

2 Identifying and classifying shared selective sweeps from multilocus
3 data

4 Alexandre M. Harris^{1,2} and Michael DeGiorgio^{3,*}

5 March 6, 2020

6 ¹*Department of Biology, Pennsylvania State University, University Park, PA 16802, USA*

7 ²*Molecular, Cellular, and Integrative Biosciences at the Huck Institutes of the Life Sciences, Pennsylvania
8 State University, University Park, PA 16802, USA*

9 ³*Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University,
10 Boca Raton, FL 33431, USA*

11 *Corresponding author: mdegior@fau.edu

12 Keywords: Expected haplotype homozygosity, multilocus genotype, ancestral sweep, convergent sweep
13 Running title: Detecting shared sweeps

Abstract

Positive selection causes beneficial alleles to rise to high frequency, resulting in a selective sweep of the diversity surrounding the selected sites. Accordingly, the signature of a selective sweep in an ancestral population may still remain in its descendants. Identifying signatures of selection in the ancestor that are shared among its descendants is important to contextualize the timing of a sweep, but few methods exist for this purpose. We introduce the statistic SS-H12, which can identify genomic regions under shared positive selection across populations and is based on the theory of the expected haplotype homozygosity statistic H12, which detects recent hard and soft sweeps from the presence of high-frequency haplotypes. SS-H12 is distinct from comparable statistics because it requires a minimum of only two populations, and properly identifies and differentiates between independent convergent sweeps and true ancestral sweeps, with high power and robustness to a variety of demographic models. Furthermore, we can apply SS-H12 in conjunction with the ratio of statistics we term $H2_{Tot}$ and $H1_{Tot}$ to further classify identified shared sweeps as hard or soft. Finally, we identified both previously-reported and novel shared sweep candidates from human whole-genome sequences. Previously-reported candidates include the well-characterized ancestral sweeps at *LCT* and *SLC24A5* in Indo-Europeans, as well as *GPHN* worldwide. Novel candidates include an ancestral sweep at *RGS18* in sub-Saharan Africans involved in regulating the platelet response and implicated in sudden cardiac death, and a convergent sweep at *C2CD5* between European and East Asian populations that may explain their different insulin responses.

1 Introduction

2 Alleles under positive selection increase in frequency in a population toward fixation, causing nearby linked
3 neutral variants to also rise to high frequency. This process results in selective sweeps of the diversity
4 surrounding selected sites, and these sweeps can be hard or soft [Hermisson and Pennings, 2005, Pennings
5 and Hermisson, 2006a,b, Hermisson and Pennings, 2017]. Under hard sweeps, beneficial alleles exist on a
6 single haplotype at the time of selection, which rises to high frequency with the selected variants. In contrast,
7 soft sweeps occur when beneficial alleles are present on multiple haplotypes, each of which increases in
8 frequency with the selected variants. Thus, individuals carrying the selected alleles do not all share a common
9 haplotypic background. The signature of a selective sweep, hard or soft, is characterized by elevated linkage
10 disequilibrium (LD) on either side of the beneficial mutation, and elevated expected haplotype homozygosity
11 [Maynard Smith and Haigh, 1974, Sabeti et al., 2002, Schweinsberg and Durrett, 2005]. Thus, the signature
12 of a selective sweep decays with distance from the selected site as mutation and recombination erode tracts
13 of sequence identity produced by the sweep, returning expected haplotype homozygosity and LD to their
14 neutral levels [Messer and Petrov, 2013].

15 Various approaches exist to detect signatures of selective sweeps in single populations, but few methods
16 can identify sweep regions shared across populations, and these methods primarily rely on allele frequency
17 data as input. Existing methods to identify shared sweeps [Bonhomme et al., 2010, Fariello et al., 2013,
18 Racimo, 2016, Librado et al., 2017, Peyrégne et al., 2017, Cheng et al., 2017, Johnson and Voight, 2018]
19 leverage the observation that study populations sharing similar patterns of genetic diversity at a putative site
20 under selection descend from a common ancestor in which the sweep occurred. Such approaches therefore
21 infer a sweep ancestral to the study populations from what may be coincidental (*i.e.*, independent) signals.
22 Moreover, many of these methods require data from at least one reference population in addition to the
23 study populations, and of these, most may be misled by sweeps in their set of reference populations. These
24 constraints may therefore impede the application of these methods to study systems that do not fit these
25 model assumptions or data requirements.

26 Identifying sweeps common to multiple populations provides an important layer of context that specifies
27 the branch of a genealogy on which a sweep is likely to have occurred. In this way, the timing and types
28 of pressures that contributed to particular signals among sampled populations can become clearer. For
29 example, identifying sweeps that are shared ancestrally among all populations within a species highlights the
30 selective events that contributed to their most important modern phenotypes. On a smaller scale, methods to
31 identify shared sweeps can be leveraged to distinguish signatures of local adaptation in particular populations
32 [Librado and Orlando, 2018]. In contrast, single-population tests would provide little information about the
33 timing and therefore relative importance of detected sweeps. More generally, tests tailored to the detection

1 of sweeps within samples drawn from multiple populations are likely to have higher power to detect such
2 events than are tests that do not account for sample complexity [Bonhomme et al., 2010, Fariello et al.,
3 2013], underscoring the usefulness of multi-population approaches.

4 Accordingly, the breadth of questions that can be addressed using shared sweep approaches covers a
5 variety of topics and organisms. Among the most fundamental examples of local adaptation seen ancestrally
6 in related populations are those related to diet and metabolism, which can reflect important responses to
7 changes in nutritional availability. An example of such adaptation is the shift toward eating rice in East
8 Asian populations [Cheng et al., 2017]. Supplementing this idea, characterizing the attributes of shared
9 sweeps in related populations can uncover the number of adaptive events underlying an observed phenotype,
10 such as the number of times selection for reduced insulin sensitivity among cave-dwelling populations of the
11 fish *Astyanax mexicanus* has occurred [Riddle et al., 2018], or whether convergent resistance to industrial
12 pollutants seen in populations of the flower *Mimulus guttatus* derives from ancestral standing variation [Lee
13 and Coop, 2017]. Increasingly, the availability of ancient genomes is allowing for the construction of time
14 transect datasets [Lindo et al., 2016, Librado et al., 2017] which can be used not only to lend support to
15 hypotheses generated from modern data, but infer the point in time at which a shared sweep may have
16 emerged. Such sweeps may have important implications for understanding domestication events [Librado
17 et al., 2017, Pendleton et al., 2018], the emergence of particular cultural traits such as human fishing and
18 farming practices [Chaplin and Jablonski, 2013, Snir et al., 2015, Marciniak and Perry, 2017], and the
19 complex relationships between modern populations such as those of South Asia described in Metspalu et al.
20 [2011].

21 To address the constraints of current methods, we developed SS-H12, an expected haplotype
22 homozygosity-based statistic that detects shared selective sweeps from a minimum of two sampled pop-
23 ulations (see *Materials and Methods*). Beyond simply detecting shared sweeps, SS-H12 uses haplotype data
24 to classify sweep candidates as either ancestral (shared through common ancestry) or convergent (occurring
25 independently; Figure 1). SS-H12 is based on the theory of H12 [Garud et al., 2015, Garud and Rosenberg,
26 2015], a summary statistic that measures expected homozygosity in haplotype data from a single population.
27 H12 has high power to detect recent hard and soft selective sweeps due to its unique formulation. For a
28 genomic window containing I distinct haplotypes, H12 is defined as

$$H12 = (p_1 + p_2)^2 + \sum_{i=3}^I p_i^2, \quad (1)$$

29 where p_i is the frequency of the i th most frequent haplotype, and $p_1 \geq p_2 \geq \dots \geq p_I$. The two largest
30 haplotype frequencies are pooled into a single value to reflect the presence of at least two high-frequency
31 haplotypes under a soft sweep. Meanwhile, the squares of the remaining haplotype frequencies are summed

1 to reflect the probability of drawing two copies of the third through I th most frequent haplotypes at random
2 from the population. Thus, H12 yields similar values for hard and soft sweeps. The framework of the single-
3 population statistic also distinguishes hard and soft sweeps using the ratio H2/H1 [Garud et al., 2015, Garud
4 and Rosenberg, 2015], where $H1 = \sum_{i=1}^I p_i^2$ is the expected haplotype homozygosity, and where $H2 = H1 - p_1^2$
5 is the expected haplotype homozygosity omitting the most frequent haplotype. H2/H1 is small under hard
6 sweeps because the second through I th frequencies are small, as the beneficial alleles exist only on a single
7 haplotypic background. Accordingly, H2/H1 is larger for soft sweeps [Garud et al., 2015], and can therefore
8 be used to classify sweeps as hard or soft, conditioning on an elevated value of H12.

9 Using simulated genetic data, we show that SS-H12 has high power to detect recent shared sweeps in
10 population pairs, displaying a similar range of detection to H12. Additionally, we demonstrate that SS-
11 H12 correctly differentiates between recent ancestral and convergent sweeps, generally without confusing
12 the two. Furthermore, we extended the application of SS-H12 to an arbitrary number of populations K
13 (see *Materials and Methods*), finding once again that our approach classifies sweeps correctly and with high
14 power. Moreover, the SS-H12 approach retains the ability to distinguish between hard and soft shared sweeps
15 by inferring the number of distinct sweeping haplotypes (see *Materials and Methods*). Finally, our analysis
16 of whole-genome sequences from global human populations recovered previously-identified sweep candidates
17 at the *LCT* and *SLC24A5* genes in Indo-European populations, corroborated recently-characterized sweeps
18 that emerged from genomic scans with the single-population approach [Harris et al., 2018], such as *RGS18* in
19 African and *P4HA1* in Indo-European populations, and uncovered novel shared sweep candidates, such as the
20 convergent sweeps *C2CD5* between Eurasian populations and *PAWR* between European and sub-Saharan
21 African populations.

22 Materials and Methods

23 Constructing SS-H12

24 Here, we formulate SS-H12 using the principles of H12 applied to a sample consisting of multiple populations.
25 SS-H12 provides information about the location of a shared sweep on the phylogenetic tree relating the
26 sampled populations. SS-H12 is computed from multiple statistics that quantify the diversity of haplotypes
27 within each population, as well as within the pool of the populations, therefore making use of the haplotype
28 frequency spectrum and measures of shared haplotype identity to draw inferences. Consider a pooled sample
29 consisting of haplotypes from $K = 2$ populations, in which a fraction γ of the haplotypes derives from
30 population 1 and a fraction $1 - \gamma$ derives from population 2. For the pooled sample, we define the total-
31 sample expected haplotype homozygosity statistic $H12_{Tot}$ within a genomic window containing I distinct

1 haplotypes as

$$H12_{\text{Tot}} = (x_1 + x_2)^2 + \sum_{i=3}^I x_i^2, \quad (2)$$

2 where $x_i = \gamma p_{1i} + (1 - \gamma)p_{2i}$, $x_1 \geq x_2 \geq \dots \geq x_I$, is the frequency of the i th most frequent haplotype in
3 the pooled population, and where p_{1i} and p_{2i} are the frequencies of this haplotype in populations 1 and 2,
4 respectively. That is, x_i , p_{1i} , and p_{2i} refer to the same haplotype, indexed according to its frequency in the
5 pooled sample. The value of $H12_{\text{Tot}}$ is therefore large at the genomic regions of shared sweeps because the
6 overall haplotypic diversity at such loci is small, reflecting the reduced haplotypic diversity of component
7 populations.

8 Next, we seek to define a statistic that classifies the putative shared sweep as ancestral or convergent
9 between the pair of populations. To do this, we define a statistic $f_{\text{Diff}} = \sum_{i=1}^I (p_{1i} - p_{2i})^2$, which measures
10 the sum of the squared difference in the frequency of each haplotype between both populations. f_{Diff} takes
11 on values between 0, for population pairs with identical haplotype frequencies, and 2, for populations that
12 are each fixed for a different haplotype. The former case is consistent with an ancestral sweep scenario,
13 whereas the latter is consistent with a convergent sweep—though we caution that genetic drift can also
14 produce extreme values of f_{Diff} , which is unlikely to be problematic provided test populations are closely
15 enough related.

16 From the summary statistics $H12_{\text{Tot}}$ (based on the haplotype frequency spectrum) and f_{Diff} (quantifying
17 shared haplotype identity), we now define SS-H12, which measures the extent to which an elevated $H12_{\text{Tot}}$ is
18 due to shared ancestry. First, we specify a statistic that quantifies the shared sweep, $H12_{\text{Anc}} = H12_{\text{Tot}} - f_{\text{Diff}}$.
19 The value of $H12_{\text{Anc}}$ lies between -1 for convergent sweeps, and 1 for ancestral sweeps, with a typically
20 negative value near 0 in the absence of a sweep. $H12_{\text{Anc}}$ is therefore easy to interpret because convergent
21 sweeps on non-identical haplotypes cannot generate positive values, and ancestral sweep signals that have
22 not eroded due to the effects of recombination and mutation cannot generate negative values. Because
23 a sufficiently strong and complete sweep in one population (divergent sweep; Figure 1) may also generate
24 negative values of $H12_{\text{Anc}}$ with elevated magnitudes distinct from neutrality, we introduce a correction factor
25 that yields SS-H12 by dividing the minimum value of $H12$ between a pair of populations by the maximum
26 value. This modification allows SS-H12 to overlook spurious signals driven by strong selection in a single
27 population by reducing their prominence relative to true shared sweep signals. Applying this correction
28 factor yields SS-H12, which is computed as

$$\text{SS-H12} = H12_{\text{Anc}} \times \frac{\min[H12^{(1)}, H12^{(2)}]}{\max[H12^{(1)}, H12^{(2)}]}, \quad (3)$$

1 where $H12^{(1)}$ and $H12^{(2)}$ are the $H12$ values for populations 1 and 2, respectively. The correction factor
 2 has a value close to 1 for shared sweeps of either type, but a small value for divergent sweeps. Thus,
 3 the corrected SS- $H12$ is sensitive only to shared sweeps, while maintaining a small magnitude value under
 4 neutrality. We note that the performance of SS- $H12$ is dependent upon the size of the sample, requiring
 5 sufficient captured haplotypic diversity to distinguish sweeps from the neutral background, similarly to $H12$
 6 and other haplotype-based methods. Therefore, while our analyses concern large simulated and empirical
 7 sample sizes around $n = 100$ per population, we expect that $n = 25$ per population will provide enough
 8 resolution to detect sweeps given a similar, broadly mammalian demographic history [Harris et al., 2018].

9 We now extend SS- $H12$ to diploid unphased multilocus genotype (MLG) data as SS- $G123$. Results for
 10 SS- $G123$ experiments appear in the subsection *Detection and classification of shared sweeps from unphased*
 11 *data*. The ability to analyze MLGs is important because haplotype data are often unavailable for non-model
 12 organisms. To generate MLGs from our original unphased data, we manually merged an individual's two
 13 haplotypes into a single MLG. In this way, we were able to directly assess the effects of phasing on our
 14 inferences. MLGs are character strings as are haplotypes, but in contrast to a haplotype, each character
 15 within the MLG may take one of three values representing a homozygous reference, homozygous alternate,
 16 or heterozygous genotype. The definition of SS- $G123$ is analogous to that of SS- $H12$:

$$SS-G123 = G123_{Anc} \times \frac{\min[G123^{(1)}, G123^{(2)}]}{\max[G123^{(1)}, G123^{(2)}]}, \quad (4)$$

17 where $G123$ is the MLG equivalent of $H12$ [Harris et al., 2018] computed as $G123 = (q_1 + q_2 + q_3)^2 + \sum_{j=4}^J q_j^2$
 18 (for J distinct MLGs and $q_1 \geq q_2 \geq \dots \geq q_J$). $G123^{(1)}$ and $G123^{(2)}$ are $G123$ respectively computed
 19 in populations 1 and 2, $G123_{Anc} = G123_{Tot} - g_{Diff}$, $G123_{Tot} = (y_1 + y_2 + y_3)^2 + \sum_{j=4}^J y_j^2$, and $g_{Diff} =$
 20 $\sum_{j=1}^J (q_{1j} - q_{2j})^2$; note that $y_j = \gamma q_{1j} + (1 - \gamma) q_{2j}$. Finally, we note that both the haplotype- and MLG-
 21 based approaches are compatible with an arbitrary number of sampled populations K , and demonstrate this
 22 in Part 1 of the *Supplementary Note*.

23 General simulation parameters

24 We first tested the power of SS- $H12$ (phased haplotypes) and SS- $G123$ (unphased MLGs) to detect shared
 25 selective sweeps on simulated multilocus sequence data. We generated all data as haplotypes using the
 26 forward-time simulator SLiM 2 [version 2.6; Haller and Messer, 2017], which follows a Wright-Fisher model
 27 [Hartl and Clark, 2007] and can reproduce complex demographic and selective scenarios. For the first set
 28 of experiments (“power simulations” of Table 1), we simulated population pairs following human-inspired
 29 parameters [Takahata et al., 1995, Nachman and Crowell, 2000, Payseur and Nachman, 2000, Terhorst et al.,
 30 2017, Narasimhan et al., 2017]. To account for the variation in recombination rates across natural genomes,

1 we drew recombination rates r at random from an exponential distribution with maximum truncated at
2 $3r$ [Schrider and Kern, 2017, Mughal and DeGiorgio, 2019]. We created the joint demographic history for
3 simulated two-population models from empirical whole genome polymorphism data [Auton et al., 2015] using
4 **smc++** [version 1.13.1; Terhorst et al., 2017]. The populations in our models were the CEU—Utah residents
5 with northern and western European ancestry—paired with either the GIH, Gujarati Indians from Houston,
6 or the YRI, Yoruba individuals from Ibadan in Southern Nigeria (Table 1). We additionally examined the
7 performance of our approach to detect shared sweeps in a generalized mammalian model (Table 2, first
8 row) for samples drawn from $K \in \{2, 3, 4, 5\}$ populations to determine the effect of sampling more than two
9 populations. We describe this in detail in Part 1 of the *Supplementary Note*.

10 Our **smc++** protocol was as follows: we first extracted polymorphism data separately for a subset of
11 $n_s = 27$ individuals from each study population from the source VCF file using the function **vcf2smc**,
12 selecting two individuals uniformly at random to be distinguished individuals within their sample. Dis-
13 tinguished individuals are used to compute the conditional site frequency spectrum during each round of
14 model optimization [Terhorst et al., 2017]. During the conversion step, we also masked out regions with
15 missing data using the accessibility masks provided by the 1000 Genomes Project Consortium [Auton et al.,
16 2015]. Following this, we generated each model with the **estimate** function, choosing a thinning parameter
17 of $1000 \log_{10} n_s$. Using model estimates for the component populations jointly with polymorphism data
18 extracted for samples containing individuals from both populations ($n_s = 27$ for each for a total of 54), we
19 generated models for population pairs.

20 Simulations generated under all aforementioned schemes lasted for an unscaled duration of $20N$ gener-
21 ations. This consisted of a burn-in period of $10N$ generations to produce equilibrium levels of variation in
22 which the ancestor to the sampled modern populations was maintained at size $N = 10^4$ diploids [Messer,
23 2013], and another $10N$ generations during which population size was allowed to change (in the case of
24 two-population experiments). We note that population split events occurred within the latter $10N$ genera-
25 tions of the simulation. As is standard for forward-time simulations [Yuan et al., 2012, Ruths and Nakhleh,
26 2013], we scaled all parameters by a factor $\Lambda = 20$ to reduce simulation runtime, dividing the population
27 size and duration of the simulation by Λ , and multiplying the mutation and recombination rates, as well as
28 the selection coefficient (s), where applicable, by Λ . Thus, scaled simulations maintained the same expected
29 levels of genetic variation as would unscaled simulations.

30 Selection experiment procedures

31 Across our simulation scenarios, we examined three classes of sweeps, consisting of ancestral, convergent, and
32 divergent. For ancestral sweeps, we introduced a selected allele to one or more randomly-drawn haplotypes

1 in the ancestor of all sampled populations (*i.e.*, more anciently than any population split), which ensured
2 that the same selective event was shared in the histories of the populations. This meant ancestral sweeps
3 were constrained to occur at selection time t more ancient than the root time τ of the set of sampled
4 populations. For convergent sweeps, we simultaneously introduced the selected mutation independently in
5 each extant population at the time of selection, after the split had occurred. Finally, divergent sweeps
6 comprised scenarios in which the sweep event occurred in fewer than all sampled populations, such that at
7 least one did not experience a sweep, but at least one *did* experience a sweep. Accordingly, convergent and
8 divergent sweeps were defined as those for which t was more recent than the root time τ of the set of sampled
9 populations. Across all simulations, we conditioned on the maintenance of at least one copy of the selected
10 allele in any affected population after its introduction.

11 To generate distributions of SS-H12 and SS-G123 for power analysis, we scanned 100 kb of sequence
12 data from simulated individuals using a sliding window approach, as in Harris et al. [2018]. Although sweep
13 footprints are likely to extend much farther than 100 kb [Gillespie, 2004, Hermisson and Pennings, 2017], we
14 chose our sequence length in order to focus on haplotype frequency distortions surrounding the epicenter of
15 the sweep, which necessarily contains the genomic window of maximum signal on which we base inferences.
16 Moreover, the use of a larger simulated region is likely to downwardly bias the ratio of true positives to
17 false positives by providing a greater possibility of generating SS-H12 values of large magnitude by chance
18 under neutrality. We demonstrate this effect in Figure S2 by simulating one Mb sequences following the
19 same protocol as for the 100 kb sequences, and see little overlap in their $|\text{SS-H12}|$ distributions. Trends in
20 power would nonetheless remain similar, but with this in mind, and considering that SS-H12 does not make
21 use of polymorphism data lying outside of the analysis window, we determined that our choice of a 100 kb
22 simulated region was appropriate for our present purposes.

23 We computed statistics in 20 (CEU-YRI) or 40 kb (CEU-GIH and generalized mammalian models)
24 windows, advancing the window by increments of one kb across the simulated chromosome for a total of 61
25 (CEU-GIH, generalized) or 81 (CEU-YRI) windows. For each replicate, we retained the value of SS-H12 or
26 SS-G123 from the window of maximum absolute value as the score. We selected window sizes sufficiently
27 large to overcome the effect of short-range LD in the sample, which may produce a signature of expected
28 haplotype homozygosity resembling a sweep [Garud et al., 2015]. We measured the decay of LD for SNPs
29 in neutral replicates separated by one to 100 kb at one kb intervals using mean r^2 and found that LD falls
30 below half its original value on average at our chosen window sizes. In practice, it is important to choose
31 window sizes that satisfy such a constraint to control against false positives. Our choice of window sizes here
32 also matched those for empirical scans. For all parameter sets, we generated 10^3 sweep replicates and 10^3
33 neutral replicates with identical numbers of sampled populations, sample sizes, and split times.

1 Overall, our chosen experimental protocols across performance evaluation experiments comprised a broad
2 spectrum of sweeps (Tables 1 and 2). We varied selection strength and start time, as well as population split
3 time, which we expect has covered relevant models for hypothesized selective sweeps in recent human history
4 [Przeworski, 2002, Sabeti et al., 2007, Beleza et al., 2012, Jones et al., 2013, Clemente et al., 2014, Fagny
5 et al., 2014]. Our primary goal was to evaluate the ability of SS-H12 and SS-G123 to identify hard selective
6 sweeps from a *de novo* mutation and soft sweeps from selection on standing genetic variation, for both strong
7 ($s = 0.1$) and moderate ($s = 0.01$) strengths of selection. These settings were equivalent to those from the
8 experimental approach of Harris et al. [2018] for single-population statistics, and correspond to scenarios for
9 which those statistics have power under the specific mutation rate, recombination rate, effective size, and
10 simulated sequence length we tested here. For all selection scenarios, we placed the beneficial allele at the
11 center of the simulated chromosome, and introduced it only once, constraining the selection start time, but
12 not the selection end time. For hard and soft sweeps, we allowed the selected allele to rise in frequency toward
13 fixation, but with no guarantee of reaching fixation. Indeed, most $s = 0.01$ simulations did not reach fixation
14 under our parameters for sweeps more recent than $t = 2500$ generations before sampling, while most $s = 0.1$
15 simulations have fixed by the time of sampling for all parameter sets. To specify soft sweep scenarios, we
16 conditioned on the selected allele being present in the population on $\nu = 4$ or 8 distinct (scaled) haplotypes
17 at the start of selection, without defining the number of selected haplotypes remaining in the population at
18 the time of sampling, as long as the selected allele was not lost.

19 Classifying sweeps as hard or soft

20 The SS-H12 approach can distinguish shared sweeps as hard or soft, conditioning on the value of the expected
21 homozygosity ratio statistic, $H2_{\text{Tot}}/H1_{\text{Tot}}$. This ratio derives from $H2/H1$ of Garud et al. [2015] and is
22 computed similarly, but using pooled population frequencies. We define $H1_{\text{Tot}} = \sum_{i=1}^I x_i^2$ and $H2_{\text{Tot}} =$
23 $H1_{\text{Tot}} - x_1^2$, with x_i defined as in Equation 2. Likewise, for MLGs, we have the ratio $G2_{\text{Tot}}/G1_{\text{Tot}}$, with
24 $G1_{\text{Tot}} = \sum_{j=1}^J y_j^2$ and $G2_{\text{Tot}} = G1_{\text{Tot}} - y_1^2$ (see explanation of Equation 4). As with the single-population
25 statistic, the $H2_{\text{Tot}}/H1_{\text{Tot}}$ and $G2_{\text{Tot}}/G1_{\text{Tot}}$ ratios are larger for soft sweeps and smaller for hard sweeps,
26 following the same logic (see *Introduction*). A larger sample size is necessarily required to properly classify
27 sweeps as hard or soft because hard and soft sweeps resemble each other to a greater degree than sweeps
28 and neutrality. As with the single-population approach [Harris et al., 2018], we expect that a minimum of
29 $n \approx 100$ haplotypes per population is sufficient to resolve harder sweeps from softer sweeps under demographic
30 histories comparable to that of humans.

31 As in Harris et al. [2018], we employed an approximate Bayesian computation (ABC) approach to
32 demonstrate the ability of SS-H12 (SS-G123), in conjunction with the $H2_{\text{Tot}}/H1_{\text{Tot}}$ ($G2_{\text{Tot}}/G1_{\text{Tot}}$) statistic,

1 to classify shared sweeps as hard or soft from the inferred number of sweeping haplotypes ν (Table 1,
2 “hard/soft classification”). Hard sweeps derive from a single sweeping haplotype, while soft sweeps consist
3 of at least two sweeping haplotypes. Whereas the single-population approach [Garud et al., 2015, Garud
4 and Rosenberg, 2015, Harris et al., 2018] identified hard and soft sweeps from their occupancy of paired
5 (H_{12} , H_2/H_1) values, we presently use paired ($|SS-H_{12}|$, $H_{2\text{Tot}}/H_{1\text{Tot}}$) and ($|SS-G_{123}|$, $G_{2\text{Tot}}/G_{1\text{Tot}}$) values
6 to classify shared sweeps. We defined a 100×100 grid corresponding to paired ($|SS-H_{12}|$, $H_{2\text{Tot}}/H_{1\text{Tot}}$) or
7 ($|SS-G_{123}|$, $G_{2\text{Tot}}/G_{1\text{Tot}}$) values with each axis bounded by [0.005, 0.995] at increments of 0.01, and assigned
8 the most probable value of ν to each test point in the grid.

9 We define the most probable ν for a test point as the most frequently-observed value of ν from the
10 posterior distribution of 5×10^6 sweep replicates within a Euclidean distance of 0.1 from the test point. For
11 each replicate, we drew $\nu \in \{0, 1, \dots, 16\}$ uniformly at random, as well as $s \in [0.005, 0.5]$ uniformly at random
12 from a log-scale. Across ancestral and convergent sweep scenarios for $K = 2$ sampled sister populations, we
13 generated replicates for the CEU-GIH and CEU-YRI models. Thus, an understanding of the demographic
14 history of study populations is required to classify sweeps as hard or soft (this is also true when evaluating
15 the significance of candidate results; see *Empirical analysis procedures*). As previously, ancestral sweeps
16 were more ancient than τ , while convergent sweeps were more recent. We drew sweep times t uniformly at
17 random from ranges as described in Table 1. Simulated haplotypes were of length 40 kb (CEU-GIH) or 20
18 kb (CEU-YRI), corresponding to the window size for method performance evaluations, because in practice a
19 value of ν would be assigned to a candidate sweep based on its most prominent associated signal. All other
20 parameters were identical to previous experiments using these demographic models (Table 1).

21 Testing performance across diverse scenarios

22 We additionally observed the effects of potentially common scenarios that deviate from the basic model de-
23 fined in previous sections to determine whether these deviations could mislead SS-H12. First, we examined
24 the effect of admixture from a distantly-related donor on one of the two sampled populations under the
25 simplified demographic model (Table 2, “admixture, distant donor”). Second, we simulated a scenario in
26 which a pair of sister populations experiences a sweep, followed by unidirectional admixture from one sister
27 to the other, once again under the simplified model (Table 2, “admixture, inter-sister”). Next, we provided
28 greater depth to previous experiments by varying the relative sample sizes of the simulated populations
29 (Table 2, “uneven sample sizes”), and varying the time at which convergent sweeps occurred in either popu-
30 lation, keeping one fixed and changing the other (otherwise identical to generalized mammalian model). To
31 provide context on the effect of tree topology, we also simulated a $K = 4$ scenario as a star tree, in which
32 all populations split from the common ancestor simultaneously at time τ (otherwise identical to generalized

1 mammalian model). Finally, we generated samples under long-term background selection (Table 1, “background selection”), which is known to yield similar patterns of diversity to sweeps [Charlesworth et al., 1993, 2 1995, Seger et al., 2010, Nicolaisen and Desai, 2013, Cutter and Payseur, 2013, Huber et al., 2016], following 3 the CEU-GIH and CEU-YRI models.

4 For the distant-donor admixture experiments, we simulated single pulses of admixture at fractions 5 between 0.05 and 0.4, at intervals of 0.05, from a diverged unsampled donor ($\tau_{\text{anc}} = 2 \times 10^4$, one coalescent unit), 6 $\tau_{\text{adm}} = 200$ generations prior to sampling. Admixture follows a strong sweep ($s = 0.1$; $\sigma = 4N_e s = 4000$), 7 which occurred at either $t = 1400$ (ancestral) or $t = 600$ (convergent and divergent). We simulated three 8 different scenarios of admixture into the sampled target population from the donor population, where the 9 target and its sister were separated by $\tau = 1000$ generations. The scenarios consisted of admixture from a 10 highly-diverse donor population ($N = 10^5$, tenfold larger than the sampled population), which may obscure 11 a sweep signature in the sampled target, and from a low-diversity donor population ($N = 10^3$, 1/10 the 12 size of the sampled population), which may produce a sweep-like signature in the target, in addition to 13 an intermediately-diverse donor population ($N = 10^4$, equal to the size of the sampled population). For 14 divergent sweeps here, the population experiencing the sweep was the target. In the inter-sister admixture 15 experiment, a pair of equally-sized sister populations ($N = 10^4$ diploids) splits $\tau = 1000$ generations ago. 16 Parameters are identical to the previous experiment (Table 2), except that admixture occurs between the 17 sister populations. We modeled two divergent admixture scenarios, one in which the selected allele was 18 adaptive in only the original population, and one where it was identically adaptive in both.

19 In further experiments under the simplified model, we sought to determine the manner in which changes 20 to our basic model assumptions changed the performance of SS-H12. First, we reduced the sample size of 21 one of the populations from $n_2 = 100$ diploids to $n_2 = 20$, $n_2 = 40$, or $n_2 = 60$, while increasing the size 22 of the other population (n_1) to maintain $n_1 + n_2 = 200$, keeping all other parameters identical to previous 23 experiments. This distorted γ in the computation of x_i (Equation 2), yielding a new $\gamma' = 180/(180 + 20) =$ 24 0.9 , $\gamma' = 160/(160 + 40) = 0.8$, or $\gamma' = 140/(140 + 60) = 0.7$, respectively, up from $\gamma = 0.5$ originally. 25 Second, for convergent sweeps and equal sample sizes $n = 100$, we modeled unequal sweep start times, with 26 t_1 , the time of selection in population 1, fixed at 800 generations prior to sampling, paired with a variable 27 $t_2 \in \{200, 400, 600, 800\}$. This provided a more realistic scenario than identical start times, which should 28 not be expected *a priori*. Third, we tested the susceptibility of SS-H12 to detecting and classifying sweeps 29 on $K = 4$ populations under a star tree model ($\tau = 1000$). Here, all sister populations are equally related, 30 having radiated simultaneously from their common ancestor. With this model, we assessed the extent to 31 which the tree topology may influence shared sweep inference.

1 Our background selection simulations followed the same protocol as in previous work [Cheng et al.,
2 2017]. At the start of the simulation, we introduced a centrally-located 11-kb gene composed of UTRs (5'
3 UTR of length 200 nucleotides [nt], 3' UTR of length 800 nt) flanking a total of 10 exons of length 100
4 nt separated by introns of length one kb. Strongly deleterious ($s = -0.1$) mutations arose throughout the
5 course of the simulation across all three genomic elements under a gamma distribution of fitness effects with
6 shape parameter 0.2 at rates of 50%, 75%, and 10% for UTRs, exons, and introns, respectively. The sizes of
7 the genic elements follow human mean values [Mignone et al., 2002, Sakharkar et al., 2004]. To enhance the
8 effect of background selection on the simulated chromosome, we also reduced the recombination rate within
9 the simulated gene by two orders of magnitude to $r = 10^{-10}$ per site per generation.

10 Empirical analysis procedures

11 We applied SS-H12 and SS-G123 to human empirical data from the 1000 Genomes Project Consortium
12 [Auton et al., 2015]. We scanned all autosomes for signatures of shared sweeps in nine population pairs
13 using 40 kb windows advancing by increments of four kb for samples of non-African populations, and 20 kb
14 windows advancing by two kb for any samples containing individuals from any African population. We based
15 these window sizes on the interval over which LD, measured as r^2 , decayed beyond less than half its original
16 value relative to pairs of loci separated by one kb. As in Harris et al. [2018], we filtered our output data by
17 removing analysis windows containing fewer than 40 SNPs, equal to the expected number of SNPs under the
18 extreme case in which a selected allele has swept across all haplotypes except for one, leaving two lineages
19 [Watterson, 1975]. Following Huber et al. [2016], we also divided all chromosomes into non-overlapping bins
20 of length 100 kb and assigned to each bin a mean CRG100 score [Derrien et al., 2012], which measures site
21 mappability and alignability. We removed windows within bins whose mean CRG100 score was below 0.9,
22 with no distinction between genic and non-genic regions. Thus, our overall filtering strategy was identical to
23 that of Harris et al. [2018]. We then intersected remaining candidate selection peaks with the coordinates
24 for protein- and RNA-coding genes from their hg19 coordinates.

25 For each genomic analysis window of each population pair analysis, we assigned a p -value. To do this, we
26 first generated 3×10^7 neutral replicate simulations in *ms* [Hudson, 2002] under appropriate two-population
27 demographic histories inferred from **smc++**, using our aforementioned protocol and parameters described in
28 Table 1. We initially computed a window's p -value as the proportion of neutral replicate $|\text{SS-H12}|$ values
29 exceeding the $|\text{SS-H12}|$ associated with that window. Because some comparisons yielded windows with $p = 0$,
30 meaning that no neutral replicate exceeded their $|\text{SS-H12}|$ value, we first performed a linear regression of
31 $-\log_{10}(p)$ and $|\text{SS-H12}|$ through the origin, and predicted the p -value of each window according to the
32 inferred relationship. We demonstrate the linear relationship between $-\log_{10}(p)$ and $|\text{SS-H12}|$ by significant

1 and strong Pearson correlation (Table S1). However, we found by QQ-plot that the distribution of empirical
2 p -values was inflated relative to the theoretical expectation of uniform distribution [Klammer et al., 2009].
3 To determine our inflation factor λ , which measures the extent to which empirical p -values are inflated
4 relative to the theoretical, we used a linear regression approach [Yang et al., 2011]. Here, we performed
5 a linear regression, through the origin, of the χ^2 quantile function evaluated for our uncorrected p -values,
6 as a function of χ^2 quantiles derived from a vector of uniform probabilities. We adjusted our uncorrected
7 χ^2 quantiles, dividing by λ , and used their χ^2 probabilities as our calibrated p -values (Figure S3). Our
8 Bonferroni-corrected, genome-wide significance cutoff for a population pair at the $\alpha = 0.05$ threshold was
9 $p < \alpha/10^6 = 5 \times 10^{-8}$, adjusting for an assumed one million independent test sites in the human genome
10 [Altshuler et al., 2008].

11 Additionally, we determined whether the maximum associated $|\text{SS-H12}|$ (the score), and therefore p -value,
12 of a gene was related to the recombination rate of the genomic region in which it resided. We determined this
13 by computing the Spearman correlation between the maximum SS-H12 of a gene, and the recombination rate
14 (cM/Mb) within the genomic analysis window of maximum signal associated with that gene [International
15 HapMap Consortium et al., 2007]. Furthermore, we observed the effect of model misspecification on critical
16 SS-H12 values. To do this, we compared the distribution of SS-H12 simulated under the nine appropriate
17 **smc++**-inferred non-equilibrium demographic models, and the distribution under models with equal F_{ST} to
18 the correct models, but with constant sizes of $N = 10^4$ diploids per population throughout the simulation.
19 We computed mean F_{ST} [Wright, 1943, 1951] across 1000 neutral replicates of size 20 or 40 kb under the
20 **smc++**-derived models, and used these values to solve the equation $\tau = 4NF_{\text{ST}}/(1 - F_{\text{ST}})$ [Slatkin, 1991],
21 where τ is the split time in generations between population pairs in each misspecified model.

22 We assigned the most probable ν for each sweep candidate following the same protocol as previously
23 (Table 1, “hard/soft classification”), generating 5×10^6 replicates of sweep scenarios in SLiM 2 under **smc++**-
24 inferred demographic histories for ancestral and convergent sweeps. Once again, $t > \tau$ for ancestral sweep
25 scenarios and $t < \tau$ for convergent sweep scenarios, where τ is defined by the specific demographic history
26 of the sample. The CEU-GIH and CEU-YRI replicates used here were identical to those in the prior clas-
27 sification experiments (*Classifying sweeps as hard or soft*). Sequence length for each replicate was identical
28 to analysis window length for equivalent empirical data (20 or 40 kb), because in practice we assign ν to
29 windows of this size. For both p -value and most probable ν assignment, we used an alternative per-site
30 per-generation recombination rate of $r = 3.125 \times 10^{-9}$ [Terhorst et al., 2017], finding that this more closely
31 matched the distribution of $|\text{SS-H12}|$ ($|\text{SS-G123}|$) values in the empirical data. Using these simulations in
32 combination with 10^6 neutral simulations of the matching length, we determined the 1% false discovery rate
33 (FDR) cutoffs for $|\text{SS-H12}|$. To do this, we drew a random sample of 10^6 selection simulations to construct

1 a total sample of 2×10^6 replicates, half neutral and half sweep. The 1% FDR cutoff was the $|\text{SS-H12}|$ value
2 for which 1% of the 2×10^6 replicates exceeding that value were neutral, and 99% were sweeps. We repeated
3 this process 10^3 times to get a distribution of cutoffs based on our simulations.

4 Data availability

5 To make the results of our work maximally accessible, we have uploaded all rel-
6 evant scripts, as well as all outputs from analyses, into a Dryad repository
7 (<https://datadryad.org/stash/share/tqLw61JN0uqtyfvj46IN1HHGg0nAbFKmsxiFVJ0a0SM>). Our upload
8 is divided into directories labeled to match the broad directions of our research in this manuscript:
9 simulations using the `smc++`-derived CEU-GIH and CEU-YRI models, simulations using the simplified
10 mammalian model for $K \in \{2, 3, 4, 5\}$ sampled populations, admixture model simulations, background
11 selection simulations, misspecified model simulations, simulations to infer ν , simulations to assign p -values,
12 and scans of the 1000 Genomes data. Outside of the latter two batteries of simulations, we provide all
13 of the raw SLiM-simulated outputs in addition to analyses on those simulations. For simulations to infer
14 ν and p -value simulations, we only retain the summary statistics from windows of maximum signal for
15 each replicate because each scenario featured at least 10^6 replicates. Our summary files condense those
16 simulations into single, more manageable, documents for reader reference. In addition to simulations
17 and scripts, we have also included the builds of `ms` and SLiM used for simulations, and our `SS-X12`
18 software package. We affirm that the results of all analyses deriving from our data, using the scripts,
19 replicates, and summary files within our Dryad repository, are present within this manuscript's figures and
20 tables. Supplementary materials, consisting of Tables S1-S21, Figures S1-S46, and *Supplementary Note*
21 Figures SN1-SN7, are available online through FigShare.

22 Results

23 We evaluated the ability of SS-H12 to differentiate among the simulated scenarios of shared selective sweeps,
24 sweeps unique to only one sampled population, and neutrality, using the signature of expected haplotype
25 homozygosity in samples consisting of individuals from two or more populations. Although our formulation
26 of SS-H12 does not explicitly constrain the definition of a population, we define a population as a discrete
27 group of individuals that mate more often with each other than they do with individuals from other discrete
28 groups, and the models we considered here represent extreme examples in which there is no gene flow between
29 populations after their split.

30 We performed simulations using SLiM 2 [Haller and Messer, 2017] under human-inspired parameters
31 [Takahata et al., 1995, Nachman and Crowell, 2000, Payseur and Nachman, 2000, Terhorst et al., 2017,

1 Narasimhan et al., 2017] for diploid populations of fluctuating size (N) under non-equilibrium models, as
2 well as constant-size models, subject to changing selection start times (t) and strengths (s), across differing
3 split times (τ) between sampled populations. Additionally, we evaluated the robustness of SS-H12 to a
4 variety of potentially-confounding deviations from the basic simulation parameters (such as equal sample
5 sizes, no admixture, and asymmetric tree topology). We then used an approximate Bayesian computation
6 (ABC) approach in the same manner as Harris et al. [2018] to demonstrate our ability to distinguish between
7 shared hard and soft sweeps in samples from multiple populations. Finally, we show that SS-H12 recovers
8 previously-hypothesized signatures of shared sweeps in human whole-genome sequences [Auton et al., 2015],
9 while also uncovering novel candidates. We supplement results from SS-H12 analyses with results using
10 SS-G123 in *Detection and classification of shared sweeps from unphased data*. See *Materials and Methods*, as
11 well as Tables 1 and 2, for further explanation of experiments. We include a summary of the major results
12 in Table 3.

13 **Detection of ancestral and convergent sweeps with SS-H12**

14 We conducted experiments to examine the ability of SS-H12 to not only identify shared sweep events among
15 two or more sampled populations ($K \geq 2$), but categorize them as shared due to common ancestry, or due
16 to convergent evolution. Across all scenarios, we scanned 100 kb simulated chromosomes using a 20 or 40
17 kb sliding window with a step size of one kb, which was sufficient to analyze sweeps in single populations
18 [Harris et al., 2018]. These windows provide an interval over which neutral pairwise LD, measured with r^2 ,
19 decays below half of the value for loci one kb apart (Figure S4), and so we do not expect elevated values
20 of SS-H12 due to background LD. For each sweep scenario, we studied power at 1% and 5% false positive
21 rates (FPRs) for detecting shared selective sweeps (Figures 2, 3, S5-S9, and S11-S13) as a function of time
22 at which beneficial alleles arose, under scenarios of ancestral, convergent, and divergent sweeps.

23 First, we simulated scenarios in which an ancestral population split into $K = 2$ descendant populations
24 using a realistic non-equilibrium model based on the history of the human CEU (European descent) and
25 GIH (South Asian descent) populations, which we inferred from variant calls [Auton et al., 2015] with **smc++**
26 [Terhorst et al., 2017] (Figure S10). We began with scenarios of strong ($s = 0.1$) hard ($\nu = 1$ sweeping
27 haplotype) sweeps starting between 200 and 4000 generations prior to sampling and applied an analysis
28 window of size 40 kb (Figure 2). Our CEU-GIH model features a split time of $\tau = 1100$ generations prior
29 to sampling, which matches prior estimates of the split time between Eurasian human populations [Gravel
30 et al., 2011, Gronau et al., 2011, Schiffels and Durbin, 2014]. This series of experiments illustrates the range
31 of sweep start times over which SS-H12 can detect prominent selective sweeps. SS-H12 has high power

1 for recent strong shared sweeps starting between 400 and 2500 generations prior to sampling, with power
2 dropping rapidly for shared sweeps older than 2500 generations (Figure 2).

3 As expected, the distribution of SS-H12 for detectable convergent sweeps centered on negative values
4 (Figure 2, left column), whereas the SS-H12 distributions of ancestral sweeps centered on positive values
5 (Figure 2, center column). The vast majority of such replicates had the correct sign, underscoring the
6 consistency with which SS-H12 correctly classifies shared sweeps (Figure S11, top). However, in the rare event
7 that identical haplotypes convergently experience an identical sweep, a positive value of SS-H12 emerges at
8 the locus under selection, with larger values expected for more recent sweeps. Conversely, detectable ancestral
9 sweeps are highly unlikely to yield negative SS-H12 values in closely-related populations, as SS-H12 is acutely
10 sensitive to the presence of shared haplotypes in the sample even as the signal decays. We also found that
11 the power of SS-H12 to detect convergent sweeps was uniformly greater than for ancestral sweeps because
12 convergent sweeps are more recent events, with the selected haplotype not yet eroding due to the effect
13 of mutation and recombination, as with older ancestral sweeps. Additionally, because we compute power
14 from the distribution of maximum $|SS-H12|$ values for each sweep scenario, this means that the magnitude
15 of SS-H12 for replicates of shared sweeps must exceed the magnitude under neutrality for the sweep to be
16 detected, which for any combination of t and s is more likely for convergent than ancestral sweeps.

17 To further characterize the performance of SS-H12 for hard sweeps, we repeated experiments on simulated
18 samples from $K = 2$ populations both for more anciently-diverged populations (larger τ), and for weaker
19 sweeps (smaller s). SS-H12 maintains excellent power to distinguish strong shared sweeps from neutrality
20 for a model based on the more ancient split between CEU and the sub-Saharan African YRI population
21 (Figure 3; 20 kb window), while keeping $s = 0.1$. We inferred $\tau = 3740$ for this model using **smc++** [Terhorst
22 et al., 2017] (Figure S10), and this estimate fits existing estimates of split times between African and non-
23 African human populations [Gravel et al., 2011, Gronau et al., 2011, Schiffels and Durbin, 2014]. Notably,
24 the signal of ancestral sweeps remains elevated across many of the tested CEU-YRI sweep scenarios. Power
25 stayed above 0.6 for sweeps more recent than $t = 4500$ generations before sampling, representing a range of
26 sweep sensitivity approximately 1500 generations wider than that of the CEU-GIH model. This is because
27 it is easier to detect selective sweeps in more diverse genomic backgrounds [Harris et al., 2018], such as that
28 of the YRI population. Despite this, we observed a greater proportion of ancestral sweeps with spuriously
29 negative values of SS-H12 in the CEU-YRI model than in the CEU-GIH model because over 3740 generations,
30 the two simulated populations had sufficient time to accumulate unique mutations and recombination events
31 that differentiated their common high-frequency haplotypes (Figure S12, top).

32 Reducing the selection coefficient to $s = 0.01$ for both models had the effect of shifting the range of t over
33 which SS-H12 had power to detect shared sweeps. Because weakly-selected haplotypes rise to high frequency

1 more slowly than strongly-selected haplotypes, there is a greater delay between the selection start time and
2 the time at which a shared sweep can be detected for smaller values of s . Thus, SS-H12 reaches a maximum
3 power to detect moderate shared sweeps ($s = 0.01$) for older values of t , additionally maintaining this power
4 for less time than for strong sweeps under both models (top rows of Figures 2 and 3). The misclassification
5 rate for shared sweeps is also greater for weaker sweeps, especially for convergent sweeps in the CEU-GIH
6 model and ancestral sweeps in the CEU-YRI model (Figures S13 and S14, top).

7 Because the single-population statistic H12 has power to detect both hard and soft sweeps, we next
8 performed analogous experiments for simulated soft sweep scenarios. Maintaining values of t , τ , and s
9 identical to those for hard sweep experiments, we simulated soft sweeps as selection on standing genetic
10 variation for $\nu = 4$ and $\nu = 8$ distinct sweeping haplotypes (Figures S5-S8). We found that trends in the
11 power of SS-H12 to detect shared soft sweeps remained consistent with those for hard sweeps. However,
12 the power of SS-H12 for detecting soft sweeps, as well as classification ability (Figures S11-S14, middle and
13 bottom rows), were attenuated overall relative to hard sweeps, proportionally to the number of sweeping
14 haplotypes, with a larger drop in power for older sweeps and little to no effect on power for more recent
15 sweeps. Our observations therefore align with results for the single-population H12 statistic [Garud et al.,
16 2015, Harris et al., 2018]. Thus, the ability to detect a sweep derives from the combination of s , t , and ν , with
17 stronger recent sweeps on fewer haplotypes being easiest to detect, and detectable over larger timespans.

18 We contrast our results for shared sweeps across population pairs with those for divergent sweeps,
19 which we present in parallel (right columns of Figures 2, 3, and S5-S8). Across identical values of t as for
20 each convergent sweep experiment, we found that divergent sweeps, in which only one of the two simulated
21 sampled populations experiences a sweep ($t < \tau$), are not visible to SS-H12 for any combination of simulation
22 parameters. To understand the properties of divergent sweeps relative to shared sweeps, we compared the
23 distributions of their SS-H12 values at peaks identified from the maximum values of $|\text{SS-H12}|$ for each
24 replicate. We observed that the distributions of the divergent sweeps remain broadly unchanged from one
25 another under all parameter combinations, and closely resemble the distribution generated under neutrality,
26 as all are centered on negative values with small magnitude, and have small variance. Thus, the use of a
27 correction factor that incorporates the values of H12 from each component population in the sample (see
28 Equation 3) provides an appropriate approach for preventing sweeps that are not shared from appearing
29 as outlying signals. In the absence of correction, the shared sweep statistic (properly termed $H12_{\text{Anc}}$),
30 incorrectly treats the reduced haplotype diversity around the site under selection in one population as the
31 locus of a convergent sweep, owing to the large disparities in haplotype frequencies between the sampled
32 populations (right columns of Figures S15 and S16). We additionally explore the properties of SS-H12 on

1 a simplified demographic history with constant population size, and up to $K = 5$ sampled populations
2 (Figure S1), intended as a more general mammalian model, in Part 1 of the *Supplementary Note*.

3 In addition to detecting shared sweeps under a variety of scenarios with high power, we also found
4 that detecting sweeps with SS-H12 provides more power than performing multiple independent analyses
5 across populations with the single-population statistic H12 [Garud et al., 2015]. To demonstrate this, we
6 reanalyzed our simulated CEU-GIH and CEU-YRI replicates (Figures 2 and 3), assessing the ability of H12
7 to simultaneously detect an outlying sweep signal in both populations. That is, we measured the power of
8 H12 at the 0.5% FPR (Bonferroni-corrected for multiple testing [Neyman and Pearson, 1928], providing the
9 entire experiment with a 1% FPR cutoff) to detect an outlying sweep in the CEU sample *and* in either the
10 GIH (Figure S17) or YRI (Figure S18) samples. For the most recent convergent hard sweeps, joint analysis
11 with H12 has equivalent power to SS-H12 analysis, but the power of H12 never matches that of SS-H12 for
12 ancestral hard sweeps, and for the majority of tested soft sweeps ($\nu = 4$ and $\nu = 8$), regardless of timing.
13 These trends persisted even for SS-H12 computed from half-sized samples (thus, matching the sample sizes
14 of individual H12 analyses), indicating that avoiding multiple testing with SS-H12 analysis is likely to yield
15 a greater return on sampling effort, especially as the number of sampled populations K increases.

16 Performance of SS-H12 across diverse scenarios

17 Admixture

18 Because SS-H12 relies on a signal of elevated expected haplotype homozygosity, it may be confounded by non-
19 adaptive processes that alter levels of population-genetic diversity. For this reason, we examined the effect
20 of admixture on the power of SS-H12 in the context of ancestral, convergent, and divergent strong ($s = 0.1$)
21 sweeps between population pairs. Parameters were derived from the simplified mammalian model (Table 2).
22 For the first set of experiments (termed distant-donor), one sampled population (the target) receives gene
23 flow from a diverged, unsampled donor outgroup population (Figures 4 and S19). Admixture occurred as a
24 single unidirectional pulse 200 generations before sampling, and in the case of the divergent sweep, occurred
25 specifically in the population experiencing the sweep. The donor split from the common ancestor of the two
26 sampled populations (the target and its unadmixed sister) 2×10^4 generations before sampling—within a
27 coalescent unit of the sampled populations, similar to the relationship between Neanderthals and modern
28 humans [Juric et al., 2016, Harris and Nielsen, 2016]—and had an effective size either one-tenth, identical
29 to, or tenfold the size of the target. Although the donor does not experience selection, extensive gene flow
30 from a donor with low genetic diversity may resemble a sweep. Correspondingly, gene flow from a highly
31 diverse donor may obscure sweeps. The second admixture scenario we examined featured only the two sister

1 populations separated by $\tau = 1000$ generations, wherein one admixed into the other 200 generations prior
2 to sampling, as previously (inter-sister admixture; see *Supplementary Note*, Part 2).

3 As expected, gene flow from a distant donor into the target population distorted the SS-H12 distribution
4 of the two-population sample relative to no admixture (Figure 4), and this distortion was proportional to the
5 level of admixture from the donor, as well as the donor population's size. Ancestral sweeps were the most
6 likely to be misclassified following admixture from a donor of small effective size ($N = 10^3$; Figure 4, top row),
7 increasingly resembling convergent sweeps as the rate of gene flow increased (though ultimately with little
8 change in power to detect the shared sweep; Figure S19, top row). The confounding effect of admixture
9 on ancestral sweep inference emerges because low-diversity gene flow into one population yields a differing
10 signal of elevated expected haplotype homozygosity in each population, spuriously resembling a convergent
11 sweep. In contrast, the distributions of SS-H12 values and the power of SS-H12 for convergent and divergent
12 sweeps remained broadly unchanged relative to no admixture under low-diversity admixture scenarios (Fig-
13 ures 4 and S19, top rows). Because two populations subject to convergent or divergent sweeps are already
14 extensively differentiated, further differentiation due to admixture does not impact the accuracy of sweep
15 timing classification using SS-H12.

16 For intermediate donor effective size ($N = 10^4$; Figures 4 and S19, middle rows), the magnitudes of
17 both the ancestral and convergent sweep signals attenuate toward neutral levels, and the power of SS-H12
18 wanes as the admixture proportion increases. This is because the genetic diversity in the target population
19 increases to levels resembling neutrality, overall yielding a pattern spuriously resembling a divergent sweep
20 that SS-H12 cannot distinguish from neutrality. Accordingly, the magnitude and power of SS-H12 under a
21 divergent sweep scenario following admixture scarcely change under the $N = 10^4$ scenario. As the effective
22 size of the donor population grows large ($N = 10^5$; Figures 4 and S19, bottom rows), SS-H12 becomes more
23 robust to the effect of admixture for shared sweeps, accurately identifying ancestral and convergent sweeps
24 with high power at greater admixture proportions relative to the $N = 10^4$ scenario. However, the power
25 of SS-H12 spuriously rises to 1.0 for divergent sweeps under the $N = 10^5$ admixture scenario. Both the
26 increased robustness to admixture for the ancestral and convergent sweeps, as well as the elevated power
27 for divergent sweeps, result from a reduction in the magnitude of SS-H12 under neutrality for the $N = 10^5$
28 admixture scenario relative to $N = 10^4$, which does not occur for the sweep scenarios. That is, $|\text{SS-H12}|$
29 remains similar across the $N = 10^5$ and $N = 10^4$ admixture scenarios for sweeps, while $|\text{SS-H12}|$ for the
30 neutral background is smaller, meaning that any sweep, even a divergent sweep, is more prominent for larger
31 donor population sizes.

¹ **Different sample sizes**

² Next, we performed experiments to understand the effect of deviating from basic parameters of the simplified
³ unadmixed mammalian model, changing one parameter at a time. First, we generated replicates for $K = 2$
⁴ populations containing an overall sample size of $n = 200$ diploids representing the sum of component sample
⁵ sizes n_1 and n_2 , modifying these such that more individuals were sampled from one subpopulation than the
⁶ other. This therefore changed the value of $\gamma = n_1/(n_1 + n_2)$ for the computation of x_i (see Equation 2).
⁷ We simulated values of $\gamma = 0.7$ ($n_1 = 140, n_2 = 60$), 0.8 ($n_1 = 160, n_2 = 40$), or 0.9 ($n_1 = 180, n_2 = 20$) in
⁸ contrast to the standard $\gamma = 0.5$ ($n_1 = n_2 = 100$; as seen in Figure S9). Regardless of γ , we found that trends
⁹ in power for shared sweeps ($\nu = 1, s = 0.1$) were consistent with one another, and that the distribution of
¹⁰ SS-H12 values yielded the expected sign—negative for convergent sweeps and positive for ancestral sweeps—
¹¹ suggesting that sample composition should not generally affect these inferences (Figure S20-S22). We also
¹² observed a slight, spurious increase in power for divergent sweeps (occurring in population 1) that was most
¹³ prominent for $\gamma = 0.9$, but visible at $t = 200$ for all three $\gamma > 0.5$ scenarios. This effect emerged as a
¹⁴ result of two factors. First, strong sweeps have not established by $t = 200$, meaning that the sampled sister
¹⁵ populations are not yet extensively differentiated at this point and have somewhat closer values H12 to one
¹⁶ another than for older sweeps. Second, smaller sample sizes for either subpopulation translate to reduced
¹⁷ haplotypic diversity in the sample overall, resulting in elevated magnitudes of SS-H12. Thus, while extreme
¹⁸ distortions in γ and smaller sample sizes may yield more prominent divergent sweeps, their signature remains
¹⁹ minor, rendering them highly unlikely to yield outlying signals relative to shared sweeps. We subsequently
²⁰ tested power and classification ability for convergent sweeps initiating at different timepoints on the simplified
²¹ mammalian tree, as well as for a deviation to the bifurcating tree assumption by simulating a star phylogeny
²² with $K = 4$ subpopulations (see *Supplementary Note*, Part 3).

²³ **Background selection**

²⁴ Finally, we observed the effect of long-term background selection on the neutral distribution of SS-H12 val-
²⁵ ues (Figure S23). Background selection may yield signatures of genetic diversity resembling selective sweeps
²⁶ [Charlesworth et al., 1993, 1995, Seger et al., 2010, Nicolaisen and Desai, 2013, Cutter and Payseur, 2013,
²⁷ Huber et al., 2016], though previous work suggests that background selection does not drive particular hap-
²⁸ lotypes to high frequency [Enard et al., 2014, Harris et al., 2018]. Our two background selection scenarios for
²⁹ samples from $K = 2$ populations, with $\tau = 1100$ (CEU-GIH model) and 3740 (CEU-YRI model) generations,
³⁰ were performed as described in the *Materials and Methods*, following the protocol of Cheng et al. [2017].
³¹ Briefly, we simulated a 100-kb sequence featuring a centrally-located 11-kb gene consisting of exons, introns,
³² and untranslated regions, across which deleterious variants arose randomly throughout the entire simulation

1 period. In agreement with our expectations, we found that background selection is unlikely to confound
2 inferences from SS-H12, yielding only marginally larger values of $|\text{SS-H12}|$ than does neutrality (Figure S23).
3 Accordingly, SS-H12 does not classify background selection appreciably differently from neutrality.

4 **Classifying shared sweeps as hard or soft from the number of sweeping haplotypes**

5 Because the primary innovation of the single-population approach is its ability to classify sweeps as hard or
6 soft from paired $(H_{12}, H_2/H_1)$ values, we evaluated the corresponding properties of our current approach for
7 samples consisting of $K = 2$ populations (Figure 5). Here, we color a space of paired $(|\text{SS-H12}|, H_{2\text{Tot}}/H_{1\text{Tot}})$
8 values, each bounded by $[0.005, 0.995]$, according to the inferred most probable number of sweeping haplo-
9 types ν for each point in the space. Similarly to the approach of Harris et al. [2018], we inferred the most
10 probable ν using an approximate Bayesian computation (ABC) approach in which we determined the pos-
11 terior distribution of ν from 5×10^6 replicates of sweep scenarios with $\nu \in \{0, 1, \dots, 16\}$ and $s \in [0.005, 0.5]$,
12 both drawn uniformly at random for each replicate (the latter drawn from a log-scale), and where $\nu = 0$
13 simulations are neutral replicates. A test point in $(|\text{SS-H12}|, H_{2\text{Tot}}/H_{1\text{Tot}})$ space was assigned a value of
14 ν based on the most frequently occurring ν among simulations whose $(|\text{SS-H12}|, H_{2\text{Tot}}/H_{1\text{Tot}})$ coordinates
15 were within a Euclidean distance of 0.1 from that test point (see *Materials and Methods*). We were able to
16 classify recent shared sweeps as hard or soft, but found our current approach to have somewhat different
17 properties to the single-population approach.

18 For ancestral sweep scenarios and $\tau = 1100$ generations ($t \in [1140, 3000]$, CEU-GIH model), the pattern
19 of paired $(|\text{SS-H12}|, H_{2\text{Tot}}/H_{1\text{Tot}})$ values generally followed that of single-population analyses [Harris et al.,
20 2018] (Figure 5, top-left). For a given value of $|\text{SS-H12}|$, smaller values of $H_{2\text{Tot}}/H_{1\text{Tot}}$ were generally
21 more probable for ancestral sweeps from smaller ν , and inferred ν increased with $H_{2\text{Tot}}/H_{1\text{Tot}}$. This fit our
22 expectations because, as the number of ancestrally sweeping haplotypes in the pooled population increases,
23 the value of $H_{2\text{Tot}}$ increases relative to $H_{1\text{Tot}}$. Additionally, ancestral sweeps from larger ν (softer sweeps)
24 are unlikely to generate large values of $|\text{SS-H12}|$ or small values of $H_{2\text{Tot}}/H_{1\text{Tot}}$, and the most elevated
25 values of $|\text{SS-H12}|$ were rarely associated with more than four sweeping haplotypes. Accordingly, harder and
26 softer ancestral sweeps yielded distinct probability densities of $|\text{SS-H12}|$ and $H_{2\text{Tot}}/H_{1\text{Tot}}$ from one another
27 (Figure S24, left column).

28 We note, however, the presence of paired values inferred to derive from $\nu = 1$ for some intermediate
29 values of $H_{2\text{Tot}}/H_{1\text{Tot}}$, as well as the presence of points with inferred $\nu \geq 4$ at smaller $H_{2\text{Tot}}/H_{1\text{Tot}}$. This
30 may indicate that among ancestral sweep replicates for the CEU-GIH model, weaker hard sweep signals may
31 occasionally be difficult to resolve from stronger soft sweep signals, as both should yield intermediate levels
32 of haplotypic diversity. The difficulty in resolving this region of the plot also derives from the low number of

1 nearby observations (within a Euclidean distance of 0.1) from which to make inferences, despite the higher
2 than average support for these observations (Figure S26, top row). Additionally, the next-most likely ν for
3 most points tended to be an immediately adjacent value (for example, if $\nu = 4$, then the next most likely ν
4 is either 3 or 5; Figure S27, top row). Under simulated CEU-YRI ancestral sweep scenarios ($t \in [3780, 5000]$,
5 $\tau = 3740$; Figure 5, top right), we observed a broadly similar pattern of inferred ν . However, the increased
6 age of sweeps relative to the CEU-GIH model resulted in more erratic inferences across intermediate $|\text{SS-H12}|$
7 paired with intermediate $H2_{\text{Tot}}/H1_{\text{Tot}}$, smaller mean $|\text{SS-H12}|$ and larger mean $H2_{\text{Tot}}/H1_{\text{Tot}}$ across all classes
8 (Figure S25, left column), and somewhat less support for inferences throughout the plot (Figures S28 and S29,
9 top row). Our approach still maintains a clear tendency to infer sweeps with smaller $H2_{\text{Tot}}/H1_{\text{Tot}}$ as hard,
10 thereby preserving its basic classification ability.

11 The convergent sweep experiments yielded distinctly different occupancies and distributions of possible
12 paired ($|\text{SS-H12}|$, $H2_{\text{Tot}}/H1_{\text{Tot}}$) values relative to ancestral sweeps, and provided greater resolution and
13 inferred support among the tested values of ν , showing little irregularity in the assignment of ν (bottom
14 rows of Figures 5, and S26-S29). In addition, trends in the occupancy of hard and soft sweeps were generally
15 concordant between replicates for both the CEU-GIH ($\tau = 1100$, $t \in [200, 1060]$) and CEU-YRI ($\tau = 3740$,
16 $t \in [200, 3700]$) models, though $|\text{SS-H12}|$ was larger on average for CEU-GIH (Figures S24 and S25, right
17 columns). For these experiments, we simulated simultaneous independent sweeps, either both soft or both
18 hard, allowing each population to follow a unique but comparable trajectory. Thus, there were always
19 at least two sweeping haplotypes in the pooled population. Accordingly, convergent hard sweeps, unlike
20 ancestral hard sweeps, are primarily associated with large values of $|\text{SS-H12}|$ and intermediate values of
21 $H2_{\text{Tot}}/H1_{\text{Tot}}$. Furthermore, strong convergent sweeps of any sort could not generate small $H2_{\text{Tot}}/H1_{\text{Tot}}$
22 values unless $|\text{SS-H12}|$ was also small. Even so, convergent sweeps from larger ν occupy a distinct set of
23 paired ($|\text{SS-H12}|$, $H2_{\text{Tot}}/H1_{\text{Tot}}$) values that is shifted either toward smaller $|\text{SS-H12}|$, larger $H2_{\text{Tot}}/H1_{\text{Tot}}$, or
24 both, demonstrating that the accurate and consistent inference of ν is possible for convergent sweeps. Unlike
25 for ancestral sweeps or single-population analyses, we observed that the smallest values of $H2_{\text{Tot}}/H1_{\text{Tot}}$
26 paired with the smallest values of $|\text{SS-H12}|$ were associated with neutrality, representing scenarios in which
27 similar highly diverse haplotype frequency spectra arose in both populations by the time of sampling.

28 Application of SS-H12 to human genetic data

29 We applied SS-H12 to whole-genome sequencing data from global human populations in phase 3 of the 1000
30 Genomes Project [Auton et al., 2015], which is ideal as input because it contains large sample sizes and
31 no missing genotypes at polymorphic sites. We searched for shared sweep signals within the RNA- and
32 protein-coding genes of geographically proximate and distant human population pairs, performing various

1 comparisons of unadmixed European, South Asian, East Asian, and Sub-Saharan African populations (Tables S4-S12). We scanned with sliding analysis windows of 40 kb with a step size of four kb for samples with
2 non-African populations, or 20 kb with step size two kb otherwise, to overcome the effect of short-term LD
3 (Figure S30). For the top 40 outlying candidate shared sweeps among population pairs, we assigned p -values
4 from a neutral distribution of 10^6 replicates following human demographic models inferred from **smc++** (see
5 *Materials and Methods*). Our Bonferroni-corrected genome-wide significance threshold [Neyman and Pear-
6 son, 1928] for single comparisons was 5×10^{-8} (Altshuler et al. [2008]; we did not assess significance across
7 multiple global-scale tests). We additionally inferred the maximum posterior estimates on $\nu \in \{1, 2, \dots, 16\}$
8 for each top candidate from a distribution of 5×10^6 simulated convergent or ancestral sweep replicates,
9 depending on our classification of the candidate from the sign of SS-H12, following the same **smc++**-derived
10 models. We categorized sweeps from $\nu = 1$ as hard, and sweeps from $\nu \geq 2$ as soft. By using both neutral
11 and sweep simulations, we were also able to assign 1% false discovery rate (FDR) $|\text{SS-H12}|$ cutoffs for each
12 population pair comparison (Table S2).

14 Overview of genome-wide trends

15 Across all comparisons, we found that ancestral hard sweeps comprised the majority of prominent candidates
16 at RNA- and protein-coding genes, regardless of population pair. Many of these candidate ancestral sweeps
17 were detected with H12 in single populations [Harris et al., 2018], including novel sweeps at *RGS18* in the
18 sub-Saharan African pair of YRI and LWK (Luhya people from Webuye, Kenya; $\nu = 1$; previously identified
19 in YRI; Figure 6, second row) and at *P4HA1* between the European CEU and South Asian GIH populations
20 ($\nu = 1$; previously identified in GIH, though as a soft sweep; Figure S32, middle row). We also observed
21 a dearth of large-magnitude negative values in Tables S4-S12, with prominent convergent sweep candidates
22 only occurring between the most diverged population pairs. These consisted of *C2CD5* between CEU and
23 the East Asian JPT population (Japanese in Tokyo; $\nu = 1$), *PAWR* between Indo-European populations
24 CEU and GIH with the sub-Saharan African YRI population (small and almost-significant for the CEU-YRI
25 comparison, $p = 6.6 \times 10^{-8}$, $\nu = 1$ for both comparisons; Tables S7 and S9), and *MPHOSPH9* and *EXOC6B*
26 between JPT and YRI (both with $\nu = 1$). Regardless of genome-wide significance threshold, our 1% FDR
27 cutoffs for $|\text{SS-H12}|$ indicate that the outlying values we identified in our scans were much more likely for
28 sweeps than for neutrality, especially for more distantly-related populations, which are unlikely to produce
29 high-magnitude SS-H12 values in the absence of a sweep (Table S2). Supporting this pattern, we observed
30 that the proportion of genic windows greater the 1% FDR cutoff was uniformly higher than the proportion
31 of non-genic windows exceeding the cutoff (Table S2).

1 Our observations also reflect the broader pattern that negative SS-H12 values are rare between closely-
2 related populations. Indeed, the majority of SS-H12 values at protein-coding genes between populations
3 from the same geographic region are positive, and this distribution shifts toward negative values for more
4 differentiated population pairs, consisting primarily of intermediate-magnitude negative values between the
5 YRI and non-African populations (Figure S31). Our present results are also consistent with the H12-based
6 observations of Harris et al. [2018] in single populations, in that we found a greater proportion of hard
7 sweeps than soft sweeps among outlying sweep candidates in humans, though both were present between
8 all population pairs. We additionally found that the maximum $|SS-H12|$ associated with a gene had a
9 significantly negative Spearman correlation with its recombination rate regardless of population comparison,
10 consistent with previous observations [O'Reilly et al., 2008] and highlighting a secondary pattern potentially
11 responsible for observed genome-wide SS-H12 values (Table S3).

12 The top shared sweep candidates comprised genes that have been described in greater detail in the
13 literature [Bersaglieri et al., 2004, Sabeti et al., 2007, Gerbault et al., 2009, Liu et al., 2013], including
14 *LCT* and the surrounding cluster of genes on chromosome 2 including *MCM6*, *DARS*, and *R3HDM1* in the
15 European CEU-GBR (GBR: English and Scottish) pair ($\nu = 1$ for all; Table S4), reflecting selection for the
16 lactase persistence phenotype. We also recovered the sweep on the light skin pigmentation phenotype in
17 Indo-Europeans [Sabeti et al., 2007, Coop et al., 2009, Mallick et al., 2013, Liu et al., 2013] for comparisons
18 between the CEU population with GBR (Table S4; almost-significant with $p = 8.1 \times 10^{-8}$ and $\nu = 1$)
19 and GIH (Table S5; $p = 2.40 \times 10^{-8}$, $\nu = 1$). Although the selected allele for this sweep is thought to
20 lie within the *SLC24A5* gene encoding a solute carrier [Lamason et al., 2005], the CRG100 filter that we
21 applied to our data removed *SLC24A5*, but preserved the adjacent *SLC12A1*, which we use as a proxy for the
22 expected signal. Finally, we find *KIAA0825* as a top candidate across comparisons between the CEU and
23 GIH (Table S5; $\nu = 1$), YRI and CEU (Table S7; $p = 2.71 \times 10^{-8}$, $\nu = 1$), YRI and LWK (Table S8, $\nu = 1$),
24 JPT and YRI (Table S10; $p = 1.13 \times 10^{-8}$, $\nu = 1$), and GIH and YRI (Table S9; $p = 2.12 \times 10^{-9}$, $\nu = 1$)
25 populations. Although the function of *KIAA0825* has not yet been characterized, it is a previously-reported
26 sweep candidate ancestral to the split of African and non-African human populations [Racimo, 2016].

27 **Specific sweep candidates of interest**

28 Across all population comparisons, the top shared sweep candidates at RNA- and protein-coding genes
29 comprised both hard and soft sweeps, yielding a wide range of $H2_{Tot}/H1_{Tot}$ values. This emphasizes the
30 multitude of sweep histories that have shaped shared variation among human populations. In Figure 6, we
31 highlight four distinct results that capture the diversity of sweeps we encountered in our analysis, each
32 generating wide, well-defined SS-H12 peaks. We first examine *GPHN*, which we found as an outlying

1 candidate shared soft sweep in the East Asian JPT and KHV (Kinh of Ho Chi Minh City in Vietnam)
2 populations ($\nu = 2$; Table S12). *GPHN* encodes the scaffold protein gephyrin, which has been the subject
3 of extensive study due to its central role in regulating the function of neurons, among the many other
4 diverse functions of its splice variants [Ramming et al., 2000, Lencz et al., 2007, Tyagarajan and Fritschy,
5 2014]. *GPHN* has received attention as the candidate of a recent selective sweep ancestral to the human
6 out-of-Africa migration event [Voight et al., 2006, Williamson et al., 2007, Park, 2012], which has resulted
7 in the maintenance of two high-frequency haplotypes worldwide [Climer et al., 2015]. Although not meeting
8 the genome-wide significance threshold, we see that a large signal peak is centered over *GPHN*, and the
9 underlying haplotype structure shows two high-frequency haplotypes at similar frequency in the pooled
10 population and in the individual populations (Figure 6, top row).

11 Next, we recovered *RGS18* as a top novel outlying ancestral sweep candidate in the sub-Saharan African
12 LWK and YRI populations. *RGS18* occurs as a significant sweep in the YRI population [Harris et al.,
13 2018] and correspondingly displays a single shared high-frequency haplotype between the LWK and YRI
14 populations (Figure 6, second row), matching our assignment of this locus as a hard sweep ($\nu = 1$). *RGS18*
15 has been implicated in the development of hypertrophic cardiomyopathy, a leading cause of sudden cardiac
16 death in American athletes of African descent [Maron et al., 2003, Chang et al., 2007]. Between the CEU
17 and YRI populations, we found another novel shared sweep at *SPRED3* (Figure 6, third row; significant
18 $p = 2.01 \times 10^{-9}$, $\nu = 1$), which encodes a protein that suppresses cell signaling in response to growth factors
19 [Kato et al., 2003]. Although elevated levels of observed homozygosity at this gene have previously been
20 reported in European and sub-Saharan African populations separately [Granka et al., 2012, Ayub et al.,
21 2013], these observations have not previously been tied to one another. Once again, we see the pattern of
22 an ancestral shared sweep wherein a single haplotype predominates within both populations, but with even
23 noticeably less background variation than what we observed in the aforementioned LWK-YRI comparison.

24 Finally, we present the novel convergent hard sweep candidate that we uncovered at *C2CD5* (also known
25 as *CDP138*) between the CEU and JPT populations. As expected of a convergent sweep, the SS-H12 peak
26 here is large in magnitude but negative, corresponding to the presence of a different high-frequency haplotype
27 in each population, each of which is also at high frequency in the pooled population. Notably, both haplotypes
28 exist in both populations (Figure 6, bottom row). The protein product of *C2CD5* is involved in insulin-
29 stimulated glucose transport [Xie et al., 2011, Zhou et al., 2018], and the insulin response is known to differ
30 between European and East Asian populations [Kodama et al., 2013]. Therefore, our discovery of *C2CD5*
31 is in agreement with the results of Kodama et al. [2013], and illustrates the importance of differentiating
32 ancestral and convergent sweeps in understanding the adaptive histories of diverse populations.

1 We also highlight our discovery of *PAWR* (Figure S33, top) as another outlying novel convergent hard
2 sweep candidate with complementary clinical support, for comparisons between GIH and CEU with YRI. The
3 protein product of *PAWR* is involved in promoting cancer cell apoptosis, and is implicated in the development
4 of prostate cancer [Yang et al., 2013]. Because mutations within and adjacent to *PAWR* have been specifically
5 implicated in the development of prostate cancer among individuals of African descent [Bonilla et al., 2011],
6 our identification of a candidate convergent sweep at *PAWR* is consistent with the observation of elevated
7 prostate cancer rates for populations with African ancestry [Kheirandish and Chinegwundoh, 2011, Shenoy
8 et al., 2016].

9 To further validate our identified sweep candidates, we also constructed signal plots and **pegas** [Paradis,
10 2010] haplotype networks for each highlighted gene outside of Figure 6, grouping these into inferred ancestral
11 (Figure S32) and convergent sweeps (Figure S33). Prominent ancestral sweeps—*SPIDR* ($p = 3.49 \times 10^{-11}$,
12 CEU-JPT), *SLC12A1* ($p = 2.40 \times 10^{-8}$, CEU-GIH), *P4HA1*, *KIAA0825* ($p = 2.13 \times 10^{-9}$, GIH-YRI),
13 and *LCT*—were characterized by the presence of one or two high-frequency haplotypes in the population
14 pool, divided between either component population in approximately equal proportions. The non-sweeping
15 minor haplotypes also present in the sample generally differed from the sweeping haplotypes at one to
16 two sites, and frequently only observed once (mostly omitted, as we removed haplotypes with fewer than
17 six copies from the network). Minor haplotypes observed at higher frequencies were often shared between
18 both populations (*SLC12A1*, *LCT*, and *RGS18*) and may also be representative of persistent ancestral
19 polymorphism (Figure S32).

20 Notably, the sweeping haplotypes observed in convergent sweeps were not always exclusive to either pop-
21 ulation, and separated by a range of Hamming distances (which we denote H). Whereas the independently
22 sweeping haplotypes within *PAWR* in CEU-YRI ($H = 20$) belonged to either the CEU or YRI populations
23 (Figure S33, top), both sweeping haplotypes of *C2CD5* ($H = 8$) were visible in both CEU and JPT, sug-
24 gesting that they were segregating ancestrally to their independent selection following the CEU-JPT split
25 and may be more closely related (Figure 6, bottom). Additionally, we found the selected haplotype of JPT
26 present at low frequency in YRI at *EXOC6B* ($H = 8$; Figure S33, middle), and similarly the selected hap-
27 lotype of YRI present in JPT at *MPHOSPH9* ($H = 30$; Figure S33, bottom). Even so, we note that for
28 convergently-selected loci, each population’s haplotypes tended to cluster together in the network, reflecting
29 the genetic differentiation of the populations.

30 **Detection and classification of shared sweeps from unphased data**

31 Here, we briefly describe the results from our application of the unphased multilocus genotype (MLG)
32 approach, SS-G123. We explored the properties of SS-G123 in equivalent scenarios to our SS-H12 tests by

1 manually merging diploid study individuals' two haplotypes into MLGs. The ability to identify and classify
2 shared sweeps from unphased data is consequential because non-model organisms may not have phased data
3 from which to make inferences. Nonetheless, previous work [Harris et al., 2018] has indicated that distortions
4 in the MLG frequency spectrum can convey the signature of a recent selective sweep.

5 Overall, SS-G123 performed comparably to SS-H12 at detecting sweeps across identical CEU-GIH and
6 CEU-YRI scenarios (Figures S34-S43), with only slight reductions in power at both the 1% and 5% FPRs
7 for MLGs relative to haplotypes. Reductions in power generally occurred for older sweep times, as MLGs are
8 more diverse than haplotypes [Harris et al., 2018], and so the signal of a sweep erodes more rapidly for MLG
9 data as mutation and recombination events accumulate. Under both the CEU-GIH and CEU-YRI models,
10 we found that the magnitude of SS-G123 was, due to the greater baseline diversity of MLGs, generally
11 smaller than the magnitude of SS-H12, matching trends from results with the single-population statistics
12 H12 and G123 [Harris et al., 2018].

13 However, SS-G123 values were also shifted toward the negative for all scenarios, including ancestral
14 sweeps, indicating that the unphased approach may not be as adept at classifying shared sweeps as ancestral
15 after identifying them, except for strongly outlying candidates (Figures S11-S14). Thus, we expect that
16 the detection of shared selective sweeps will be possible across the wide variety of organisms for which
17 unphased whole-genome sequence data are available, but urge caution in blindly classifying negative signals as
18 convergent. Classification notwithstanding, the comparable power between SS-H12 and SS-G123 underscores
19 the importance of the latter as a tool (Figures S37, S38, S42, and S43). Crucially, we also found that our
20 empirical analysis of the 1000 Genomes Project dataset [Auton et al., 2015] in which we paired individuals'
21 haplotypes into their MLGs yielded congruent results to the phased approach in practice, with similar
22 inclusion and classification of candidates between data types (Tables S13-S21).

23 The primary difference that we encountered between haplotype and MLG empirical analyses was in the
24 inferred softness of candidate sweeps. We found that, as in the single-population analyses of Harris et al.
25 [2018], a greater proportion of top candidate sweeps in the MLG data were classified as soft than in haplotype
26 data, including both candidates classified as hard sweeps in the haplotype data, and candidates absent from
27 the top 40 haplotype candidates. The explanation for both of these discrepancies, which were minor in
28 scope, lies once again in the greater diversity of MLGs relative to haplotypes. A genomic region with one
29 high-frequency haplotype and one or more intermediate-frequency haplotypes may yield a paired ($|SS-H12|$,
30 $H2_{Tot}/H1_{Tot}$) value that most resembles a hard sweep under the ABC approach using haplotypes, but yield
31 an MLG frequency spectrum featuring multiple intermediate-frequency MLGs that may be inferred as a soft
32 sweep. Meanwhile, the greater background diversity of MLG data may allow for the more subtle signatures
33 of soft sweeps to be more readily detectable than in haplotype data. Overall, the rarity of discrepancies

1 between SS-H12 and SS-G123 top candidate lists corroborates the high level of concordance between the
2 power of the two statistics that we found in simulated data.

3 Discussion

4 Characterizing the selective sweeps shared between geographically close and disparate populations can pro-
5 vide insights into the adaptive histories of these populations that may be unavailable or obscure when
6 analyzing single populations separately. To this end, we extended the H12 framework of Garud et al.
7 [2015] to identify genomic loci affected by selection in samples composed of individuals from two or more
8 populations. Our approach, SS-H12, has high power to detect recent shared selective sweeps from phased
9 haplotypes, and is sensitive to both hard and soft sweeps. SS-H12 can also distinguish hard and soft sweeps
10 from one another in conjunction with the statistic $H2_{Tot}/H1_{Tot}$, thus retaining the most important feature of
11 the single-population approach. Furthermore, SS-H12 has the unique ability to distinguish between sweeps
12 that are shared due to common ancestry (ancestral sweeps), and shared due to independent selective events
13 (convergent sweeps). Analysis with the SS-H12 framework therefore provides a thorough characterization of
14 selection candidates, both previously-described and novel, unlike that of comparable methods. In addition,
15 we extended analyses to unphased MLG data as SS-G123, maintaining excellent power in the absence of
16 phased haplotypes, expanding the range of study systems from which we may draw selective sweep inferences.

17 Power and classification

18 Because SS-H12 and SS-G123 fundamentally derive from measures of expected homozygosity, they are tai-
19 lored to detect recent shared selective sweeps. Stronger sweeps are detectable over a wider range of selection
20 start times (t) than weaker sweeps due to their greater distortion of the haplotype frequency spectrum re-
21 sulting in larger sweep footprints [Gillespie, 2004, Garud et al., 2015, Hermisson and Pennings, 2017] and
22 larger values of the sweep statistics. However, because stronger sweeps reach fixation sooner than do weaker
23 sweeps, their signals begin to erode sooner, especially for sweeps from larger ν (compare, for example, the
24 center columns of Figures 2, S5, and S6 for ancestral sweeps). Accordingly, there is an inverse relationship
25 between the strength of detectable shared sweeps (s), and the selection start times for which we can detect
26 a sweep. The interaction between t and s is also important for classifying the timing of shared sweeps.
27 Barring rare convergent sweeps on the same haplotype between sister populations, we found that simulated
28 convergent sweeps were reliably identified from the sign of SS-H12 or SS-G123 under scenarios in which they
29 have power to detect shared sweeps (see boxplots of Figures 2, 3, and S5-S8, and classification curves of
30 Figures S11-S14).

1 For weaker ancestral sweeps, in contrast, negative values of elevated magnitude could emerge if the time
2 of selection t was close to the split time τ for the CEU-GIH model (bottom row of Figures 2, S5, and S6), or
3 for the CEU-YRI model in general (bottom row of Figures 3, S7, and S8), especially for SS-G123 (boxplots of
4 Figures S34-S36 and S39-S41). In the CEU-GIH case, it is likely that the beneficial allele, and its haplotypic
5 background(s), have not risen to high frequency before the ancestral population splits into the modern
6 sampled populations. In the CEU-YRI case, enough time has passed since τ by the time of sampling that
7 extensive population differentiation exists. Thus, in both cases, copies of the beneficial haplotype present in
8 each of the two descendant populations may follow distinct trajectories. Using a smaller analysis window may
9 therefore increase power to detect sweeps with less prominent footprints, but at the risk of misinterpreting
10 elevated signal due to short-range LD as a sweep.

11 More generally, the strengths and limitations of our methods to identify shared sweeps as ancestral or
12 convergent depend upon the underlying genealogy of the analysis region. In our analyses, we may expect a
13 particular combination of t and s to be readily detectable and classifiable across any demographic history,
14 such as a strong sweep ($s = 0.1$) initiating $t = 2000$ generations before sampling. Under the CEU-GIH
15 model, this would be an ancestral sweep, while it would be convergent for the CEU-YRI model. Similarly,
16 because we had no power in our simulation experiments to detect weaker ($s = 0.01$) sweeps younger than
17 $t \approx 1500$ generations old, we could not detect convergent sweeps in the CEU-GIH model unless their selection
18 coefficient is large. Furthermore, the background haplotypic diversity inherent to different populations'
19 demographic histories may be highly variable, affecting signal duration and intensity. This meant we could
20 detect ancestral sweeps up to 2000 generations more ancient under the CEU-YRI model than under the CEU-
21 GIH model. In these ways, genealogy constrains which sweeps are identifiable under a particular parameter
22 set. In practice, most outlying shared sweep candidates in humans were ancestral (Tables S4-S21), despite
23 the high power of our approach to detect simulated convergent sweeps. Indeed, convergent sweeps may
24 simply be uncommon because beneficial mutations are rare [Orr, 2010]. Thus, it should be especially rare
25 for beneficial mutations to independently establish at the same locus across multiple populations, for all but
26 the most strongly-selected mutations [Haldane, 1927, Kimura, 1962, Wilson et al., 2014].

27 While powerful for detecting shared sweeps, an equally important property of our statistics is that they
28 ignore divergent sweeps, assigning only values of small magnitude in such cases. The ability to eliminate
29 unshared sweeps as potentially-outlying signals is important because a sweep in a subset of sampled pop-
30 ulations still produces distorted haplotype frequencies between them. This can result in values of f_{Diff} (or
31 g_{Diff}) that may spuriously resemble convergent sweeps, yielding values of the uncorrected $H12_{\text{Anc}}$ statistic
32 that are distinct from neutrality (Figures S15 and S16, right column). By applying a correction factor to
33 $H12_{\text{Anc}}$ (Equation 3), we damped the signals of divergent sweeps for samples drawn from any number of

1 populations K (right columns of Figures 2, 3, S9, and SN1-SN3). As such, the distributions of SS-H12 and
2 SS-G123 generated under divergent sweeps often appears visually no different from neutrality, leaving no
3 possibility of misidentifying divergent sweeps as shared sweeps.

4 Our ability to detect recent shared sweeps remained consistent across samples composed of $K \in \{2, 3, 4, 5\}$
5 populations, which we demonstrate with haplotype results from the generalized mammalian model in the
6 *Supplementary Note* (Figures S9 and SN1-SN3). Power curves across experiments were nearly identical to
7 one another, regardless of K , and regardless of whether we employed the conservative or grouped approach
8 (see *Materials and Methods*) for $K > 2$ samples. However, we were frequently unable to classify convergent
9 sweeps shared across $K > 2$ populations correctly, often assigning SS-H12 > 0 when the time of the sweep
10 is more ancient than the most recent population split time but younger than the root of the population
11 tree, due to the presence of internal ancestral sweeps (Figures SN1-SN3, left columns). True ancestral
12 sweeps, in contrast, were unambiguous because in these cases, all populations share identical sweeping
13 haplotypes (Figures SN1-SN3, center columns). Finally, divergent sweeps never produced outlying values of
14 SS-H12, but we observed spuriously elevated power for sweeps shared ancestrally among more populations
15 (Figures SN1-SN3, right columns). To avoid misinterpreting shared sweep signals deriving from $K \geq 3$
16 sampled populations, we recommend performing follow-up analyses on identified signal peaks to determine
17 the specific populations involved in the sweep.

18 Similarly to the single-population approach [Garud et al., 2015, Harris et al., 2018], SS-H12 and SS-G123
19 have power to detect shared soft sweeps, and can assign these as ancestral or convergent. We found that softer
20 sweeps were more difficult to detect than harder sweeps, proportional to ν . Sweeps from larger ν produce
21 smaller haplotype frequency spectrum distortions than do hard sweeps, but trends in the distributions
22 of SS-H12 (Figures 2, 3, and S5-S8) and SS-G123 (Figures S34-S41) were nonetheless consistent between
23 hard and soft sweeps. Our results also indicate that all haplotypes need not be shared between sampled
24 populations in order to yield outlying signals. This is because simulated population split events represented a
25 random sampling of ancestral haplotypes without guaranteeing identical haplotype frequency spectra between
26 descendant sister populations or their ancestor. As an example, we consider a simple hypothetical scenario
27 in which $\nu = 5$ ancestrally sweeping haplotypes are distributed unevenly between two descendant sister
28 populations (Figure S44, bottom-left). A shared haplotype exists at frequency 0.55 in Population 1 (P1),
29 and at 0.45 in Population 2 (P2). Meanwhile, P1 has two exclusive haplotypes at frequencies 0.25 and 0.2,
30 while P2 has exclusive haplotypes at frequencies 0.3 and 0.25; corresponding to approximately 50% exclusive
31 haplotypes per population. In this (albeit extreme) scenario, SS-H12 = 0.183, a positive value lying outside
32 the distributions of neutrality for our all of our models.

1 Beyond detecting recent shared sweeps with high power, accuracy, and specificity, ours is the only one
2 among comparable methods that can classify shared sweeps as hard or soft from the inferred number of
3 sweeping haplotypes (ν). Using an ABC approach to assign the most likely number of sweeping haplotypes
4 in a genomic window, we found that the classification of recent ancestral sweeps broadly followed that of
5 sweeps in single populations, with smaller $H2_{Tot}/H1_{Tot}$ corresponding to harder sweeps, and the largest ν
6 associated with the largest $H2_{Tot}/H1_{Tot}$ (Figure 5, top). Resolving the most probable ν can be challenging
7 depending on the age of the sweep, and so we find that boundaries between ν classes are somewhat irregular
8 within the posterior distribution, especially for the CEU-YRI model. In contrast, convergent sweeps are
9 easily classified as hard or soft due to their necessarily stronger signal relative to ancestral sweeps (Figure 5,
10 bottom). The classification profile of convergent sweeps is distinctly different from that of ancestral sweeps
11 because the strongest hard sweeps will yield two high-frequency haplotypes in the population, corresponding
12 to intermediate $H2_{Tot}/H1_{Tot}$ values, with soft sweeps generating $H2_{Tot}/H1_{Tot}$ at either extreme. Thus,
13 we can adeptly classify shared sweeps as hard or soft using the SS-H12 framework across any parameter
14 combination for which we have power (Figures 2, 3 and S5-S8).

15 Confounding factors and model deviations

16 SS-H12 displayed an extensive robustness to confounding admixture across scenarios in which a distantly-
17 related donor targeted one of the sampled populations (Figures 4 and S19). As this covers a variety of
18 potential cases, and is a fairly common occurrence [Chun et al., 2010, Patterson et al., 2012, Pool et al.,
19 2012, Nedić et al., 2014], we believe SS-H12 may be confidently applied to a wider set of complex demographic
20 scenarios. In contrast, SS-H12 could not properly classify the timing of a sweep passed from one sampled
21 population to its sampled sister through admixture (*Supplementary Note* Figure SN4). This scenario may
22 be avoided by restricting sampling to only populations that have been geographically separated by a bar-
23 rier to migration for an appreciable amount of time, making admixture unlikely. Distant-donor admixture
24 most impacted the ability of SS-H12 to detect and classify ancestral sweeps, whereas convergent sweeps re-
25 mained broadly unobscured and distinct from neutrality except in extreme scenarios (admixture above 30%;
26 Figures 4 and S19, left columns). Admixture here introduces new haplotypes into the target, resulting in
27 differing haplotype frequency spectra between the pair. Lower donor genetic diversity thus expectedly yields
28 a spurious convergent sweep-like pattern, while admixture from a more diverse donor recreates a divergent
29 sweep-like pattern (Figures 4 and S19, middle columns). Overall, the effect of distant-donor admixture is
30 likely to be a reduction in the prominence of SS-H12, which may impact estimates of sweep age and intensity
31 [Malaspinas et al., 2012, Mathieson and McVean, 2013, Smith et al., 2018], but without yielding false positive
32 signals (Figure S19, left and center columns).

1 As with unadmixed samples, SS-H12 for divergent sweeps showed little departure in prominence from
2 neutrality following admixture from a diverged donor (Figure 4, right column). However, we observed a
3 spurious though not impactful rise in power when a diverse ($N = 10^5$) donor admixes into the sweeping
4 population at a rate of 10% or more (Figure S19, bottom-right). While our statistics are insulated against
5 picking up these divergent sweeps as outliers due to their small magnitude, we caution that the opposite
6 scenario—admixture from a donor of small size into the non-sweeping population—may resemble a conver-
7 gent sweep as H12 in the target population, and f_{Diff} between populations, rises. SS-H12 does not ignore
8 divergent sweeps in inter-sister admixture, which results in extensive haplotype sharing that, at any level,
9 yielding positive values of SS-H12 (*Supplementary Note* Figure SN4). Because the basis for our shared sweep
10 classifications is a quantification of haplotype frequency overlap, inter-sister admixture is the main confound-
11 ing scenario for SS-H12. It is therefore prudent to test for evidence of admixture between sampled sister
12 populations before searching for shared sweeps, and also to obtain ecological and paleontological evidence
13 to support the origin of an adaptive haplotype [Seeley, 1986, Wogelius et al., 2011, Remigereau et al., 2011,
14 Romero et al., 2012]. Ultimately, admixture was the only confounding factor we tested that could affect
15 SS-H12 values, and only a narrow range of scenarios is likely to do so.

16 The other major model violation we examined, background selection, accordingly posed a much smaller
17 risk of affecting SS-H12. Background selection results in a loss of polymorphism as deleterious alleles and
18 alleles at nearby linked sites are removed from the population, resulting in an ablation of genetic diversity
19 reminiscent of selective sweeps [Charlesworth et al., 1993, 1995, Seger et al., 2010, Nicolaisen and Desai,
20 2013, Cutter and Payseur, 2013, Huber et al., 2016]. However, background selection is expected to only
21 reduce levels of neutral polymorphism without driving particular haplotypes to high frequency [Enard et al.,
22 2014]. Indeed, our results indicate that background selection could scarcely distort the distribution of SS-H12
23 values relative to neutrality (Figure S23), because it affects neither H12 [Harris et al., 2018] nor the haplotype
24 frequency spectrum [Harris and DeGiorgio, 2019]. Thus, we do not expect that a detailed understanding of
25 background selection in a study system will be required to detect shared sweeps.

26 Our experiments across common deviations to the basic parameters of the simplified mammalian model—
27 equal sample sizes, simultaneous sweeps, and bifurcating population splits—highlight the variety of scenarios
28 to which we can apply SS-H12 and SS-G123. Our statistics are agnostic to these deviations because none
29 should affect haplotype sharing between populations. Modifying the relative sample sizes for each subpopu-
30 lation had the effect of changing γ (Equation 2), but this scarcely affects patterns of haplotypic diversity, and
31 therefore power and classification (Figures S20-S22), relative to equal sample sizes (Figure S9). The relative
32 timing of convergent sweeps also did not change their differentiating effect between populations, and so once
33 again we found that power here (*Supplementary Note* Figure SN5) fit with that of simultaneous convergent

1 sweeps (Figure S9). We can also consider a more complex scenario in which the rate of adaptation in each
2 population differs, as with a non-uniform environment. If the study populations are sampled before the the
3 beneficial mutation establishes in each, then we may overlook a true shared sweep as divergent because a
4 subset of populations will show a sweep signature, and a subset will not. This is a limitation of any shared
5 sweep method, however. Finally, we found that the power of SS-H12 to detect and classify sweeps for a star
6 tree with $K = 4$ descendants (*Supplementary Note* Figures SN6 and SN7) matched that under an asym-
7 metric topology (Figure SN2), while more accurately classifying sweeps as ancestral or convergent. SS-H12
8 can only be misled by non-adaptive changes to the haplotype frequency distribution that affect the level of
9 haplotype sharing between populations, yielding a wide robustness to many common scenarios.

10 While in our experiments we analyzed only ideal dense polymorphism data with no missing sites, we
11 briefly pause to consider the performance of SS-H12 outside of these conditions. This is especially relevant
12 for SNP array data, which features a lower density of polymorphisms relative to sequencing data. For the
13 single-population statistics, Harris et al. [2018] recommended constructing analysis windows using a SNP-
14 delimited (rather than nucleotide-delimited) approach, wherein windows are defined by the number of SNPs
15 contained within rather than their physical size. Constructing windows in this way ensures the inclusion of
16 sufficient haplotypic variation for inference, and may also confer robustness to demographic processes that
17 reduce diversity locally, such as population bottlenecks [Harris et al., 2018]. In the case of missing data,
18 insights from the single-population approach [Harris et al., 2018] suggest that removing sites with greater
19 than 5% missing data (for data missing at random) yields acceptable power. Sites with an extensive number
20 of low-confidence genotypes should also be removed, because such errors can lead to the spurious detection
21 of new haplotypes, which increases background diversity and reduces the magnitude of SS-H12, potentially
22 causing sweeps to be overlooked. Taken together, we suggest that it may be beneficial to employ SNP- rather
23 than nucleotide-delimited windows on datasets with extensive missing data, regardless of whether sites are
24 missing due to sparse sampling or from genotype or sequencing errors.

25 **Discovery and characterization of shared sweeps in humans**

26 The high power, robustness, and flexibility of SS-H12 allowed us to discover outlying sweep candidates in
27 humans that both corroborated previous investigations, and uncovered novel shared sweep candidates. Most
28 importantly, our approach provided inferences about the timing and softness of shared sweeps, yielding
29 enhanced levels of detail about candidates that were until now not directly available. As SS-H12 is the
30 only method that distinguishes between recent ancestral and convergent shared sweeps, our investigation
31 was uniquely able to identify loci at which independent convergent sweeps, though rare, may have played a
32 role in shaping modern patterns of genetic diversity. Among these was *EXOC6B* (Figure S33, middle row),

1 which produces a protein component of the exocyst [Evers et al., 2014] and has been previously highlighted
2 as a characteristic site of selection in East Asian populations [Baye et al., 2009, Durbin and Consortium,
3 2011, Pybus et al., 2014]. The shared hard sweep ($\nu = 1$) at *EXOC6B* appeared as convergent between the
4 East Asian JPT and sub-Saharan African YRI populations (Table S10), but as ancestral between all other
5 population pairs—pairs of non-African populations—in which it appeared (Tables S5, S6, S11, and S12).
6 Thus, we believe that a sweep at *EXOC6B* occurred globally in both African and non-African populations
7 alike, and was not limited to a single region or event.

8 More broadly, our investigation into sweeps shared between disparate populations also updates existing
9 notions about when during human history particular selective events may have occurred. For example, a
10 sweep at *NNT*, involved in the glucocorticoid response, has been previously reported in sub-Saharan Africa
11 [Voight et al., 2006, Fagny et al., 2014]. As expected, we recovered *NNT* as an ancestral hard sweep ($\nu = 1$)
12 in the comparison between LWK and YRI (Table S8), but additionally in all comparisons between YRI and
13 non-African populations (Tables S7, S9, and S10; genome-wide significant for all but the JPT-YRI pair).
14 Selection at *NNT* preceded the out-of-Africa event and was not exclusive to sub-Saharan African populations.
15 Another unexpected top outlier was *SPIDR* (Figure S32, first row), involved in double-stranded DNA break
16 repair [Wan et al., 2013, Smirin-Yosef et al., 2017] and inferred to be a shared candidate among Eurasian
17 populations [Racimo, 2016]. *SPIDR* previously appeared as an outlying H12 signal in the East Asian CHB
18 (Han Chinese individuals from Beijing) population [Harris et al., 2018], but in our present analysis was shared
19 ancestrally not only between the East Asian KHV and JPT populations (Table S12), but also between JPT
20 and the European CEU (Table S6; $p = 3.49 \times 10^{-11}$), and the sub-Saharan African LWK and YRI (Table S8)
21 populations. Once again, we see a strong sweep candidate shared among a wider range of populations than
22 previously expected, illustrating the role of shared sweep analysis in amending our understanding of the
23 scope of sweeps in humans worldwide.

24 In addition to recovering expected and expanded sweep signatures, we also found top outlying ancestral
25 sweep candidates not especially prominent within single populations, emphasizing that localizing an ancestral
26 sweep depends not only on elevated expected homozygosity generating the signal, but highly on the presence
27 of shared haplotypes between populations. Foremost among such candidates was *CASC4*, a candidate
28 ancestral hard sweep ($\nu = 1$) in all comparisons with YRI (Tables S7-S10; genome-wide significant for CEU
29 and GIH with YRI). Because a sweep ancestral to the out-of Africa event at this cancer-associated gene [Ly
30 et al., 2014, Anczuków et al., 2015] had been previously hypothesized [Racimo, 2016], we expected to see
31 it. However, *CASC4* does not have a prominent H12 value outside of sub-Saharan African populations, and
32 within YRI is a lower-end outlier [Harris et al., 2018]. Despite this, *CASC4* is within the top 12 outlying
33 candidates across all comparisons with YRI, and appears as the eighth-most outlying gene in for CEU-JPT

1 (Table S6; $\nu = 2$), even though it is not an outlier in either population individually. Similarly, we found
2 *PHKB*, involved in glycogen storage [Hendrickx and Willems, 1996, Burwinkel et al., 1997, Burwinkel and
3 Kilimann, 1998], as an ancestral hard sweep of CEU-YRI (Table S7; $9.29 \times 10^{-9} \nu = 1$) that was not
4 prominent in either population alone, though once again previously inferred to be a sweep candidate to
5 Eurasians [Racimo, 2016]. We also identified *MRAP2*, which encodes a melanocortin receptor accessory
6 protein implicated in glucocorticoid deficiency [Chan et al., 2009, Asai et al., 2013], similarly to *NNT*, as
7 an ancestral hard sweep between the CEU and JPT populations (Table S6; $p = 1.68 \times 10^{-8}, \nu = 1$), and
8 is not prominent in either CEU or JPT. Thus, our empirical results fit well with the expectation deriving
9 from our power comparison between multiple tests of H12 and a single SS-H12 test (Figures S17 and S18),
10 but we caution that we did not establish global significance between regions for our candidate genes, and
11 are unlikely to have sufficient power to do so after correcting for all comparisons.

12 An important trend from our empirical analysis was the significantly negative correlation between recom-
13 bination rate across protein- and RNA-coding genes, and assigned $|\text{SS-H12}|$. Outlying sweep candidates were
14 uniformly associated with regions of low recombination, yielding significant correlations for each population
15 pair comparison according to Spearman's ρ . The most apparent implication for this observation is that we
16 are more likely to observe sweep signals in regions of low recombination because it is within such regions
17 that sweep footprints persist for the longest time. Consequently, the haplotypic signature of a selective
18 sweep should be difficult to elucidate for regions of high recombination, where sweeping haplotypes would
19 rapidly homogenize into the background diversity, leaving only a transient footprint. It may be possible
20 to guard against misinterpreting regions of elevated LD as sweeps, or overlooking sweeps in regions with
21 high recombination, by adjusting the size of the analysis window when computing SS-H12. Following this
22 approach, it would be helpful to use a smaller analysis window where recombination rates are large in order
23 to identify subtle haplotype frequency distortions, and larger windows where recombination rates are low and
24 haplotypic diversity is already expected to be small. Although we did not pursue this strategy, we instead
25 assigned p -values and inferred ν using simulations drawn from a spectrum of recombination rates, which we
26 expect conferred a high degree of robustness to our conclusions.

27 The assignment of p -values additionally depended upon our inferred population model. Because a re-
28 construction of the demographic history was required for us to assign p -values, we evaluated the effect of
29 misspecifying the model on $|\text{SS-H12}|$ significance cutoffs (Figures S45 and S46). To do this, we simulated neu-
30 tral replicates either under our more accurate "true" `smc++`-derived histories with population size changes,
31 or under "wrong" histories with identical mean F_{ST} to the true models but with constant population sizes
32 (Figure S46). Model misspecification could potentially impact inferences of significant SS-H12 signals, and
33 this effect depended on the relatedness between sampled populations (Figure S45). For more closely-related

1 population pairs (CEU-GBR and JPT-KHV, mean F_{ST} on the order of 10^{-3}), the wrong constant-size model
2 yielded smaller $|SS-H12|$ values, corresponding to a less stringent threshold. For more diverged pairs of sub-
3 populations (YRI with CEU, GIH, or JPT, mean F_{ST} on the order of 10^{-1}), an inverse effect occurs, such
4 that the misspecified model becomes too conservative and significant signals may be overlooked. Accord-
5 ingly, intermediately-related populations (CEU-GIH and LWK-YRI, mean F_{ST} on the order of 10^{-2}) may be
6 insulated from the effect of model misspecification. Thus, the selection of a model with parameters derived
7 from the study data is paramount to the proper interpretation of genomic SS-H12 signals within those data.

8 We conclude our discussion of the empirical analysis by underscoring its practical implications for the
9 analysis of unphased data. Across our simulation experiments, we found that SS-G123 demonstrated power
10 to detect shared sweeps that was wholly concordant with the power of SS-H12 on phased haplotypes (Fig-
11 ures S37, S38, S42, and S43). The area in which SS-G123 appeared to be lacking was in its ability to properly
12 classify the timing of a shared sweep. That is, outside of recent sweeps, SS-G123 was highly susceptible to
13 assigning negative values to ancestral sweeps, thereby misclassifying them as convergent (compare purple
14 [SS-G123] and red [SS-H12] lines within the central columns of Figures S11-S14). The reason for this dis-
15 parity in classification lies with the data type itself. Unphased MLGs have a much greater diversity than
16 haplotypes under most scenarios if we assume random mating [Harris et al., 2018]. For this reason, the
17 homogeneity among MLGs following a sweep returns to background levels more rapidly than that of haplo-
18 types, leading to $G123_{Tot} < g_{Diff}$ across scenarios for which $H12_{Tot} > f_{Diff}$. Contrary to these expectations,
19 however, we found that detection and classification with SS-G123 matched that of SS-H12 for a wide major-
20 ity of candidates across our empirical scans. Ultimately, this indicates that the sweep candidates most likely
21 to pass the significance threshold, likely to be important for adaptation, are those for which phasing does
22 not affect inferences, which underscores the importance of a tool with the ability to make those inferences.

23 Conclusions

24 The SS-H12 and SS-G123 frameworks are an important advancement in our ability to contextualize and
25 classify shared sweep events using multilocus sequence data. Whereas prior methods have identified shared
26 sweeps and can do so with high power, some without the need for MLGs or phased haplotypes, the ability to
27 distinguish both hard and soft shared sweeps from neutrality, as well as differentiate ancestral and convergent
28 sweeps, is invaluable for understanding the manner in which an adaptive event has proceeded. Discerning
29 whether a selective sweep has occurred multiple times or only once can provide novel and updated insights
30 into the relatedness of study populations, and the selective pressures that they endured. Moreover, the
31 sensitivity of our approach to both hard and soft sweeps, and our ability to separate one from the other,
32 add an additional layer of clarity that is otherwise missing from previous analyses, and is especially relevant

1 because uncertainty persists as to the relative contributions of hard and soft sweeps in human history [Jensen,
2 2014, Schrider and Kern, 2017, Mughal and DeGiorgio, 2019]. We expect inferences deriving from shared
3 sweep analyses to assist in formulating and guiding more informed questions about discovered candidates
4 across diverse organisms for which sequence data—phased and unphased—exist. As part of this, SS-H12
5 and SS-G123 may be incorporated into machine learning algorithms that leverage the spatial signature of
6 sweep statistics to construct powerful sweep detection protocols [*e.g.*, Schrider and Kern, 2017, Mughal and
7 DeGiorgio, 2019]. After establishing the timing and softness of a shared sweep, appropriate follow-up analyses
8 can include inferring the age of a sweep [Smith et al., 2018], identifying the favored allele or alleles [Akbari
9 et al., 2018], or identifying other populations connected to the shared sweep. We believe that our approach
10 will serve to enhance investigations into a diverse variety of study systems, and facilitate the emergence of
11 new perspectives and paradigms.

12 To this end, we provide open-source software (titled **SS-X12**) to perform scanning window analyses on
13 haplotype input data using SS-H12 or multilocus genotype input data using SS-G123, as well as results from
14 our empirical scans and other analyses, within our Dryad repository. **SS-X12** provides flexible user control,
15 allowing the input of samples drawn from arbitrary populations K , and the output of a variety of expected
16 homozygosity summary statistics.

17 Acknowledgments

18 We thank three anonymous reviewers and editor Nicholas Barton for their helpful comments that improved
19 this manuscript. This work was funded by National Institutes of Health grant R35-GM128590, by National
20 Science Foundation grants DEB-1753489, DEB-1949268, and BCS-2001063, and by the Alfred P. Sloan
21 Foundation. Portions of this research were conducted with Advanced CyberInfrastructure computational
22 resources provided by the Institute for CyberScience at Pennsylvania State University.

23 References

24 A Akbari, J J Vitti, A Iranmehr, M Bakhtiari, P C Sabeti, S Mirarab, and V Bafna. Identifying the favored
25 mutation in a positive selective sweep. *Nat. Methods*, 15:279–282, 2018.

26 D Altshuler, M J Daly, and E S Lander. Genetic Mapping in Human Disease. *Science*, 322:881–888, 2008.

27 O Anczuków, M Akerman, A Cléry, J Wu, C Shen, N H Shirole, A Raimer, S Sun, M A Jensen, Y Hua,
28 F H T Allain, and A R Krainer. SRSF1-Regulated Alternative Splicing in Breast Cancer. *Mol. Cell*, 60:
29 105–117, 2015.

1 M Asai, S Ramachandrappa, M Joachim, Y Shen, R Zhang, N Nuthalapati, V Ramanathan, D E Strochlic,
2 P Ferket, K Linhart, C Ho, T V Novoselova, S Garg, M Ridderstråle, C Marcus, J N Hirschhorn, J M
3 Keogh, S O'Rahilly, L F Chan, A J Clark, I S Farooqi, and J A Majzoub. Loss of Function of the
4 Melanocortin 2 Receptor Accessory Protein 2 Is Associated with Mammalian Obesity. *Science*, 341:
5 275–278, 2013.

6 A Auton, G R Abecasis, and The 1000 Genomes Project Consortium. A global reference for human genetic
7 variation. *Nature*, 526:68–74, 2015.

8 Q Ayub, B Yngvadottir, Y Chen, Y Xue, M Hu, S C Vernes, S E Fisher, and C Tyler-Smith. FOXP2 Targets
9 Show Evidence of Positive Selection in European Populations. *Am. J. Hum. Genet.*, 92:696–706, 2013.

10 T M Baye, R A Wilke, and M Olivier. Genomic and geographic distribution of private SNPs and pathways
11 in human populations. *Pers. Med.*, 6:623–641, 2009.

12 S Beleza, A M Santos, B McEvoy, I Alves, C Martinho, E Cameron, M D Shriver, E J Parra, and J Rocha.
13 The Timing of Pigmentation Lightening in Europeans. *Mol. Biol. Evol.*, 30:24–35, 2012.

14 T Bersaglieri, P C Sabeti, N Patterson, T Vanderploeg, S F Schaffner, J A Drake, M Rhodes, D E Reich,
15 and J N Hirschhorn. Genetic Signatures of Strong Recent Positive Selection at the Lactase Gene. *Am. J.*
16 *Hum. Genet.*, 74:1111–1120, 2004.

17 M Bonhomme, C Chevalet, B Servin, S Boitard, J Abdallah, S Blott, and M SanCristobal. Detecting
18 Selection in Population Trees: The Lewontin and Krakauer Test Extended. *Genetics*, 186:241–262, 2010.

19 C Bonilla, S Hooker, T Mason, C H Bock, and R A Kittles. Prostate Cancer Susceptibility Loci Identified
20 on Chromosome 12 in African Americans. *PLoS ONE*, 6:e16044, 2011.

21 B Burwinkel and M W Kilimann. Unequal Homologous Recombination Between LINE-1 Elements as a
22 Mutational Mechanism in Human Genetic Disease. *J. Mol. Biol.*, 277:513–517, 1998.

23 B Burwinkel, A J Maichele, Ø Aegenaes, H D Bakker, A Lerner, Y S Shin, J A Strachan, and M W Kilimann.
24 Autosomal glycogenosis of liver and muscle due to phosphorylase kinase deficiency is caused by mutations
25 in the phosphorylase kinase subunit β (*PHKB*). *Hum. Mol. Genet.*, 6:1109–1115, 1997.

26 L F Chan, T R Webb, T Chung, E Meimarisou, S N Cooray, L Guasti, J P Chapple, M Egertová, M R
27 Elphick, M E Cheetham, L A Metherell, and A J L Clark. MRAP and MRAP2 are bidirectional regulators
28 of the melanocortin receptor family. *Proc. Natl. Acad. Sci. U.S.A.*, 106:6146–6151, 2009.

1 Y C Chang, X Liu, J D O Kim, M A Ikeda, M R Layton, A B Weder, R S Cooper, S L R Kardia, D C
2 Rao, S C Hunt, A Luke, E Boerwinkle, and A Chakravarti. Multiple Genes for Essential-Hypertension
3 Susceptibility on Chromosome 1q. *Am. J. Hum. Genet.*, 80:253–264, 2007.

4 G Chaplin and N G Jablonski. The Human Environment and the Vitamin D Compromise: Scotland as a
5 Case Study in Human Biocultural Adaptation and Disease Susceptibility. *Hum. Biol.*, 85:529–552, 2013.

6 B Charlesworth, M T Morgan, and D Charlesworth. The Effect of Deleterious Mutations on Neutral Molec-
7 ular Variation. *Genetics*, 134:1289–1303, 1993.

8 B Charlesworth, D Charlesworth, and M T Morgan. The Pattern of Neutral Molecular Variation Under the
9 Background Selection Model. *Genetics*, 141:1619–1632, 1995.

10 X Cheng, C Xu, and M DeGiorgio. Fast and robust detection of ancestral selective sweeps. *Mol. Ecol.*, 2017.
11 doi: 10.1111/mec.14416.

12 Y J Chun, B Fumanal, B Laitung, and F Bretagnolle. Gene flow and population admixture as the primary
13 post-invasion processes in common ragweed (*Ambrosia artemisiifolia*) populations in France. *New Phytol.*,
14 185:1100–1107, 2010.

15 C Ciofi, G A Wilson, L B Beheregaray, C Marquez, J P Gibbs, W Tapia, H L Snell, A Caccone, and J R
16 Powell. Phylogeographic History and Gene Flow Among Giant Galápagos Tortoises on Southern Isabela
17 Island. *GENETICS*, 172:1727–1744, 2006.

18 F J Clemente, A Cardona, C E Inchley, B M Peter, G Jacobs, L Pagani, D J Lawson, T Antão, M Vicente,
19 M Mitt, M DeGiorgio, Z Faltyskova, Y Xue, Q Ayub, M Szpak, R Mägi, A Eriksson, A Manica, M Ragh-
20 van, M Rasmussen, S Rasmussen, E Willerslev, A Vidal-Puig, C Tyler-Smith, R Villem, R Nielsen,
21 M Metspalu, B Malyarchuk, M Derenko, and T Kivisild. A Selective Sweep on a Deleterious Mutation in
22 *CPT1A* in Arctic Populations. *Am. J. Hum. Genet.*, 95:584–589, 2014.

23 S Climer, A R Templeton, and W Zhang. Human *gephyrin* is encompassed within giant functional noncoding
24 yin–yang sequences. *Nat. Commun.*, 6, 2015. doi: 10.1038/ncomms7534.

25 G Coop, J K Pickrell, J Novembre, S Kudaravalli, J Li, D Absher, R M Myers, L L Cavalli-Sforza, M W
26 Feldman, and J K Pritchard. The Role of Geography in Human Adaptation. *PLoS Genet.*, 5:e1000500,
27 2009.

28 A D Cutter and B A Payseur. Genomic signatures of selection at linked sites: unifying the disparity among
29 species. *Nat. Rev. Genet.*, 14:262–274, 2013.

1 T Derrien, J Estellé, S M Sola, D G Knowles, E Rainieri, R Guigó, and P Ribeca. Fast Computation and
2 Applications of Genome Mappability. *PLoS ONE*, 7:e30377, 2012.

3 R M Durbin and The 1000 Genomes Project Consortium. A map of human genome variation from population-
4 scale sequencing. *Nature*, 467:1061–1073, 2011.

5 D Enard, P W Messer, and D A Petrov. Genome-wide signals of positive selection in human evolution.
6 *Genome Res.*, 24:885–895, 2014.

7 C Evers, B Maas, K A Koch, A Jauch, J W G Janssen, C Sutter, M J Parker, K Hinderhofer, and U Moog.
8 Mosaic Deletion of EXOC6B: Further Evidence for An Important Role of the Exocyst Complex in the
9 Pathogenesis of Intellectual Disability. *Am. J. Med. Genet. Part A*, 164:3088–3094, 2014.

10 M Fagny, E Patin, D Enard, L B Barreiro, L Quintana-Murci, and G Laval. Exploring the Occurrence of
11 Classic Selective Sweeps in Humans Using Whole-Genome Sequencing Data Sets. *Mol. Biol. Evol.*, 31:
12 1850–1868, 2014.

13 M I Fariello, S Boitard, H Naya, M SanCristobal, and B Servin. Detecting Signatures of Selection Through
14 Haplotype Differentiation Among Hierarchically Structured Populations. *Genetics*, 193:929–941, 2013.

15 N R Garud and N A Rosenberg. Enhancing the mathematical properties of new haplotype homozygosity
16 statistics for the detection of selective sweeps. *Theor. Popul. Biol.*, 102:94–101, 2015.

17 N R Garud, P W Messer, E O Buzbas, and D A Petrov. Recent Selective Sweeps in North American
18 *Drosophila melanogaster* Show Signatures of Soft Sweeps. *PLoS Genet.*, 11:e1005004, 2015.

19 P Gerbault, C Moret, M Currat, and A Sanchez-Mazas. Impact of Selection and Demography on the
20 Diffusion of Lactase Persistence. *PLoS ONE*, 4:e6369, 2009.

21 J H Gillespie. *Population Genetics: A Concise Guide*. The Johns Hopkins University Press, Baltimore, MD,
22 2nd edition, 2004.

23 J M Granka, B M Henn, C R Gignoux, J M Kidd, C D Bustamante, and M W Feldman. Limited Evidence
24 for Classic Selective Sweeps in African Populations. *Genetics*, 192:1049–1064, 2012.

25 S Gravel, B M Henn, R N Gutenkunst, A R Indap, G T Marth, A G Clark, F Yu, R A Gibbs, The
26 1000 Genomes Project, and C D Bustamante. Demographic history and rare allele sharing among human
27 populations. *Proc. Natl. Acad. Sci. U.S.A.*, 108:11983–11988, 2011.

28 I Gronau, M J Hubisz, B Gulko, C G Danko, and A Siepel. Bayesian inference of ancient human demography
29 from individual genome sequences. *Nat. Genet.*, 43:1031–1034, 2011.

1 J B S Haldane. A mathematical theory of natural and artificial selection. V. selection and mutation. *Math.*
2 *Proc. Camb. Philos. Soc.*, 23:838–844, 1927.

3 B C Haller and P W Messer. SLiM 2: Flexible, Interactive Forward Genetic Simulations. *Mol. Biol. Evol.*,
4 34:230–240, 2017.

5 A M Harris and M DeGiorgio. A likelihood approach for uncovering selective sweep signatures from haplotype
6 data. *bioRxiv*, 2019. doi: <https://doi.org/10.1101/678722>.

7 A M Harris, N R Garud, and M DeGiorgio. Detection and classification of hard and soft sweeps from
8 unphased genotypes by multilocus genotype identity. *Genetics*, 210:1429–1452, 2018.

9 K Harris and R Nielsen. The Genetic Cost of Neanderthal Introgression. *Genetics*, 203:881–891, 2016.

10 D L Hartl and A G Clark. *Principles of Population Genetics*. Sinauer Associates, Inc., Sunderland MA, 4th
11 edition, 2007.

12 P W Hedrick. Galapagos Islands Endemic Vertebrates: A Population Genetics Perspective. *J. Hered.*, 110:
13 137–157, 2019.

14 J Hendrickx and P J Willems. Genetic deficiencies of the glycogen phosphorylase system. *Hum. Genet.*, 97:
15 551–556, 1996.

16 J Hermisson and P S Pennings. Soft Sweeps: Molecular Population Genetics of Adaptation From Standing
17 Genetic Variation. *Genetics*, 169:2335–2352, 2005.

18 J Hermisson and P S Pennings. Soft sweeps and beyond: understanding the patterns and probabilities of
19 selection footprints under rapid adaptation. *Methods Ecol. Evol.*, 8:700–716, 2017.

20 C D Huber, M DeGiorgio, I Hellmann, and R Nielsen. Detecting recent selective sweeps while controlling
21 for mutation rate and background selection. *Mol. Ecol.*, 25:142–156, 2016.

22 R R Hudson. Generating samples under a Wright-Fisher neutral model of genetic variation. *Bioinformatics*,
23 18:337–338, 2002.

24 International HapMap Consortium, K A Frazer, D G Ballinger, D R Cox, D A Hinds, L L Stuve, R A Gibbs,
25 J W Belmont, A Boudreau, P Hardenbol, et al. A second generation human haplotype map of over 3.1
26 million SNPs. *Nature*, 449:851–861, 2007.

27 J D Jensen. On the unfounded enthusiasm for soft selective sweeps. *Nat. Commun.*, 5:5281, 2014.

1 K E Johnson and B F Voight. Patterns of shared signatures of recent positive selection across human
2 populations. *Nat. Ecol. Evol.*, 2:713–720, 2018.

3 B L Jones, T O Raga, A Liebert, P Zmarz, E Bekele, E T Danielson, A K Olsen, N Bradman, J T Troelsen,
4 and D M Swallow. Diversity of Lactase Persistence Alleles in Ethiopia: Signature of a Soft Selective
5 Sweep. *Am. J. Hum. Genet.*, 93:538–544, 2013.

6 I Juric, S Aeschbacher, and G Coop. The Strength of Selection against Neanderthal Introgression. *PLoS
7 Genet.*, 12:e1006340, 2016.

8 R Kato, A Nonami, T Taketomi, T Wakioka, A Kuroiwa, Y Matsuda, and A Yoshimura. Molecular cloning
9 of mammalian Spred-3 which suppresses tyrosine kinase-mediated Erk activation. *Biochem. Biophys. Res.
10 Co.*, 302:767–772, 2003.

11 P Kheirandish and F Chinegwundoh. Ethnic differences in prostate cancer. *Brit. J. Cancer*, 105:481–485,
12 2011.

13 M Kimura. On the probability of fixation of mutant genes in a population. *Genetics*, 47:713–719, 1962.

14 A A Klammer, C Y Park, and W S Noble. Statistical Calibration of the SEQUEST XCorr Function. *J.
15 Proteome Res.*, 8:2106–2113, 2009.

16 K Kodama, D Tojjar, S Yamada, K Toda, C J Patel, and A J Butte. Ethnic Differences in the Relationship
17 Between Insulin Sensitivity and Insulin Response. *Diabetes Care*, 36:1789–1796, 2013.

18 R L Lamason, M P K Mohideen, J R Mest, A C Wong, H L Norton, M C Aros, M J Jurynec, X Mao, V R
19 Humphreville, J E Humbert, S Sinha, J L Moore, P Jagadeeswaran, W Zhao, G Ning, I Makalowska, P M
20 McKeigue, D O’Donnell, R Kittles, E J Parra, N J Mangini, D J Grunwald, M D Shriver, V A Canfield,
21 and K C Cheng. SLC24A5, a Putative Cation Exchanger, Affects Pigmentation in Zebrafish and Humans.
22 *Science*, 310:1782–1786, 2005.

23 K M Lee and G Coop. Distinguishing Among Modes of Convergent Adaptation Using Population Genomic
24 Data. *Genetics*, 207:1591–1619, 2017.

25 T Lencz, C Lambert, P DeRosse, K E Burdick, T V Morgan, J M Kane, R Kucherlapati, and A K Malhotra.
26 Runs of homozygosity reveal highly penetrant recessive loci in schizophrenia. *Proc. Natl. Acad. Sci.
27 U.S.A.*, 104:19942–19947, 2007.

28 P Librado and L Orlando. Detecting Signatures of Positive Selection along Defined Branches of a Population
29 Tree Using LSD. *Mol. Biol. Evol.*, 35:1520–1535, 2018.

1 P Librado, C Gamba, C Gaunitz, C D Sarkissian, M Pruvost, A Albrechtsen, A Fages, N Khan, M Schubert,
2 V Jagannathan, et al. Ancient genomic changes associated with domestication of the horse. *Science*, 356:
3 442–445, 2017.

4 J Lindo, E Huerta-Sánchez, S Nakagome, M Rasmussen, B Petzelt, J Mitchell, J S Cybulski, E Willerslev,
5 M DeGiorgio, and R S Malhi. A time transect of exomes from a Native American population before and
6 after European contact. *Nat. Commun.*, 7, 2016. doi: 10.1038/ncomms13175.

7 X Liu, R T Ong, E N Pillai, A M Elzein, K S Small, T G Clark, D P Kwiatowski, and Y Teo. Detecting and
8 Characterizing Genomic Signatures of Positive Selection in Global Populations. *Am. J. Hum. Genet.*, 92:
9 866–881, 2013.

10 T Ly, Y Ahmad, A Shlien, D Soroka, A Mills, M Emanuele, M R Stratton, and A I Lamond. A proteomic
11 chronology of gene expression through the cell cycle in human myeloid leukemia cells. *eLife*, 3:e01630,
12 2014.

13 A Malaspinas, O Malaspinas, S N Evans, and M Slatkin. Estimating Allele Age and Selection Coefficient
14 from Time-Serial Data. *Genetics*, 192:599–607, 2012.

15 C B Mallick, F M Iliescu, M Möls, S Hill, R Tamang, G Chaubey, R Goto, S Y W Ho, I G Romero,
16 F Crivellaro, G Hudjashov, N Rai, M Metspalu, C G N Mascie-Taylor, R Pitchappan, L Singh, M Mirazon-
17 Lahr, K Thangaraj, R Villem, and T Kivisild. The Light Skin Allele of SLC24A5 in South Asians and
18 Europeans Shares Identity by Descent. *PLoS Genet.*, 9:e1003912, 2013.

19 S Marciniak and G H Perry. Harnessing ancient genomes to study the history of human adaptation. *Nat. Rev. Genet.*, 18:659–674, 2017.

21 B J Maron, K P Carney, H M Lever, J F Lewis, I Barac, S A Casey, and M V Sherrid. Relationship of Race
22 to Sudden Cardiac Death in Competitive Athletes With Hypertrophic Cardiomyopathy. *J. Am. Coll. Cardiol.*, 41:974–980, 2003.

24 I Mathieson and G McVean. Estimating Selection Coefficients in Spatially Structured Populations from
25 Time Series Data of Allele Frequencies. *Genetics*, 193:973–984, 2013.

26 J Maynard Smith and J Haigh. The hitch-hiking effect of a favorable gene. *Genet. Res.*, 23:23–35, 1974.

27 P W Messer. SLiM: Simulating Evolution with Selection and Linkage. *Genetics*, 194:1037–1039, 2013.

28 P W Messer and D A Petrov. Population genomics of rapid adaptation by soft selective sweeps. *Trends Ecol. Evol.*, 28:659–669, 2013.

1 M Metspalu, I G Romero, B Yunusbayev, G Chaubey, C B Mallick, G Hudjashov, M Nelis, R Mägi,
2 E Metspalu, M Remm, R Pitchappan, L Singh, K Thangaraj, R Villem, and T Kivisild. Shared and
3 Unique Components of Human Population Structure and Genome-Wide Signals of Positive Selection in
4 South Asia. *Am. J. Hum. Genet.*, 89:731–744, 2011.

5 F Mignone, C Gissi, S Liuni, and G Pesole. Untranslated regions of mRNAs. *Genome Biol.*, 3:reviews0004–1,
6 2002.

7 M R Mughal and M DeGiorgio. Localizing and Classifying Adaptive Targets with Trend Filtered Regression.
8 *Mol. Biol. Evol.*, 36:252–270, 2019.

9 M W Nachman and S L Crowell. Estimate of the mutation rate per nucleotide in humans. *Genetics*, 156:
10 297–304, 2000.

11 V M Narasimhan, R Rahbari, A Scally, A Wuster, D Mason, Y Xue, J Wright, R C Trembath, E R Maher,
12 D A van Heel, A Auton, M E Hurles, C Tyler-Smith, and R Durbin. Estimating the human mutation rate
13 from autozygous segments reveals population differences in human mutational processes. *Nat. Commun.*,
14 8, 2017. doi: 10.1038/s41467-017-00323-y.

15 N Nedić, R M Francis, L Stanisavljević, I Pihler, N Kezić, C Bendixen, and P Kryger. Detecting population
16 admixture in honey bees of Serbia. *J. Apicultr. Res.*, 53:303–313, 2014.

17 J Neyman and E S Pearson. On the Use and Interpretation of Certain Test Criteria for Purposes of Statistical
18 Inference: Part I. *Biometrika*, 20A:175–240, 1928.

19 L E Nicolaisen and M M Desai. Distortions in Genealogies due to Purifying Selection and Recombination.
20 *Genetics*, 195:221–230, 2013.

21 P F O'Reilly, E Birney, and D J Balding. Confounding between recombination and selection, and the
22 Ped/Pop method for detecting selection. *Genome Res.*, 18:1304–1313, 2008.

23 H A Orr. The population genetics of beneficial mutations. *Phil. Trans. R. Soc. B*, 365:1195–1201, 2010.

24 E Paradis. pegas: an R package for population genetics with an integrated–modular approach. *Bioinfor-
25 matics*, 26:419–420, 2010.

26 L Park. Linkage Disequilibrium Decay and Past Population History in the Human Genome. *PLoS ONE*, 7:
27 e46603, 2012.

28 N Patterson, P Moorjani, Y Luo, S Mallick, N Rohland, Y Zhan, T Genschoreck, T Webster, and D Reich.
29 Ancient Admixture in Human History. *Genetics*, 192:1065–1093, 2012.

1 B A Payseur and M W Nachman. Microsatellite Variation and Recombination Rate in the Human Genome.
2 *Genetics*, 156:1285–1298, 2000.

3 A L Pendleton, F Shen, A M Taravella, S Emery, K R Veeramah, A R Boyko, and J M Kidd. Comparison
4 of village dog and wolf genomes highlights the role of the neural crest in dog domestication. *BMC Biol.*,
5 16:64, 2018.

6 P S Pennings and J Hermisson. Soft Sweeps II: Molecular Population Genetics of Adaptation from Recurrent
7 Mutation or Migration. *Mol. Biol. Evol.*, 23:1076–1084, 2006a.

8 P S Pennings and J Hermisson. Soft Sweeps III: The Signature of Positive Selection from Recurrent Mutation.
9 *PLoS Genet.*, 2:e186, 2006b.

10 S Peyrégne, M J Boyle, M Dannemann, and K Prüfer. Detecting ancient positive selection in humans using
11 extended lineage sorting. *Genome Res.*, 27:1563–1572, 2017.

12 J E Pool, R B Corbett-Detig, R P Sugino, K A Stevens, C M Cardeno, M W Crepeau, P Duchen, J J
13 Emerson, P Saelao, D J Begun, and C H Langley. Population Genomics of Sub-Saharan *Drosophila*
14 *melanogaster*: African Diversity and Non-African Admixture. *PLoS Genet.*, 8:e1003080, 2012.

15 M Przeworski. The Signature of Positive Selection at Randomly Chosen Loci. *Genetics*, 160:1179–1189,
16 2002.

17 M Pybus, G M Dall’Olio, P Luisi, M Uzkudun, A Carreño-Torres, P Pavlidis, H Laayouni, J Bertranpetti,
18 and J Engelken. 1000 Genomes Selection Browser 1.0: a genome browser dedicated to signatures of natural
19 selection in modern humans. *Nucleic Acids Res.*, 42:D903–D909, 2014.

20 F Racimo. Testing for Ancient Selection Using Cross-population Allele Frequency Differentiation. *Genetics*,
21 202:733–750, 2016.

22 M Ramming, S Kins, N Werner, A Hermann, H Betz, and J Kirsch. Diversity and phylogeny of
23 gephyrin: Tissue-specific splice variants, gene structure, and sequence similarities to molybdenum cofactor-
24 synthesizing and cytoskeleton-associated proteins. *Proc. Natl. Acad. Sci. U.S.A.*, 97:10266–10271, 2000.

25 M Remigereau, G Lakis, S Rekimah, M Leveugle, M C Fontaine, T Langin, A Sarr, and T Robert. Cereal
26 Domestication and Evolution of Branching: Evidence for Soft Selection in the *Tb1* Orthologue of Pearl
27 Millet (*Pennisetum glaucum* [L.] R. Br.). *PLoS ONE*, 6:e22404, 2011.

1 M R Riddle, A C Aspiras, K Gaudenz, R Peuß, J Y Sung, B Martineau, M Peavey, A C Box, J A Tabin,
2 S McGaugh, R Borowsky, C J Tabin, and N Rohner. Insulin resistance in cavefish as an adaptation to a
3 nutrient-limited environment. *Nature*, 555:647–651, 2018.

4 I G Romero, C B Mallick, A Liebert, F Crivellaro, G Chaubey, Y Itan, M Metspalu, M Eaaswarkhanth,
5 R Pitchappan, R Villems, D Reich, L Singh, K Thangaraj, M G Thomas, D M Swallow, M M Lahr,
6 and T Kivisild. Herders of Indian and European Cattle Share Their Predominant Allele for Lactase
7 Persistence. *Mol. Biol. Evol.*, 29:249–260, 2012.

8 T Ruths and L Nakhleh. Boosting forward-time population genetic simulators through genotype compression.
9 *BMC Bioinformatics*, 14, 2013. doi: 10.1186/1471-2105-14-192.

10 P C Sabeti, D E Reich, J M Higgins, H Z P Levine, D J Richter, S F Schaffner, S B Gabriel, J V Platko,
11 N J Patterson, G J McDonald, H C Ackerman, S J Campbell, D Altshuler, R Cooper, D Kwiatkowski,
12 R Ward, and E S Lander. Detecting recent positive selection in the human genome from haplotype
13 structure. *Nature*, 419:832–837, 2002.

14 P C Sabeti, P Varilly, B Fry, J Lohmueller, E Hostetter, C Cotsapas, X Xie, E H Byrne, S A McCarroll,
15 R Gaudet, S F Schaffner, E S Lander, and The International HapMap Consortium. Genome-wide detection
16 and characterization of positive selection in human populations. *Nature*, 449:913–918, 2007.

17 M K Sakharkar, V T K Chow, and P Kangueane. Distributions of exons and introns in the human genome.
18 *In Silico Biol.*, 4:387–393, 2004.

19 S Schiffels and R Durbin. Inferring human population size and separation history from multiple genome
20 sequences. *Nat. Genet.*, 46:919–925, 2014.

21 D R Schrider and A D Kern. Soft Sweeps Are the Dominant Mode of Adaptation in the Human Genome.
22 *Mol. Biol. Evol.*, 34:1863–1877, 2017.

23 J Schweinsberg and R Durrett. Random Partitions Approximating the Coalescence of Lineages During a
24 Selective Sweep. *Ann. Appl. Probab.*, 15:1591–1651, 2005.

25 R H Seeley. Intense natural selection caused a rapid morphological transition in a living marine snail. *Proc.*
26 *Natl. Acad. Sci. U.S.A.*, 83:6897–6901, 1986.

27 J Seger, W A Smith, J J Perry, J Hunn, Z A Kaliszewska, L La Sala, L Pozzi, V J Rountree, and F R
28 Adler. Gene Genealogies Strongly Distorted by Weakly Interfering Mutations in Constant Environments.
29 *Genetics*, 184:529–545, 2010.

1 D Shenoy, S Packianathan, A M Chen, and S Vijayakumar. Do African-American men need separate prostate
2 cancer screening guidelines? *BMC Urol.*, 16:19, 2016.

3 M Slatkin. Inbreeding coefficients and coalescence times. *Genet. Res.*, 58:167–175, 1991.

4 P Smirin-Yosef, N Zuckerman-Levin, S Tzur, Y Granot, L Cohen, J Sachsenweger, G Borck, I Lagovsky,
5 M Salmon-Divon, L Wiesmüller, and L Basel-Vanagaite. A Biallelic Mutation in the Homologous Re-
6 combination Repair Gene SPIDR Is Associated With Human Gonadal Dysgenesis. *J. Clin. Endocrinol.*
7 *Metab.*, 102:681–688, 2017.

8 J Smith, G Coop, M Stephens, and J Novembre. Estimating Time to the Common Ancestor for a Beneficial
9 Allele. *Mol. Biol. Evol.*, 35:1003–1017, 2018.

10 A Snir, D Nadel, I Groman-Yaroslavski, Y Melamed, M Sternberg, O Bar-Yosef, and E Weiss. The Origin
11 of Cultivation and Proto-Weeds, Long Before Neolithic Farming. *PLoS ONE*, 10:e0131422, 2015.

12 S Steinfartz, S Glaberman, D Lanterbecq, M A Russello, S Rosa, T C Hanley, C Marquez, H L Snell, H M
13 Snell, G Gentile, G Dell’Olmo, A M Powell, and A Caccone. Progressive colonization and restricted gene
14 flow shape island-dependent population structure in Galápagos marine iguanas (*Amblyrhynchus cristatus*).
15 *BMC Evol. Biol.*, 9:297, 2009.

16 N Takahata, Y Satta, and J Klein. Divergence Time and Population Size in the Lineage Leading to Modern
17 Humans. *Theor. Popul. Biol.*, 48:198–221, 1995.

18 J Terhorst, J A Kamm, and Y S Song. Robust and scalable inference of population history from hundreds
19 of unphased whole genomes. *Nat. Genet.*, 49:303–309, 2017.

20 S K Tyagarajan and J Fritschy. Gephyrin: a master regulator of neuronal function? *Nat. Rev. Neuro.*, 15:
21 141–156, 2014.

22 B F Voight, S Kudaravalli, X Wen, and J K Pritchard. A Map of Recent Positive Selection in the Human
23 Genome. *PLoS Biol.*, 4:e72, 2006.

24 L Wan, J Han, T Liu, S Dong, F Xie, H Chen, and J Huang. Scaffolding protein SPIDR/KIAA0146 connects
25 the Bloom syndrome helicase with homologous recombination repair. *Proc. Natl. Acad. Sci. U.S.A.*, 110:
26 10646–10651, 2013.

27 G A Watterson. On the Number of Segregating Sites in Genetical Models without Recombination. *Theor.*
28 *Popul. Biol.*, 7:256–276, 1975.

1 S H Williamson, M J Hubisz, A G Clark, B A Payseur, C D Bustamante, and R Nielsen. Localizing Recent
2 Adaptive Evolution in the Human Genome. *PLoS Genet.*, 3:e90, 2007.

3 B A Wilson, D A Petrov, and P W Messer. Soft Selective Sweeps in Complex Demographic Scenarios.
4 *Genetics*, 198:669–684, 2014.

5 R A Wogelius, P L Manning, H E Barden, N P Edwards, S M Webb, W I Sellers, K G Taylor, P L Larson,
6 P Dodson, H You, L Da-qing, and U Bergmann. Trace Metals as Biomarkers for Eumelanin Pigment in
7 the Fossil Record. *Science*, 333:1622–1626, 2011.

8 S Wright. Isolation by distance. *Genetics*, 28:114–138, 1943.

9 S Wright. The genetical structure of populations. *Ann. Eugenics*, 15:323–354, 1951.

10 X Xie, Z Gong, V Mansuy-Aubert, Q L Zhou, S A Tatulian, D Sehrt, F Gnad, L M Brill, K Motamedchaboki,
11 Y Chen, M P Czech, M Mann, M Krüger, and Z Y Jiang. C2 Domain-Containing Phosphoprotein CDP138
12 Regulates GLUT4 Insertion into the Plasma Membrane. *Cell Metab.*, 14:378–389, 2011.

13 J Yang, M N Weedon, S Purcell, G Lettre, K Estrada, C J Willer, A V Smith, E Ingelsson, J R O’Connell,
14 M Mangino, R Mägi, P A Madden, A C Heath, D R Nyholt, N G Martin, G W Montgomery, T M
15 Frayling, J N Hirschhorn, M I McCarthy, M E Goddard, P M Visscher, and the GIANT Consortium.
16 Genomic inflation factors under polygenic inheritance. *Eur. J. Hum. Genet.*, 19:807–812, 2011.

17 K Yang, J Shen, Y Xie, Y Lin, J Qin, Q Mao, X Zheng, and L Xie. Promoter-targeted double-stranded small
18 RNAs activate *PAWR* gene expression in human cancer cells. *Int. J. Biochem. Cell B.*, 45:1338–1346,
19 2013.

20 X Yuan, D J Miller, J Zhang, D Herrington, and Y Wang. An Overview of Population Genetic Data
21 Simulation. *J. Comput. Biol.*, 19:42–54, 2012.

22 Q L Zhou, Y Song, C Huang, J Huang, Z Gong, Z Liao, A G Sharma, L Greene, J Z Deng, M C Rigor,
23 X Xie, S Qi, J E Ayala, and Z Y Jiang. Membrane Trafficking Protein CDP138 Regulates Fat Browning
24 and Insulin Sensitivity through Controlling Catecholamine Release. *Mol. Cell. Biol.*, 38:e00153–17, 2018.

Table 1: Summary of parameters for experiments involving simulated human models. We provide diploid sample sizes, per-site per-generation mutation and recombination rates, and sequence length in kilobases. Additionally, we indicate the population-scaled values for mutation and recombination rates in brackets upon their first appearance, scaling by $4N_e$ where $N_e = 10^4$ for population pairs not containing sub-Saharan African (SSA) populations, and $N_e = 2 \times 10^4$ otherwise ($\theta = 4N_e\mu$; $\rho = 4N_e\mu$; $\sigma = 4N_e s$). The relationship between generations and coalescent units is $2N_e$ generations per coalescent unit.

Experiment	Sample sizes	Mutation rate (μ) [θ]	Recombination rate (r) [ρ]	Sequence length; window size	Split time (τ , generations)	Selection coefficient (s) [σ] and time (t , generations)	coalescent units	Figures
Power simulations	99 (CEU), 103 (GIH), 108 (YRI)	1.25×10^{-8} [$\theta = 5 \times 10^{-4}$ (no SSA), $\theta = 10^{-3}$ (with SSA)]	10^{-8} , drawn at random from exponential distribution [$\rho = 4 \times 10^{-4}$ (no SSA), $\rho = 8 \times 10^{-4}$ (with SSA)]	100; 20 (CEU-YRI), 40 (CEU-GIH) [0.0935]	CEU-GIH: 1100 [0.055]; CEU-YRI: 3740 [0.0935]	$s = 0.01$ [$\sigma = 4000$ (no SSA), $\sigma = 8000$ (with SSA)], $s = 0.1$ [$\sigma = 400$ (no SSA), $\sigma = 800$ (with SSA)]; $t \in [200, 4000]$ [$t/(2N_e) \in [0.01, 0.2]$]; $t \in [400, 6000]$ (CEU-YRI) [$t/(2N_e) \in [0.01, 0.15]$]		2, 3; S8; S11-S18; S34-S43
Background selection	Same as above	Same as above	Same as above, but reduced to $r = 10^{-10}$ across central gene	Same as above	Same as above	$s = -0.1$, occurring from the start of the simulation on central gene		S23
Hard/soft classification	Same as above; also 91 (GBR), 99 (KHV), 104 (JPT), 99 (LWK)	Same as above	3.125×10^{-9} [$\rho = 1.25 \times 10^{-4}$ (no SSA), $\rho = 2.5 \times 10^{-4}$ (with SSA)], drawn as above	20 (with SSA), 40 (no SSA); sequence treated as a single window	Same as above; also, 300 (CEU-GBR), 1560 (CEU-JPT), 3740 (GH-YRI), 1580 (JPT-GIH), 660 (JPT-KHV), 3740 (JPT-YRI), 2800 (LWK-YRI)	$s \in [0.005, 0.5]$ uniformly at random from log-scale; t dependent on population pair, ancestral sweeps finish 40 generations before τ , convergent sweeps start 40 generations after τ		5; S24-S29
p -value assignment	Same as above	Same as above	Same hard/soft classification	Same as hard/soft classification	Same hard/soft classification	No selection		Tables S1, S3, and S4-S21
False discovery rate	Same as above	Same as above	Same hard/soft classification	Same hard/soft classification	Same hard/soft classification	Same as hard/soft classification for sweeps, and same as p -value simulations for neutral		Table S2

Table 2: Summary of parameters for experiments involving the generalized mammalian model. We provide diploid sample sizes, per-site per-generation mutation and recombination rates, and sequence length in kilobases. Additionally, we indicate the population-scaled values for mutation and recombination rates in brackets upon their first appearance, scaling by $4N_e$ where $N_e = 10^4$ ($\theta = 4N_e\mu$; $\rho = 4N_e\tau$; $\sigma = 4N_e s$). The relationship between generations and coalescent units is $2N_e$ generations per coalescent unit.

Experiment	Sample sizes	Mutation length; recombination (r) [ρ]	Sequence length; window size	win-	Split time (τ , generations)	Selection coefficient (s) and time (t , generations)	Other parameters	Figures
Generalized mammalian model, including star tree and non-simultaneous sweeps ($K \in \{2, 3, 4, 5\}$)	100 per population	$\mu = 2.5 \times 10^{-8}$ [10^{-3}], $r = 10^{-8}$ (uniform across replicates) [$\rho = 4 \times 10^{-4}$]	100; 40	$\tau \in \{250, 500, 750, 1000\}$ [$t/(2N_e)$] { 0.0125 , 0.025 , 0.0375 , 0.05 }; $\tau = 1000$ for $K = 2$ and star tree ($K = 4$), and sequential starting from $\tau = 1000$ other- wise	$\sigma \in [200, 4000]$ [$t/(2N_e)$] { $0.01, 0.2$ }]	$s = 0.1$ = 0.01	Population splits separated by 250 generations for $K > 2$ scenarios; $K > 2$ trees are asymmetric	S1; S4; S9 and <i>Supplementary note</i> SN1-SN3; SN5; SN6, SN7
Admixture, distant donor ($K = 2$)	Same as above	Same as above	Same as above	$\tau = 1000$ [$\tau/(2N_e) = 0.05$] between sampled sisters	$s = 1400$ above; $t = 1400$ for ancestral sweeps, and $t = 600$ [$t/(2N_e) = 0.03$] for convergent and divergent sweeps	Distant donor split from sampled populations $\tau = 20000$ generations ago; admixture occurred 200 generations [0.01 coalescent units] ago; admixture proportion $\alpha \in \{0.05, 0.1, \dots, 0.4\}$	4; S19	
Admixture, inter-sister ($K = 2$)	Same as above	Same as above	Same as above	Same as above	Same as above	Adaptive mutation originates in donor population and may be adaptive or not in its target sister; timing and proportion of admixture same as above	<i>Supplementary note</i> SN4	
Uneven sample sizes ($K = 2$)	Pooled sample size is 200 diploids; sample size is $n_{\text{small}} \in \{20, 40, 60\}$	Same as above	Same as above	Same as above	Same as above	s and t same as generalized mammalian model	Protocol identical to unmodified generalized mammalian model	S20-S22

Table 3: Summary of SS-H12 signals and their interpretation across various scenarios.

Scenario	Sign of SS-H12	Magnitude of SS-H12	Comments	Reference
Neutrality	Typically negative	Small	Magnitude becomes positive in bottleneck scenarios where the number of shared haplotypes between populations is higher by chance.	Figures 2-3 and S5-S8, see first boxplot of left column in each figure.
Ancestral sweep	Positive	Large	Magnitude is generally smaller than for convergent sweeps because ancestral sweeps are older; rare negative values may arise for weaker sweep strengths.	Figures 2-3 and S5-S8 for power curves and boxplots, Figures S11-S14 for sign of SS-H12, center column of each figure.
Convergent sweep	Predominantly negative	Large	Largest magnitude of SS-H12 across tested scenarios; positive values may arise in the rare event that two independent sweeps on the same haplotype occur between sampled populations.	Figures 2-3 and S5-S8, Figures S11-S14, left column of each figure; <i>Supplementary note</i> Figure SN5.
Divergent sweep	Typically negative	Small	Trends in magnitude of SS-H12 match those of neutrality without exception; large magnitudes are impossible for divergent sweeps due to the correction factor (Equation 3).	Figures 2-3 and S5-S8, Figures S11-S14, right column of each figure.
Relative sample sizes	Negative or positive	Small or large	The performance of SS-H12 does not depend on the relative sizes of each sample, with values of $\gamma \in \{0.7, 0.8, 0.9\}$ (Equation 2) behaving as with $\gamma = 0.5$.	Figures S20-S22.
Background selection	Typically negative	Small	Background selection has no discernible effect on the distribution of SS-H12 relative to neutrality.	Figure S23
Admixture	Predominantly negative (see comments)	Small or large	Sufficient admixture from a diverse enough donor population will erode the signal of a sweep, yielding negative values of small magnitude; admixture with a low-diversity donor does not affect magnitude or signal of convergent sweeps, but will cause ancestral sweeps to spuriously resemble convergent sweeps. Admixture between closely-related sampled sister populations yields positive values.	Figures 4 and S19 for distant-donor scenario; <i>Supplementary note</i> Figure SN4 for inter-sister scenario.
Number of sampled populations (K)	Negative or positive	Small or large	The number of populations included in the sample does not affect inference with SS-H12, across tested asymmetric and star phylogenies.	Figures S9 and <i>Supplementary note</i> Figures SN1-SN3 (asymmetric); Figures SN6 and SN7 (star).
Unphased data	Negative or positive	Small or large	Applied to unphased multilocus genotypes (MLGs) as SS-G123, our approach has similar power and yields comparable inferences to SS-H12. Classification ability decays more rapidly because MLGs are more diverse than haplotypes	Figures S34-S41.

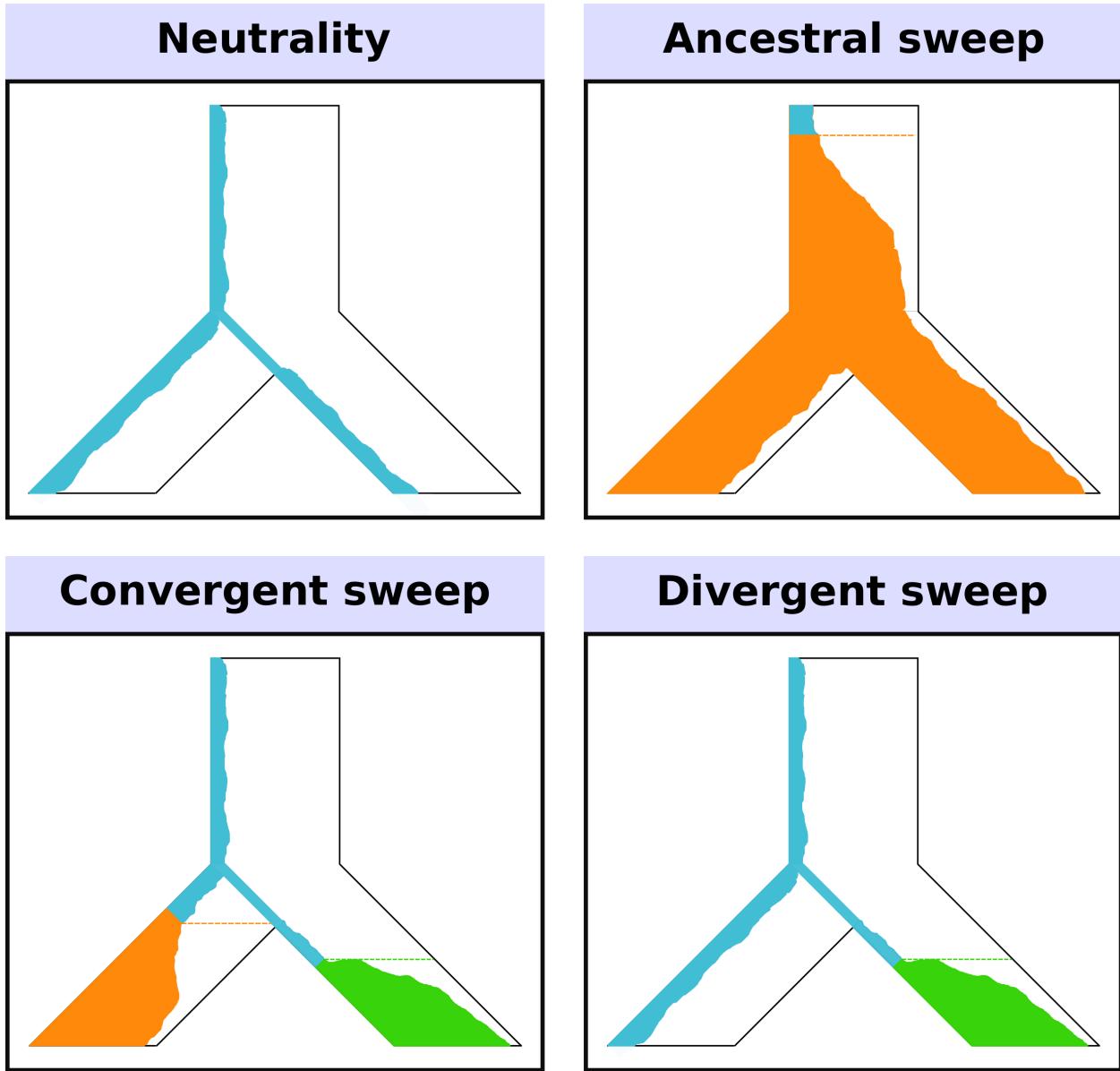


Figure 1: Model of a two-population phylogeny for which SS-H12 detects recent shared sweeps. Here, an ancestral population splits in the past into two modern lineages, which are sampled. Each panel displays the frequency trajectory of a haplotype across the populations. Under neutrality, there is high haplotypic diversity such that many haplotypes, including the reference haplotype (blue), exist at low frequency. In the ancestral sweep, the reference haplotype becomes selectively advantageous (turning orange) and rises to high frequency prior to the split, such that both modern lineages carry the same selected haplotype at high frequency. The convergent sweep scenario involves different selected haplotypes independently rising to high frequency in each lineage after their split. Under a divergent sweep, only one sampled lineage experiences selection.

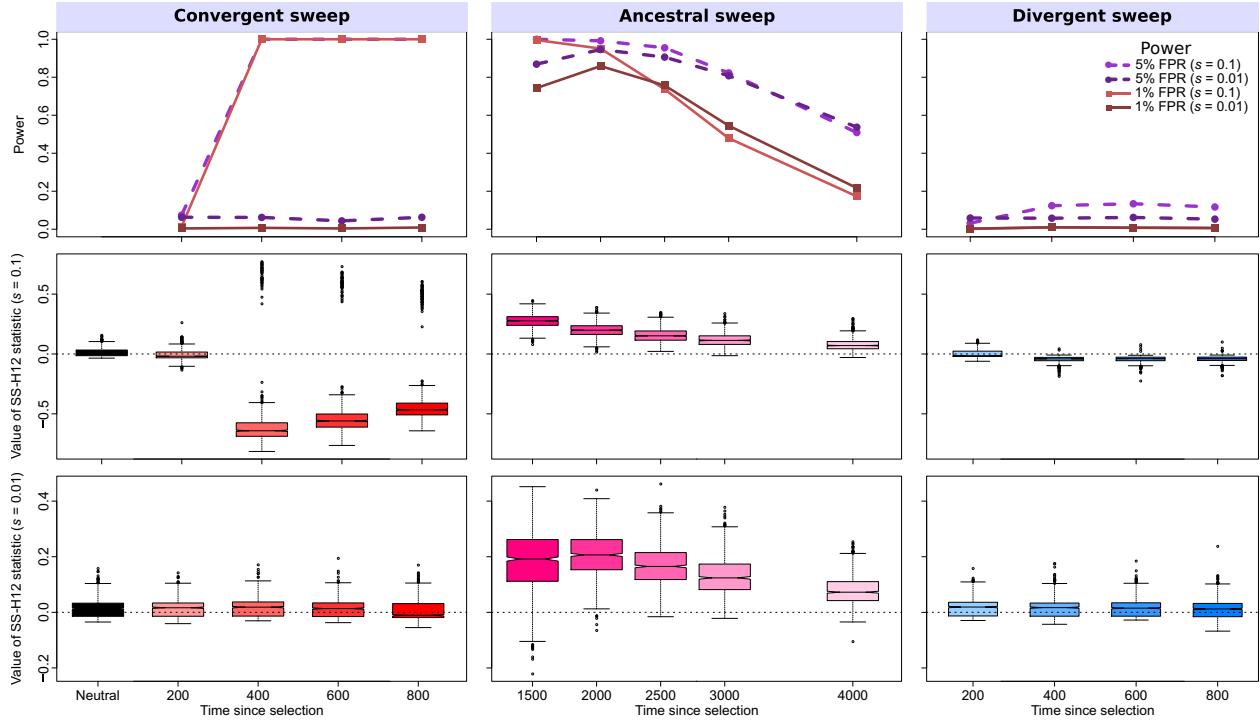


Figure 2: Properties of SS-H12 for simulated strong ($s = 0.1$; $\sigma = 4N_e s = 4000$) and moderate ($s = 0.01$; $\sigma = 400$) hard sweep scenarios under the CEU-GIH model ($\tau = 1100$ generations, or 0.055 coalescent units, before sampling). (Top row) Power at 1% (red lines) and 5% (purple lines) false positive rates (FPRs) to detect recent ancestral, convergent, and divergent hard sweeps (see Figure 1) as a function of time at which positive selection of the favored allele initiated (t), with FPR based on the distribution of maximum $|\text{SS-H12}|$ across simulated neutral replicates. (Middle row) Box plots summarizing the distribution of SS-H12 values from windows of maximum $|\text{SS-H12}|$ across strong sweep replicates, corresponding to each time point in the power curves, with dashed lines in each panel representing $\text{SS-H12} = 0$. (Bottom row) Box plots summarizing the distribution of SS-H12 values across moderate sweep replicates. For convergent and divergent sweeps, $t < \tau$, while for ancestral sweeps, $t > \tau$. All replicate samples for the CEU-GIH model contain 99 simulated CEU individuals and 103 simulated GIH individuals, as in the 1000 Genomes Project dataset [Auton et al., 2015], and we performed 1000 replicates for each scenario. CEU: Utah (USA) Residents with Northern and Western European Ancestry. GIH: Gujarati Indians from Houston, Texas (USA).

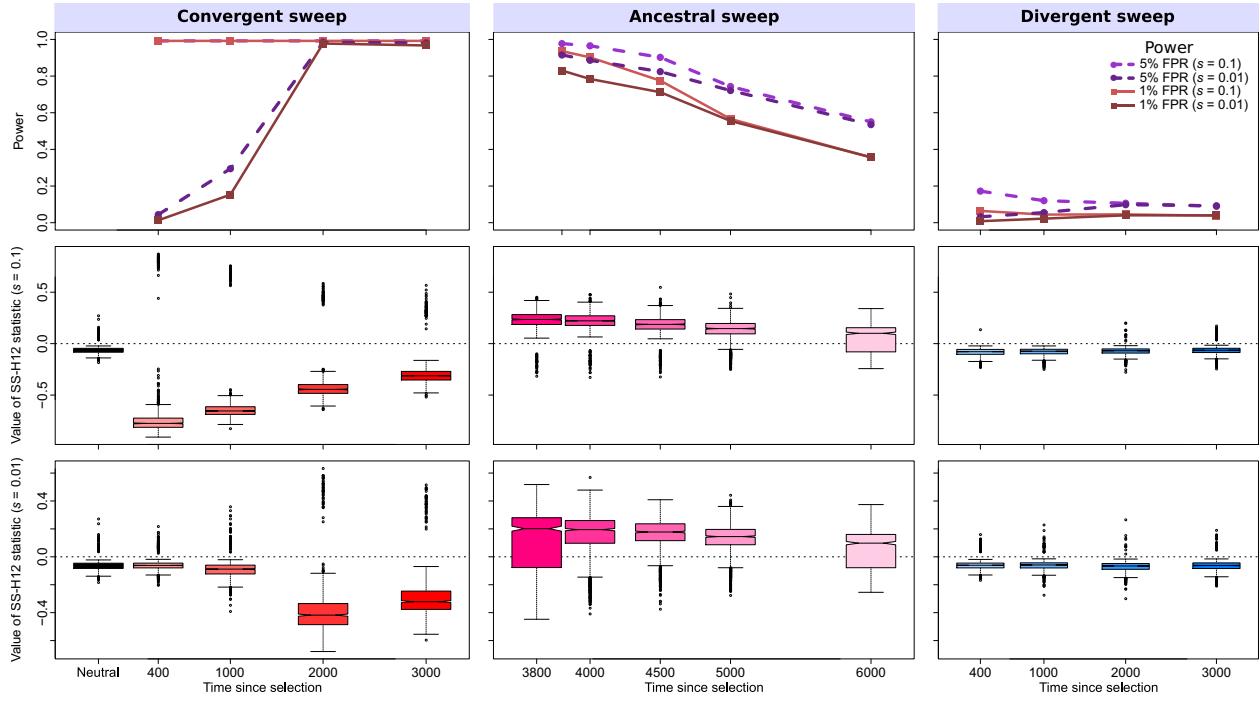


Figure 3: Properties of SS-H12 for simulated strong ($s = 0.1$; $\sigma = 4N_e s = 8000$) and moderate ($s = 0.01$; $\sigma = 800$) hard sweep scenarios under the CEU-YRI model ($\tau = 3740$ generations, or 0.0935 coalescent units, before sampling). (Top row) Power at 1% (red lines) and 5% (purple lines) false positive rates (FPRs) to detect recent ancestral, convergent, and divergent hard sweeps (see Figure 1) as a function of time at which positive selection of the favored allele initiated (t), with FPR based on the distribution of maximum $|\text{SS-H12}|$ across simulated neutral replicates. (Middle row) Box plots summarizing the distribution of SS-H12 values from windows of maximum $|\text{SS-H12}|$ across strong sweep replicates, corresponding to each time point in the power curves, with dashed lines in each panel representing $\text{SS-H12} = 0$. (Bottom row) Box plots summarizing the distribution of SS-H12 values across moderate sweep replicates. For convergent and divergent sweeps, $t < \tau$, while for ancestral sweeps, $t > \tau$. All replicate samples for the CEU-YRI model contain 99 simulated CEU individuals and 108 simulated YRI individuals, as in the 1000 Genomes Project dataset [Auton et al., 2015], and we performed 1000 replicates for each scenario. YRI: Yoruba people from Ibadan, Nigeria.

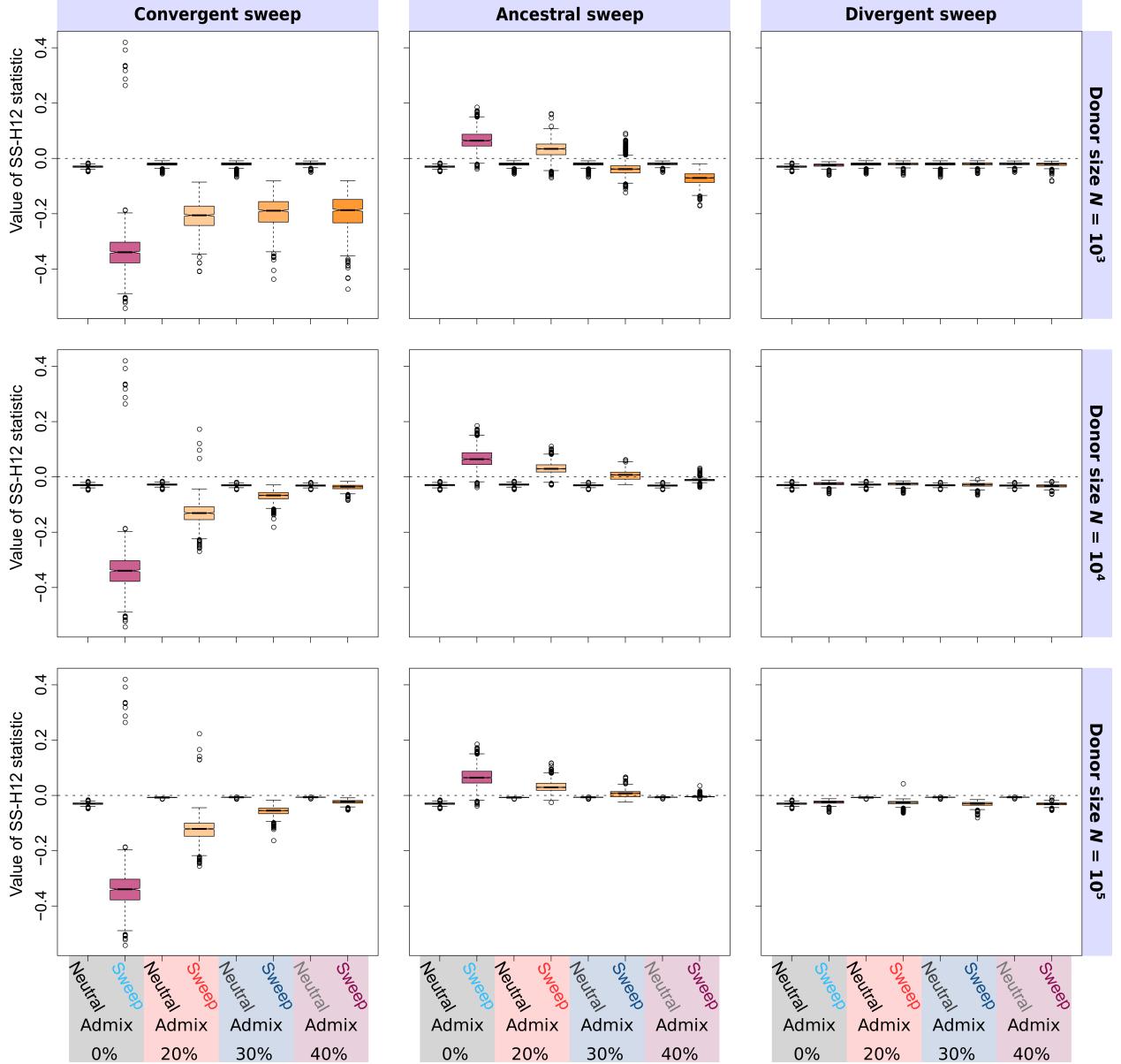


Figure 4: Effect of admixture from a diverged, unsampled donor lineage on distributions of SS-H12 values at peaks of maximum $|\text{SS-H12}|$, in samples consisting of individuals from $K = 2$ populations following the simplified mammalian model ($\tau = 1000$; 0.05 coalescent units), under simulated recent ancestral, convergent, and divergent sweeps. For ancestral sweeps, selection occurred 1400 generations (0.07 coalescent units) before sampling. For convergent and divergent sweeps, selection occurred 600 generations (0.03 coalescent units) before sampling. The effective size of the donor population varies from $N = 10^3$ (an order of magnitude less than that of the sampled populations), to $N = 10^5$ (an order of magnitude more), with admixture at 200 generations (0.01 coalescent units) before sampling at rates 0.2 to 0.4, modeled as a single pulse. The donor diverged from the sampled populations $2 \times 10^4 = 2N$ generations (one coalescent unit) before sampling. In divergent sweep scenarios, admixture occurred specifically into the population experiencing a sweep. All sample sizes are of $n = 100$ diploid individuals, with 1000 replicates performed for each scenario. For comparison, we include unadmixed results in each panel.

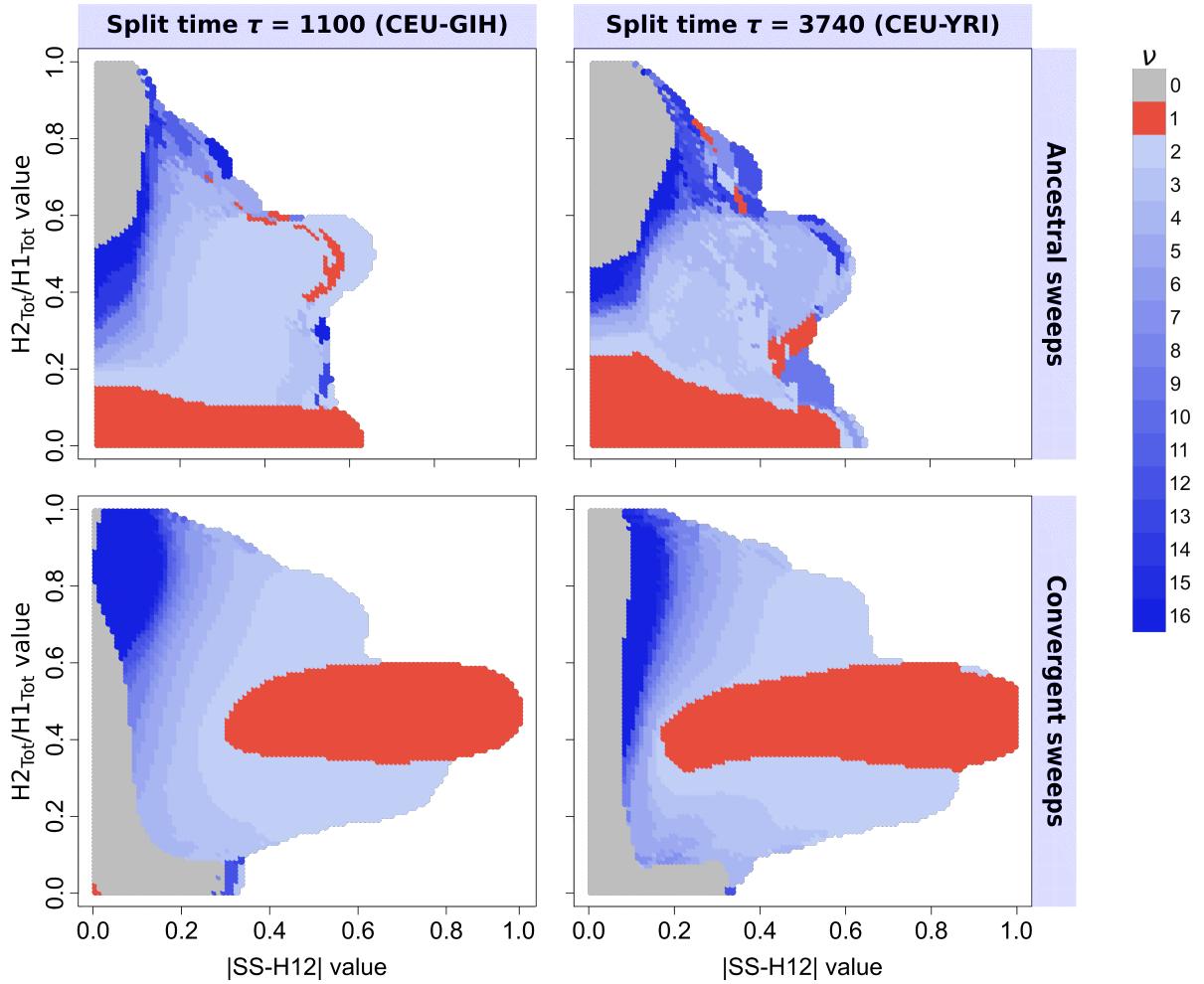


Figure 5: Ability of paired $(|SS-H12|, H2_{\text{Tot}}/H1_{\text{Tot}})$ values to infer the most probable number of sweeping haplotypes ν in a shared sweep. Most probable ν for each test point was assigned from the posterior distribution of 5×10^6 sweep replicates with $\nu \in \{0, 1, \dots, 16\}$, drawn uniformly at random. (Top row) Ancestral sweeps for the CEU-GIH model ($\tau = 1100$, $\tau/(2N_e) = 0.055$ coalescent units, left) and the CEU-YRI model ($\tau = 3740$, $\tau/(2N_e) = 0.0935$ coalescent units, right), with $t \in [1140, 3000]$ ($t/(2N_e) \in [0.057, 0.15]$ coalescent units, left) and $t \in [3780, 5000]$ ($t/(2N_e) \in [0.0945, 0.125]$ coalescent units, right). (Bottom row) Convergent sweeps for the CEU-GIH model (left) and the CEU-YRI model (right), with $t \in [200, 1060]$ ($t/(2N_e) \in [0.01, 0.053]$ coalescent units, left) and $t \in [200, 3700]$ ($t/(2N_e) \in [0.005, 0.0925]$ coalescent units, right). Colored in red are points whose paired $(|SS-H12|, H2_{\text{Tot}}/H1_{\text{Tot}})$ values are more likely to result from hard sweeps, those colored in shades of blue are points more likely to be generated from soft sweeps, and gray indicates a greater probability of neutrality. Regions in white are those for which no observations of sweep replicates within a Euclidean distance of 0.1 exist.

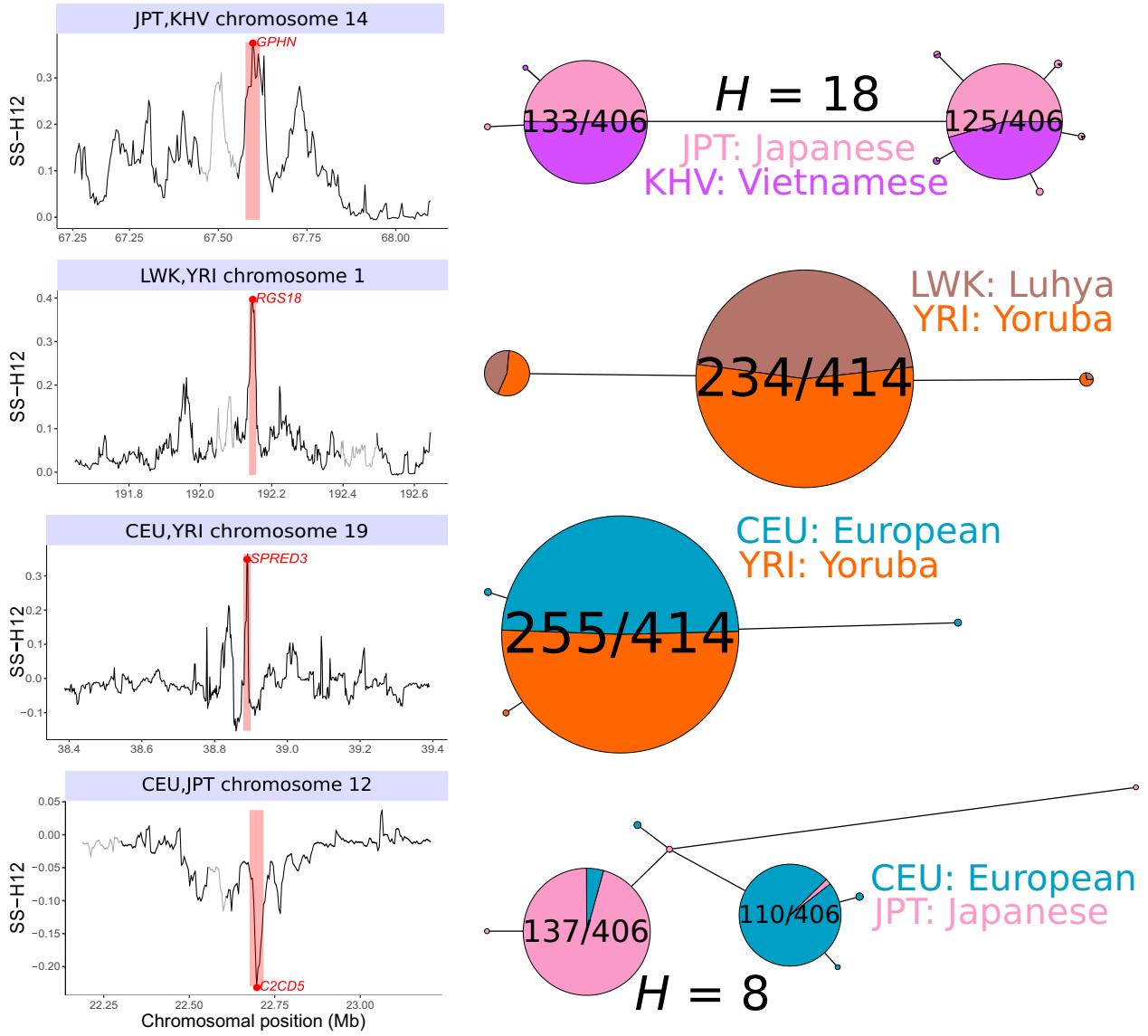


Figure 6: Top outlying shared sweep candidates at RNA- and protein-coding genes in global human populations. The signal peak, including chromosomal position, magnitude, and highlighted window of maximum SS-H12 (left column), as well as the `pegas` haplotype network for the window [Paradis, 2010] are displayed for each candidate. The East Asian JPT and KHV populations experience an ancestral soft sweep at *GPHN* (top row). The sub-Saharan African populations LWK and YRI share an ancestral hard sweep at *RGS18* (second row). The European CEU population experiences a shared sweep with YRI at *SPRED3* (third row). The European CEU and East Asian JPT have a convergent sweep at *C2CD5*, with a different, single high-frequency haplotype present in each population (bottom row). Haplotype networks are truncated to retain only haplotypes with an observed count ≥ 6 . The number of haplotypes belonging to the sweeping class(es) is indicated as a fraction, and the Hamming distance (H) between sweeping haplotypes is indicated where applicable. New population abbreviations: Japanese people from Tokyo (JPT); Kinh people of Ho Chi Minh City, Vietnam (KHV); Luhya people from Webuye, Kenya (LWK).