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Abstract

Positive selection causes beneficial alleles to rise to high frequency, resulting in a selective
sweep of the diversity surrounding the selected sites. Accordingly, the signature of a selective
sweep in an ancestral population may still remain in its descendants. Identifying signatures of
selection in the ancestor that are shared among its descendants is important to contextualize
the timing of a sweep, but few methods exist for this purpose. We introduce the statistic SS-
H12, which can identify genomic regions under shared positive selection across populations and
is based on the theory of the expected haplotype homozygosity statistic H12, which detects
recent hard and soft sweeps from the presence of high-frequency haplotypes. SS-H12 is distinct
from comparable statistics because it requires a minimum of only two populations, and properly
identifies and differentiates between independent convergent sweeps and true ancestral sweeps,
with high power and robustness to a variety of demographic models. Furthermore, we can apply
SS-H12 in conjunction with the ratio of statistics we term H2r,, and Hly,; to further classify
identified shared sweeps as hard or soft. Finally, we identified both previously-reported and novel
shared sweep candidates from human whole-genome sequences. Previously-reported candidates
include the well-characterized ancestral sweeps at LCT and SLC24A5 in Indo-Europeans, as well
as GPHN worldwide. Novel candidates include an ancestral sweep at RGS18 in sub-Saharan
Africans involved in regulating the platelet response and implicated in sudden cardiac death,
and a convergent sweep at C2CD5 between European and East Asian populations that may

explain their different insulin responses.
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Introduction

Alleles under positive selection increase in frequency in a population toward fixation, causing nearby linked
neutral variants to also rise to high frequency. This process results in selective sweeps of the diversity
surrounding selected sites, and these sweeps can be hard or soft [Hermisson and Pennings, 2005, Pennings
and Hermisson, 2006a,b, Hermisson and Pennings, 2017]. Under hard sweeps, beneficial alleles exist on a
single haplotype at the time of selection, which rises to high frequency with the selected variants. In contrast,
soft sweeps occur when beneficial alleles are present on multiple haplotypes, each of which increases in
frequency with the selected variants. Thus, individuals carrying the selected alleles do not all share a common
haplotypic background. The signature of a selective sweep, hard or soft, is characterized by elevated linkage
disequilibrium (LD) on either side of the beneficial mutation, and elevated expected haplotype homozygosity
[Maynard Smith and Haigh, 1974, Sabeti et al., 2002, Schweinsberg and Durrett, 2005]. Thus, the signature
of a selective sweep decays with distance from the selected site as mutation and recombination erode tracts
of sequence identity produced by the sweep, returning expected haplotype homozygosity and LD to their
neutral levels [Messer and Petrov, 2013].

Various approaches exist to detect signatures of selective sweeps in single populations, but few methods
can identify sweep regions shared across populations, and these methods primarily rely on allele frequency
data as input. Existing methods to identify shared sweeps [Bonhomme et al., 2010, Fariello et al., 2013,
Racimo, 2016, Librado et al., 2017, Peyrégne et al., 2017, Cheng et al., 2017, Johnson and Voight, 2018]
leverage the observation that study populations sharing similar patterns of genetic diversity at a putative site
under selection descend from a common ancestor in which the sweep occurred. Such approaches therefore
infer a sweep ancestral to the study populations from what may be coincidental (i.e., independent) signals.
Moreover, many of these methods require data from at least one reference population in addition to the
study populations, and of these, most may be misled by sweeps in their set of reference populations. These
constraints may therefore impede the application of these methods to study systems that do not fit these
model assumptions or data requirements.

Identifying sweeps common to multiple populations provides an important layer of context that specifies
the branch of a genealogy on which a sweep is likely to have occurred. In this way, the timing and types
of pressures that contributed to particular signals among sampled populations can become clearer. For
example, identifying sweeps that are shared ancestrally among all populations within a species highlights the
selective events that contributed to their most important modern phenotypes. On a smaller scale, methods to
identify shared sweeps can be leveraged to distinguish signatures of local adaptation in particular populations
[Librado and Orlando, 2018]. In contrast, single-population tests would provide little information about the

timing and therefore relative importance of detected sweeps. More generally, tests tailored to the detection
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of sweeps within samples drawn from multiple populations are likely to have higher power to detect such
events than are tests that do not account for sample complexity [Bonhomme et al., 2010, Fariello et al.,
2013], underscoring the usefulness of multi-population approaches.

Accordingly, the breadth of questions that can be addressed using shared sweep approaches covers a
variety of topics and organisms. Among the most fundamental examples of local adaptation seen ancestrally
in related populations are those related to diet and metabolism, which can reflect important responses to
changes in nutritional availability. An example of such adaptation is the shift toward eating rice in East
Asian populations [Cheng et al., 2017]. Supplementing this idea, characterizing the attributes of shared
sweeps in related populations can uncover the number of adaptive events underlying an observed phenotype,
such as the number of times selection for reduced insulin sensitivity among cave-dwelling populations of the
fish Astyanaz mezicanus has occurred [Riddle et al., 2018], or whether convergent resistance to industrial
pollutants seen in populations of the flower Mimulus guttatus derives from ancestral standing variation [Lee
and Coop, 2017]. Increasingly, the availability of ancient genomes is allowing for the construction of time
transect datasets [Lindo et al., 2016, Librado et al., 2017] which can be used not only to lend support to
hypotheses generated from modern data, but infer the point in time at which a shared sweep may have
emerged. Such sweeps may have important implications for understanding domestication events [Librado
et al., 2017, Pendleton et al., 2018], the emergence of particular cultural traits such as human fishing and
farming practices [Chaplin and Jablonski, 2013, Snir et al., 2015, Marciniak and Perry, 2017], and the
complex relationships between modern populations such as those of South Asia described in Metspalu et al.
[2011].

To address the constraints of current methods, we developed SS-H12, an expected haplotype
homozygosity-based statistic that detects shared selective sweeps from a minimum of two sampled pop-
ulations (see Materials and Methods). Beyond simply detecting shared sweeps, SS-H12 uses haplotype data
to classify sweep candidates as either ancestral (shared through common ancestry) or convergent (occurring
independently; Figure 1). SS-H12 is based on the theory of H12 [Garud et al., 2015, Garud and Rosenberg,
2015], a summary statistic that measures expected homozygosity in haplotype data from a single population.
H12 has high power to detect recent hard and soft selective sweeps due to its unique formulation. For a

genomic window containing I distinct haplotypes, H12 is defined as

I
H12 = (p1 +p2)® + ZP?: (1)
=3

where p; is the frequency of the ith most frequent haplotype, and p; > ps > .-+ > p;. The two largest
haplotype frequencies are pooled into a single value to reflect the presence of at least two high-frequency

haplotypes under a soft sweep. Meanwhile, the squares of the remaining haplotype frequencies are summed
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to reflect the probability of drawing two copies of the third through Ith most frequent haplotypes at random
from the population. Thus, H12 yields similar values for hard and soft sweeps. The framework of the single-
population statistic also distinguishes hard and soft sweeps using the ratio H2/H1 [Garud et al., 2015, Garud
and Rosenberg, 2015], where H1 = 2521 p? is the expected haplotype homozygosity, and where H2 = H1 —p?
is the expected haplotype homozygosity omitting the most frequent haplotype. H2/H1 is small under hard
sweeps because the second through Ith frequencies are small, as the beneficial alleles exist only on a single
haplotypic background. Accordingly, H2/H1 is larger for soft sweeps [Garud et al., 2015], and can therefore
be used to classify sweeps as hard or soft, conditioning on an elevated value of H12.

Using simulated genetic data, we show that SS-H12 has high power to detect recent shared sweeps in
population pairs, displaying a similar range of detection to H12. Additionally, we demonstrate that SS-
H12 correctly differentiates between recent ancestral and convergent sweeps, generally without confusing
the two. Furthermore, we extended the application of SS-H12 to an arbitrary number of populations K
(see Materials and Methods), finding once again that our approach classifies sweeps correctly and with high
power. Moreover, the SS-H12 approach retains the ability to distinguish between hard and soft shared sweeps
by inferring the number of distinct sweeping haplotypes (see Materials and Methods). Finally, our analysis
of whole-genome sequences from global human populations recovered previously-identified sweep candidates
at the LCT and SLC24A5 genes in Indo-European populations, corroborated recently-characterized sweeps
that emerged from genomic scans with the single-population approach [Harris et al., 2018], such as RGS18 in
African and P4/HA! in Indo-European populations, and uncovered novel shared sweep candidates, such as the
convergent sweeps C2CD5 between Eurasian populations and PAWR between European and sub-Saharan

African populations.

Materials and Methods

Constructing SS-H12

Here, we formulate SS-H12 using the principles of H12 applied to a sample consisting of multiple populations.
SS-H12 provides information about the location of a shared sweep on the phylogenetic tree relating the
sampled populations. SS-H12 is computed from multiple statistics that quantify the diversity of haplotypes
within each population, as well as within the pool of the populations, therefore making use of the haplotype
frequency spectrum and measures of shared haplotype identity to draw inferences. Consider a pooled sample
consisting of haplotypes from K = 2 populations, in which a fraction « of the haplotypes derives from
population 1 and a fraction 1 —  derives from population 2. For the pooled sample, we define the total-

sample expected haplotype homozygosity statistic H121, within a genomic window containing I distinct
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H121, = (CEl + 1’2)2 + fo, (2)
=3

where x; = yp1; + (1 — ¥)pa;, 1 > a9 > -+ > xy, is the frequency of the ith most frequent haplotype in
the pooled population, and where p1; and po; are the frequencies of this haplotype in populations 1 and 2,
respectively. That is, x;, p1s;, and po; refer to the same haplotype, indexed according to its frequency in the
pooled sample. The value of H121; is therefore large at the genomic regions of shared sweeps because the
overall haplotypic diversity at such loci is small, reflecting the reduced haplotypic diversity of component
populations.

Next, we seek to define a statistic that classifies the putative shared sweep as ancestral or convergent
between the pair of populations. To do this, we define a statistic fpig = Zilzl(ph- — poi)?, which measures
the sum of the squared difference in the frequency of each haplotype between both populations. fpig takes
on values between 0, for population pairs with identical haplotype frequencies, and 2, for populations that
are each fixed for a different haplotype. The former case is consistent with an ancestral sweep scenario,
whereas the latter is consistent with a convergent sweep—though we caution that genetic drift can also
produce extreme values of fpig, which is unlikely to be problematic provided test populations are closely
enough related.

From the summary statistics H1214 (based on the haplotype frequency spectrum) and fpig (quantifying
shared haplotype identity), we now define SS-H12, which measures the extent to which an elevated H121.4 is
due to shared ancestry. First, we specify a statistic that quantifies the shared sweep, H12A. = H1210¢ — fpisr-
The value of H12a,. lies between -1 for convergent sweeps, and 1 for ancestral sweeps, with a typically
negative value near 0 in the absence of a sweep. H12a,, is therefore easy to interpret because convergent
sweeps on non-identical haplotypes cannot generate positive values, and ancestral sweep signals that have
not eroded due to the effects of recombination and mutation cannot generate negative values. Because
a sufficiently strong and complete sweep in one population (divergent sweep; Figure 1) may also generate
negative values of H124,. with elevated magnitudes distinct from neutrality, we introduce a correction factor
that yields SS-H12 by dividing the minimum value of H12 between a pair of populations by the maximum
value. This modification allows SS-H12 to overlook spurious signals driven by strong selection in a single
population by reducing their prominence relative to true shared sweep signals. Applying this correction

factor yields SS-H12, which is computed as

min[H12(M), H12(2)]
max[H12(1) H12(2)]’

SS-H12 = H12ap X
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where H12(") and H12(® are the H12 values for populations 1 and 2, respectively. The correction factor
has a value close to 1 for shared sweeps of either type, but a small value for divergent sweeps. Thus,
the corrected SS-H12 is sensitive only to shared sweeps, while maintaining a small magnitude value under
neutrality. We note that the performance of SS-H12 is dependent upon the size of the sample, requiring
sufficient captured haplotypic diversity to distinguish sweeps from the neutral background, similarly to H12
and other haplotype-based methods. Therefore, while our analyses concern large simulated and empirical
sample sizes around n = 100 per population, we expect that n = 25 per population will provide enough
resolution to detect sweeps given a similar, broadly mammalian demographic history [Harris et al., 2018].
We now extend SS-H12 to diploid unphased multilocus genotype (MLG) data as SS-G123. Results for
SS-G123 experiments appear in the subsection Detection and classification of shared sweeps from unphased
data. The ability to analyze MLGs is important because haplotype data are often unavailable for non-model
organisms. To generate MLGs from our original unphased data, we manually merged an individual’s two
haplotypes into a single MLG. In this way, we were able to directly assess the effects of phasing on our
inferences. MLGs are character strings as are haplotypes, but in contrast to a haplotype, each character
within the MLG may take one of three values representing a homozygous reference, homozygous alternate,

or heterozygous genotype. The definition of SS-G123 is analogous to that of SS-H12:

min[G123M), G123(2)]
max[G123(1) G123()]’

SS-G123 = G123, X (4)
where G123 is the MLG equivalent of H12 [Harris et al., 2018] computed as G123 = (q1 +q2 +¢3)* —|—Zj:4 q]2-
(for J distinct MLGs and ¢ > go > --- > qy). G123 and G123® are G123 respectively computed
in populations 1 and 2, G123a,c = G12310t — gpif, G12310t = (Y1 + Y2 + y3)? + Zj:4 y2, and gpig =
ijl(qu — q2j)%; note that y; = yq1; + (1 — 7)qz;. Finally, we note that both the haplotype- and MLG-
based approaches are compatible with an arbitrary number of sampled populations K, and demonstrate this

in Part 1 of the Supplementary Note.

General simulation parameters

We first tested the power of SS-H12 (phased haplotypes) and SS-G123 (unphased MLGs) to detect shared
selective sweeps on simulated multilocus sequence data. We generated all data as haplotypes using the
forward-time simulator SLiM 2 [version 2.6; Haller and Messer, 2017], which follows a Wright-Fisher model
[Hartl and Clark, 2007] and can reproduce complex demographic and selective scenarios. For the first set
of experiments (“power simulations” of Table 1), we simulated population pairs following human-inspired
parameters [Takahata et al., 1995, Nachman and Crowell, 2000, Payseur and Nachman, 2000, Terhorst et al.,

2017, Narasimhan et al., 2017]. To account for the variation in recombination rates across natural genomes,
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we drew recombination rates r at random from an exponential distribution with maximum truncated at
3r [Schrider and Kern, 2017, Mughal and DeGiorgio, 2019]. We created the joint demographic history for
simulated two-population models from empirical whole genome polymorphism data [Auton et al., 2015] using
smc++ [version 1.13.1; Terhorst et al., 2017]. The populations in our models were the CEU—Utah residents
with northern and western European ancestry—paired with either the GIH, Gujarati Indians from Houston,
or the YRI, Yoruba individuals from Ibadan in Southern Nigeria (Table 1). We additionally examined the
performance of our approach to detect shared sweeps in a generalized mammalian model (Table 2, first
row) for samples drawn from K € {2, 3,4,5} populations to determine the effect of sampling more than two
populations. We describe this in detail in Part 1 of the Supplementary Note.

Our smc++ protocol was as follows: we first extracted polymorphism data separately for a subset of
ns = 27 individuals from each study population from the source VCF file using the function vcf2smc,
selecting two individuals uniformly at random to be distinguished individuals within their sample. Dis-
tinguished individuals are used to compute the conditional site frequency spectrum during each round of
model optimization [Terhorst et al., 2017]. During the conversion step, we also masked out regions with
missing data using the accessibility masks provided by the 1000 Genomes Project Consortium [Auton et al.,
2015]. Following this, we generated each model with the estimate function, choosing a thinning parameter
of 1000log,yns. Using model estimates for the component populations jointly with polymorphism data
extracted for samples containing individuals from both populations (ns = 27 for each for a total of 54), we
generated models for population pairs.

Simulations generated under all aforementioned schemes lasted for an unscaled duration of 20N gener-
ations. This consisted of a burn-in period of 10N generations to produce equilibrium levels of variation in
which the ancestor to the sampled modern populations was maintained at size N = 10* diploids [Messer,
2013], and another 10N generations during which population size was allowed to change (in the case of
two-population experiments). We note that population split events occurred within the latter 10N genera-
tions of the simulation. As is standard for forward-time simulations [Yuan et al., 2012, Ruths and Nakhleh,
2013], we scaled all parameters by a factor A = 20 to reduce simulation runtime, dividing the population
size and duration of the simulation by A, and multiplying the mutation and recombination rates, as well as
the selection coefficient (s), where applicable, by A. Thus, scaled simulations maintained the same expected

levels of genetic variation as would unscaled simulations.

Selection experiment procedures

Across our simulation scenarios, we examined three classes of sweeps, consisting of ancestral, convergent, and

divergent. For ancestral sweeps, we introduced a selected allele to one or more randomly-drawn haplotypes
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in the ancestor of all sampled populations (i.e., more anciently than any population split), which ensured
that the same selective event was shared in the histories of the populations. This meant ancestral sweeps
were constrained to occur at selection time ¢ more ancient than the root time 7 of the set of sampled
populations. For convergent sweeps, we simultaneously introduced the selected mutation independently in
each extant population at the time of selection, after the split had occurred. Finally, divergent sweeps
comprised scenarios in which the sweep event occurred in fewer than all sampled populations, such that at
least one did not experience a sweep, but at least one did experience a sweep. Accordingly, convergent and
divergent sweeps were defined as those for which ¢t was more recent than the root time 7 of the set of sampled
populations. Across all simulations, we conditioned on the maintenance of at least one copy of the selected
allele in any affected population after its introduction.

To generate distributions of SS-H12 and SS-G123 for power analysis, we scanned 100 kb of sequence
data from simulated individuals using a sliding window approach, as in Harris et al. [2018]. Although sweep
footprints are likely to extend much farther than 100 kb [Gillespie, 2004, Hermisson and Pennings, 2017], we
chose our sequence length in order to focus on haplotype frequency distortions surrounding the epicenter of
the sweep, which necessarily contains the genomic window of maximum signal on which we base inferences.
Moreover, the use of a larger simulated region is likely to downwardly bias the ratio of true positives to
false positives by providing a greater possibility of generating SS-H12 values of large magnitude by chance
under neutrality. We demonstrate this effect in Figure S2 by simulating one Mb sequences following the
same protocol as for the 100 kb sequences, and see little overlap in their |SS-H12| distributions. Trends in
power would nonetheless remain similar, but with this in mind, and considering that SS-H12 does not make
use of polymorphism data lying outside of the analysis window, we determined that our choice of a 100 kb
simulated region was appropriate for our present purposes.

We computed statistics in 20 (CEU-YRI) or 40 kb (CEU-GIH and generalized mammalian models)
windows, advancing the window by increments of one kb across the simulated chromosome for a total of 61
(CEU-GIH, generalized) or 81 (CEU-YRI) windows. For each replicate, we retained the value of SS-H12 or
SS-G123 from the window of maximum absolute value as the score. We selected window sizes sufficiently
large to overcome the effect of short-range LD in the sample, which may produce a signature of expected
haplotype homozygosity resembling a sweep [Garud et al., 2015]. We measured the decay of LD for SNPs
in neutral replicates separated by one to 100 kb at one kb intervals using mean r2? and found that LD falls
below half its original value on average at our chosen window sizes. In practice, it is important to choose
window sizes that satisfy such a constraint to control against false positives. Our choice of window sizes here
also matched those for empirical scans. For all parameter sets, we generated 103 sweep replicates and 103

neutral replicates with identical numbers of sampled populations, sample sizes, and split times.
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Overall, our chosen experimental protocols across performance evaluation experiments comprised a broad
spectrum of sweeps (Tables 1 and 2). We varied selection strength and start time, as well as population split
time, which we expect has covered relevant models for hypothesized selective sweeps in recent human history
[Przeworski, 2002, Sabeti et al., 2007, Beleza et al., 2012, Jones et al., 2013, Clemente et al., 2014, Fagny
et al., 2014]. Our primary goal was to evaluate the ability of SS-H12 and SS-G123 to identify hard selective
sweeps from a de novo mutation and soft sweeps from selection on standing genetic variation, for both strong
(s = 0.1) and moderate (s = 0.01) strengths of selection. These settings were equivalent to those from the
experimental approach of Harris et al. [2018] for single-population statistics, and correspond to scenarios for
which those statistics have power under the specific mutation rate, recombination rate, effective size, and
simulated sequence length we tested here. For all selection scenarios, we placed the beneficial allele at the
center of the simulated chromosome, and introduced it only once, constraining the selection start time, but
not the selection end time. For hard and soft sweeps, we allowed the selected allele to rise in frequency toward
fixation, but with no guarantee of reaching fixation. Indeed, most s = 0.01 simulations did not reach fixation
under our parameters for sweeps more recent than ¢t = 2500 generations before sampling, while most s = 0.1
simulations have fixed by the time of sampling for all parameter sets. To specify soft sweep scenarios, we
conditioned on the selected allele being present in the population on v = 4 or 8 distinct (scaled) haplotypes
at the start of selection, without defining the number of selected haplotypes remaining in the population at

the time of sampling, as long as the selected allele was not lost.

Classifying sweeps as hard or soft

The SS-H12 approach can distinguish shared sweeps as hard or soft, conditioning on the value of the expected
homozygosity ratio statistic, H2pot/Hlret. This ratio derives from H2/H1 of Garud et al. [2015] and is
computed similarly, but using pooled population frequencies. We define Hl,; = Zle z? and H2r, =
Hlry, — 2%, with z; defined as in Equation 2. Likewise, for MLGs, we have the ratio G21o/Glrot, with
Glpes = Z}]ﬂ yf and G21,; = Glpor — y7 (see explanation of Equation 4). As with the single-population
statistic, the H21ot /Hlmor and G21ot/Glroet ratios are larger for soft sweeps and smaller for hard sweeps,
following the same logic (see Introduction). A larger sample size is necessarily required to properly classify
sweeps as hard or soft because hard and soft sweeps resemble each other to a greater degree than sweeps
and neutrality. As with the single-population approach [Harris et al., 2018], we expect that a minimum of
n = 100 haplotypes per population is sufficient to resolve harder sweeps from softer sweeps under demographic
histories comparable to that of humans.

As in Harris et al. [2018], we employed an approximate Bayesian computation (ABC) approach to

demonstrate the ability of SS-H12 (SS-G123), in conjunction with the H21ot /HlTot (G2710t/GlTot) statistic,

10
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to classify shared sweeps as hard or soft from the inferred number of sweeping haplotypes v (Table 1,
“hard/soft classification”). Hard sweeps derive from a single sweeping haplotype, while soft sweeps consist
of at least two sweeping haplotypes. Whereas the single-population approach [Garud et al., 2015, Garud
and Rosenberg, 2015, Harris et al., 2018] identified hard and soft sweeps from their occupancy of paired
(H12, H2/H1) values, we presently use paired (|SS-H12|, H21,;/Hlrot) and (]SS-G123|, G211 /Glmot) values
to classify shared sweeps. We defined a 100 x 100 grid corresponding to paired (|SS-H12|, H21o¢/H11,) or
(|SS-G123|, G214t/ GlTot) values with each axis bounded by [0.005, 0.995] at increments of 0.01, and assigned
the most probable value of v to each test point in the grid.

We define the most probable v for a test point as the most frequently-observed value of v from the
posterior distribution of 5 x 108 sweep replicates within a Euclidean distance of 0.1 from the test point. For
each replicate, we drew v € {0, 1,...,16} uniformly at random, as well as s € [0.005, 0.5] uniformly at random
from a log-scale. Across ancestral and convergent sweep scenarios for K = 2 sampled sister populations, we
generated replicates for the CEU-GIH and CEU-YRI models. Thus, an understanding of the demographic
history of study populations is required to classify sweeps as hard or soft (this is also true when evaluating
the significance of candidate results; see Empirical analysis procedures). As previously, ancestral sweeps
were more ancient than 7, while convergent sweeps were more recent. We drew sweep times ¢ uniformly at
random from ranges as described in Table 1. Simulated haplotypes were of length 40 kb (CEU-GIH) or 20
kb (CEU-YRI), corresponding to the window size for method performance evaluations, because in practice a
value of v would be assigned to a candidate sweep based on its most prominent associated signal. All other

parameters were identical to previous experiments using these demographic models (Table 1).

Testing performance across diverse scenarios

We additionally observed the effects of potentially common scenarios that deviate from the basic model de-
fined in previous sections to determine whether these deviations could mislead SS-H12. First, we examined
the effect of admixture from a distantly-related donor on one of the two sampled populations under the
simplified demographic model (Table 2, “admixture, distant donor”). Second, we simulated a scenario in
which a pair of sister populations experiences a sweep, followed by unidirectional admixture from one sister
to the other, once again under the simplified model (Table 2, “admixture, inter-sister”). Next, we provided
greater depth to previous experiments by varying the relative sample sizes of the simulated populations
(Table 2, “uneven sample sizes”), and varying the time at which convergent sweeps occurred in either popu-
lation, keeping one fixed and changing the other (otherwise identical to generalized mammalian model). To
provide context on the effect of tree topology, we also simulated a K = 4 scenario as a star tree, in which

all populations split from the common ancestor simultaneously at time 7 (otherwise identical to generalized

11
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mammalian model). Finally, we generated samples under long-term background selection (Table 1, “back-
ground selection” ), which is known to yield similar patterns of diversity to sweeps [Charlesworth et al., 1993,
1995, Seger et al., 2010, Nicolaisen and Desai, 2013, Cutter and Payseur, 2013, Huber et al., 2016], following
the CEU-GIH and CEU-YRI models.

For the distant-donor admixture experiments, we simulated single pulses of admixture at fractions be-
tween 0.05 and 0.4, at intervals of 0.05, from a diverged unsampled donor (7., = 2x 10%, one coalescent unit),
Tadm = 200 generations prior to sampling. Admixture follows a strong sweep (s = 0.1; 0 = 4N,s = 4000),
which occurred at either ¢ = 1400 (ancestral) or ¢ = 600 (convergent and divergent). We simulated three
different scenarios of admixture into the sampled target population from the donor population, where the
target and its sister were separated by 7 = 1000 generations. The scenarios consisted of admixture from a
highly-diverse donor population (N = 10°, tenfold larger than the sampled population), which may obscure
a sweep signature in the sampled target, and from a low-diversity donor population (N = 103, 1/10 the
size of the sampled population), which may produce a sweep-like signature in the target, in addition to
an intermediately-diverse donor population (N = 10%, equal to the size of the sampled population). For
divergent sweeps here, the population experiencing the sweep was the target. In the inter-sister admixture
experiment, a pair of equally-sized sister populations (N = 10* diploids) splits 7 = 1000 generations ago.
Parameters are identical to the previous experiment (Table 2), except that admixture occurs between the
sister populations. We modeled two divergent admixture scenarios, one in which the selected allele was
adaptive in only the original population, and one where it was identically adaptive in both.

In further experiments under the simplified model, we sought to determine the manner in which changes
to our basic model assumptions changed the performance of SS-H12. First, we reduced the sample size of
one of the populations from ny = 100 diploids to ny = 20, ny = 40, or no = 60, while increasing the size
of the other population (n1) to maintain n; + ny = 200, keeping all other parameters identical to previous
experiments. This distorted v in the computation of z; (Equation 2), yielding a new 4" = 180/(180 + 20) =
0.9, v/ = 160/(160 + 40) = 0.8, or 1/ = 140/(140 + 60) = 0.7, respectively, up from v = 0.5 originally.
Second, for convergent sweeps and equal sample sizes n = 100, we modeled unequal sweep start times, with
t1, the time of selection in population 1, fixed at 800 generations prior to sampling, paired with a variable
to € {200,400,600,800}. This provided a more realistic scenario than identical start times, which should
not be expected a priori. Third, we tested the susceptibility of SS-H12 to detecting and classifying sweeps
on K = 4 populations under a star tree model (7 = 1000). Here, all sister populations are equally related,
having radiated simultaneously from their common ancestor. With this model, we assessed the extent to

which the tree topology may influence shared sweep inference.
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Our background selection simulations followed the same protocol as in previous work [Cheng et al.,
2017]. At the start of the simulation, we introduced a centrally-located 11-kb gene composed of UTRs (5’
UTR of length 200 nucleotides [nt], 3> UTR of length 800 nt) flanking a total of 10 exons of length 100
nt separated by introns of length one kb. Strongly deleterious (s = —0.1) mutations arose throughout the
course of the simulation across all three genomic elements under a gamma distribution of fitness effects with
shape parameter 0.2 at rates of 50%, 75%, and 10% for UTRs, exons, and introns, respectively. The sizes of
the genic elements follow human mean values [Mignone et al., 2002, Sakharkar et al., 2004]. To enhance the
effect of background selection on the simulated chromosome, we also reduced the recombination rate within

the simulated gene by two orders of magnitude to » = 10710 per site per generation.

Empirical analysis procedures

We applied SS-H12 and SS-G123 to human empirical data from the 1000 Genomes Project Consortium
[Auton et al., 2015]. We scanned all autosomes for signatures of shared sweeps in nine population pairs
using 40 kb windows advancing by increments of four kb for samples of non-African populations, and 20 kb
windows advancing by two kb for any samples containing individuals from any African population. We based
these window sizes on the interval over which LD, measured as 72, decayed beyond less than half its original
value relative to pairs of loci separated by one kb. As in Harris et al. [2018], we filtered our output data by
removing analysis windows containing fewer than 40 SNPs, equal to the expected number of SNPs under the
extreme case in which a selected allele has swept across all haplotypes except for one, leaving two lineages
[Watterson, 1975]. Following Huber et al. [2016], we also divided all chromosomes into non-overlapping bins
of length 100 kb and assigned to each bin a mean CRG100 score [Derrien et al., 2012], which measures site
mappability and alignability. We removed windows within bins whose mean CRG100 score was below 0.9,
with no distinction between genic and non-genic regions. Thus, our overall filtering strategy was identical to
that of Harris et al. [2018]. We then intersected remaining candidate selection peaks with the coordinates
for protein- and RNA-coding genes from their hgl9 coordinates.

For each genomic analysis window of each population pair analysis, we assigned a p-value. To do this, we
first generated 3 x 107 neutral replicate simulations in ms [Hudson, 2002] under appropriate two-population
demographic histories inferred from smc++, using our aforementioned protocol and parameters described in
Table 1. We initially computed a window’s p-value as the proportion of neutral replicate |SS-H12| values
exceeding the [SS-H12| associated with that window. Because some comparisons yielded windows with p = 0,
meaning that no neutral replicate exceeded their |SS-H12| value, we first performed a linear regression of
—logyo(p) and |SS-H12| through the origin, and predicted the p-value of each window according to the

inferred relationship. We demonstrate the linear relationship between —log;,(p) and |SS-H12| by significant
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and strong Pearson correlation (Table S1). However, we found by QQ-plot that the distribution of empirical
p-values was inflated relative to the theoretical expectation of uniform distribution [Klammer et al., 2009].
To determine our inflation factor A, which measures the extent to which empirical p-values are inflated
relative to the theoretical, we used a linear regression approach [Yang et al., 2011]. Here, we performed
a linear regression, through the origin, of the x? quantile function evaluated for our uncorrected p-values,
as a function of y? quantiles derived from a vector of uniform probabilities. We adjusted our uncorrected
x? quantiles, dividing by ), and used their x? probabilities as our calibrated p-values (Figure S3). Our
Bonferroni-corrected, genome-wide significance cutoff for a population pair at the a = 0.05 threshold was
p < a/10% = 5 x 1078, adjusting for an assumed one million independent test sites in the human genome
[Altshuler et al., 2008].

Additionally, we determined whether the maximum associated |SS-H12| (the score), and therefore p-value,
of a gene was related to the recombination rate of the genomic region in which it resided. We determined this
by computing the Spearman correlation between the maximum SS-H12 of a gene, and the recombination rate
(¢cM/Mb) within the genomic analysis window of maximum signal associated with that gene [International
HapMap Consortium et al., 2007]. Furthermore, we observed the effect of model misspecification on critical
SS-H12 values. To do this, we compared the distribution of SS-H12 simulated under the nine appropriate
smc++-inferred non-equilibrium demographic models, and the distribution under models with equal Fgr to
the correct models, but with constant sizes of N = 10* diploids per population throughout the simulation.
We computed mean Fgt [Wright, 1943, 1951] across 1000 neutral replicates of size 20 or 40 kb under the
smc++-derived models, and used these values to solve the equation 7 = 4N Fst /(1 — Fsr) [Slatkin, 1991],
where 7 is the split time in generations between population pairs in each misspecified model.

We assigned the most probable v for each sweep candidate following the same protocol as previously
(Table 1, “hard/soft classification”), generating 5 x 10° replicates of sweep scenarios in SLiM 2 under smc++-
inferred demographic histories for ancestral and convergent sweeps. Once again, ¢ > 7 for ancestral sweep
scenarios and ¢ < 7 for convergent sweep scenarios, where 7 is defined by the specific demographic history
of the sample. The CEU-GIH and CEU-YRI replicates used here were identical to those in the prior clas-
sification experiments (Classifying sweeps as hard or soft). Sequence length for each replicate was identical
to analysis window length for equivalent empirical data (20 or 40 kb), because in practice we assign v to
windows of this size. For both p-value and most probable v assignment, we used an alternative per-site
per-generation recombination rate of r = 3.125 x 10~? [Terhorst et al., 2017], finding that this more closely
matched the distribution of |SS-H12| (]SS-G123|) values in the empirical data. Using these simulations in
combination with 10® neutral simulations of the matching length, we determined the 1% false discovery rate

(FDR) cutoffs for |[SS-H12|. To do this, we drew a random sample of 10° selection simulations to construct
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a total sample of 2 x 10° replicates, half neutral and half sweep. The 1% FDR cutoff was the |SS-H12| value
for which 1% of the 2 x 10° replicates exceeding that value were neutral, and 99% were sweeps. We repeated

this process 10% times to get a distribution of cutoffs based on our simulations.

Data availability

To make the results of our work maximally accessible, we have uploaded all rel-
evant  scripts, as well as all outputs from analyses, into a Dryad repository
(https://datadryad.org/stash/share/tqLw61INOuqtyfvj46IN1HHGgOnAbFKmsxiFVJ0a0SM). Our upload
is divided into directories labeled to match the broad directions of our research in this manuscript:
simulations using the smc++-derived CEU-GIH and CEU-YRI models, simulations using the simplified
mammalian model for K € {2,3,4,5} sampled populations, admixture model simulations, background
selection simulations, misspecified model simulations, simulations to infer v, simulations to assign p-values,
and scans of the 1000 Genomes data. Outside of the latter two batteries of simulations, we provide all
of the raw SLiM-simulated outputs in addition to analyses on those simulations. For simulations to infer
v and p-value simulations, we only retain the summary statistics from windows of maximum signal for
each replicate because each scenario featured at least 10 replicates. Our summary files condense those
simulations into single, more manageable, documents for reader reference. In addition to simulations
and scripts, we have also included the builds of ms and SLiM used for simulations, and our SS-X12
software package. We affirm that the results of all analyses deriving from our data, using the scripts,
replicates, and summary files within our Dryad repository, are present within this manuscript’s figures and
tables. Supplementary materials, consisting of Tables S1-S21, Figures S1-S46, and Supplementary Note

Figures SN1-SN7, are available online through FigShare.

Results

We evaluated the ability of SS-H12 to differentiate among the simulated scenarios of shared selective sweeps,
sweeps unique to only one sampled population, and neutrality, using the signature of expected haplotype
homozygosity in samples consisting of individuals from two or more populations. Although our formulation
of SS-H12 does not explicitly constrain the definition of a population, we define a population as a discrete
group of individuals that mate more often with each other than they do with individuals from other discrete
groups, and the models we considered here represent extreme examples in which there is no gene flow between
populations after their split.

We performed simulations using SLiM 2 [Haller and Messer, 2017] under human-inspired parameters

[Takahata et al., 1995, Nachman and Crowell, 2000, Payseur and Nachman, 2000, Terhorst et al., 2017,
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Narasimhan et al., 2017] for diploid populations of fluctuating size (N) under non-equilibrium models, as
well as constant-size models, subject to changing selection start times (¢) and strengths (s), across differing
split times (7) between sampled populations. Additionally, we evaluated the robustness of SS-H12 to a
variety of potentially-confounding deviations from the basic simulation parameters (such as equal sample
sizes, no admixture, and asymmetric tree topology). We then used an approximate Bayesian computation
(ABC) approach in the same manner as Harris et al. [2018] to demonstrate our ability to distinguish between
shared hard and soft sweeps in samples from multiple populations. Finally, we show that SS-H12 recovers
previously-hypothesized signatures of shared sweeps in human whole-genome sequences [Auton et al., 2015],
while also uncovering novel candidates. We supplement results from SS-H12 analyses with results using
SS-G123 in Detection and classification of shared sweeps from unphased data. See Materials and Methods, as
well as Tables 1 and 2, for further explanation of experiments. We include a summary of the major results

in Table 3.

Detection of ancestral and convergent sweeps with SS-H12

We conducted experiments to examine the ability of SS-H12 to not only identify shared sweep events among
two or more sampled populations (K > 2), but categorize them as shared due to common ancestry, or due
to convergent evolution. Across all scenarios, we scanned 100 kb simulated chromosomes using a 20 or 40
kb sliding window with a step size of one kb, which was sufficient to analyze sweeps in single populations
[Harris et al., 2018]. These windows provide an interval over which neutral pairwise LD, measured with r2,
decays below half of the value for loci one kb apart (Figure S4), and so we do not expect elevated values
of SS-H12 due to background LD. For each sweep scenario, we studied power at 1% and 5% false positive
rates (FPRs) for detecting shared selective sweeps (Figures 2, 3, S5-S9, and SN1-SN3) as a function of time
at which beneficial alleles arose, under scenarios of ancestral, convergent, and divergent sweeps.

First, we simulated scenarios in which an ancestral population split into KX = 2 descendant populations
using a realistic non-equilibrium model based on the history of the human CEU (European descent) and
GIH (South Asian descent) populations, which we inferred from variant calls [Auton et al., 2015] with smc++
[Terhorst et al., 2017] (Figure S10). We began with scenarios of strong (s = 0.1) hard (v = 1 sweeping
haplotype) sweeps starting between 200 and 4000 generations prior to sampling and applied an analysis
window of size 40 kb (Figure 2). Our CEU-GIH model features a split time of 7 = 1100 generations prior
to sampling, which matches prior estimates of the split time between Eurasian human populations [Gravel
et al., 2011, Gronau et al., 2011, Schiffels and Durbin, 2014]. This series of experiments illustrates the range

of sweep start times over which SS-H12 can detect prominent selective sweeps. SS-H12 has high power
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for recent strong shared sweeps starting between 400 and 2500 generations prior to sampling, with power
dropping rapidly for shared sweeps older than 2500 generations (Figure 2).

As expected, the distribution of SS-H12 for detectable convergent sweeps centered on negative values
(Figure 2, left column), whereas the SS-H12 distributions of ancestral sweeps centered on positive values
(Figure 2, center column). The vast majority of such replicates had the correct sign, underscoring the
consistency with which SS-H12 correctly classifies shared sweeps (Figure S11, top). However, in the rare event
that identical haplotypes convergently experience an identical sweep, a positive value of SS-H12 emerges at
the locus under selection, with larger values expected for more recent sweeps. Conversely, detectable ancestral
sweeps are highly unlikely to yield negative SS-H12 values in closely-related populations, as SS-H12 is acutely
sensitive to the presence of shared haplotypes in the sample even as the signal decays. We also found that
the power of SS-H12 to detect convergent sweeps was uniformly greater than for ancestral sweeps because
convergent sweeps are more recent events, with the selected haplotype not yet eroding due to the effect
of mutation and recombination, as with older ancestral sweeps. Additionally, because we compute power
from the distribution of maximum |SS-H12| values for each sweep scenario, this means that the magnitude
of SS-H12 for replicates of shared sweeps must exceed the magnitude under neutrality for the sweep to be
detected, which for any combination of ¢ and s is more likely for convergent than ancestral sweeps.

To further characterize the performance of SS-H12 for hard sweeps, we repeated experiments on simulated
samples from K = 2 populations both for more anciently-diverged populations (larger 7), and for weaker
sweeps (smaller s). SS-H12 maintains excellent power to distinguish strong shared sweeps from neutrality
for a model based on the more ancient split between CEU and the sub-Saharan African YRI population
(Figure 3; 20 kb window), while keeping s = 0.1. We inferred 7 = 3740 for this model using smc++ [Terhorst
et al., 2017] (Figure S10), and this estimate fits existing estimates of split times between African and non-
African human populations [Gravel et al., 2011, Gronau et al., 2011, Schiffels and Durbin, 2014]. Notably,
the signal of ancestral sweeps remains elevated across many of the tested CEU-YRI sweep scenarios. Power
stayed above 0.6 for sweeps more recent than ¢ = 4500 generations before sampling, representing a range of
sweep sensitivity approximately 1500 generations wider than that of the CEU-GIH model. This is because
it is easier to detect selective sweeps in more diverse genomic backgrounds [Harris et al., 2018], such as that
of the YRI population. Despite this, we observed a greater proportion of ancestral sweeps with spuriously
negative values of SS-H12 in the CEU-YRI model than in the CEU-GIH model because over 3740 generations,
the two simulated populations had sufficient time to accumulate unique mutations and recombination events
that differentiated their common high-frequency haplotypes (Figure S12, top).

Reducing the selection coefficient to s = 0.01 for both models had the effect of shifting the range of ¢ over

which SS-H12 had power to detect shared sweeps. Because weakly-selected haplotypes rise to high frequency
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more slowly than strongly-selected haplotypes, there is a greater delay between the selection start time and
the time at which a shared sweep can be detected for smaller values of s. Thus, SS-H12 reaches a maximum
power to detect moderate shared sweeps (s = 0.01) for older values of ¢, additionally maintaining this power
for less time than for strong sweeps under both models (top rows of Figures 2 and 3). The misclassification
rate for shared sweeps is also greater for weaker sweeps, especially for convergent sweeps in the CEU-GIH
model and ancestral sweeps in the CEU-YRI model (Figures S13 and S14, top).

Because the single-population statistic H12 has power to detect both hard and soft sweeps, we next
performed analogous experiments for simulated soft sweep scenarios. Maintaining values of ¢, 7, and s
identical to those for hard sweep experiments, we simulated soft sweeps as selection on standing genetic
variation for ¥ = 4 and v = 8 distinct sweeping haplotypes (Figures S5-S8). We found that trends in the
power of SS-H12 to detect shared soft sweeps remained consistent with those for hard sweeps. However,
the power of SS-H12 for detecting soft sweeps, as well as classification ability (Figures S11-S14, middle and
bottom rows), were attenuated overall relative to hard sweeps, proportionally to the number of sweeping
haplotypes, with a larger drop in power for older sweeps and little to no effect on power for more recent
sweeps. Our observations therefore align with results for the single-population H12 statistic [Garud et al.,
2015, Harris et al., 2018]. Thus, the ability to detect a sweep derives from the combination of s, ¢, and v, with
stronger recent sweeps on fewer haplotypes being easiest to detect, and detectable over larger timespans.

We contrast our results for shared sweeps across population pairs with those for divergent sweeps,
which we present in parallel (right columns of Figures 2, 3, and S5-S8). Across identical values of ¢ as for
each convergent sweep experiment, we found that divergent sweeps, in which only one of the two simulated
sampled populations experiences a sweep (¢t < 7), are not visible to SS-H12 for any combination of simulation
parameters. To understand the properties of divergent sweeps relative to shared sweeps, we compared the
distributions of their SS-H12 values at peaks identified from the maximum values of |SS-H12| for each
replicate. We observed that the distributions of the divergent sweeps remain broadly unchanged from one
another under all parameter combinations, and closely resemble the distribution generated under neutrality,
as all are centered on negative values with small magnitude, and have small variance. Thus, the use of a
correction factor that incorporates the values of H12 from each component population in the sample (see
Equation 3) provides an appropriate approach for preventing sweeps that are not shared from appearing
as outlying signals. In the absence of correction, the shared sweep statistic (properly termed H124y.),
incorrectly treats the reduced haplotype diversity around the site under selection in one population as the
locus of a convergent sweep, owing to the large disparities in haplotype frequencies between the sampled

populations (right columns of Figures S15 and S16). We additionally explore the properties of SS-H12 on
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a simplified demographic history with constant population size, and up to K = 5 sampled populations
(Figure S1), intended as a more general mammalian model, in Part 1 of the Supplementary Note.

In addition to detecting shared sweeps under a variety of scenarios with high power, we also found
that detecting sweeps with SS-H12 provides more power than performing multiple independent analyses
across populations with the single-population statistic H12 [Garud et al., 2015]. To demonstrate this, we
reanalyzed our simulated CEU-GIH and CEU-YRI replicates (Figures 2 and 3), assessing the ability of H12
to simultaneously detect an outlying sweep signal in both populations. That is, we measured the power of
H12 at the 0.5% FPR (Bonferroni-corrected for multiple testing [Neyman and Pearson, 1928], providing the
entire experiment with a 1% FPR cutoff) to detect an outlying sweep in the CEU sample and in either the
GIH (Figure S17) or YRI (Figure S18) samples. For the most recent convergent hard sweeps, joint analysis
with H12 has equivalent power to SS-H12 analysis, but the power of H12 never matches that of SS-H12 for
ancestral hard sweeps, and for the majority of tested soft sweeps (v = 4 and v = 8), regardless of timing.
These trends persisted even for SS-H12 computed from half-sized samples (thus, matching the sample sizes
of individual H12 analyses), indicating that avoiding multiple testing with SS-H12 analysis is likely to yield

a greater return on sampling effort, especially as the number of sampled populations K increases.

Performance of SS-H12 across diverse scenarios

Admixture

Because SS-H12 relies on a signal of elevated expected haplotype homozygosity, it may be confounded by non-
adaptive processes that alter levels of population-genetic diversity. For this reason, we examined the effect
of admixture on the power of SS-H12 in the context of ancestral, convergent, and divergent strong (s = 0.1)
sweeps between population pairs. Parameters were derived from the simplified mammalian model (Table 2).
For the first set of experiments (termed distant-donor), one sampled population (the target) receives gene
flow from a diverged, unsampled donor outgroup population (Figures 4 and S19). Admixture occurred as a
single unidirectional pulse 200 generations before sampling, and in the case of the divergent sweep, occurred
specifically in the population experiencing the sweep. The donor split from the common ancestor of the two
sampled populations (the target and its unadmixed sister) 2 x 10 generations before sampling—within a
coalescent unit of the sampled populations, similar to the relationship between Neanderthals and modern
humans [Juric et al., 2016, Harris and Nielsen, 2016]—and had an effective size either one-tenth, identical
to, or tenfold the size of the target. Although the donor does not experience selection, extensive gene flow
from a donor with low genetic diversity may resemble a sweep. Correspondingly, gene flow from a highly

diverse donor may obscure sweeps. The second admixture scenario we examined featured only the two sister
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populations separated by 7 = 1000 generations, wherein one admixed into the other 200 generations prior
to sampling, as previously (inter-sister admixture; see Supplementary Note, Part 2).

As expected, gene flow from a distant donor into the target population distorted the SS-H12 distribution
of the two-population sample relative to no admixture (Figure 4), and this distortion was proportional to the
level of admixture from the donor, as well as the donor population’s size. Ancestral sweeps were the most
likely to be misclassified following admixture from a donor of small effective size (N = 10?; Figure 4, top row),
increasingly resembling convergent sweeps as the rate of gene flow increased (though ultimately with little
change in power to detect the shared sweep; Figure S19, top row). The confounding effect of admixture
on ancestral sweep inference emerges because low-diversity gene flow into one population yields a differing
signal of elevated expected haplotype homozygosity in each population, spuriously resembling a convergent
sweep. In contrast, the distributions of SS-H12 values and the power of SS-H12 for convergent and divergent
sweeps remained broadly unchanged relative to no admixture under low-diversity admixture scenarios (Fig-
ures 4 and S19, top rows). Because two populations subject to convergent or divergent sweeps are already
extensively differentiated, further differentiation due to admixture does not impact the accuracy of sweep
timing classification using SS-H12.

For intermediate donor effective size (N = 10%; Figures 4 and S19, middle rows), the magnitudes of
both the ancestral and convergent sweep signals attenuate toward neutral levels, and the power of SS-H12
wanes as the admixture proportion increases. This is because the genetic diversity in the target population
increases to levels resembling neutrality, overall yielding a pattern spuriously resembling a divergent sweep
that SS-H12 cannot distinguish from neutrality. Accordingly, the magnitude and power of SS-H12 under a
divergent sweep scenario following admixture scarcely change under the N = 10* scenario. As the effective
size of the donor population grows large (N = 10°; Figures 4 and S19, bottom rows), SS-H12 becomes more
robust to the effect of admixture for shared sweeps, accurately identifying ancestral and convergent sweeps
with high power at greater admixture proportions relative to the N = 10* scenario. However, the power
of SS-H12 spuriously rises to 1.0 for divergent sweeps under the N = 10° admixture scenario. Both the
increased robustness to admixture for the ancestral and convergent sweeps, as well as the elevated power
for divergent sweeps, result from a reduction in the magnitude of SS-H12 under neutrality for the N = 10°
admixture scenario relative to N = 10%, which does not occur for the sweep scenarios. That is, |SS-H12|
remains similar across the N = 10° and N = 10* admixture scenarios for sweeps, while |[SS-H12| for the
neutral background is smaller, meaning that any sweep, even a divergent sweep, is more prominent for larger

donor population sizes.
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Different sample sizes

Next, we performed experiments to understand the effect of deviating from basic parameters of the simplified
unadmixed mammalian model, changing one parameter at a time. First, we generated replicates for K = 2
populations containing an overall sample size of n = 200 diploids representing the sum of component sample
sizes ny and ns, modifying these such that more individuals were sampled from one subpopulation than the
other. This therefore changed the value of v = n1/(ny 4+ n2) for the computation of z; (see Equation 2).
We simulated values of v = 0.7 (ny = 140, n5 = 60), 0.8 (ny = 160, n5 = 40), or 0.9 (n; = 180, ne = 20) in
contrast to the standard v = 0.5 (n1 = ny = 100; as seen in Figure S9). Regardless of -y, we found that trends
in power for shared sweeps (v = 1, s = 0.1) were consistent with one another, and that the distribution of
SS-H12 values yielded the expected sign—negative for convergent sweeps and positive for ancestral sweeps—
suggesting that sample composition should not generally affect these inferences (Figure S20-S22). We also
observed a slight, spurious increase in power for divergent sweeps (occurring in population 1) that was most
prominent for v = 0.9, but visible at ¢ = 200 for all three v > 0.5 scenarios. This effect emerged as a
result of two factors. First, strong sweeps have not established by ¢t = 200, meaning that the sampled sister
populations are not yet extensively differentiated at this point and have somewhat closer values H12 to one
another than for older sweeps. Second, smaller sample sizes for either subpopulation translate to reduced
haplotypic diversity in the sample overall, resulting in elevated magnitudes of SS-H12. Thus, while extreme
distortions in vy and smaller sample sizes may yield more prominent divergent sweeps, their signature remains
minor, rendering them highly unlikely to yield outlying signals relative to shared sweeps. We subsequently
tested power and classification ability for convergent sweeps initiating at different timepoints on the simplified
mammalian tree, as well as for a deviation to the bifurcating tree assumption by simulating a star phylogeny

with K = 4 subpopulations (see Supplementary Note, Part 3).

Background selection

Finally, we observed the effect of long-term background selection on the neutral distribution of SS-H12 val-
ues (Figure 523). Background selection may yield signatures of genetic diversity resembling selective sweeps
[Charlesworth et al., 1993, 1995, Seger et al., 2010, Nicolaisen and Desai, 2013, Cutter and Payseur, 2013,
Huber et al., 2016], though previous work suggests that background selection does not drive particular hap-
lotypes to high frequency [Enard et al., 2014, Harris et al., 2018]. Our two background selection scenarios for
samples from K = 2 populations, with 7 = 1100 (CEU-GIH model) and 3740 (CEU-YRI model) generations,
were performed as described in the Materials and Methods, following the protocol of Cheng et al. [2017].
Briefly, we simulated a 100-kb sequence featuring a centrally-located 11-kb gene consisting of exons, introns,

and untranslated regions, across which deleterious variants arose randomly throughout the entire simulation
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period. In agreement with our expectations, we found that background selection is unlikely to confound
inferences from SS-H12, yielding only marginally larger values of |SS-H12| than does neutrality (Figure S23).

Accordingly, SS-H12 does not classify background selection appreciably differently from neutrality.

Classifying shared sweeps as hard or soft from the number of sweeping haplotypes

Because the primary innovation of the single-population approach is its ability to classify sweeps as hard or
soft from paired (H12, H2/H1) values, we evaluated the corresponding properties of our current approach for
samples consisting of K’ = 2 populations (Figure 5). Here, we color a space of paired (|SS-H12|, H21,t/H11ot)
values, each bounded by [0.005,0.995], according to the inferred most probable number of sweeping haplo-
types v for each point in the space. Similarly to the approach of Harris et al. [2018], we inferred the most
probable v using an approximate Bayesian computation (ABC) approach in which we determined the pos-
terior distribution of v from 5 x 108 replicates of sweep scenarios with v € {0,1,...,16} and s € [0.005,0.5],
both drawn uniformly at random for each replicate (the latter drawn from a log-scale), and where v = 0
simulations are neutral replicates. A test point in (|SS-H12|, H21ot/Hlrot) space was assigned a value of
v based on the most frequently occurring v among simulations whose (|SS-H12|, H21.t /H11,¢) coordinates
were within a Euclidean distance of 0.1 from that test point (see Materials and Methods). We were able to
classify recent shared sweeps as hard or soft, but found our current approach to have somewhat different
properties to the single-population approach.

For ancestral sweep scenarios and 7 = 1100 generations (¢ € [1140, 3000], CEU-GIH model), the pattern
of paired (|SS-H12|, H21 /H1l1,¢) values generally followed that of single-population analyses [Harris et al.,
2018] (Figure 5, top-left). For a given value of |SS-H12|, smaller values of H21.:/Hl1, were generally
more probable for ancestral sweeps from smaller v, and inferred v increased with H2pot /Hlrot. This fit our
expectations because, as the number of ancestrally sweeping haplotypes in the pooled population increases,
the value of H21, increases relative to Hlp,. Additionally, ancestral sweeps from larger v (softer sweeps)
are unlikely to generate large values of |[SS-H12| or small values of H21./Hlp, and the most elevated
values of |SS-H12| were rarely associated with more than four sweeping haplotypes. Accordingly, harder and
softer ancestral sweeps yielded distinct probability densities of |SS-H12| and H21,/Hlpot from one another
(Figure S24, left column).

We note, however, the presence of paired values inferred to derive from v = 1 for some intermediate
values of H21u/H1l1ot, as well as the presence of points with inferred v > 4 at smaller H2po, /Hloi. This
may indicate that among ancestral sweep replicates for the CEU-GIH model, weaker hard sweep signals may
occasionally be difficult to resolve from stronger soft sweep signals, as both should yield intermediate levels

of haplotypic diversity. The difficulty in resolving this region of the plot also derives from the low number of
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nearby observations (within a Euclidean distance of 0.1) from which to make inferences, despite the higher
than average support for these observations (Figure S26, top row). Additionally, the next-most likely v for
most points tended to be an immediately adjacent value (for example, if v = 4, then the next most likely v
is either 3 or 5; Figure S27, top row). Under simulated CEU-YRI ancestral sweep scenarios (¢ € [3780, 5000],
7 = 3740; Figure 5, top right), we observed a broadly similar pattern of inferred v. However, the increased
age of sweeps relative to the CEU-GIH model resulted in more erratic inferences across intermediate |SS-H12|
paired with intermediate H21ot /H11ot, smaller mean |SS-H12| and larger mean H21. /H1ot across all classes
(Figure S25, left column), and somewhat less support for inferences throughout the plot (Figures S28 and S29,
top row). Our approach still maintains a clear tendency to infer sweeps with smaller H2po /Hlro as hard,
thereby preserving its basic classification ability.

The convergent sweep experiments yielded distinctly different occupancies and distributions of possible
paired (|SS-H12|, H21./HlTe) values relative to ancestral sweeps, and provided greater resolution and
inferred support among the tested values of v, showing little irregularity in the assignment of v (bottom
rows of Figures 5, and S26-S29). In addition, trends in the occupancy of hard and soft sweeps were generally
concordant between replicates for both the CEU-GIH (7 = 1100, ¢ € [200,1060]) and CEU-YRI (7 = 3740,
t € [200,3700]) models, though |SS-H12| was larger on average for CEU-GIH (Figures S24 and S25, right
columns). For these experiments, we simulated simultaneous independent sweeps, either both soft or both
hard, allowing each population to follow a unique but comparable trajectory. Thus, there were always
at least two sweeping haplotypes in the pooled population. Accordingly, convergent hard sweeps, unlike
ancestral hard sweeps, are primarily associated with large values of |[SS-H12| and intermediate values of
H2r1ot/Hlmet. Furthermore, strong convergent sweeps of any sort could not generate small H21,/Hlpot
values unless |SS-H12| was also small. Even so, convergent sweeps from larger v occupy a distinct set of
paired (|SS-H12|, H21ot /H11y) values that is shifted either toward smaller |SS-H12|, larger H21,t/H1rot, or
both, demonstrating that the accurate and consistent inference of v is possible for convergent sweeps. Unlike
for ancestral sweeps or single-population analyses, we observed that the smallest values of H21,/Hlrot
paired with the smallest values of |SS-H12| were associated with neutrality, representing scenarios in which

similar highly diverse haplotype frequency spectra arose in both populations by the time of sampling.

Application of SS-H12 to human genetic data

We applied SS-H12 to whole-genome sequencing data from global human populations in phase 3 of the 1000
Genomes Project [Auton et al., 2015], which is ideal as input because it contains large sample sizes and
no missing genotypes at polymorphic sites. We searched for shared sweep signals within the RNA- and

protein-coding genes of geographically proximate and distant human population pairs, performing various
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comparisons of unadmixed European, South Asian, East Asian, and Sub-Saharan African populations (Ta-
bles S4-S12). We scanned with sliding analysis windows of 40 kb with a step size of four kb for samples with
non-African populations, or 20 kb with step size two kb otherwise, to overcome the effect of short-term LD
(Figure S30). For the top 40 outlying candidate shared sweeps among population pairs, we assigned p-values
from a neutral distribution of 10® replicates following human demographic models inferred from smc++ (see
Materials and Methods). Our Bonferroni-corrected genome-wide significance threshold [Neyman and Pear-
son, 1928] for single comparisons was 5 x 10~8 (Altshuler et al. [2008]; we did not assess significance across
multiple global-scale tests). We additionally inferred the maximum posterior estimates on v € {1,2,...,16}
for each top candidate from a distribution of 5 x 10° simulated convergent or ancestral sweep replicates,
depending on our classification of the candidate from the sign of SS-H12, following the same smc++-derived
models. We categorized sweeps from v = 1 as hard, and sweeps from v > 2 as soft. By using both neutral
and sweep simulations, we were also able to assign 1% false discovery rate (FDR) |SS-H12| cutoffs for each

population pair comparison (Table S2).

Overview of genome-wide trends

Across all comparisons, we found that ancestral hard sweeps comprised the majority of prominent candidates
at RNA- and protein-coding genes, regardless of population pair. Many of these candidate ancestral sweeps
were detected with H12 in single populations [Harris et al., 2018], including novel sweeps at RGS18 in the
sub-Saharan African pair of YRI and LWK (Luhya people from Webuye, Kenya; v = 1; previously identified
in YRI; Figure 6, second row) and at P4HA1 between the European CEU and South Asian GIH populations
(v = 1; previously identified in GIH, though as a soft sweep; Figure S32, middle row). We also observed
a dearth of large-magnitude negative values in Tables S4-S12; with prominent convergent sweep candidates
only occurring between the most diverged population pairs. These consisted of C2CD5 between CEU and
the East Asian JPT population (Japanese in Tokyo; v = 1), PAWR between Indo-European populations
CEU and GIH with the sub-Saharan African YRI population (small and almost-significant for the CEU-YRI
comparison, p = 6.6 x 1078, v = 1 for both comparisons; Tables S7 and S9), and MPHOSPH9 and EXOC6B
between JPT and YRI (both with v = 1). Regardless of genome-wide significance threshold, our 1% FDR
cutoffs for |[SS-H12| indicate that the outlying values we identified in our scans were much more likely for
sweeps than for neutrality, especially for more distantly-related populations, which are unlikely to produce
high-magnitude SS-H12 values in the absence of a sweep (Table S2). Supporting this pattern, we observed
that the proportion of genic windows greater the 1% FDR cutoff was uniformly higher than the proportion

of non-genic windows exceeding the cutoff (Table S2).
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Our observations also reflect the broader pattern that negative SS-H12 values are rare between closely-
related populations. Indeed, the majority of SS-H12 values at protein-coding genes between populations
from the same geographic region are positive, and this distribution shifts toward negative values for more
differentiated population pairs, consisting primarily of intermediate-magnitude negative values between the
YRI and non-African populations (Figure S31). Our present results are also consistent with the H12-based
observations of Harris et al. [2018] in single populations, in that we found a greater proportion of hard
sweeps than soft sweeps among outlying sweep candidates in humans, though both were present between
all population pairs. We additionally found that the maximum |SS-H12| associated with a gene had a
significantly negative Spearman correlation with its recombination rate regardless of population comparison,
consistent with previous observations [O’Reilly et al., 2008] and highlighting a secondary pattern potentially
responsible for observed genome-wide SS-H12 values (Table S3).

The top shared sweep candidates comprised genes that have been described in greater detail in the
literature [Bersaglieri et al., 2004, Sabeti et al., 2007, Gerbault et al., 2009, Liu et al., 2013], including
LCT and the surrounding cluster of genes on chromosome 2 including MCM6, DARS, and RSHDM]1 in the
European CEU-GBR (GBR: English and Scottish) pair (v = 1 for all; Table S4), reflecting selection for the
lactase persistence phenotype. We also recovered the sweep on the light skin pigmentation phenotype in
Indo-Europeans [Sabeti et al., 2007, Coop et al., 2009, Mallick et al., 2013, Liu et al., 2013] for comparisons
between the CEU population with GBR (Table S4; almost-significant with p = 8.1 x 1078 and v = 1)
and GIH (Table S5; p = 2.40 x 1078, v = 1). Although the selected allele for this sweep is thought to
lie within the SLC24/A5 gene encoding a solute carrier [Lamason et al., 2005], the CRG100 filter that we
applied to our data removed SLC2/A5, but preserved the adjacent SLC12A 1, which we use as a proxy for the
expected signal. Finally, we find KIAA0825 as a top candidate across comparisons between the CEU and
GIH (Table S5; v = 1), YRI and CEU (Table S7; p = 2.71 x 1078, v = 1), YRI and LWK (Table S8, v = 1),
JPT and YRI (Table S10; p = 1.13 x 1078, v = 1), and GIH and YRI (Table S9; p = 2.12 x 107%, v = 1)
populations. Although the function of KIAA0825 has not yet been characterized, it is a previously-reported

sweep candidate ancestral to the split of African and non-African human populations [Racimo, 2016].

Specific sweep candidates of interest

Across all population comparisons, the top shared sweep candidates at RNA- and protein-coding genes
comprised both hard and soft sweeps, yielding a wide range of H2y./Hlrot values. This emphasizes the
multitude of sweep histories that have shaped shared variation among human populations. In Figure 6, we
highlight four distinct results that capture the diversity of sweeps we encountered in our analysis, each

generating wide, well-defined SS-H12 peaks. We first examine GPHN, which we found as an outlying
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candidate shared soft sweep in the East Asian JPT and KHV (Kinh of Ho Chi Minh City in Vietnam)
populations (v = 2; Table S12). GPHN encodes the scaffold protein gephyrin, which has been the subject
of extensive study due to its central role in regulating the function of neurons, among the many other
diverse functions of its splice variants [Ramming et al., 2000, Lencz et al., 2007, Tyagarajan and Fritschy,
2014]. GPHN has received attention as the candidate of a recent selective sweep ancestral to the human
out-of-Africa migration event [Voight et al., 2006, Williamson et al., 2007, Park, 2012], which has resulted
in the maintenance of two high-frequency haplotypes worldwide [Climer et al., 2015]. Although not meeting
the genome-wide significance threshold, we see that a large signal peak is centered over GPHN, and the
underlying haplotype structure shows two high-frequency haplotypes at similar frequency in the pooled
population and in the individual populations (Figure 6, top row).

Next, we recovered RGS18 as a top novel outlying ancestral sweep candidate in the sub-Saharan African
LWK and YRI populations. RGS18 occurs as a significant sweep in the YRI population [Harris et al.,
2018] and correspondingly displays a single shared high-frequency haplotype between the LWK and YRI
populations (Figure 6, second row), matching our assignment of this locus as a hard sweep (v = 1). RGS18
has been implicated in the development of hypertrophic cardiomyopathy, a leading cause of sudden cardiac
death in American athletes of African descent [Maron et al., 2003, Chang et al., 2007]. Between the CEU
and YRI populations, we found another novel shared sweep at SPRED3 (Figure 6, third row; significant
p=2.01x10"%, v = 1), which encodes a protein that suppresses cell signaling in response to growth factors
[Kato et al., 2003]. Although elevated levels of observed homozygosity at this gene have previously been
reported in European and sub-Saharan African populations separately [Granka et al., 2012, Ayub et al.,
2013], these observations have not previously been tied to one another. Once again, we see the pattern of
an ancestral shared sweep wherein a single haplotype predominates within both populations, but with even
noticeably less background variation than what we observed in the aforementioned LWK-YRI comparison.

Finally, we present the novel convergent hard sweep candidate that we uncovered at C2CD5 (also known
as CDP138) between the CEU and JPT populations. As expected of a convergent sweep, the SS-H12 peak
here is large in magnitude but negative, corresponding to the presence of a different high-frequency haplotype
in each population, each of which is also at high frequency in the pooled population. Notably, both haplotypes
exist in both populations (Figure 6, bottom row). The protein product of C2CD5 is involved in insulin-
stimulated glucose transport [Xie et al., 2011, Zhou et al., 2018], and the insulin response is known to differ
between European and East Asian populations [Kodama et al., 2013]. Therefore, our discovery of C2CD5
is in agreement with the results of Kodama et al. [2013], and illustrates the importance of differentiating

ancestral and convergent sweeps in understanding the adaptive histories of diverse populations.
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We also highlight our discovery of PAWR (Figure S33, top) as another outlying novel convergent hard
sweep candidate with complementary clinical support, for comparisons between GIH and CEU with YRI. The
protein product of PAWR is involved in promoting cancer cell apoptosis, and is implicated in the development
of prostate cancer [Yang et al., 2013]. Because mutations within and adjacent to PAWR have been specifically
implicated in the development of prostate cancer among individuals of African descent [Bonilla et al., 2011],
our identification of a candidate convergent sweep at PAWR is consistent with the observation of elevated
prostate cancer rates for populations with African ancestry [Kheirandish and Chinegwundoh, 2011, Shenoy
et al., 2016].

To further validate our identified sweep candidates, we also constructed signal plots and pegas [Paradis,
2010] haplotype networks for each highlighted gene outside of Figure 6, grouping these into inferred ancestral
(Figure S32) and convergent sweeps (Figure $33). Prominent ancestral sweeps—SPIDR (p = 3.49 x 10711,
CEU-JPT), SLC12A1 (p = 2.40 x 1078, CEU-GIH), P{HA1, KIAA0825 (p = 2.13 x 107, GIH-YRI),
and LCT—were characterized by the presence of one or two high-frequency haplotypes in the population
pool, divided between either component population in approximately equal proportions. The non-sweeping
minor haplotypes also present in the sample generally differed from the sweeping haplotypes at one to
two sites, and frequently only observed once (mostly omitted, as we removed haplotypes with fewer than
six copies from the network). Minor haplotypes observed at higher frequencies were often shared between
both populations (SLC12A1, LCT, and RGS18) and may also be representative of persistent ancestral
polymorphism (Figure S32).

Notably, the sweeping haplotypes observed in convergent sweeps were not always exclusive to either pop-
ulation, and separated by a range of Hamming distances (which we denote H). Whereas the independently
sweeping haplotypes within PAWR in CEU-YRI (H = 20) belonged to either the CEU or YRI populations
(Figure S33, top), both sweeping haplotypes of C2CD5 (H = 8) were visible in both CEU and JPT, sug-
gesting that they were segregating ancestrally to their independent selection following the CEU-JPT split
and may be more closely related (Figure 6, bottom). Additionally, we found the selected haplotype of JPT
present at low frequency in YRI at EXOC6B (H = 8; Figure S33, middle), and similarly the selected hap-
lotype of YRI present in JPT at MPHOSPH9 (H = 30; Figure S33, bottom). Even so, we note that for
convergently-selected loci, each population’s haplotypes tended to cluster together in the network, reflecting

the genetic differentiation of the populations.

Detection and classification of shared sweeps from unphased data

Here, we briefly describe the results from our application of the unphased multilocus genotype (MLG)

approach, SS-G123. We explored the properties of SS-G123 in equivalent scenarios to our SS-H12 tests by
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manually merging diploid study individuals’ two haplotypes into MLGs. The ability to identify and classify
shared sweeps from unphased data is consequential because non-model organisms may not have phased data
from which to make inferences. Nonetheless, previous work [Harris et al., 2018] has indicated that distortions
in the MLG frequency spectrum can convey the signature of a recent selective sweep.

Overall, SS-G123 performed comparably to SS-H12 at detecting sweeps across identical CEU-GIH and
CEU-YRI scenarios (Figures S34-S43), with only slight reductions in power at both the 1% and 5% FPRs
for MLGs relative to haplotypes. Reductions in power generally occurred for older sweep times, as MLGs are
more diverse than haplotypes [Harris et al., 2018], and so the signal of a sweep erodes more rapidly for MLG
data as mutation and recombination events accumulate. Under both the CEU-GIH and CEU-YRI models,
we found that the magnitude of SS-G123 was, due to the greater baseline diversity of MLGs, generally
smaller than the magnitude of SS-H12, matching trends from results with the single-population statistics
H12 and G123 [Harris et al., 2018].

However, SS-G123 values were also shifted toward the negative for all scenarios, including ancestral
sweeps, indicating that the unphased approach may not be as adept at classifying shared sweeps as ancestral
after identifying them, except for strongly outlying candidates (Figures S11-S14). Thus, we expect that
the detection of shared selective sweeps will be possible across the wide variety of organisms for which
unphased whole-genome sequence data are available, but urge caution in blindly classifying negative signals as
convergent. Classification notwithstanding, the comparable power between SS-H12 and SS-G123 underscores
the importance of the latter as a tool (Figures S37, S38, S42, and S43). Crucially, we also found that our
empirical analysis of the 1000 Genomes Project dataset [Auton et al., 2015] in which we paired individuals’
haplotypes into their MLGs yielded congruent results to the phased approach in practice, with similar
inclusion and classification of candidates between data types (Tables S13-S21).

The primary difference that we encountered between haplotype and MLG empirical analyses was in the
inferred softness of candidate sweeps. We found that, as in the single-population analyses of Harris et al.
[2018], a greater proportion of top candidate sweeps in the MLG data were classified as soft than in haplotype
data, including both candidates classified as hard sweeps in the haplotype data, and candidates absent from
the top 40 haplotype candidates. The explanation for both of these discrepancies, which were minor in
scope, lies once again in the greater diversity of MLGs relative to haplotypes. A genomic region with one
high-frequency haplotype and one or more intermediate-frequency haplotypes may yield a paired (|SS-H12|,
H2r10t/HlTet) value that most resembles a hard sweep under the ABC approach using haplotypes, but yield
an MLG frequency spectrum featuring multiple intermediate-frequency MLGs that may be inferred as a soft
sweep. Meanwhile, the greater background diversity of MLG data may allow for the more subtle signatures

of soft sweeps to be more readily detectable than in haplotype data. Overall, the rarity of discrepancies
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between SS-H12 and SS-G123 top candidate lists corroborates the high level of concordance between the

power of the two statistics that we found in simulated data.

Discussion

Characterizing the selective sweeps shared between geographically close and disparate populations can pro-
vide insights into the adaptive histories of these populations that may be unavailable or obscure when
analyzing single populations separately. To this end, we extended the H12 framework of Garud et al.
[2015] to identify genomic loci affected by selection in samples composed of individuals from two or more
populations. Our approach, SS-H12, has high power to detect recent shared selective sweeps from phased
haplotypes, and is sensitive to both hard and soft sweeps. SS-H12 can also distinguish hard and soft sweeps
from one another in conjunction with the statistic H2pot /HlTot, thus retaining the most important feature of
the single-population approach. Furthermore, SS-H12 has the unique ability to distinguish between sweeps
that are shared due to common ancestry (ancestral sweeps), and shared due to independent selective events
(convergent sweeps). Analysis with the SS-H12 framework therefore provides a thorough characterization of
selection candidates, both previously-described and novel, unlike that of comparable methods. In addition,
we extended analyses to unphased MLG data as SS-G123, maintaining excellent power in the absence of

phased haplotypes, expanding the range of study systems from which we may draw selective sweep inferences.

Power and classification

Because SS-H12 and SS-G123 fundamentally derive from measures of expected homozygosity, they are tai-
lored to detect recent shared selective sweeps. Stronger sweeps are detectable over a wider range of selection
start times (¢) than weaker sweeps due to their greater distortion of the haplotype frequency spectrum re-
sulting in larger sweep footprints [Gillespie, 2004, Garud et al., 2015, Hermisson and Pennings, 2017] and
larger values of the sweep statistics. However, because stronger sweeps reach fixation sooner than do weaker
sweeps, their signals begin to erode sooner, especially for sweeps from larger v (compare, for example, the
center columns of Figures 2, S5, and S6 for ancestral sweeps). Accordingly, there is an inverse relationship
between the strength of detectable shared sweeps (s), and the selection start times for which we can detect
a sweep. The interaction between ¢ and s is also important for classifying the timing of shared sweeps.
Barring rare convergent sweeps on the same haplotype between sister populations, we found that simulated
convergent sweeps were reliably identified from the sign of SS-H12 or SS-G123 under scenarios in which they
have power to detect shared sweeps (see boxplots of Figures 2, 3, and S5-S8, and classification curves of

Figures S11-S14).
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For weaker ancestral sweeps, in contrast, negative values of elevated magnitude could emerge if the time
of selection t was close to the split time 7 for the CEU-GIH model (bottom row of Figures 2, S5, and S6), or
for the CEU-YRI model in general (bottom row of Figures 3, S7, and S8), especially for SS-G123 (boxplots of
Figures S34-S36 and S39-S41). In the CEU-GIH case, it is likely that the beneficial allele, and its haplotypic
background(s), have not risen to high frequency before the ancestral population splits into the modern
sampled populations. In the CEU-YRI case, enough time has passed since 7 by the time of sampling that
extensive population differentiation exists. Thus, in both cases, copies of the beneficial haplotype present in
each of the two descendant populations may follow distinct trajectories. Using a smaller analysis window may
therefore increase power to detect sweeps with less prominent footprints, but at the risk of misinterpreting
elevated signal due to short-range LD as a sweep.

More generally, the strengths and limitations of our methods to identify shared sweeps as ancestral or
convergent depend upon the underlying genealogy of the analysis region. In our analyses, we may expect a
particular combination of ¢t and s to be readily detectable and classifiable across any demographic history,
such as a strong sweep (s = 0.1) initiating ¢ = 2000 generations before sampling. Under the CEU-GIH
model, this would be an ancestral sweep, while it would be convergent for the CEU-YRI model. Similarly,
because we had no power in our simulation experiments to detect weaker (s = 0.01) sweeps younger than
t =~ 1500 generations old, we could not detect convergent sweeps in the CEU-GIH model unless their selection
coefficient is large. Furthermore, the background haplotypic diversity inherent to different populations’
demographic histories may be highly variable, affecting signal duration and intensity. This meant we could
detect ancestral sweeps up to 2000 generations more ancient under the CEU-YRI model than under the CEU-
GIH model. In these ways, genealogy constrains which sweeps are identifiable under a particular parameter
set. In practice, most outlying shared sweep candidates in humans were ancestral (Tables S4-S21), despite
the high power of our approach to detect simulated convergent sweeps. Indeed, convergent sweeps may
simply be uncommon because beneficial mutations are rare [Orr, 2010]. Thus, it should be especially rare
for beneficial mutations to independently establish at the same locus across multiple populations, for all but
the most strongly-selected mutations [Haldane, 1927, Kimura, 1962, Wilson et al., 2014].

While powerful for detecting shared sweeps, an equally important property of our statistics is that they
ignore divergent sweeps, assigning only values of small magnitude in such cases. The ability to eliminate
unshared sweeps as potentially-outlying signals is important because a sweep in a subset of sampled pop-
ulations still produces distorted haplotype frequencies between them. This can result in values of fpig (or
gpif) that may spuriously resemble convergent sweeps, yielding values of the uncorrected H124,, statistic
that are distinct from neutrality (Figures S15 and S16, right column). By applying a correction factor to

H12p, (Equation 3), we dampened the signals of divergent sweeps for samples drawn from any number of
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populations K (right columns of Figures 2, 3, S9, and SN1-SN3). As such, the distributions of SS-H12 and
SS-G123 generated under divergent sweeps often appears visually no different from neutrality, leaving no
possibility of misidentifying divergent sweeps as shared sweeps.

Our ability to detect recent shared sweeps remained consistent across samples composed of K € {2,3,4,5}
populations, which we demonstrate with haplotype results from the generalized mammalian model in the
Supplementary Note (Figures S9 and SN1-SN3). Power curves across experiments were nearly identical to
one another, regardless of K, and regardless of whether we employed the conservative or grouped approach
(see Materials and Methods) for K > 2 samples. However, we were frequently unable to classify convergent
sweeps shared across K > 2 populations correctly, often assigning SS-H12 > 0 when the time of the sweep
is more ancient than the most recent population split time but younger than the root of the population
tree, due to the presence of internal ancestral sweeps (Figures SN1-SN3, left columns). True ancestral
sweeps, in contrast, were unambiguous because in these cases, all populations share identical sweeping
haplotypes (Figures SN1-SN3, center columns). Finally, divergent sweeps never produced outlying values of
SS-H12, but we observed spuriously elevated power for sweeps shared ancestrally among more populations
(Figures SN1-SN3, right columns). To avoid misinterpreting shared sweep signals deriving from K > 3
sampled populations, we recommend performing follow-up analyses on identified signal peaks to determine
the specific populations involved in the sweep.

Similarly to the single-population approach [Garud et al., 2015, Harris et al., 2018], SS-H12 and SS-G123
have power to detect shared soft sweeps, and can assign these as ancestral or convergent. We found that softer
sweeps were more difficult to detect than harder sweeps, proportional to v. Sweeps from larger v produce
smaller haplotype frequency spectrum distortions than do hard sweeps, but trends in the distributions
of SS-H12 (Figures 2, 3, and S5-S8) and SS-G123 (Figures S34-S41) were nonetheless consistent between
hard and soft sweeps. Our results also indicate that all haplotypes need not be shared between sampled
populations in order to yield outlying signals. This is because simulated population split events represented a
random sampling of ancestral haplotypes without guaranteeing identical haplotype frequency spectra between
descendant sister populations or their ancestor. As an example, we consider a simple hypothetical scenario
in which v = 5 ancestrally sweeping haplotypes are distributed unevenly between two descendant sister
populations (Figure S44, bottom-left). A shared haplotype exists at frequency 0.55 in Population 1 (P1),
and at 0.45 in Population 2 (P2). Meanwhile, P1 has two exclusive haplotypes at frequencies 0.25 and 0.2,
while P2 has exclusive haplotypes at frequencies 0.3 and 0.25; corresponding to approximately 50% exclusive
haplotypes per population. In this (albeit extreme) scenario, SS-H12 = 0.183, a positive value lying outside

the distributions of neutrality for our all of our models.
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Beyond detecting recent shared sweeps with high power, accuracy, and specificity, ours is the only one
among comparable methods that can classify shared sweeps as hard or soft from the inferred number of
sweeping haplotypes (v). Using an ABC approach to assign the most likely number of sweeping haplotypes
in a genomic window, we found that the classification of recent ancestral sweeps broadly followed that of
sweeps in single populations, with smaller H21,;/Hlo corresponding to harder sweeps, and the largest v
associated with the largest H21o /Hlmor (Figure 5, top). Resolving the most probable v can be challenging
depending on the age of the sweep, and so we find that boundaries between v classes are somewhat irregular
within the posterior distribution, especially for the CEU-YRI model. In contrast, convergent sweeps are
easily classified as hard or soft due to their necessarily stronger signal relative to ancestral sweeps (Figure 5,
bottom). The classification profile of convergent sweeps is distinctly different from that of ancestral sweeps
because the strongest hard sweeps will yield two high-frequency haplotypes in the population, corresponding
to intermediate H21,t/HIlTo values, with soft sweeps generating H2t./Hlrot at either extreme. Thus,
we can adeptly classify shared sweeps as hard or soft using the SS-H12 framework across any parameter

combination for which we have power (Figures 2, 3 and S5-S8).

Confounding factors and model deviations

SS-H12 displayed an extensive robustness to confounding admixture across scenarios in which a distantly-
related donor targeted one of the sampled populations (Figures 4 and S19). As this covers a variety of
potential cases, and is a fairly common occurrence [Chun et al., 2010, Patterson et al., 2012, Pool et al.,
2012, Nedié et al., 2014], we believe SS-H12 may be confidently applied to a wider set of complex demographic
scenarios. In contrast, SS-H12 could not properly classify the timing of a sweep passed from one sampled
population to its sampled sister through admixture (Supplementary Note Figure SN4). This scenario may
be avoided by restricting sampling to only populations that have been geographically separated by a bar-
rier to migration for an appreciable amount of time, making admixture unlikely. Distant-donor admixture
most impacted the ability of SS-H12 to detect and classify ancestral sweeps, whereas convergent sweeps re-
mained broadly unobscured and distinct from neutrality except in extreme scenarios (admixture above 30%;
Figures 4 and S19, left columns). Admixture here introduces new haplotypes into the target, resulting in
differing haplotype frequency spectra between the pair. Lower donor genetic diversity thus expectedly yields
a spurious convergent sweep-like pattern, while admixture from a more diverse donor recreates a divergent
sweep-like pattern (Figures 4 and S19, middle columns). Overall, the effect of distant-donor admixture is
likely to be a reduction in the prominence of SS-H12, which may impact estimates of sweep age and intensity
[Malaspinas et al., 2012, Mathieson and McVean, 2013, Smith et al., 2018], but without yielding false positive

signals (Figure S19, left and center columns).

32



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

As with unadmixed samples, SS-H12 for divergent sweeps showed little departure in prominence from
neutrality following admixture from a diverged donor (Figure 4, right column). However, we observed a
spurious though not impactful rise in power when a diverse (N = 10°) donor admixes into the sweeping
population at a rate of 10% or more (Figure S19, bottom-right). While our statistics are insulated against
picking up these divergent sweeps as outliers due to their small magnitude, we caution that the opposite
scenario—admixture from a donor of small size into the non-sweeping population—may resemble a conver-
gent sweep as H12 in the target population, and fpig between populations, rises. SS-H12 does not ignore
divergent sweeps in inter-sister admixture, which results in extensive haplotype sharing that, at any level,
yielding positive values of SS-H12 (Supplementary Note Figure SN4). Because the basis for our shared sweep
classifications is a quantification of haplotype frequency overlap, inter-sister admixture is the main confound-
ing scenario for SS-H12. It is therefore prudent to test for evidence of admixture between sampled sister
populations before searching for shared sweeps, and also to obtain ecological and paleontological evidence
to support the origin of an adaptive haplotype [Seeley, 1986, Wogelius et al., 2011, Remigereau et al., 2011,
Romero et al., 2012]. Ultimately, admixture was the only confounding factor we tested that could affect
SS-H12 values, and only a narrow range of scenarios is likely to do so.

The other major model violation we examined, background selection, accordingly posed a much smaller
risk of affecting SS-H12. Background selection results in a loss of polymorphism as deleterious alleles and
alleles at nearby linked sites are removed from the population, resulting in an ablation of genetic diversity
reminiscent of selective sweeps [Charlesworth et al., 1993, 1995, Seger et al., 2010, Nicolaisen and Desali,
2013, Cutter and Payseur, 2013, Huber et al., 2016]. However, background selection is expected to only
reduce levels of neutral polymorphism without driving particular haplotypes to high frequency [Enard et al.,
2014]. Indeed, our results indicate that background selection could scarcely distort the distribution of SS-H12
values relative to neutrality (Figure S23), because it affects neither H12 [Harris et al., 2018] nor the haplotype
frequency spectrum [Harris and DeGiorgio, 2019]. Thus, we do not expect that a detailed understanding of
background selection in a study system will be required to detect shared sweeps.

Our experiments across common deviations to the basic parameters of the simplified mammalian model—
equal sample sizes, simultaneous sweeps, and bifurcating population splits—highlight the variety of scenarios
to which we can apply SS-H12 and SS-G123. Our statistics are agnostic to these deviations because none
should affect haplotype sharing between populations. Modifying the relative sample sizes for each subpopu-
lation had the effect of changing v (Equation 2), but this scarcely affects patterns of haplotypic diversity, and
therefore power and classification (Figures S20-S22), relative to equal sample sizes (Figure S9). The relative
timing of convergent sweeps also did not change their differentiating effect between populations, and so once

again we found that power here (Supplementary Note Figure SN5) fit with that of simultaneous convergent
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sweeps (Figure S9). We can also consider a more complex scenario in which the rate of adaptation in each
population differs, as with a non-uniform environment. If the study populations are sampled before the the
beneficial mutation establishes in each, then we may overlook a true shared sweep as divergent because a
subset of populations will show a sweep signature, and a subset will not. This is a limitation of any shared
sweep method, however. Finally, we found that the power of SS-H12 to detect and classify sweeps for a star
tree with K = 4 descendants (Supplementary Note Figures SN6 and SN7) matched that under an asym-
metric topology (Figure SN2), while more accurately classifying sweeps as ancestral or convergent. SS-H12
can only be misled by non-adaptive changes to the haplotype frequency distribution that affect the level of
haplotype sharing between populations, yielding a wide robustness to many common scenarios.

While in our experiments we analyzed only ideal dense polymorphism data with no missing sites, we
briefly pause to consider the performance of SS-H12 outside of these conditions. This is especially relevant
for SNP array data, which features a lower density of polymorphisms relative to sequencing data. For the
single-population statistics, Harris et al. [2018] recommended constructing analysis windows using a SNP-
delimited (rather than nucleotide-delimited) approach, wherein windows are defined by the number of SNPs
contained within rather than their physical size. Constructing windows in this way ensures the inclusion of
sufficient haplotypic variation for inference, and may also confer robustness to demographic processes that
reduce diversity locally, such as population bottlenecks [Harris et al., 2018]. In the case of missing data,
insights from the single-population approach [Harris et al., 2018] suggest that removing sites with greater
than 5% missing data (for data missing at random) yields acceptable power. Sites with an extensive number
of low-confidence genotypes should also be removed, because such errors can lead to the spurious detection
of new haplotypes, which increases background diversity and reduces the magnitude of SS-H12, potentially
causing sweeps to be overlooked. Taken together, we suggest that it may be beneficial to employ SNP- rather
than nucleotide-delimited windows on datasets with extensive missing data, regardless of whether sites are

missing due to sparse sampling or from genotype or sequencing errors.

Discovery and characterization of shared sweeps in humans

The high power, robustness, and flexibility of SS-H12 allowed us to discover outlying sweep candidates in
humans that both corroborated previous investigations, and uncovered novel shared sweep candidates. Most
importantly, our approach provided inferences about the timing and softness of shared sweeps, yielding
enhanced levels of detail about candidates that were until now not directly available. As SS-H12 is the
only method that distinguishes between recent ancestral and convergent shared sweeps, our investigation
was uniquely able to identify loci at which independent convergent sweeps, though rare, may have played a

role in shaping modern patterns of genetic diversity. Among these was EXOC6B (Figure S33, middle row),
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which produces a protein component of the exocyst [Evers et al., 2014] and has been previously highlighted
as a characteristic site of selection in East Asian populations [Baye et al., 2009, Durbin and Consortium,
2011, Pybus et al., 2014]. The shared hard sweep (v = 1) at EXOC6B appeared as convergent between the
East Asian JPT and sub-Saharan African YRI populations (Table S10), but as ancestral between all other
population pairs—pairs of non-African populations—in which it appeared (Tables S5, S6, S11, and S12).
Thus, we believe that a sweep at EXOC6B occurred globally in both African and non-African populations
alike, and was not limited to a single region or event.

More broadly, our investigation into sweeps shared between disparate populations also updates existing
notions about when during human history particular selective events may have occurred. For example, a
sweep at NNT, involved in the glucocorticoid response, has been previously reported in sub-Saharan Africa
[Voight et al., 2006, Fagny et al., 2014]. As expected, we recovered NNT as an ancestral hard sweep (v = 1)
in the comparison between LWK and YRI (Table S8), but additionally in all comparisons between YRI and
non-African populations (Tables S7, S9, and S10; genome-wide significant for all but the JPT-YRI pair).
Selection at NNT preceded the out-of-Africa event and was not exclusive to sub-Saharan African populations.
Another unexpected top outlier was SPIDR (Figure S32, first row), involved in double-stranded DNA break
repair [Wan et al., 2013, Smirin-Yosef et al., 2017] and inferred to be a shared candidate among Eurasian
populations [Racimo, 2016]. SPIDR previously appeared as an outlying H12 signal in the East Asian CHB
(Han Chinese individuals from Beijing) population [Harris et al., 2018], but in our present analysis was shared
ancestrally not only between the East Asian KHV and JPT populations (Table S12), but also between JPT
and the European CEU (Table S6; p = 3.49 x 10~ 1), and the sub-Saharan African LWK and YRI (Table S8)
populations. Once again, we see a strong sweep candidate shared among a wider range of populations than
previously expected, illustrating the role of shared sweep analysis in amending our understanding of the
scope of sweeps in humans worldwide.

In addition to recovering expected and expanded sweep signatures, we also found top outlying ancestral
sweep candidates not especially prominent within single populations, emphasizing that localizing an ancestral
sweep depends not only on elevated expected homozygosity generating the signal, but highly on the presence
of shared haplotypes between populations. Foremost among such candidates was CASC/, a candidate
ancestral hard sweep (v = 1) in all comparisons with YRI (Tables S7-S10; genome-wide significant for CEU
and GIH with YRI). Because a sweep ancestral to the out-of Africa event at this cancer-associated gene [Ly
et al., 2014, Anczukéw et al., 2015] had been previously hypothesized [Racimo, 2016], we expected to see
it. However, CASC/ does not have a prominent H12 value outside of sub-Saharan African populations, and
within YRI is a lower-end outlier [Harris et al., 2018]. Despite this, CASCY4 is within the top 12 outlying

candidates across all comparisons with YRI, and appears as the eighth-most outlying gene in for CEU-JPT
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(Table S6; v = 2), even though it is not an outlier in either population individually. Similarly, we found
PHEKB, involved in glycogen storage [Hendrickx and Willems, 1996, Burwinkel et al., 1997, Burwinkel and
Kilimann, 1998], as an ancestral hard sweep of CEU-YRI (Table S7; 9.29 x 107° v = 1) that was not
prominent in either population alone, though once again previously inferred to be a sweep candidate to
Eurasians [Racimo, 2016]. We also identified MRAPZ2, which encodes a melanocortin receptor accessory
protein implicated in glucocorticoid deficiency [Chan et al., 2009, Asai et al., 2013], similarly to NNT, as
an ancestral hard sweep between the CEU and JPT populations (Table S6; p = 1.68 x 1078, v = 1), and
is not prominent in either CEU or JPT. Thus, our empirical results fit well with the expectation deriving
from our power comparison between multiple tests of H12 and a single SS-H12 test (Figures S17 and S18),
but we caution that we did not establish global significance between regions for our candidate genes, and
are unlikely to have sufficient power to do so after correcting for all comparisons.

An important trend from our empirical analysis was the significantly negative correlation between recom-
bination rate across protein- and RNA-coding genes, and assigned [SS-H12|. Outlying sweep candidates were
uniformly associated with regions of low recombination, yielding significant correlations for each population
pair comparison according to Spearman’s p. The most apparent implication for this observation is that we
are more likely to observe sweep signals in regions of low recombination because it is within such regions
that sweep footprints persist for the longest time. Consequently, the haplotypic signature of a selective
sweep should be difficult to elucidate for regions of high recombination, where sweeping haplotypes would
rapidly homogenize into the background diversity, leaving only a transient footprint. It may be possible
to guard against misinterpreting regions of elevated LD as sweeps, or overlooking sweeps in regions with
high recombination, by adjusting the size of the analysis window when computing SS-H12. Following this
approach, it would be helpful to use a smaller analysis window where recombination rates are large in order
to identify subtle haplotype frequency distortions, and larger windows where recombination rates are low and
haplotypic diversity is already expected to be small. Although we did not pursue this strategy, we instead
assigned p-values and inferred v using simulations drawn from a spectrum of recombination rates, which we
expect conferred a high degree of robustness to our conclusions.

The assignment of p-values additionally depended upon our inferred population model. Because a re-
construction of the demographic history was required for us to assign p-values, we evaluated the effect of
misspecifying the model on |SS-H12| significance cutoffs (Figures S45 and S46). To do this, we simulated neu-
tral replicates either under our more accurate “true” smc++-derived histories with population size changes,
or under “wrong” histories with identical mean Fgr to the true models but with constant population sizes
(Figure S46). Model misspecification could potentially impact inferences of significant SS-H12 signals, and

this effect depended on the relatedness between sampled populations (Figure S45). For more closely-related
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population pairs (CEU-GBR and JPT-KHV, mean Fst on the order of 1072), the wrong constant-size model
yielded smaller |[SS-H12| values, corresponding to a less stringent threshold. For more diverged pairs of sub-
populations (YRI with CEU, GIH, or JPT, mean Fgy on the order of 1071), an inverse effect occurs, such
that the misspecified model becomes too conservative and significant signals may be overlooked. Accord-
ingly, intermediately-related populations (CEU-GIH and LWK-YRI, mean Fgt on the order of 10~2) may be
insulated from the effect of model misspecification. Thus, the selection of a model with parameters derived
from the study data is paramount to the proper interpretation of genomic SS-H12 signals within those data.

We conclude our discussion of the empirical analysis by underscoring its practical implications for the
analysis of unphased data. Across our simulation experiments, we found that SS-G123 demonstrated power
to detect shared sweeps that was wholly concordant with the power of SS-H12 on phased haplotypes (Fig-
ures S37, S38, S42, and S43). The area in which SS-G123 appeared to be lacking was in its ability to properly
classify the timing of a shared sweep. That is, outside of recent sweeps, SS-G123 was highly susceptible to
assigning negative values to ancestral sweeps, thereby misclassifying them as convergent (compare purple
[SS-G123] and red [SS-H12| lines within the central columns of Figures S11-S14). The reason for this dis-
parity in classification lies with the data type itself. Unphased MLGs have a much greater diversity than
haplotypes under most scenarios if we assume random mating [Harris et al., 2018]. For this reason, the
homogeneity among MLGs following a sweep returns to background levels more rapidly than that of haplo-
types, leading to G123, < gpig across scenarios for which H121.; > fpig. Contrary to these expectations,
however, we found that detection and classification with SS-G123 matched that of SS-H12 for a wide major-
ity of candidates across our empirical scans. Ultimately, this indicates that the sweep candidates most likely
to pass the significance threshold, likely to be important for adaptation, are those for which phasing does

not affect inferences, which underscores the importance of a tool with the ability to make those inferences.

Conclusions

The SS-H12 and SS-G123 frameworks are an important advancement in our ability to contextualize and
classify shared sweep events using multilocus sequence data. Whereas prior methods have identified shared
sweeps and can do so with high power, some without the need for MLGs or phased haplotypes, the ability to
distinguish both hard and soft shared sweeps from neutrality, as well as differentiate ancestral and convergent
sweeps, is invaluable for understanding the manner in which an adaptive event has proceeded. Discerning
whether a selective sweep has occurred multiple times or only once can provide novel and updated insights
into the relatedness of study populations, and the selective pressures that they endured. Moreover, the
sensitivity of our approach to both hard and soft sweeps, and our ability to separate one from the other,

add an additional layer of clarity that is otherwise missing from previous analyses, and is especially relevant
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because uncertainty persists as to the relative contributions of hard and soft sweeps in human history [Jensen,
2014, Schrider and Kern, 2017, Mughal and DeGiorgio, 2019]. We expect inferences deriving from shared
sweep analyses to assist in formulating and guiding more informed questions about discovered candidates
across diverse organisms for which sequence data—phased and unphased—exist. As part of this, SS-H12
and SS-G123 may be incorporated into machine learning algorithms that leverage the spatial signature of
sweep statistics to construct powerful sweep detection protocols [e.g., Schrider and Kern, 2017, Mughal and
DeGiorgio, 2019]. After establishing the timing and softness of a shared sweep, appropriate follow-up analyses
can include inferring the age of a sweep [Smith et al., 2018], identifying the favored allele or alleles [Akbari
et al., 2018], or identifying other populations connected to the shared sweep. We believe that our approach
will serve to enhance investigations into a diverse variety of study systems, and facilitate the emergence of
new perspectives and paradigms.

To this end, we provide open-source software (titled 8S-X12) to perform scanning window analyses on
haplotype input data using SS-H12 or multilocus genotype input data using SS-G123, as well as results from
our empirical scans and other analyses, within our Dryad repository. SS-X12 provides flexible user control,
allowing the input of samples drawn from arbitrary populations K, and the output of a variety of expected

homozygosity summary statistics.
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Table 3: Summary of SS-H12 signals and their interpretation across various scenarios.

Scenario Sign of SS- | Magnitude Comments Reference
H12 of SS-H12

Neutrality Typically neg- | Small Magnitude becomes positive in bot- | Figures 2-3 and S5-
ative tleneck scenarios where the number | S8, see first box-

of shared haplotypes between pop- | plot of left column
ulations is higher by chance. in each figure.

Ancestral Positive Large Magnitude is generally smaller than | Figures 2-3 and S5-

sweep for convergent sweeps because an- | S8 for power curves

cestral sweeps are older; rare neg- | and boxplots, Fig-

ative values may arise for weaker | ures S11-S14 for

sweep strengths. sign of SS-H12,
center column of
each figure.

Convergent | Predominantly | Large Largest magnitude of SS-H12 across | Figures 2-3 and S5-

sweep negative tested scenarios; positive values | S8, Figures S11-

may arise in the rare event that two | S14, left column of
independent sweeps on the same | each figure; Supple-
haplotype occur between sampled | mentary note Fig-
populations. ure SNb5.

Divergent Typically neg- | Small Trends in magnitude of SS-H12 | Figures 2-3 and S5-

sweep ative match those of neutrality without | S8, Figures S11-

exception; large magnitudes are im- | S14, right column of
possible for divergent sweeps due to | each figure.
the correction factor (Equation 3).

Relative Negative or | Small or large | The performance of SS-H12 does | Figures S20-S22.

sample positive not depend on the relative sizes of

sizes each sample, with values of v €

{0.7,0.8,0.9} (Equation 2) behav-

ing as with v = 0.5.
Background | Typically neg- | Small Background selection has no dis- | Figure S23
selection ative cernible effect on the distribution of

SS-H12 relative to neutrality.

Admixture Predominantly | Small or large | Sufficient admixture from a diverse | Figures 4 and S19
negative (see enough donor population will erode | for  distant-donor
comments) the signal of a sweep, yielding nega- | scenario; Sup-

tive values of small magnitude; ad- | plementary note
mixture with a low-diversity donor | Figure SN4 for
does not affect magnitude or signal | inter-sister sce-
of convergent sweeps, but will cause | nario.

ancestral sweeps to spuriously re-

semble convergent sweeps. Admix-

ture between closely-related sam-

pled sister populations yields pos-

itive values.

Number of | Negative or | Small or large | The number of populations in- | Figures S9 and

sampled positive cluded in the sample does not af- | Supplementary note

populations fect inference with SS-H12, across | Figures SN1-SN3

(K) tested asymmetric and star phylo- | (asymmetric); Fig-

genies. ures SN6 and SN7
(star).

Unphased Negative or | Small or large | Applied to unphased multilocus | Figures S34-S41.

data positive genotypes (MLGs) as SS-G123, our

approach has similar power and
yields comparable inferences to SS-
H12. Classification ability decays
more rapidly because MLGs are
more diverse than haplotypes
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Neutrality Ancestral sweep

Convergent sweep Divergent sweep

Figure 1: Model of a two-population phylogeny for which SS-H12 detects recent shared sweeps.
Here, an ancestral population splits in the past into two modern lineages, which are sampled. Each
panel displays the frequency trajectory of a haplotype across the populations. Under neutrality,
there is high haplotypic diversity such that many haplotypes, including the reference haplotype
(blue), exist at low frequency. In the ancestral sweep, the reference haplotype becomes selectively
advantageous (turning orange) and rises to high frequency prior to the split, such that both modern
lineages carry the same selected haplotype at high frequency. The convergent sweep scenario
involves different selected haplotypes independently rising to high frequency in each lineage after
their split. Under a divergent sweep, only one sampled lineage experiences selection.
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Figure 2: Properties of SS-H12 for simulated strong (s = 0.1; 0 = 4N.s = 4000) and moderate
(s = 0.01; 0 = 400) hard sweep scenarios under the CEU-GIH model (7 = 1100 generations,
or 0.055 coalescent units, before sampling). (Top row) Power at 1% (red lines) and 5% (purple
lines) false positive rates (FPRs) to detect recent ancestral, convergent, and divergent hard sweeps
(see Figure 1) as a function of time at which positive selection of the favored allele initiated (t),
with FPR based on the distribution of maximum |[SS-H12| across simulated neutral replicates.
(Middle row) Box plots summarizing the distribution of SS-H12 values from windows of maximum
|SS-H12| across strong sweep replicates, corresponding to each time point in the power curves,
with dashed lines in each panel representing SS-H12 = 0. (Bottom row) Box plots summarizing
the distribution of SS-H12 values across moderate sweep replicates. For convergent and divergent
sweeps, t < 7, while for ancestral sweeps, ¢ > 7. All replicate samples for the CEU-GIH model
contain 99 simulated CEU individuals and 103 simulated GIH individuals, as in the 1000 Genomes
Project dataset [Auton et al., 2015], and we performed 1000 replicates for each scenario. CEU:
Utah (USA) Residents with Northern and Western European Ancestry. GIH: Gujarati Indians
from Houston, Texas (USA).
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Figure 3: Properties of SS-H12 for simulated strong (s = 0.1; o = 4N.s = 8000) and moderate
(s = 0.01; 0 = 800) hard sweep scenarios under the CEU-YRI model (7 = 3740 generations,
or 0.0935 coalescent units, before sampling). (Top row) Power at 1% (red lines) and 5% (purple
lines) false positive rates (FPRs) to detect recent ancestral, convergent, and divergent hard sweeps
(see Figure 1) as a function of time at which positive selection of the favored allele initiated (t),
with FPR based on the distribution of maximum |SS-H12| across simulated neutral replicates.
(Middle row) Box plots summarizing the distribution of SS-H12 values from windows of maximum
|SS-H12| across strong sweep replicates, corresponding to each time point in the power curves,
with dashed lines in each panel representing SS-H12 = 0. (Bottom row) Box plots summarizing
the distribution of SS-H12 values across moderate sweep replicates. For convergent and divergent
sweeps, t < 7, while for ancestral sweeps, t > 7. All replicate samples for the CEU-YRI model
contain 99 simulated CEU individuals and 108 simulated YRI individuals, as in the 1000 Genomes
Project dataset [Auton et al., 2015], and we performed 1000 replicates for each scenario. YRI:
Yoruba people from Ibadan, Nigeria.
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Figure 4: Effect of admixture from a diverged, unsampled donor lineage on distributions of SS-H12
values at peaks of maximum |SS-H12|, in samples consisting of individuals from K = 2 populations
following the simplified mammalian model (7 = 1000; 0.05 coalescent units), under simulated
recent ancestral, convergent, and divergent sweeps. For ancestral sweeps, selection occurred 1400
generations (0.07 coalescent units) before sampling. For convergent and divergent sweeps, selection
occurred 600 generations (0.03 coalescent units) before sampling. The effective size of the donor
population varies from N = 103 (an order of magnitude less than that of the sampled populations),
to N = 10° (an order of magnitude more), with admixture at 200 generations (0.01 coalescent
units) before sampling at rates 0.2 to 0.4, modeled as a single pulse. The donor diverged from the
sampled populations 2 x 10* = 2N generations (one coalescent unit) before sampling. In divergent
sweep scenarios, admixture occurred specifically into the population experiencing a sweep. All
sample sizes are of n = 100 diploid individuals, with 1000 replicates performed for each scenario.
For comparison, we include unadmixed results in each panel.
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Figure 5: Ability of paired (|SS-H12|, H21o/H1l7,) values to infer the most probable number of
sweeping haplotypes v in a shared sweep. Most probable v for each test point was assigned from
the posterior distribution of 5 x 10 sweep replicates with v € {0,1,...,16}, drawn uniformly
at random. (Top row) Ancestral sweeps for the CEU-GIH model (7 = 1100, 7/(2N.) = 0.055
coalescent units, left) and the CEU-YRI model (7 = 3740, 7/(2N.) = 0.0935 coalescent units,
right), with ¢ € [1140,3000] (t/(2N.) € [0.057,0.15] coalescent units, left) and ¢ € [3780,5000]
(t/(2N) € [0.0945,0.125] coalescent units, right). (Bottom row) Convergent sweeps for the CEU-
GIH model (left) and the CEU-YRI model (right), with ¢t € [200,1060] (¢/(2N.) € [0.01,0.053]
coalescent units, left) and ¢ € [200,3700] (¢/(2N) € [0.005,0.0925] coalescent units, right). Colored
in red are points whose paired (|SS-H12|, H21./H11,) values are more likely to result from hard
sweeps, those colored in shades of blue are points more likely to be generated from soft sweeps,
and gray indicates a greater probability of neutrality. Regions in white are those for which no
observations of sweep replicates within a Euclidean distance of 0.1 exist.
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Figure 6: Top outlying shared sweep candidates at RNA- and protein-coding genes in global human
populations. The signal peak, including chromosomal position, magnitude, and highlighted window
of maximum SS-H12 (left column), as well as the pegas haplotype network for the window [Paradis,
2010] are displayed for each candidate. The East Asian JPT and KHV populations experience an
ancestral soft sweep at GPHN (top row). The sub-Saharan African populations LWK and YRI
share an ancestral hard sweep at RGS18 (second row). The European CEU population experiences
a shared sweep with YRI at SPREDS3 (third row). The European CEU and East Asian JPT have
a convergent sweep at C2CDJ5, with a different, single high-frequency haplotype present in each
population (bottom row). Haplotype networks are truncated to retain only haplotypes with an
observed count > 6. The number of haplotypes belonging to the sweeping class(es) is indicated
as a fraction, and the Hamming distance (H) between sweeping haplotypes is indicated where
applicable. New population abbreviations: Japanese people from Tokyo (JPT); Kinh people of Ho
Chi Minh City, Vietnam (KHV); Luhya people from Webuye, Kenya (LWK).
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