18

polymorphism (Figure S32).19

Notably, the sweeping haplotypes observed in convergent sweeps were not always exclusive to either pop-20

ulation, and separated by a range of Hamming distances (which we denote H). Whereas the independently21

sweeping haplotypes within PAWR in CEU-YRI (H = 20) belonged to either the CEU or YRI populations22

(Figure S33, top), both sweeping haplotypes of C2CD5 (H = 8) were visible in both CEU and JPT, sug-23

gesting that they were segregating ancestrally to their independent selection following the CEU-JPT split24

and may be more closely related (Figure 6, bottom). Additionally, we found the selected haplotype of JPT25

present at low frequency in YRI at EXOC6B (H = 8; Figure S33, middle), and similarly the selected hap-26

lotype of YRI present in JPT at MPHOSPH9 (H = 30; Figure S33, bottom). Even so, we note that for27

convergently-selected loci, each population’s haplotypes tended to cluster together in the network, reflecting28

the genetic differentiation of the populations.29

Detection and classification of shared sweeps from unphased data30

Here, we briefly describe the results from our application of the unphased multilocus genotype (MLG)31

approach, SS-G123. We explored the properties of SS-G123 in equivalent scenarios to our SS-H12 tests by32
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manually merging diploid study individuals’ two haplotypes into MLGs. The ability to identify and classify1

shared sweeps from unphased data is consequential because non-model organisms may not have phased data2

from which to make inferences. Nonetheless, previous work [Harris et al., 2018] has indicated that distortions3

in the MLG frequency spectrum can convey the signature of a recent selective sweep.4

Overall, SS-G123 performed comparably to SS-H12 at detecting sweeps across identical CEU-GIH and5

CEU-YRI scenarios (Figures S34-S43), with only slight reductions in power at both the 1% and 5% FPRs6

for MLGs relative to haplotypes. Reductions in power generally occurred for older sweep times, as MLGs are7

more diverse than haplotypes [Harris et al., 2018], and so the signal of a sweep erodes more rapidly for MLG8

data as mutation and recombination events accumulate. Under both the CEU-GIH and CEU-YRI models,9

we found that the magnitude of SS-G123 was, due to the greater baseline diversity of MLGs, generally10

smaller than the magnitude of SS-H12, matching trends from results with the single-population statistics11

H12 and G123 [Harris et al., 2018].12

However, SS-G123 values were also shifted toward the negative for all scenarios, including ancestral13

sweeps, indicating that the unphased approach may not be as adept at classifying shared sweeps as ancestral14

after identifying them, except for strongly outlying candidates (Figures S11-S14). Thus, we expect that15

the detection of shared selective sweeps will be possible across the wide variety of organisms for which16

unphased whole-genome sequence data are available, but urge caution in blindly classifying negative signals as17

convergent. Classification notwithstanding, the comparable power between SS-H12 and SS-G123 underscores18

the importance of the latter as a tool (Figures S37, S38, S42, and S43). Crucially, we also found that our19

empirical analysis of the 1000 Genomes Project dataset [Auton et al., 2015] in which we paired individuals’20

haplotypes into their MLGs yielded congruent results to the phased approach in practice, with similar21

inclusion and classification of candidates between data types (Tables S13-S21).22

The primary difference that we encountered between haplotype and MLG empirical analyses was in the23

inferred softness of candidate sweeps. We found that, as in the single-population analyses of Harris et al.24

[2018], a greater proportion of top candidate sweeps in the MLG data were classified as soft than in haplotype25

data, including both candidates classified as hard sweeps in the haplotype data, and candidates absent from26

the top 40 haplotype candidates. The explanation for both of these discrepancies, which were minor in27

scope, lies once again in the greater diversity of MLGs relative to haplotypes. A genomic region with one28

high-frequency haplotype and one or more intermediate-frequency haplotypes may yield a paired (|SS-H12|,29

H2Tot/H1Tot) value that most resembles a hard sweep under the ABC approach using haplotypes, but yield30

an MLG frequency spectrum featuring multiple intermediate-frequency MLGs that may be inferred as a soft31

sweep. Meanwhile, the greater background diversity of MLG data may allow for the more subtle signatures32

of soft sweeps to be more readily detectable than in haplotype data. Overall, the rarity of discrepancies33
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between SS-H12 and SS-G123 top candidate lists corroborates the high level of concordance between the1

power of the two statistics that we found in simulated data.2

Discussion3

Characterizing the selective sweeps shared between geographically close and disparate populations can pro-4

vide insights into the adaptive histories of these populations that may be unavailable or obscure when5

analyzing single populations separately. To this end, we extended the H12 framework of Garud et al.6

[2015] to identify genomic loci affected by selection in samples composed of individuals from two or more7

populations. Our approach, SS-H12, has high power to detect recent shared selective sweeps from phased8

haplotypes, and is sensitive to both hard and soft sweeps. SS-H12 can also distinguish hard and soft sweeps9

from one another in conjunction with the statistic H2Tot/H1Tot, thus retaining the most important feature of10

the single-population approach. Furthermore, SS-H12 has the unique ability to distinguish between sweeps11

that are shared due to common ancestry (ancestral sweeps), and shared due to independent selective events12

(convergent sweeps). Analysis with the SS-H12 framework therefore provides a thorough characterization of13

selection candidates, both previously-described and novel, unlike that of comparable methods. In addition,14

we extended analyses to unphased MLG data as SS-G123, maintaining excellent power in the absence of15

phased haplotypes, expanding the range of study systems from which we may draw selective sweep inferences.16

Power and classification17

Because SS-H12 and SS-G123 fundamentally derive from measures of expected homozygosity, they are tai-18

lored to detect recent shared selective sweeps. Stronger sweeps are detectable over a wider range of selection19

start times (t) than weaker sweeps due to their greater distortion of the haplotype frequency spectrum re-20

sulting in larger sweep footprints [Gillespie, 2004, Garud et al., 2015, Hermisson and Pennings, 2017] and21

larger values of the sweep statistics. However, because stronger sweeps reach fixation sooner than do weaker22

sweeps, their signals begin to erode sooner, especially for sweeps from larger ν (compare, for example, the23

center columns of Figures 2, S5, and S6 for ancestral sweeps). Accordingly, there is an inverse relationship24

between the strength of detectable shared sweeps (s), and the selection start times for which we can detect25

a sweep. The interaction between t and s is also important for classifying the timing of shared sweeps.26

Barring rare convergent sweeps on the same haplotype between sister populations, we found that simulated27

convergent sweeps were reliably identified from the sign of SS-H12 or SS-G123 under scenarios in which they28

have power to detect shared sweeps (see boxplots of Figures 2, 3, and S5-S8, and classification curves of29

Figures S11-S14).30
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For weaker ancestral sweeps, in contrast, negative values of elevated magnitude could emerge if the time1

of selection t was close to the split time τ for the CEU-GIH model (bottom row of Figures 2, S5, and S6), or2

for the CEU-YRI model in general (bottom row of Figures 3, S7, and S8), especially for SS-G123 (boxplots of3

Figures S34-S36 and S39-S41). In the CEU-GIH case, it is likely that the beneficial allele, and its haplotypic4

background(s), have not risen to high frequency before the ancestral population splits into the modern5

sampled populations. In the CEU-YRI case, enough time has passed since τ by the time of sampling that6

extensive population differentiation exists. Thus, in both cases, copies of the beneficial haplotype present in7

each of the two descendant populations may follow distinct trajectories. Using a smaller analysis window may8

therefore increase power to detect sweeps with less prominent footprints, but at the risk of misinterpreting9

elevated signal due to short-range LD as a sweep.10

More generally, the strengths and limitations of our methods to identify shared sweeps as ancestral or11

convergent depend upon the underlying genealogy of the analysis region. In our analyses, we may expect a12

particular combination of t and s to be readily detectable and classifiable across any demographic history,13

such as a strong sweep (s = 0.1) initiating t = 2000 generations before sampling. Under the CEU-GIH14

model, this would be an ancestral sweep, while it would be convergent for the CEU-YRI model. Similarly,15

because we had no power in our simulation experiments to detect weaker (s = 0.01) sweeps younger than16

t ≈ 1500 generations old, we could not detect convergent sweeps in the CEU-GIH model unless their selection17

coefficient is large. Furthermore, the background haplotypic diversity inherent to different populations’18

demographic histories may be highly variable, affecting signal duration and intensity. This meant we could19

detect ancestral sweeps up to 2000 generations more ancient under the CEU-YRI model than under the CEU-20

GIH model. In these ways, genealogy constrains which sweeps are identifiable under a particular parameter21

set. In practice, most outlying shared sweep candidates in humans were ancestral (Tables S4-S21), despite22

the high power of our approach to detect simulated convergent sweeps. Indeed, convergent sweeps may23

simply be uncommon because beneficial mutations are rare [Orr, 2010]. Thus, it should be especially rare24

for beneficial mutations to independently establish at the same locus across multiple populations, for all but25

the most strongly-selected mutations [Haldane, 1927, Kimura, 1962, Wilson et al., 2014].26

While powerful for detecting shared sweeps, an equally important property of our statistics is that they27

ignore divergent sweeps, assigning only values of small magnitude in such cases. The ability to eliminate28

unshared sweeps as potentially-outlying signals is important because a sweep in a subset of sampled pop-29

ulations still produces distorted haplotype frequencies between them. This can result in values of fDiff (or30

gDiff) that may spuriously resemble convergent sweeps, yielding values of the uncorrected H12Anc statistic31

that are distinct from neutrality (Figures S15 and S16, right column). By applying a correction factor to32

H12Anc (Equation 3), we dampened the signals of divergent sweeps for samples drawn from any number of33
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populations K (right columns of Figures 2, 3, S9, and SN1-SN3). As such, the distributions of SS-H12 and1

SS-G123 generated under divergent sweeps often appears visually no different from neutrality, leaving no2

possibility of misidentifying divergent sweeps as shared sweeps.3

Our ability to detect recent shared sweeps remained consistent across samples composed ofK ∈ {2, 3, 4, 5}4

populations, which we demonstrate with haplotype results from the generalized mammalian model in the5

Supplementary Note (Figures S9 and SN1-SN3). Power curves across experiments were nearly identical to6

one another, regardless of K, and regardless of whether we employed the conservative or grouped approach7

(see Materials and Methods) for K > 2 samples. However, we were frequently unable to classify convergent8

sweeps shared across K > 2 populations correctly, often assigning SS-H12 > 0 when the time of the sweep9

is more ancient than the most recent population split time but younger than the root of the population10

tree, due to the presence of internal ancestral sweeps (Figures SN1-SN3, left columns). True ancestral11

sweeps, in contrast, were unambiguous because in these cases, all populations share identical sweeping12

haplotypes (Figures SN1-SN3, center columns). Finally, divergent sweeps never produced outlying values of13

SS-H12, but we observed spuriously elevated power for sweeps shared ancestrally among more populations14

(Figures SN1-SN3, right columns). To avoid misinterpreting shared sweep signals deriving from K ≥ 315

sampled populations, we recommend performing follow-up analyses on identified signal peaks to determine16

the specific populations involved in the sweep.17

Similarly to the single-population approach [Garud et al., 2015, Harris et al., 2018], SS-H12 and SS-G12318

have power to detect shared soft sweeps, and can assign these as ancestral or convergent. We found that softer19

sweeps were more difficult to detect than harder sweeps, proportional to ν. Sweeps from larger ν produce20

smaller haplotype frequency spectrum distortions than do hard sweeps, but trends in the distributions21

of SS-H12 (Figures 2, 3, and S5-S8) and SS-G123 (Figures S34-S41) were nonetheless consistent between22

hard and soft sweeps. Our results also indicate that all haplotypes need not be shared between sampled23

populations in order to yield outlying signals. This is because simulated population split events represented a24

random sampling of ancestral haplotypes without guaranteeing identical haplotype frequency spectra between25

descendant sister populations or their ancestor. As an example, we consider a simple hypothetical scenario26

in which ν = 5 ancestrally sweeping haplotypes are distributed unevenly between two descendant sister27

populations (Figure S44, bottom-left). A shared haplotype exists at frequency 0.55 in Population 1 (P1),28

and at 0.45 in Population 2 (P2). Meanwhile, P1 has two exclusive haplotypes at frequencies 0.25 and 0.2,29

while P2 has exclusive haplotypes at frequencies 0.3 and 0.25; corresponding to approximately 50% exclusive30

haplotypes per population. In this (albeit extreme) scenario, SS-H12 = 0.183, a positive value lying outside31

the distributions of neutrality for our all of our models.32
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Beyond detecting recent shared sweeps with high power, accuracy, and specificity, ours is the only one1

among comparable methods that can classify shared sweeps as hard or soft from the inferred number of2

sweeping haplotypes (ν). Using an ABC approach to assign the most likely number of sweeping haplotypes3

in a genomic window, we found that the classification of recent ancestral sweeps broadly followed that of4

sweeps in single populations, with smaller H2Tot/H1Tot corresponding to harder sweeps, and the largest ν5

associated with the largest H2Tot/H1Tot (Figure 5, top). Resolving the most probable ν can be challenging6

depending on the age of the sweep, and so we find that boundaries between ν classes are somewhat irregular7

within the posterior distribution, especially for the CEU-YRI model. In contrast, convergent sweeps are8

easily classified as hard or soft due to their necessarily stronger signal relative to ancestral sweeps (Figure 5,9

bottom). The classification profile of convergent sweeps is distinctly different from that of ancestral sweeps10

because the strongest hard sweeps will yield two high-frequency haplotypes in the population, corresponding11

to intermediate H2Tot/H1Tot values, with soft sweeps generating H2Tot/H1Tot at either extreme. Thus,12

we can adeptly classify shared sweeps as hard or soft using the SS-H12 framework across any parameter13

combination for which we have power (Figures 2, 3 and S5-S8).14

Confounding factors and model deviations15

SS-H12 displayed an extensive robustness to confounding admixture across scenarios in which a distantly-16

related donor targeted one of the sampled populations (Figures 4 and S19). As this covers a variety of17

potential cases, and is a fairly common occurrence [Chun et al., 2010, Patterson et al., 2012, Pool et al.,18

2012, Nedić et al., 2014], we believe SS-H12 may be confidently applied to a wider set of complex demographic19

scenarios. In contrast, SS-H12 could not properly classify the timing of a sweep passed from one sampled20

population to its sampled sister through admixture (Supplementary Note Figure SN4). This scenario may21

be avoided by restricting sampling to only populations that have been geographically separated by a bar-22

rier to migration for an appreciable amount of time, making admixture unlikely. Distant-donor admixture23

most impacted the ability of SS-H12 to detect and classify ancestral sweeps, whereas convergent sweeps re-24

mained broadly unobscured and distinct from neutrality except in extreme scenarios (admixture above 30%;25

Figures 4 and S19, left columns). Admixture here introduces new haplotypes into the target, resulting in26

differing haplotype frequency spectra between the pair. Lower donor genetic diversity thus expectedly yields27

a spurious convergent sweep-like pattern, while admixture from a more diverse donor recreates a divergent28

sweep-like pattern (Figures 4 and S19, middle columns). Overall, the effect of distant-donor admixture is29

likely to be a reduction in the prominence of SS-H12, which may impact estimates of sweep age and intensity30

[Malaspinas et al., 2012, Mathieson and McVean, 2013, Smith et al., 2018], but without yielding false positive31

signals (Figure S19, left and center columns).32
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As with unadmixed samples, SS-H12 for divergent sweeps showed little departure in prominence from1

neutrality following admixture from a diverged donor (Figure 4, right column). However, we observed a2

spurious though not impactful rise in power when a diverse (N = 105) donor admixes into the sweeping3

population at a rate of 10% or more (Figure S19, bottom-right). While our statistics are insulated against4

picking up these divergent sweeps as outliers due to their small magnitude, we caution that the opposite5

scenario—admixture from a donor of small size into the non-sweeping population—may resemble a conver-6

gent sweep as H12 in the target population, and fDiff between populations, rises. SS-H12 does not ignore7

divergent sweeps in inter-sister admixture, which results in extensive haplotype sharing that, at any level,8

yielding positive values of SS-H12 (Supplementary Note Figure SN4). Because the basis for our shared sweep9

classifications is a quantification of haplotype frequency overlap, inter-sister admixture is the main confound-10

ing scenario for SS-H12. It is therefore prudent to test for evidence of admixture between sampled sister11

populations before searching for shared sweeps, and also to obtain ecological and paleontological evidence12

to support the origin of an adaptive haplotype [Seeley, 1986, Wogelius et al., 2011, Remigereau et al., 2011,13

Romero et al., 2012]. Ultimately, admixture was the only confounding factor we tested that could affect14

SS-H12 values, and only a narrow range of scenarios is likely to do so.15

The other major model violation we examined, background selection, accordingly posed a much smaller16

risk of affecting SS-H12. Background selection results in a loss of polymorphism as deleterious alleles and17

alleles at nearby linked sites are removed from the population, resulting in an ablation of genetic diversity18

reminiscent of selective sweeps [Charlesworth et al., 1993, 1995, Seger et al., 2010, Nicolaisen and Desai,19

2013, Cutter and Payseur, 2013, Huber et al., 2016]. However, background selection is expected to only20

reduce levels of neutral polymorphism without driving particular haplotypes to high frequency [Enard et al.,21

2014]. Indeed, our results indicate that background selection could scarcely distort the distribution of SS-H1222

values relative to neutrality (Figure S23), because it affects neither H12 [Harris et al., 2018] nor the haplotype23

frequency spectrum [Harris and DeGiorgio, 2019]. Thus, we do not expect that a detailed understanding of24

background selection in a study system will be required to detect shared sweeps.25

Our experiments across common deviations to the basic parameters of the simplified mammalian model—26

equal sample sizes, simultaneous sweeps, and bifurcating population splits—highlight the variety of scenarios27

to which we can apply SS-H12 and SS-G123. Our statistics are agnostic to these deviations because none28

should affect haplotype sharing between populations. Modifying the relative sample sizes for each subpopu-29

lation had the effect of changing γ (Equation 2), but this scarcely affects patterns of haplotypic diversity, and30

therefore power and classification (Figures S20-S22), relative to equal sample sizes (Figure S9). The relative31

timing of convergent sweeps also did not change their differentiating effect between populations, and so once32

again we found that power here (Supplementary Note Figure SN5) fit with that of simultaneous convergent33
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sweeps (Figure S9). We can also consider a more complex scenario in which the rate of adaptation in each1

population differs, as with a non-uniform environment. If the study populations are sampled before the the2

beneficial mutation establishes in each, then we may overlook a true shared sweep as divergent because a3

subset of populations will show a sweep signature, and a subset will not. This is a limitation of any shared4

sweep method, however. Finally, we found that the power of SS-H12 to detect and classify sweeps for a star5

tree with K = 4 descendants (Supplementary Note Figures SN6 and SN7) matched that under an asym-6

metric topology (Figure SN2), while more accurately classifying sweeps as ancestral or convergent. SS-H127

can only be misled by non-adaptive changes to the haplotype frequency distribution that affect the level of8

haplotype sharing between populations, yielding a wide robustness to many common scenarios.9

While in our experiments we analyzed only ideal dense polymorphism data with no missing sites, we10

briefly pause to consider the performance of SS-H12 outside of these conditions. This is especially relevant11

for SNP array data, which features a lower density of polymorphisms relative to sequencing data. For the12

single-population statistics, Harris et al. [2018] recommended constructing analysis windows using a SNP-13

delimited (rather than nucleotide-delimited) approach, wherein windows are defined by the number of SNPs14

contained within rather than their physical size. Constructing windows in this way ensures the inclusion of15

sufficient haplotypic variation for inference, and may also confer robustness to demographic processes that16

reduce diversity locally, such as population bottlenecks [Harris et al., 2018]. In the case of missing data,17

insights from the single-population approach [Harris et al., 2018] suggest that removing sites with greater18

than 5% missing data (for data missing at random) yields acceptable power. Sites with an extensive number19

of low-confidence genotypes should also be removed, because such errors can lead to the spurious detection20

of new haplotypes, which increases background diversity and reduces the magnitude of SS-H12, potentially21

causing sweeps to be overlooked. Taken together, we suggest that it may be beneficial to employ SNP- rather22

than nucleotide-delimited windows on datasets with extensive missing data, regardless of whether sites are23

missing due to sparse sampling or from genotype or sequencing errors.24

Discovery and characterization of shared sweeps in humans25

The high power, robustness, and flexibility of SS-H12 allowed us to discover outlying sweep candidates in26

humans that both corroborated previous investigations, and uncovered novel shared sweep candidates. Most27

importantly, our approach provided inferences about the timing and softness of shared sweeps, yielding28

enhanced levels of detail about candidates that were until now not directly available. As SS-H12 is the29

only method that distinguishes between recent ancestral and convergent shared sweeps, our investigation30

was uniquely able to identify loci at which independent convergent sweeps, though rare, may have played a31

role in shaping modern patterns of genetic diversity. Among these was EXOC6B (Figure S33, middle row),32
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which produces a protein component of the exocyst [Evers et al., 2014] and has been previously highlighted1

as a characteristic site of selection in East Asian populations [Baye et al., 2009, Durbin and Consortium,2

2011, Pybus et al., 2014]. The shared hard sweep (ν = 1) at EXOC6B appeared as convergent between the3

East Asian JPT and sub-Saharan African YRI populations (Table S10), but as ancestral between all other4

population pairs—pairs of non-African populations—in which it appeared (Tables S5, S6, S11, and S12).5

Thus, we believe that a sweep at EXOC6B occurred globally in both African and non-African populations6

alike, and was not limited to a single region or event.7

More broadly, our investigation into sweeps shared between disparate populations also updates existing8

notions about when during human history particular selective events may have occurred. For example, a9

sweep at NNT, involved in the glucocorticoid response, has been previously reported in sub-Saharan Africa10

[Voight et al., 2006, Fagny et al., 2014]. As expected, we recovered NNT as an ancestral hard sweep (ν = 1)11

in the comparison between LWK and YRI (Table S8), but additionally in all comparisons between YRI and12

non-African populations (Tables S7, S9, and S10; genome-wide significant for all but the JPT-YRI pair).13

Selection at NNT preceded the out-of-Africa event and was not exclusive to sub-Saharan African populations.14

Another unexpected top outlier was SPIDR (Figure S32, first row), involved in double-stranded DNA break15

repair [Wan et al., 2013, Smirin-Yosef et al., 2017] and inferred to be a shared candidate among Eurasian16

populations [Racimo, 2016]. SPIDR previously appeared as an outlying H12 signal in the East Asian CHB17

(Han Chinese individuals from Beijing) population [Harris et al., 2018], but in our present analysis was shared18

ancestrally not only between the East Asian KHV and JPT populations (Table S12), but also between JPT19

and the European CEU (Table S6; p = 3.49×10−11), and the sub-Saharan African LWK and YRI (Table S8)20

populations. Once again, we see a strong sweep candidate shared among a wider range of populations than21

previously expected, illustrating the role of shared sweep analysis in amending our understanding of the22

scope of sweeps in humans worldwide.23

In addition to recovering expected and expanded sweep signatures, we also found top outlying ancestral24

sweep candidates not especially prominent within single populations, emphasizing that localizing an ancestral25

sweep depends not only on elevated expected homozygosity generating the signal, but highly on the presence26

of shared haplotypes between populations. Foremost among such candidates was CASC4, a candidate27

ancestral hard sweep (ν = 1) in all comparisons with YRI (Tables S7-S10; genome-wide significant for CEU28

and GIH with YRI). Because a sweep ancestral to the out-of Africa event at this cancer-associated gene [Ly29

et al., 2014, Anczuków et al., 2015] had been previously hypothesized [Racimo, 2016], we expected to see30

it. However, CASC4 does not have a prominent H12 value outside of sub-Saharan African populations, and31

within YRI is a lower-end outlier [Harris et al., 2018]. Despite this, CASC4 is within the top 12 outlying32

candidates across all comparisons with YRI, and appears as the eighth-most outlying gene in for CEU-JPT33
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(Table S6; ν = 2), even though it is not an outlier in either population individually. Similarly, we found1

PHKB, involved in glycogen storage [Hendrickx and Willems, 1996, Burwinkel et al., 1997, Burwinkel and2

Kilimann, 1998], as an ancestral hard sweep of CEU-YRI (Table S7; 9.29 × 10−9 ν = 1) that was not3

prominent in either population alone, though once again previously inferred to be a sweep candidate to4

Eurasians [Racimo, 2016]. We also identified MRAP2, which encodes a melanocortin receptor accessory5

protein implicated in glucocorticoid deficiency [Chan et al., 2009, Asai et al., 2013], similarly to NNT, as6

an ancestral hard sweep between the CEU and JPT populations (Table S6; p = 1.68 × 10−8, ν = 1), and7

is not prominent in either CEU or JPT. Thus, our empirical results fit well with the expectation deriving8

from our power comparison between multiple tests of H12 and a single SS-H12 test (Figures S17 and S18),9

but we caution that we did not establish global significance between regions for our candidate genes, and10

are unlikely to have sufficient power to do so after correcting for all comparisons.11

An important trend from our empirical analysis was the significantly negative correlation between recom-12

bination rate across protein- and RNA-coding genes, and assigned |SS-H12|. Outlying sweep candidates were13

uniformly associated with regions of low recombination, yielding significant correlations for each population14

pair comparison according to Spearman’s ρ. The most apparent implication for this observation is that we15

are more likely to observe sweep signals in regions of low recombination because it is within such regions16

that sweep footprints persist for the longest time. Consequently, the haplotypic signature of a selective17

sweep should be difficult to elucidate for regions of high recombination, where sweeping haplotypes would18

rapidly homogenize into the background diversity, leaving only a transient footprint. It may be possible19

to guard against misinterpreting regions of elevated LD as sweeps, or overlooking sweeps in regions with20

high recombination, by adjusting the size of the analysis window when computing SS-H12. Following this21

approach, it would be helpful to use a smaller analysis window where recombination rates are large in order22

to identify subtle haplotype frequency distortions, and larger windows where recombination rates are low and23

haplotypic diversity is already expected to be small. Although we did not pursue this strategy, we instead24

assigned p-values and inferred ν using simulations drawn from a spectrum of recombination rates, which we25

expect conferred a high degree of robustness to our conclusions.26

The assignment of p-values additionally depended upon our inferred population model. Because a re-27

construction of the demographic history was required for us to assign p-values, we evaluated the effect of28

misspecifying the model on |SS-H12| significance cutoffs (Figures S45 and S46). To do this, we simulated neu-29

tral replicates either under our more accurate “true” smc++-derived histories with population size changes,30

or under “wrong” histories with identical mean FST to the true models but with constant population sizes31

(Figure S46). Model misspecification could potentially impact inferences of significant SS-H12 signals, and32

this effect depended on the relatedness between sampled populations (Figure S45). For more closely-related33
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population pairs (CEU-GBR and JPT-KHV, mean FST on the order of 10−3), the wrong constant-size model1

yielded smaller |SS-H12| values, corresponding to a less stringent threshold. For more diverged pairs of sub-2

populations (YRI with CEU, GIH, or JPT, mean FST on the order of 10−1), an inverse effect occurs, such3

that the misspecified model becomes too conservative and significant signals may be overlooked. Accord-4

ingly, intermediately-related populations (CEU-GIH and LWK-YRI, mean FST on the order of 10−2) may be5

insulated from the effect of model misspecification. Thus, the selection of a model with parameters derived6

from the study data is paramount to the proper interpretation of genomic SS-H12 signals within those data.7

We conclude our discussion of the empirical analysis by underscoring its practical implications for the8

analysis of unphased data. Across our simulation experiments, we found that SS-G123 demonstrated power9

to detect shared sweeps that was wholly concordant with the power of SS-H12 on phased haplotypes (Fig-10

ures S37, S38, S42, and S43). The area in which SS-G123 appeared to be lacking was in its ability to properly11

classify the timing of a shared sweep. That is, outside of recent sweeps, SS-G123 was highly susceptible to12

assigning negative values to ancestral sweeps, thereby misclassifying them as convergent (compare purple13

[SS-G123] and red [SS-H12] lines within the central columns of Figures S11-S14). The reason for this dis-14

parity in classification lies with the data type itself. Unphased MLGs have a much greater diversity than15

haplotypes under most scenarios if we assume random mating [Harris et al., 2018]. For this reason, the16

homogeneity among MLGs following a sweep returns to background levels more rapidly than that of haplo-17

types, leading to G123Tot < gDiff across scenarios for which H12Tot > fDiff. Contrary to these expectations,18

however, we found that detection and classification with SS-G123 matched that of SS-H12 for a wide major-19

ity of candidates across our empirical scans. Ultimately, this indicates that the sweep candidates most likely20

to pass the significance threshold, likely to be important for adaptation, are those for which phasing does21

not affect inferences, which underscores the importance of a tool with the ability to make those inferences.22

Conclusions23

The SS-H12 and SS-G123 frameworks are an important advancement in our ability to contextualize and24

classify shared sweep events using multilocus sequence data. Whereas prior methods have identified shared25

sweeps and can do so with high power, some without the need for MLGs or phased haplotypes, the ability to26

distinguish both hard and soft shared sweeps from neutrality, as well as differentiate ancestral and convergent27

sweeps, is invaluable for understanding the manner in which an adaptive event has proceeded. Discerning28

whether a selective sweep has occurred multiple times or only once can provide novel and updated insights29

into the relatedness of study populations, and the selective pressures that they endured. Moreover, the30

sensitivity of our approach to both hard and soft sweeps, and our ability to separate one from the other,31

add an additional layer of clarity that is otherwise missing from previous analyses, and is especially relevant32
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because uncertainty persists as to the relative contributions of hard and soft sweeps in human history [Jensen,1

2014, Schrider and Kern, 2017, Mughal and DeGiorgio, 2019]. We expect inferences deriving from shared2

sweep analyses to assist in formulating and guiding more informed questions about discovered candidates3

across diverse organisms for which sequence data—phased and unphased—exist. As part of this, SS-H124

and SS-G123 may be incorporated into machine learning algorithms that leverage the spatial signature of5

sweep statistics to construct powerful sweep detection protocols [e.g., Schrider and Kern, 2017, Mughal and6

DeGiorgio, 2019]. After establishing the timing and softness of a shared sweep, appropriate follow-up analyses7

can include inferring the age of a sweep [Smith et al., 2018], identifying the favored allele or alleles [Akbari8

et al., 2018], or identifying other populations connected to the shared sweep. We believe that our approach9

will serve to enhance investigations into a diverse variety of study systems, and facilitate the emergence of10

new perspectives and paradigms.11

To this end, we provide open-source software (titled SS-X12) to perform scanning window analyses on12

haplotype input data using SS-H12 or multilocus genotype input data using SS-G123, as well as results from13

our empirical scans and other analyses, within our Dryad repository. SS-X12 provides flexible user control,14

allowing the input of samples drawn from arbitrary populations K, and the output of a variety of expected15

homozygosity summary statistics.16
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S Peyrégne, M J Boyle, M Dannemann, and K Prüfer. Detecting ancient positive selection in humans using10

extended lineage sorting. Genome Res., 27:1563–1572, 2017.11

J E Pool, R B Corbett-Detig, R P Sugino, K A Stevens, C M Cardeno, M W Crepeau, P Duchen, J J12

Emerson, P Saelao, D J Begun, and C H Langley. Population Genomics of Sub-Saharan Drosophila13

melanogaster : African Diversity and Non-African Admixture. PLoS Genet., 8:e1003080, 2012.14

M Przeworski. The Signature of Positive Selection at Randomly Chosen Loci. Genetics, 160:1179–1189,15

2002.16

M Pybus, G M Dall’Olio, P Luisi, M Uzkudun, A Carreño-Torres, P Pavlidis, H Laayouni, J Bertranpetit,17

and J Engelken. 1000 Genomes Selection Browser 1.0: a genome browser dedicated to signatures of natural18

selection in modern humans. Nucleic Acids Res., 42:D903–D909, 2014.19

F Racimo. Testing for Ancient Selection Using Cross-population Allele Frequency Differentiation. Genetics,20

202:733–750, 2016.21

M Ramming, S Kins, N Werner, A Hermann, H Betz, and J Kirsch. Diversity and phylogeny of22

gephyrin: Tissue-specific splice variants, gene structure, and sequence similarities to molybdenum cofactor-23

synthesizing and cytoskeleton-associated proteins. Proc. Natl. Acad. Sci. U.S.A., 97:10266–10271, 2000.24

M Remigereau, G Lakis, S Rekimah, M Leveugle, M C Fontaine, T Langin, A Sarr, and T Robert. Cereal25

Domestication and Evolution of Branching: Evidence for Soft Selection in the Tb1 Orthologue of Pearl26

Millet (Pennisetum glaucum [L.] R. Br.). PLoS ONE, 6:e22404, 2011.27

46



M R Riddle, A C Aspiras, K Gaudenz, R Peuß, J Y Sung, B Martineau, M Peavey, A C Box, J A Tabin,1

S McGaugh, R Borowsky, C J Tabin, and N Rohner. Insulin resistance in cavefish as an adaptation to a2

nutrient-limited environment. Nature, 555:647–651, 2018.3

I G Romero, C B Mallick, A Liebert, F Crivellaro, G Chaubey, Y Itan, M Metspalu, M Eaaswarkhanth,4

R Pitchappan, R Villems, D Reich, L Singh, K Thangaraj, M G Thomas, D M Swallow, M M Lahr,5

and T Kivisild. Herders of Indian and European Cattle Share Their Predominant Allele for Lactase6

Persistence. Mol. Biol. Evol., 29:249–260, 2012.7

T Ruths and L Nakhleh. Boosting forward-time population genetic simulators through genotype compression.8

BMC Bioinformatics, 14, 2013. doi: 10.1186/1471-2105-14-192.9

P C Sabeti, D E Reich, J M Higgins, H Z P Levine, D J Richter, S F Schaffner, S B Gabriel, J V Platko,10

N J Patterson, G J McDonald, H C Ackerman, S J Campbell, D Altshuler, R Cooper, D Kwiatkowski,11

R Ward, and E S Lander. Detecting recent positive selection in the human genome from haplotype12

structure. Nature, 419:832–837, 2002.13

P C Sabeti, P Varilly, B Fry, J Lohmueller, E Hostetter, C Cotsapas, X Xie, E H Byrne, S A McCarroll,14

R Gaudet, S F Schaffner, E S Lander, and The International HapMap Consortium. Genome-wide detection15

and characterization of positive selection in human populations. Nature, 449:913–918, 2007.16

M K Sakharkar, V T K Chow, and P Kangueane. Distributions of exons and introns in the human genome.17

In Silico Biol., 4:387–393, 2004.18

S Schiffels and R Durbin. Inferring human population size and separation history from multiple genome19

sequences. Nat. Genet., 46:919–925, 2014.20

D R Schrider and A D Kern. Soft Sweeps Are the Dominant Mode of Adaptation in the Human Genome.21

Mol. Biol. Evol., 34:1863–1877, 2017.22

J Schweinsberg and R Durrett. Random Partitions Approximating the Coalescence of Lineages During a23

Selective Sweep. Ann. Appl. Probab., 15:1591–1651, 2005.24

R H Seeley. Intense natural selection caused a rapid morphological transition in a living marine snail. Proc.25

Natl. Acad. Sci. U.S.A., 83:6897–6901, 1986.26

J Seger, W A Smith, J J Perry, J Hunn, Z A Kaliszewska, L La Sala, L Pozzi, V J Rowntree, and F R27

Adler. Gene Genealogies Strongly Distorted by Weakly Interfering Mutations in Constant Environments.28

Genetics, 184:529–545, 2010.29

47



D Shenoy, S Packianathan, A M Chen, and S Vijayakumar. Do African-American men need separate prostate1

cancer screening guidelines? BMC Urol., 16:19, 2016.2

M Slatkin. Inbreeding coefficients and coalescence times. Genet. Res., 58:167–175, 1991.3

P Smirin-Yosef, N Zuckerman-Levin, S Tzur, Y Granot, L Cohen, J Sachsenweger, G Borck, I Lagovsky,4

M Salmon-Divon, L Wiesmüller, and L Basel-Vanagaite. A Biallelic Mutation in the Homologous Re-5

combination Repair Gene SPIDR Is Associated With Human Gonadal Dysgenesis. J. Clin. Endocrinol.6

Metab., 102:681–688, 2017.7

J Smith, G Coop, M Stephens, and J Novembre. Estimating Time to the Common Ancestor for a Beneficial8

Allele. Mol. Biol. Evol., 35:1003–1017, 2018.9

A Snir, D Nadel, I Groman-Yaroslavski, Y Melamed, M Sternberg, O Bar-Yosef, and E Weiss. The Origin10

of Cultivation and Proto-Weeds, Long Before Neolithic Farming. PLoS ONE, 10:e0131422, 2015.11

S Steinfartz, S Glaberman, D Lanterbecq, M A Russello, S Rosa, T C Hanley, C Marquez, H L Snell, H M12

Snell, G Gentile, G Dell’Olmo, A M Powell, and A Caccone. Progressive colonization and restricted gene13

flow shape island-dependent population structure in Galápagos marine iguanas (Amblyrhynchus cristatus).14
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Table 3: Summary of SS-H12 signals and their interpretation across various scenarios.
Scenario Sign of SS-

H12
Magnitude
of SS-H12

Comments Reference

Neutrality Typically neg-
ative

Small Magnitude becomes positive in bot-
tleneck scenarios where the number
of shared haplotypes between pop-
ulations is higher by chance.

Figures 2-3 and S5-
S8, see first box-
plot of left column
in each figure.

Ancestral
sweep

Positive Large Magnitude is generally smaller than
for convergent sweeps because an-
cestral sweeps are older; rare neg-
ative values may arise for weaker
sweep strengths.

Figures 2-3 and S5-
S8 for power curves
and boxplots, Fig-
ures S11-S14 for
sign of SS-H12,
center column of
each figure.

Convergent
sweep

Predominantly
negative

Large Largest magnitude of SS-H12 across
tested scenarios; positive values
may arise in the rare event that two
independent sweeps on the same
haplotype occur between sampled
populations.

Figures 2-3 and S5-
S8, Figures S11-
S14, left column of
each figure; Supple-
mentary note Fig-
ure SN5.

Divergent
sweep

Typically neg-
ative

Small Trends in magnitude of SS-H12
match those of neutrality without
exception; large magnitudes are im-
possible for divergent sweeps due to
the correction factor (Equation 3).

Figures 2-3 and S5-
S8, Figures S11-
S14, right column of
each figure.

Relative
sample
sizes

Negative or
positive

Small or large The performance of SS-H12 does
not depend on the relative sizes of
each sample, with values of γ ∈
{0.7, 0.8, 0.9} (Equation 2) behav-
ing as with γ = 0.5.

Figures S20-S22.

Background
selection

Typically neg-
ative

Small Background selection has no dis-
cernible effect on the distribution of
SS-H12 relative to neutrality.

Figure S23

Admixture Predominantly
negative (see
comments)

Small or large Sufficient admixture from a diverse
enough donor population will erode
the signal of a sweep, yielding nega-
tive values of small magnitude; ad-
mixture with a low-diversity donor
does not affect magnitude or signal
of convergent sweeps, but will cause
ancestral sweeps to spuriously re-
semble convergent sweeps. Admix-
ture between closely-related sam-
pled sister populations yields pos-
itive values.

Figures 4 and S19
for distant-donor
scenario; Sup-
plementary note
Figure SN4 for
inter-sister sce-
nario.

Number of
sampled
populations
(K)

Negative or
positive

Small or large The number of populations in-
cluded in the sample does not af-
fect inference with SS-H12, across
tested asymmetric and star phylo-
genies.

Figures S9 and
Supplementary note
Figures SN1-SN3
(asymmetric); Fig-
ures SN6 and SN7
(star).

Unphased
data

Negative or
positive

Small or large Applied to unphased multilocus
genotypes (MLGs) as SS-G123, our
approach has similar power and
yields comparable inferences to SS-
H12. Classification ability decays
more rapidly because MLGs are
more diverse than haplotypes

Figures S34-S41.
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Figure 1: Model of a two-population phylogeny for which SS-H12 detects recent shared sweeps.
Here, an ancestral population splits in the past into two modern lineages, which are sampled. Each
panel displays the frequency trajectory of a haplotype across the populations. Under neutrality,
there is high haplotypic diversity such that many haplotypes, including the reference haplotype
(blue), exist at low frequency. In the ancestral sweep, the reference haplotype becomes selectively
advantageous (turning orange) and rises to high frequency prior to the split, such that both modern
lineages carry the same selected haplotype at high frequency. The convergent sweep scenario
involves different selected haplotypes independently rising to high frequency in each lineage after
their split. Under a divergent sweep, only one sampled lineage experiences selection.
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Figure 2: Properties of SS-H12 for simulated strong (s = 0.1; σ = 4Nes = 4000) and moderate
(s = 0.01; σ = 400) hard sweep scenarios under the CEU-GIH model (τ = 1100 generations,
or 0.055 coalescent units, before sampling). (Top row) Power at 1% (red lines) and 5% (purple
lines) false positive rates (FPRs) to detect recent ancestral, convergent, and divergent hard sweeps
(see Figure 1) as a function of time at which positive selection of the favored allele initiated (t),
with FPR based on the distribution of maximum |SS-H12| across simulated neutral replicates.
(Middle row) Box plots summarizing the distribution of SS-H12 values from windows of maximum
|SS-H12| across strong sweep replicates, corresponding to each time point in the power curves,
with dashed lines in each panel representing SS-H12 = 0. (Bottom row) Box plots summarizing
the distribution of SS-H12 values across moderate sweep replicates. For convergent and divergent
sweeps, t < τ , while for ancestral sweeps, t > τ . All replicate samples for the CEU-GIH model
contain 99 simulated CEU individuals and 103 simulated GIH individuals, as in the 1000 Genomes
Project dataset [Auton et al., 2015], and we performed 1000 replicates for each scenario. CEU:
Utah (USA) Residents with Northern and Western European Ancestry. GIH: Gujarati Indians
from Houston, Texas (USA).
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Figure 3: Properties of SS-H12 for simulated strong (s = 0.1; σ = 4Nes = 8000) and moderate
(s = 0.01; σ = 800) hard sweep scenarios under the CEU-YRI model (τ = 3740 generations,
or 0.0935 coalescent units, before sampling). (Top row) Power at 1% (red lines) and 5% (purple
lines) false positive rates (FPRs) to detect recent ancestral, convergent, and divergent hard sweeps
(see Figure 1) as a function of time at which positive selection of the favored allele initiated (t),
with FPR based on the distribution of maximum |SS-H12| across simulated neutral replicates.
(Middle row) Box plots summarizing the distribution of SS-H12 values from windows of maximum
|SS-H12| across strong sweep replicates, corresponding to each time point in the power curves,
with dashed lines in each panel representing SS-H12 = 0. (Bottom row) Box plots summarizing
the distribution of SS-H12 values across moderate sweep replicates. For convergent and divergent
sweeps, t < τ , while for ancestral sweeps, t > τ . All replicate samples for the CEU-YRI model
contain 99 simulated CEU individuals and 108 simulated YRI individuals, as in the 1000 Genomes
Project dataset [Auton et al., 2015], and we performed 1000 replicates for each scenario. YRI:
Yoruba people from Ibadan, Nigeria.
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Figure 4: Effect of admixture from a diverged, unsampled donor lineage on distributions of SS-H12
values at peaks of maximum |SS-H12|, in samples consisting of individuals from K = 2 populations
following the simplified mammalian model (τ = 1000; 0.05 coalescent units), under simulated
recent ancestral, convergent, and divergent sweeps. For ancestral sweeps, selection occurred 1400
generations (0.07 coalescent units) before sampling. For convergent and divergent sweeps, selection
occurred 600 generations (0.03 coalescent units) before sampling. The effective size of the donor
population varies from N = 103 (an order of magnitude less than that of the sampled populations),
to N = 105 (an order of magnitude more), with admixture at 200 generations (0.01 coalescent
units) before sampling at rates 0.2 to 0.4, modeled as a single pulse. The donor diverged from the
sampled populations 2× 104 = 2N generations (one coalescent unit) before sampling. In divergent
sweep scenarios, admixture occurred specifically into the population experiencing a sweep. All
sample sizes are of n = 100 diploid individuals, with 1000 replicates performed for each scenario.
For comparison, we include unadmixed results in each panel.
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Figure 5: Ability of paired (|SS-H12|, H2Tot/H1Tot) values to infer the most probable number of
sweeping haplotypes ν in a shared sweep. Most probable ν for each test point was assigned from
the posterior distribution of 5 × 106 sweep replicates with ν ∈ {0, 1, . . . , 16}, drawn uniformly
at random. (Top row) Ancestral sweeps for the CEU-GIH model (τ = 1100, τ/(2Ne) = 0.055
coalescent units, left) and the CEU-YRI model (τ = 3740, τ/(2Ne) = 0.0935 coalescent units,
right), with t ∈ [1140, 3000] (t/(2Ne) ∈ [0.057, 0.15] coalescent units, left) and t ∈ [3780, 5000]
(t/(2Ne) ∈ [0.0945, 0.125] coalescent units, right). (Bottom row) Convergent sweeps for the CEU-
GIH model (left) and the CEU-YRI model (right), with t ∈ [200, 1060] (t/(2Ne) ∈ [0.01, 0.053]
coalescent units, left) and t ∈ [200, 3700] (t/(2Ne) ∈ [0.005, 0.0925] coalescent units, right). Colored
in red are points whose paired (|SS-H12|, H2Tot/H1Tot) values are more likely to result from hard
sweeps, those colored in shades of blue are points more likely to be generated from soft sweeps,
and gray indicates a greater probability of neutrality. Regions in white are those for which no
observations of sweep replicates within a Euclidean distance of 0.1 exist.
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Figure 6: Top outlying shared sweep candidates at RNA- and protein-coding genes in global human
populations. The signal peak, including chromosomal position, magnitude, and highlighted window
of maximum SS-H12 (left column), as well as the pegas haplotype network for the window [Paradis,
2010] are displayed for each candidate. The East Asian JPT and KHV populations experience an
ancestral soft sweep at GPHN (top row). The sub-Saharan African populations LWK and YRI
share an ancestral hard sweep at RGS18 (second row). The European CEU population experiences
a shared sweep with YRI at SPRED3 (third row). The European CEU and East Asian JPT have
a convergent sweep at C2CD5, with a different, single high-frequency haplotype present in each
population (bottom row). Haplotype networks are truncated to retain only haplotypes with an
observed count ≥ 6. The number of haplotypes belonging to the sweeping class(es) is indicated
as a fraction, and the Hamming distance (H) between sweeping haplotypes is indicated where
applicable. New population abbreviations: Japanese people from Tokyo (JPT); Kinh people of Ho
Chi Minh City, Vietnam (KHV); Luhya people from Webuye, Kenya (LWK).
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