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1. Introduction This work concerns local convergence theory of Newton and quasi-Newton
methods for the solution of the convez-composite problem:
miniize f(x) = h(c(x)), (P)
where h: R™ — RU {+o0} is piecewise linear-quadratic (PLQ) and convex, and ¢ : R™ — R™ is
C%-smooth. When h = %HH{ P is the classical nonlinear least-squares problem. Numerous other
problems fall within this class including nonlinear programming (NLP), mini-max optimization,
estimation of nonlinear dynamics with non-Gaussian noise as well as many modern approaches
to large-scale data analysis and machine learning [1, 2, 11]. Convex-composite optimization has a
long history with investigations in the 1970s [29, 30], 1980s [3, 4, 22, 34, 35, 39, 40], and 1990s
[6, 7, 12, 37], where much of the emphasis was on a calculus for compositions and its relationship to
nonlinear programming (NLP) and exact penalization [19]. Recently, there has been a resurgence
of interest in local [15, 18] and global [9, 10, 15, 16, 17, 24] algorithms for this class of problems
especially with respect to establishing the iteration complexity of first-order methods for P. Much
of this work has focused on the case where the function A is finite-valued.
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These, as well as most methods for solving P, use a direction-finding subproblem similar to

minimize  h(c(2*) + Ve(z") [z — 2¥]) + 1[ar: — 2" T Hy [z — 2], (Py)
zeR" 2

where Hy, is the Hessian of a Lagrangian for P [4]. When the Hessian H}, is used in the subproblems,
the method corresponds to a Newton method (4), and when H, is approximated by a matrix By,
it corresponds to a quasi-Newton method (5). In either case, the subproblems P, may or may
not be convex depending on whether Hj, By >= 0. In the context of the broader class of prox-
regular h, Lewis and Wright [24] take By = I at each iteration, thereby guaranteeing existence
and uniqueness of the “proximal step” and a global descent algorithm. Instead, our focus is on
developing methods possessing fast local rates of convergence by taking advantage of second-order
information together with the convex geometry of dom (h) developed by Rockafellar [35].

When h is assumed to be a finite-valued piecewise linear convex function, Womersley [38] estab-
lished second-order rates of convergence for these algorithms under conditions comparable to those
used in NLP, i.e., linear independence of the active constraint gradients, strict complementarity,
and strong second-order sufficiency. Notwithstanding this correspondence to NLP, the method of
proof differs significantly from the standard methodology for establishing such results in the NLP
case developed by Robinson [31, 32]. Notably, in the case of NLP, the function h is piecewise linear
but not finite-valued. In subsequent work, Robinson [33] introduced the revolutionary idea of gen-
eralized equations, whose variational properties can be used to establish local rates of convergence
for Newton’s method for NLP. By employing the techniques of generalized equations, Cibulka
et. al. [8] recently connected classical second-order necessary and sufficient conditions for a local
minimizer of P with strong metric subregularity (see Definition 9) of the underlying KKT mapping
when h is piecewise linear convex but not necessarily finite-valued. However, their analysis relies
heavily on the fact that h is piecewise linear. And so, the old question of what conditions imply
local quadratic convergence when A is not piecewise linear remains open. However, their technique
created the possibility of an extension to the case where h is a member of the PLQ class. This
extension is our goal. It is hoped that the methods and techniques developed in this paper provide
insight into how to extend these results beyond the PLQ class.

As noted above, we couch the analysis in the context Newton’s method for generalized equations.
The first-order necessary conditions of a local minimum of P are encoded through a generalized
equation of the form g(z,y) + G(x,y) 2 0, where g : R"*™ — R"*™ ig a C'-smooth function, G :
R*™ = R™*™ ig a set-valued mapping, (x,y) represents a primal-dual pair, and the function
Vg(z,y) is a KKT matrix for P (see Definition 5). Newton’s method (4) for solving this generalized
equation corresponds to solving the optimality conditions for P,. The Newton iterate at (z*,y*)
is obtained by solving the following linearized generalized equation:

k1 _ ok
Find (2", ") such that g(«*,y*) + Vg(z"*,y") (ikil B ;k> + Gz R 3 0. (1)
The details of this derivation appear in Section 3.

The goal of this paper is to establish local convergence rates for algorithms based on iteratively
solving P}, in the case where h is a PLQ convex function. We do this by augmenting the strategy of
Cibulka et. al. [8] with additional innovations by Lewis [23] and Rockafellar [35]. In particular, we
are able to establish conditions under which these algorithms are locally quadratically convergent.
The first phase of our analysis involves extensive application of the first- and second-order PLQ
calculus [35, 37] to establish conditions under which the underlying generalized equation is strongly
metrically subregular. This allows us to establish sufficient conditions for the superlinear conver-
gence of quasi-Newton methods for algorithms whose direction finding subproblems are based on
P;.. The second phase of our analysis employs the technique of partly smooth functions in the sense
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of [20, 23] to establish conditions under which a local approximation to the underlying generalized
equation is strongly metrically regular (see Definition 15). This allows us to give conditions for the
local quadratic convergence of the Newton method based on Py.

We also note that recent work by Drusvyatskiy and Lewis [15] considers similar types of results for
convex-composite optimization problems of the form ¢(z) = h(c(x)) + g(x), where h is finite-valued
and L—Lipschitz, Ve is B-Lipschitz, and g is closed, proper, convex, and possibly infinite-valued.
One of their goals is to understand the convergence of prox-linear type methods through either the
subregularity [15, Theorems 5.10 and 5.11] or strong regularity [15, Theorem 6.2] of dy at stable
strong minima or sharp minima of ¢ [15, Theorems 7.1 and 7.2].

When h is only assumed to be finite-valued convex and g is zero, the first result on the local
quadratic convergence for convex-composite problems was that of Burke and Ferris [6]. In that
work, the authors established a constraint qualification for the inclusion ¢(Z) € argminh that
ensures the local quadratic convergence of constrained Gauss-Newton methods. In [6], the authors
assumed argmin h was a set of weak sharp minima [5]. However, it was observed by Li and Wang
[26] that the sharpness hypothesis was not required. Rather, a local quadratic growth condition
[26, Theorem 2] was sufficient for the proof techniques in [6] to succeed. The authors continued
research [25] in relaxations of the constraint qualification on ¢(Z) € argmin h and studied proximal
methods [21] for their convergence.

Our focus on the PLQ class is motivated by the great variety of modern problems in data analysis,
estimation of dynamical systems, inverse problems, and machine learning that are posed within
this class. The key to the success of the convex-composite structure is that it separates the data
associated to the problem, the function ¢, from the model within which we wish to explore the data,
the function h. Consequently, the broader the class of functions h available, the greater the variety
of ways within which we can explore underlying extremal properties of the input function c, e.g.,
sparsity, robustness, network structure, dynamics, influence of hyperparameters, etc. Importantly,
we have learned that features of the data can be more readily extracted by imposing nonsmoothness
in the function h.

The roadmap of the paper is as follows. Section 2 collects tools from convex and variational
analysis used throughout the paper. Section 3 formally presents the convex-composite problem
class. We take advantage of the structure of the problem class to rewrite the general first-order
optimality conditions for proper functions in the presence of various constraint qualifications used
in this work. We also present the generalized equation (9) associated with the first-order optimality
conditions for P. Section 4 discusses the convex geometry and differential theory of piecewise
linear-quadratic functions collected in [37]. The second-order theory of [37] allows us to rewrite
the general second-order necessary and sufficient conditions for a local minimum of P. We extract
a crucial result from [37] that highlights natural candidates for manifolds of partial smoothness
[23] inherent to the function h. Section 5 extends the result [8, Theorem 7.1] relating the strong
metric subregularity of (9) to the second-order sufficient conditions of local minima and ends with
a convergence study of quasi-Newton methods for P. Section 6 establishes conditions for the partly
smooth structure of PLQ convex functions and sets the stage for Section 7, where we analyze the
local quadratic convergence of Newton’s method as in [13].

2. Notation These sections summarize the relevant notation and tools of convex and varia-
tional analysis used in this work. Unless otherwise stated, we follow the notation in [23, 37, 13].

2.1. Preliminaries We work in (R", (-, -)) with the standard inner product (z,y)=12"y =
S iy; and ||z||* = 272 Throughout, we switch between the notations (z, y) and z Ty for clarity

considerations. Let B := {x eR” ‘HOEH < 1} be the closed unit ball. For A € R™*" its range, null

space, and transpose are Ran (A),Null (A), A" respectively, and for a finite collection of mappings
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{Ai} e, with index set J, let diagA) denote the block diagonal matrix with Ath block Aj. Let
e; € R® denote the standard unit coordinate vector.

2.2. Convex Analysis A set C CR™ is locally closed at a point ¢, not necessarily in C| if
there exists a closed neighborhood V of € such that CNV is closed. Any closed set is locally closed
at all of its points, and the closure and interior of C' is denoted by clC' and int C, respectively.

For a closed convex set C' C R™, let aff C' denote the affine hull of C' and par (C) the subspace
parallel to C. Then, for any ¢ € C, par (C) :=aff C —c=R(C — ('), where we employ Minkowski set
algebra for addition of sets: for sets C,Cy C R™ and t € R, define C'+C" := {c—i— dlceC, el }
and AC :={Xc|X€A, ceC}. When C = {c}, we omit the set braces and write ¢+ C". The relative

interior of C'is given by ri(C):{anﬁC |3 (e>0) (x+€B)ﬂaffC’CC}.

2.3. Variational Analysis The functions in this paper take values in the extended reals
R:=RU{#o0}. For f:R" = R, the domain of f is dom(f) := {xGR” |f(x) <oo}, and the

epigraph of f is epi f := {(a:,oe) cR*"xR ‘f(.r) < oz}
We say f is closed if epi f is a closed subset of R"*1 f is proper if dom (f) # () and f(z) > —oco for
all x € R", and f is conver if epi f is a convex subset of R~ B

Suppose f:R™— R is finite at T and w,v € R". The subderivative df(z) : R™ — R and one-sided
directional derivative f'(T;-) at T for w are

4 (7) () = linint f(a:+tuz) - f(f)7 f (i) = f(a;+tu2) —f(@)

w' —w

At points w € R™ such that f'(Z;w) exists and is finite, the one-sided second directional derivative

is — = ! (7.

142
N0 2t

For any w,v € R™, the second subderivative at T for v and w € R™ is

A f(Z|v)(w) := lirtn\iglfAff(f\v)(w), where A? f(Z|v)(w) := f@+tw') — (@) —t{v, w’>'

142
2t

/
w —w

The structure of our problem class allows the classical one-sided first and second directional deriva-
tives f'(Z;-) and f”(Z;-) to entirely capture the variational properties of their more general coun-
terparts.

Suppose f:R™ — R is finite at Z. Define the (Fréchet) reqular subdifferential

0f(@):={veR" [f(2)= @)+ (v,2-7) +ole—7|) }
and the (limiting or Mordukhovich) subdifferential by

of(z) = {v eR"

A" 57 I =) V(neN) v"eéf(x")}, (2)

where x" ? T denotes f-attentive convergence, i.e., that ™ —Z, with f(z™) — f(Z). In the case of

a closed, proper, convex function f, the set df(Z) is the usual subdifferential of convex analysis.
A set-valued mapping S : R” = R™ is a mapping from R” into the power set of R™, so for each
x €R", S(x) CR™. The graph and domain of S are defined to be

gphS::{(az,y)ER” x R™ |y€S(3:)} and dom (S) := {xeR” ‘S(m);ﬁ@},
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and S is graph-convexr whenever gph S is a convex subset of R” x R™. For a point (Z,7) € gph S,
and neighborhoods U of T and V' of ¥, a graphical localization of S at T for  is a set-valued
mapping S defined by gph S =gph SN (U x V). A single-valued localization of S at T for  is a
graphical localization that is also function. If the domain of S is a neighborhood of Z, S is called a

single-valued localization of S around T for 3. The mapping S is outer semicontinuous at T relative
to X CR™ if

limsup S(x) := {u

T—>T
X

3 (z" }%f) J(u" —u) V(neN) u" eS(z") } c S(z),
and is inner semicontinous relative to X C R™ if

x

S(7) C limi%fS'(:U) = {u

V(;U"?E) I(NeN, u" —u)V(n>N) u"GS(;U")},

where z” T =T with 2" € X. Then, (2) is 8f(Z) :=limsup,_s- df(z). The last notion
!

employed from variational analysis is that of normal and tangent vectors. Let C C R", and let
¢ € C. Define the normal cone to C at ¢ as

N(c¢|C) ZZliin—S)lzle(C’C), where N(c|C):= {v ‘V(c/ €C) (v, —c)<o(|c —c) }, (3)

and the tangent cone to C at ¢ as T (¢|C) :=limsup, ot ' (C —¢). A set C is Clarke regular
at ¢ € C if C is locally closed at ¢ and N (¢|C) = N(¢|C). A nonempty, closed, convex set C
is Clarke regular at all ¢ € C, with N (¢|C) = {v ‘ (v,c—¢) <0 forall ce C}, and T (¢|C) =

v [ (v, w) <0 for all w € N (| C’)} =cl{R,4(C —%)} [37, Theorem 6.9]. We refer the reader to
[37, Chapter 6] for a thorough exposition.
Suppose g : R™ — R™ is C'-smooth, G : R" = R™ is a set-valued mapping with closed graph and
{Bi},eny CR™ ™. Consider the generalized equation 0 € g(2) + G(z). The Newton method for g+ G
is the iteration

find zF** such that 0 € g(2*) + Vg(2*) (2" — 2F) + G(2**1), for k €N, (4)
and the quasi-Newton method for g+ G is the iteration

find 2" such that 0 € g(2*) + Bp (2"t — 2%) + G(2*), for k€N. (5)

3. Convex-composite first- and second-order theory We begin by recalling the basic
ingredients of convex-composite optimization and the associated variational structures.

DEFINITION 1 (CONVEX-COMPOSITE FUNCTIONS). Let h:R™ — R be a closed, proper, convex
function and c¢:R™ — R™ a C2-smooth function. Define f:R™ — R by f(x):= h(c(x)). We say the
function f is convex-composite.

DEFINITION 2 (CONVEX-COMPOSITE LAGRANGIAN). [4] For any y € R™, define the function
(yc) : R™ = R by (yc)(x) := (y, ¢(z)). The Lagrangian for the convex-composite f is defined by
L(z,y) := (yc)(z) — h*(y), where h* : R™ — R denotes the Fenchel conjugate of the convex function
h defined by h*(y) :=sup,cpm (2, y) — h(2). The Hessian of L in its first variables is denoted

ViaL(@,y) = V*(yo)(z) = Z yiViei(@). (6)
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DEFINITION 3 (CONVEX-COMPOSITE MULTIPLIER SETS). Suppose f is convex-composite.
Define the set of multipliers at T € dom (f) for v € R™ as in [37, Theorem 13.14] by

()= (i) f={veomeen [vear=a}. o

and define the set of multipliers at T for 0 by

Y(Z,v):=<y

M(z) := Y (z,0) = Null (VC(E)T> N Oh(c(T)). (8)

A calculus for convex-composite functions at a point T € dom (f) requires various types of
“constraint qualifications.” Stronger versions of the basic constraint qualification (BCQ) will be
employed to ensure uniqueness of the multiplier and underlying strict complementarity properties
in later sections.
DEFINITION 4 (CONVEX-COMPOSITE CONSTRAINT QUALIFICATIONS). Suppose f is convex-
composite and T € dom (f). We say f satisfies the
e basic constraint qualification at T if

Null <VC(E)T) AN (e(z) | dom (h)) = {0}, (BCQ)

e transversality condition at T if

Null (VC(I)T) M par (9h(c(Z))) = {0}, (TC)

e strict criticality condition at T € dom (f) for g if

Null (vc(f)T> i (Oh(c(T))) = {7} . (SC)

REMARK 1. Following [37, Definition 10.23], one says that a convex-composite function f is

strongly amenable at T € dom (f) if f satisfies (BCQ) at T. One says that f is fully amenable at
T €dom (f) if f satisfies (BCQ) at T and the function h is PLQ convex. Here, we make use of the
underlying assumption that ¢ is C?-smooth.
Notice the basic constraint qualification is a local property in the following sense. If f satisfies
(BCQ) at 7, then there exists a neighborhood U of T such that f satisfies (BCQ) at all z €
[UNc t(dom (h))]. Moreover, the basic constraint qualification ensures that the chain rule applies
in the subdifferential calculus for convex-composite functions and establishes a foundation for the
application of tools from variational analysis.

THEOREM 1 (Convex-composite first-order necessary conditions). Suppose f is convez-
composite and T € dom (f) is such that f satisfies (BCQ) at Z. Then, 0f(Z) = Ve(T) " 0h(c(Z)),
and for any d € R™, A td)

1N T () ) T z;t
45 (2)(d) = ' (e(); Ve(z)d) = tim T 10,
where Af(T;d) := h(c(T) + Vc( )d) — h(c(T)). Suppose, in addition, that T is a local solution to
P. Then, M(z) :=Null (Ve(Z)") NOh(c(z)) # 0, or equivalently, 0 € Of (Z), and for any d € R,
R (e(T); Ve(z)d) > 0.

Proof. This follows from [37, Proposition 8.21, Theorem 10.1, Exercise 10.26(b)]. O
We now establish a relationship between the various notions of a constraint qualification given in
Definition 4.

LEMMA 1. Suppose f is convezr-composite, T € dom (f), andy € R™. Then, the following impli-

cations hold:
(SC) == (TC) == (M(z) ={y}) = (BCQ)
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Proof. [(M(7) = {y}) =(BCQ)]
Let M (Z)={y} and suppose there exists

0 v € Null (vc(f)T) NN (¢(z) | dom (h)) C Null (vc(f)T) M par (9h(c(z))) .

Then, by the subgradient inequality, v+ € Null (Vc(Z) ") N Oh(c(Z)) = M (Z), which is a contra-
diction.
The rest of the proof follows from the elementary implications

(Null(A)Nri(C) ={y}) == (Null(4)Npar(C) ={0}) == (Null(A)NnC ={y})

for closed convex sets C' and linear maps A. O
Gauss-Newton methods for iteratively solving P are based on finding a search direction that
approximates a solution to subproblems of the form

~

e . ~ ~ 1 T 77
m(%nenﬂrélnze h(c(Z) + Ve(z)d) + 2d Hd. (P)
Local rates of convergence for algorithms of this type, where the function h is assumed to be
finite-valued and piecewise linear convex were developed by Womersley [38] based on tools devel-
oped for classical nonlinear programming. More recently, Cibulka et. al. [8] successfully applied a
modern approach through generalized equations to obtain similar and stronger results again in the
piecewise linear convex case. Inspired by these results and the existence of a sophisticated first-
and second-order subdifferential calculus for piecewise linear-quadratic convex functions [37], we
develop a convergence theory in the piecewise linear-quadratic case from the generalized equations
perspective. The basic notational objects for our development are given in the next definition.

DEFINITION 5 (CONVEX-COMPOSITE GENERALIZED EQUATIONS). Let f be convex-composite,
and define the set-valued mapping g + G : R"*™ = R"™™ by

o) =YY, = 50)- o)

The associated generalized equation for P is g + G 3 0. For a fixed (Z,7) € R" x R™, define the
linearization mapping

G+ (a.0) = o(@.5) + Vo() (27 + Gl (10

Vi Ll(@,7) V(@)

—Ve¢(T) 0
Observe that for any T € dom (f) where f satisfies (BCQ), T satisfies the first-order necessary
conditions of Theorem 1 for the problem P if and only if there exists 7 such that (Z,7) solves the
generalized equation g+ G 3 0. More precisely, we have

0€g(z,y) +G(T,y) = Ve(@) 'y=0 and 5 € Oh(c(T)) < M (T) # 0. (11)

where Vg (7,7) = (

The relationship between the linearization of the generalized equation described in (10) and the
subproblems P is described in the following lemma. The proof follows from Theorem 1.

LEMMA 2. Let f be convex-composite and (Z,y) € R® x R™ be such that f satisfies (BCQ) at 7,
and define H :=V?2_L(Z,7y). Then, (d,7) € R™ x R™ satisfy the optimality conditions for

1 ~ ~
minimize  h(c(Z)+ Ve(Z)d) + =d" Hd P
iinim; (c(Z) (z)d) ) (P)

if and only if (T+d,§) solves the Newton equations for g+G: 0€g(Z,7)+Vg(Z,7) (;j_g\) +G(z,y).
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4. Geometry of PLQ Functions and Their Domains In this section, unless otherwise
stated, we let f:=hoc where h is piecewise linear-quadratic convex and ¢ is C2-smooth.

DEFINITION 6 (PIECEWISE LINEAR-QUADRATIC). A proper function h: R™ — R is called piece-
wise linear-quadratic (PLQ) if dom (k) # 0 and dom (h) can be represented as the union of K > 1
polyhedral sets of the form

C’k:{c

relative to each of which h(c) is given by an expression of the form 1 (¢, Qxc) + (b, ¢) + B for some
scalar 8, € R, vector b, € R™, and symmetric matrix Q.

REMARK 2. The sets C) do not necessarily form a partition of the set C.
The following lemma is straightforward.

(ay;, ¢) < oy, for allje{l,...,sk}} (12)

LEMMA 3. Suppose h is piecewise linear-quadratic convex. Then, for any k € IC, the matrices
Qr satisfy (c, Qrc) >0 for all ¢ € par (Cy,).

DEFINITION 7 (ACTIVE INDICES). For a piecewise linear-quadratic function h and a point
¢ € dom (h), define the set K(¢) := {keK|ceCy}, and write k := [K(¢)|, so that K(c) =
{ki, kay... K5}

Our first- and second-order analysis in the PLQ case heavily depends on the following results
compiled from [37] into a single proposition for ease of reference.

PROPOSITION 1.  [37, Propositions 10.21, 13.9] If h: R™ — R is piecewise linear-quadratic, then

dom (h) is closed and h is continuous relative to dom (h). Consequently, h is closed. At any point
c¢edom (h), I'(c;-) =dh(€), and I'(c;-) is piecewise linear with dom (h/(¢;-)) = Uker@ T (€1Cr) =
T (¢|dom (h)) . In particular, for k € K(€) and w € T (¢| Cy),

h'(¢;w) = (QxC+ b, w) . (13)

If, in addition, h is convez, then dom (h) is polyhedral,

0+#0h@) = ) {y\y—Qké—bkeN(é\C’k)}, (14)

kEK(T)

h''(c;-) is piecewise linear-quadratic, but not necessarily convex, and for any w € R™,

(w, Qrw) when weT (¢|Cy),

OShH(C;w):{oo when w €T (¢|dom (h)).

For every y € 0h(¢), d®h(cly) is piecewise linear-quadratic and convexr. Let K(¢,y) :=
{w | (& w) = (y, w) } Then, K (¢,y) is a polyhedral cone, and

_ . _ h'(Gw) weK(¢y)
d*h =lim A%h = ’ o 16
(@ly) () = lsn A2h(@ly) (w) {+OO S (16)
Moreover, there exists a neighborhood V' of ¢ such that
1
h(c)=h(c)+ 1 (¢c—c)+ ih”(é; c—7¢) for ce VNndom (h). (17)

The standard development of first- and second-order optimality conditions requires the notion
of directions of non-ascent.
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DEFINITION 8 (DIRECTIONS OF NON-ASCENT). Let f:R" — R be proper and x € dom (f).
The directions of non-ascent for f at T are denoted by D(x):= {d eR" ‘df(w)(d) < O} .
By Theorem 1, if f is convex-composite and satisfies (BCQ) at x, then

D(z) = {deR” |1 (e(a); Vel )d)go}. (18)

In the PLQ convex case, (BCQ) ensures that we have the following convenient representation of
the set D(T).

LEMMA 4. Let f be as in P, and let T € R™ be such that f satisfies (BCQ) at T. Set ¢:=c(T).
Then, D(T) is conver and the union of finitely many polyhedral closed convex sets with following
the representation from Proposition 1:

D(z) = U {d‘Vc(:c)dET(c|Ck),<ch+bk,Vc(x)d>§0}

keK (@) (19)
_ U <ch—|—bk,Vc d><0
el <akJ,Vc )d) <0, € I(c)

Proof. (C) Suppose d € D(T). By (18) ¢(Z)d € dom (W (;-)). In particular, by Proposition 1,
)- By (1

Ve(Z)d € T (¢| Cy,) for some k € K(€). By (13), we also have (Qy¢ + by, Ve(T)d) = 1/ (¢(Z); Ve(T)d) <
0.

O) It d € Uk {d ‘Vc(f)de T (c|Cy) ,(Qrc+ by, Ve(T)d) <0 then for some k €
K(€),Ve(z)d e T (¢|Cy). Then, again by Proposition 1, h'(¢(Z); Ve(z <ch+ b, Ve(T)d) <0,
so d € D(Z). O

We now state the first- and second-order optimality conditions for P.

THEOREM 2 (PLQ second-order necessary and sufficient conditions). [35, Theorem 3.4].
Let h: R™ — R be piecewise linear-quadratic and conver with T € dom (f) such that f satisfies

(BCQ) at z.
(a) If f has a local minimum at T, then 0 € Ve(z) " Oh(c(T)) and

1 (e(@); Ve(@)d) + Inax{<d, V2, L(Z,y)d) |y € M(F) } >0

for all d € D(T).
(b) If 0 € Ve(z) "Oh(c(T)) and

B (e(T); Ve(@)d) + max {(d, V2, L(Z,y)d) |y € M () } >0
for all d € D(T)\ {0}, then there exists a neighborhood U of T and a constant v >0 such that
f(@)> f@)+Allz—2|* for all x € Undom(f), (20)
i.e., T is a strong local minimizer of f.

5. Strong Metric Subregularity of the KKT Mapping In this section we establish con-
ditions under which the set-valued mapping of Definition 5 satisfies strong metric subregularity.

DEFINITION 9 (STRONG METRIC SUBREGULARITY). A set-valued mapping S : R" = R™ is
strongly metrically subregular at T for y if (Z,y) € gph S and there exists x > 0 and a neighborhood

U of Z such that ||z — Z|| < kdist <@ | S(a:)) for all z € U.
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Our discussion of strong metric subregularity only requires f to satisfy (BCQ) at = € dom (f).

LEMMA 5. Consider the KKT mapping g+ G and the mapping G given in Definition 5. Then,
strong metric subreqularity of g+ G at (T,y) for 0 is equivalent to the property that (T,y) is an
isolated point of G=*(0).

Proof. By [13, Corollary 31.10], strong metric subregularity of g+ G at (Z,7) for 0 is equivalent
to strong metric subregularity of the linearization G (10) at (Z,7).

By [37, Theorem 11.14, Proposition 12.30] the mapping G(z,y) is polyhedral; that is, gph G is
the union of finitely many polyhedral sets. Then [13, Corollary 31.11] establishes the equivalence
of strong metric subregularity of G at (z,7) for 0 and (Z,7) being an isolated point of G~1(0). O
The main result of this section now follows.

THEOREM 3. Suppose h: R™ — R is piecewise linear-quadratic and convex with T € dom (f)
such that f satisfies (BCQ) at T. Then, the following are equivalent:
1. The set M(T):=Null (Ve(Z) ") NOh(c(T)) in (8) is a singleton and the second-order sufficient
conditions of Theorem 2 are satisfied at T;
2. The mapping g + G is strongly metrically subreqular at (Z,y) for 0 and T is a strong local
minimizer of f.

Proof. (=) By Lemma 5 we argue strong metric subregularity of g+ G at (Z,7) for 0 by show-
ing that there is a neighborhood of (Z,7) on which (Z,7) is the unique solution to the generalized
equation G 50 (10). After the change of variables d := z — T, we show that there is a neighborhood
U of (0,7) such that (d,y) = (0,7) is the unique solution to the generalized equation

Hd+ V(@) 'y=0 (21)
c(T)+Ve(x)de Oh* (y) (e yedh(c(x)+ Ve(T)d)), (22)

where H := V2 _L(T,7). Suppose there is no such neighborhood. Then, there exists a sequence of
vectors {(d',y")}ien converging to (0,7) with (d',y*) # (0,7) that solve the generalized equation

(21), (22). First assume d' # 0 for all i € N. Define for each i € N, ¢, = |||, v* :=d'/]|d’||, and
assume without loss of generality that v* — v and that
{e(@) + Vc(f)di}ieN C Cy, for some ky € K(c(z)+ Ve(z)d') C K (€), (23)
since d' — 0. Taking the inner product on both sides of (21) with d’, we obtain
0=(d', Hd') + <d Vc(f)Tyi> for all i € N. (24)
The subgradient inequality for h at ¢(Z) + Ve(T)d' with subgradient y; gives
Af(@d) < <di, Vc(f)Tyi> = —(d', Hd'). (25)

Dividing through (25) by ¢; > 0 and letting i — oo, (BCQ), Theorem 1, [37, Proposition 8.21] give
Af(m;t;v")

i

df(z)(v) =h'(c(Z); Ve(z)v) = limiinf < li;rn — <vi, Hdi> =0,

sov € D(Z)\ {0}. By second-order sufficiency, h”(c¢(Z); Vc(Z)v) +v ' Hv > 0. We now show Ve(T)v €
T (¢|Cy,)- By (23) and the computation %w = Ve(T)v' = Ve(@)v € T (¢| Cy, ) - Then
by (15), " (c(Z); Ve(T)v) =0 Ve(T) T Qr, Ve(T)D, so that

v HU+0' Ve(T) " Qu,Ve(Z)v > 0. (26)
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On the other hand, by (14),

y' €Oh(c(Z)+Ve(T)d' )= ﬂ {y ’ y— Qu(c(@) + Ve(T)d') — by € N (¢(Z) + Ve(T)d' | Cy) } ,

keIC(c(@HV e(T)d?)

and so y' — Q, (c(ZT) + Ve(T)d') — by, € N (c(T) + Ve(T)d' | Cy,) for all i € N. Since ¢(z) € Cy,, we
have

02 (y' = [Qro (c(Z) + Ve(@)d') + by ], ¢(T) — [¢(F) + Ve()d'])

{¥' = Qi (c(@) + Ve(@)d') = by, ~Ve(@)d')
— (&', V(@)Y ) + (Quy (e(@) + Te(@)d') + by, Vel@)d')

Together with (24),

2<dz Hdl>+<Qk (c(T)+ Ve(z )d’)+bk0,Vc(fn)di>
=(d', Hd') + (Ve(T)d', Q, Ve(T)d') 4 (Quoe(T) + bry, Ve(T)d")
=(d', Hd') + (Ve(T)d', Qi, Ve(E)d') + I (c(Z); Ve(@)d') (by (13))
> (d', Hd') +(Ve(T)d', Q, Ve(@)d'),

where the final inequality follows from Theorem 1, Theorem 2, and the observation that Ve(Z)d' €
Cio — (@) C T (c¢(x) | Cry ) - Next, divide the inequality 0 > (d', Hd") + (Ve(@)d', Qi Ve(T)d') by
t2 and let i — oo to yield the contradiction 0 >v" Ho+7v' V()T Q. Ve(T)v > 0.

Consequently, d* =0 for all 7 sufficiently large, so without loss of generality, we now suppose d' =0
for all 7 € N. Hence by hypothesis, and y’ # 7 for all 7 € N. But then we contradict uniqueness of
M(T).

(<) By Lemma 5, (Z,7) is an isolated point of G='(0). That is, there is a neighborhood U of (7,7)
on which (Z,7) is the unique solution to the generalized equation

H(z—7)+ V(@) 'y=0
c(T)+Ve(z)(z —7) € Oh*(y).

For x ==, this implies there is a neighborhood Uy about ¥ such that
Uy N M(7) = {7} (27)

Suppose there is y € M (%) \ Uy. Then y, = (1 — t)y + ty € M(z) for ¢ € [0,1]. But for ¢ small,
y: € UyN M (), which contradicts (27), so M (Z) is the singleton {g}. Therefore, it only remains to
show that the second-order sufficient conditions of Theorem 2 are satisfied at 7.
Since 7 is local minimizer of f at which f satisfies (BCQ), Theorem 1 gives 0 € V¢(Z) " 9h(c(T))
and h'(c(z); Ve(T)d) >0 for all d € R™. Let d € R™\ {0} with h/(c(T); Ve(T)d) = 0, or equivalently,
d € D(z). Without loss of generality, suppose HdH = 1. In particular, by (19), there exists ko € K(¢)
such that

Ve@)deT (2|Cy,) and <Qk05+ bio Vc(§)3> = 1 (c(@); Ve(T)d) =0 (28)

Since h is PLQ _convex, the second-order necessary conditions of Theorem 2 imply
h"(c(%);Ve(z)d) +d Hd> 0.
We show this inequality is strict to complete the proof. Suppose to the contrary that

' (c(Z); Ve(@)d) +d Hd=0. (29)
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Then, d # 0 solves the program
1 1
minidmize R (e(Z); Ve(T)d) + 512”(6(5); Ve(z)d) + idTHd
subject to d e D(T).

By (17) and continuity of d— ¢(Z) + Ve(Z)d, there exists € > 0 so that
1
Af(x;d) =h'(c(T); Ve(T)d) + §h”(c(f); Ve(T)d) for d € eBN {d | c(z) + Ve(T)d € dom (h) } :

By (28) and polyhedrality, ¢(Z) + tVc(Z)d € dom (h) for sufficiently small ¢ > 0. It follows, after
shrinking € > 0 if necessary, that

_ 21
Af(F;td) + §dTHd:O for all 0 <t <e. (30)
Since 0 € 0f(7) and f satisfies (BCQ) at 7, [37, Equation 13(19)] with v =0, y =7, and w € R" gives

2f(z|0)(w) = d®f(Z]0)(w) + w" Hw, where f(z):= h(c(T) + Ve(T)[r —T]) is also piecewise linear-
quadratic by the discussion following [37, Equation 13(19)]. Since T is a strong local minimizer,

fE+tw') - f(T)

2 /e —Tim > Tlimi 7112 _ 2'
F(@(0)(w) 111%1\}61f p _hr%l\lglf’wa " =7lw]
w —w w —w

Then, we have d?f(z[0)(w) = d?f(z]0)(w) + w'Hw > ’leHz. By (16) the liminf defining
d?f(Z]0)(w) is also expressed as a limit only in 7 (because f is piecewise linear-quadratic), so
_ s N
Flztrw) 7@ _ f(lw,;w)‘
ir

2
f(@;
1,

d7F(7(0) (w) = lim

N0 372 N0

Putting the last two observations together, d2f(Z|0)(w) = lim o 2 +w T Hw > ~|lw|’. But,

'°~\

— 25T = _
for 0 <7 < e and w=d, (30) gives the contradiction 0 =lim, {W} =d?f(z|0)(d) >
QT
_n2
deH —~>0. 0
As an application of Theorem 3, consider the quasi-Newton method (5) initialized at (x°,4°) with

Vg(x*,y*) replaced by
_ Bk Ve(zk)T

This choice allows us to relate the quas1—Newton method to the optimality conditions for the
subproblems P through the relation of By to H as described in following corollary to [13, Dennis-
Moré Theorem for Generalized Equations].

PROPOSITION 2. Let f be as in P. Suppose M(x) = {y} and the second-order sufficient con-
ditions of Theorem 2 are satisfied at T. Then, (Z,7) solves 0 € g(T,y) + G(Z,7). Moreover, there
exists a neighborhood U of (Z,y) such that if (x°,y°) € U, the sequence {(xk,yk)}keN generated
from the optimality conditions for

1
minimize  h(c(z*) + Ve(a*)d) + =d " Byd
Hinim (c(z®) (2%)d) + 5d " By (Qx)

remains in U with (z*,y*) # (Z,y) for all k €N, and
(@*,9%) = (Z,7) and (By — V3, L(a",y"))[a"" — 2] = o(||(a" —2*, 5™ —)]),

then (xz*,y*) — (Z,7) superlinearly.
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REMARK 3. Consequently, the sufficient conditions for superlinear convergence of quasi-
Newton methods require us to choose B, as an approximation to the Hessian of the Lagrangian
V2 L(z" y*) = V?(y*c)(2") in the update direction z**! —z* at every iteration.

We are interested in establishing the local convergence of the Newton iterates associated with
the generalized equation (1). This is not given by Proposition 2 and requires an in depth analysis of
the local active set identification properties for the PLQ function h. For this purpose, we introduce
the notion of partial smoothness.

6. Partial Smoothness Lewis [23] introduced partial smoothness as a way to generalize
classical notions of nondegeneracy, strict complementarity, and active constraint identification by
illuminating the appropriate underlying manifold geometry of optimization problems. This allows
for a more thorough understanding of the convergence behavior of algorithms applied to nonsmooth
optimization problems, where solutions lie on well-defined submanifolds of the parameter space on
which the function behaves smoothly and off of which it behaves nonsmoothly. Partial smoothness
in the context of P allows us in Section 7 to establish metric regularity properties of the solution
mapping.

DEFINITION 10. Define a set M C R™ to be a manifold of codimension ¢ around ¢ € R™ if
¢ € M, and there exists an open set V C R™ containing ¢ and a C?-smooth function F:V — R*
with surjective derivative throughout V' such that M NV ={ceV : F(c) =0}. In which case (see
[23]), the tangent space to M at ¢ is T (¢| M) = Null (VF(¢)), the normal space to M at € is
N (€| M) =Ran (VF(c)"), both independent of the choice of F. Moreover, the set M is Clarke
regular at ¢, and N (¢| M) equals the normal cone defined in (3).

DEFINITION 11 (PARTIAL SMOOTHNESS FOR CLOSED, CONVEX FUNCTIONS). Suppose h:R™ —
R is a closed, proper, convex function and that ¢ € M C R™. The function h is partly smooth at ¢
relative to M if M is a manifold around ¢ and the following four properties hold:

(a) (restricted smoothness) the restriction h|y is smooth around ¢, in that there exists a neighbor-

hood V of ¢ and a C?-smooth function g defined on V such that h =g on V N M;

(b) (existence of subgradients) at every point ¢ € M close to ¢, dh(c) # 0;
(¢) (normals and subgradients parallel) par (Oh(c)) =N (¢| M);
(d) (subgradient inner semicontinuity) the subdifferential map Oh is inner semicontinuous at ¢

relative to M.

We say that h is partly smooth relative to M if M is a manifold and h is partly smooth at each
point in M relative to M.

REMARK 4. By [23, Proposition 2.4], requiring (a) - (d) in the definition is equivalent to requir-

ing (a), (b), (d), and normal sharpness:

W(6—w)> W (Ew), YweN (| M)\{0}, (32)
and is also equivalent to requiring (a), (b), (d), and lineality and tangent equality:
{w ER™ | =1/ (7w) = (¢ —w) } —:lin (@) =T & M). (33)

In the context of the PLQ functions given in Definition 6, a natural choice for the active manifold
at a point ¢ € dom (h) for P is the set given by

Me:=ri| () G, (34)

keK(T)

where KC(¢) are the active indices at ¢ (see Definition 7). The analysis of the manifold My requires
a more thorough understanding of the structure of dom (h), which we obtain from [37, Lemma
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2.50]. It implies that the domain of h has a finite stratification [14, Definition 3.1] for which A is
a stratifiable function [14, Definition 3.2]. This stratification is central to our discussion of partial
smoothness and is referred to as the Rockafellar-Wets PLQ Representation.

THEOREM 4 (Rockafellar-Wets PLQ Representation). Suppose h is piecewise linear-
quadratic conver and intdom (h) # (). Then, without loss of generality, we may assume the poly-

hedral sets {Ck}l,le defining h are given in terms of a common set of s >0 hyperplanes H =
{(aj,aj)}; , C(R™\{0}) xR, so that for all k€ {1,...,K},

C,= {c ‘ <wkjaj, c> <wgjey, forallje{l,..., s} },

with wy; € {1},

() = {j )<wkjaj, ) _wkjaj}_ {j ‘<aj, ) _aj}c (1,...,s}, (35)

and
(a) O #intCy = {c ‘ {wijaj, ¢) <wgjay, for all j € {1,...,sk}}, forallke{1,...,K},

(b) int Cy, Nint Cy, = O when ki # ko.
Condition (b) implies that if c € Cy, N Cy,, then c € bdry Cy, Nbdry Cy, when ki # ko.

Proof. Following the notation in the proof of [37, Lemma 2.50], for every polyhedron D, and
every i € {1,...,s}, either [;(z) <0 for all x € D; or [;(z) >0 for all x € D;. Therefore each affine
function is used in the definition of D,, and D; is contained entirely within one of the sets C},
relative to which h takes the form % (¢, Qxc) + (by, ¢) + By O

REMARK 5. If all of the polyhedral sets C} have the same affine hull, or equivalently, if all of
their relative interiors are defined with respect to a fixed affine set, then one can translate this
fixed affine set to the origin and work entirely within the resulting subspace. In this case, one can
replace the interior requirement of Theorem 4 with a relative interior requirement.

The basic assumptions employed for the remainder of this section are listed below.

ASSUMPTION 1.

(a) The function h is PLQ convex with dom (k) given by the Rockafellar-Wets PLQ representation
described in Theorem 4,
(b) €€ dom (h) satisfies k:= |K(¢)| > 2,

REMARK 6. Whenever K(¢) = {ko}, h is continuously differentiable on int Cy,. Therefore, we
assume that k > 2 and delay the discussion of k=1 to Section 7.2
The following lemma further supports the choice for the manifold Mz as the active manifold.

LEMMA 6. Let Mz be as in (34) and let Assumption 1 hold. Then, for any c € Mz, K(c) =K(c),
and so M. = Mz. Moreover, for any k € K(¢), the active index sets Ii(c) satisfy I;(c) = I;(¢)

Proof. Suppose K(c) # K(¢). Since the definition of Mz implies K(¢) C K(c), there exists
Jj€K()\K(€). By (b) in Theorem 4, we necessarily have ¢ € bdry C;.
We first argue the existence of € > 0 such that that (¢ + eB) N Cy =0 for all k& & K(¢). If no such
€ exists, since there are only finitely many k € K \ K(¢), there would exist an index ko & K(¢)
and an infinite sequence ¢ — ¢ with {c"} C C},. By closedness of the set Cj,, ¢ € Cy,, which is a
contradiction.
Since ¢,¢ € Mg, by [36, Theorem 6.4] there exists a y> 1 such that ¢:= (1 —p)e+ uc € (e Ck-
Since ¢ € bdryCj, there exists a z € intC; sufficiently close to ¢ so that the ray R :=
{é+X(z—¢) [0< X} meets ¢+ eB. We consider two cases. To set the stage, for any two points
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x,y € R™, denote the line segment connecting them by [z,y] = ANz+ Ay |0<A<1 } .

Case 1. There is a point x € RN (¢+ eB)NC. Then z € [¢,z] C . for some k € K(¢). But then
z € (int C;) N C}, a contradiction.

Case 2. We have RN (¢ + eB)NC = (. Then there is a point x € (¢ + €B) \ C such that z € [¢, z].
Since x ¢ C, there is a first point, which we denote by z, in C; on this line segment as one moves
from x to ¢. Then the line segment [z,¢] C C. The point Z is not on the line segment [¢,¢] since
then both ¢ and z would be on the line segment [¢,¢] and so int C; Nbdry Cy # 0 for some k € (),
a contradiction. Consequently, the points ¢,¢ and Z are not all collinear and hence form a triangle
inside of C. Let Z be on the boundary of ¢+ eB and on the line segment [z, ¢|. Then the line segment
[Z,¢] passes through int C;. This is again a contradiction.

Therefore, no such c exists, and K(c) = K(¢) for all ¢ € M-.

For the second claim, suppose there exists k € K(¢), ce Mz and j € {1,...,s} with

(¢, wja;) <wpzay and (€, wija;) = wy;oy. (36)

Again by [36, Theorem 6.4], we may choose > 1 so that uc+ (1 — p)c € Mz. In particular,
uc—+ (1 —p)c € Cy. But writing =1+ € with € > 0 gives the contradiction

wrja; > (pe+ (1= p)e, wija;)
= (1+¢€) (¢, wija;) — €{c, wya;) > wrja; by (36).

Therefore I;,(¢) C Ij(c). Reversing the roles of ¢ and ¢ in (36) gives the other inclusion. O
The previous lemma tells us distinct points ¢, ¢’ € Mz have the same active indices K(c¢) and K(c').
Moreover, for any active polyhedron Cy, the active hyperplanes for that polyhedron, I;(c) and
I.(¢), at ¢ and ¢ are the same. This observation offers a global description of M in terms of the
active hyperplanes at ¢ alone.

LEMMA 7. Let Mz be as in (34), and let Assumption 1 hold. Then,

M=o (¢, a;)=qy for all k€ K(c),j € I1(c)
o (¢, wija;) <wgzoy for all k € K(€),j ¢ I (2)

In particular, Iy, (c) = Ii,(c) for all c € Mz and ky, ks € K(¢). Moreover, for any k € K(¢) and c €
Mz, T (c|Mz)=Null (A44(©)"), and N (c|Mz) =Ran (A4(c)), where Ay(c) is the matriz whose
columns are the gradients of the active constraints at ¢ € Ct in some ordering.

REMARK 7. By Lemma 6 and Lemma 7, for all c € Mz, k€ K(c), and j € K(c), Ran (4,(€)) =
Ran (A;(c)) . This observation becomes important in a structural definition to follow.

Proof. Define

ﬂ Ck, C2 =

. éc, wkjaji =wy;o; for all k€ K(e),j € I ()
keK (@)

¢, wija;) < wijay for all k € K(2), 5 & I (c)

We aim to show ri(C;) Dri(Cs). For k € K(¢) and j € I;(¢) define Cy, ; := {c ‘ (¢, wija;) = wrjoy },

and for k € K(¢) and j € I;,(¢), let Dy ; == {c

ce ﬂ ri(ij)ﬁ m ri(ij),

keK(c) keK(c)
J€I1(2) 7¢Ik ()

(¢, wija;) <wpja; } Then by defintion of I;(¢),
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so [36, Theorem 6.5] gives

ri(Cy) =

¢, wy;a; ) =wy;ay for all k€ K(¢),j € Iy (c)
¢, wija;) <wgoy for all ke IC(e), j & Ii(c)

Moreover, C; D Cy with Cy not entirely contained within the relative boundary of C; because ¢ €
C> N Mz. By [36, Corollary 6.5.2], Mz :=1i(C;) D ri(Cy). Lemma 6 shows Mz :=ri(C;) C 1i(Cs)
because I (c) = I(¢) throughout M.
For the second claim, the structure of Mg implies that if <c, wkljaj> = wy, joy; for some k; € K(¢),
then (¢, wi,;a;) = wy,ja; for any other ky € K(¢) as wy; € {£1}. Hence Iy, (c) D I, (c), and this
argument is symmetric in k; and k,.

The tangent and normal cone formulas hold throughout M: by [37, Theorem 6.46]. O
Based on Lemma 7 and Remark 7, we now establish the notational tools required for our analysis.

DEFINITION 12. Let Mz be asin (34), and let Assumption 1 hold. Define Az(c) to be the matrix
whose columns are the gradients of the active constraints at ¢ € Cy in some ordering. By Theorem 4
and Lemma 7, without loss of generality, we can define A := Az(c) independent of the choice of ¢ €

M, and for any j € {1, ey k}, there exists a diagonal matrix P; with entries &1 on the diagonal
such that

AP; = Ay, (c) independent of ¢ € Me. (37)

We let £ be the common number of columns £ := |I;(¢)| = [I/(¢)| for all k,k" € K(¢), so that
AeR™ P, e R Pr=1I,, and define the following block matrices Q := diag(Qy), A := diagAP;

(1 — k')APl AP2 A le bk1 I’m
AP, (1-K)AP, A Qs br, I,
A= ) . , Q= | |, Bi= |, = (38)

and averaged quantities

Q=01/k)JTQJ, A=1/k)JTA, b=1/k)J B, A(c)=Qc+b.
In a fashion similar to the structure functional approach of [38, 27, 28], we give a formula for the
subdifferential in terms of the active manifold structure previously laid out.

LEMMA 8. Let Mz be as in (34), let Assumption 1 hold, and recall the notation of Definition 12.
For any ¢ € Mz, Oh(c) can be given by two equivalent formulations:

=l pg) T >0 =

Oh(c) =y such that Jy= Qc+ B+ ./Zl\,u =o(c) + AU(c), (39)

where

U(C)3:{M>O’AM:]C[QC—FB—J(QC-I—b)]}. (40)
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Proof. By (14) and Lemma 6, y € 0h(c) if and only if y € Qy;c + by, + N (c]ij> for all

jJ € {1, ey k} In terms of the active indices at ¢ for the polyhedron Cj,, [37, Theorem 6.46] and
(37) imply
y=Qyc+by, + AP;p;, where j € {1, e ,E} ;> 0.

Hence y € 0h(c) if and only if there exists = (uy ,...,p; ) such that (y,u) satisfies the system
Jy=Qc+B+Au, p=(u],...,u0)" >0.

Since JT.J = kI,,, multiplying both sides of the first equation in (39) by (1/k)J " gives y = Qc +
b+ Au, where p satisfies

Qc+b+Ap=AP;p;+ Quc+ by, for all j e {1,...,%} 0> 0.

The set of p that satisfy the display defines membership in U(c), so dh(c) = \o(c) + AU(c). O
The notion of nondegeneracy that we use imposes linear independence of the columns of A.
DEFINITION 13 (NONDEGENERACY). Let M; be as in (34), let Assumption 1 hold, and recall
the notation of Definition 12. We say that My satisfies the nondegeneracy condition if Null (A) =
{0}.
Nondegenercy yields a uniqueness property of the multipliers p € U(c).
LEMMA 9. Let Mz be as in (34), let Assumption 1 hold, and recall the notation of Definition 12.
Suppose Mz satisfies the nondegeneracy condition of Definition 13, ¢ € Mz, and y € Oh(c). Then,

there is a unique pu € U(c), given by p(c,y); = Pi(ATA)T AT (y — (Qu;c + bi;)), 5 € {1, e ,E} s0
that y = Xo(c) + Au(c, y).

Proof. For any j € {1, e ,E}, Lemma 8 implies there exists p; > 0 such that y = Qx;c+by, +
AP;p;. Nondegeneracy implies p; is given uniquely by the equation u(c,y); = Pj(ATA)'AT (y —
(ijc—i-bkj)). O
A corresponding notion of strict complementarity is provided by the next lemma.

LEMMA 10. Let Mgz be as in (34), let Assumption 1 hold, and recall the notation of Defini-
tion 12. Suppose ¢ € Mz and ri (0h(c)) #0. Then y € ri(dh(c)) if and only if p(c,y); >0 for all
i€ {1,...,%}.

Proof. By [36, Theorem 6.4], y € ri (Oh(c)) if and only if for all y' € Oh(c), there exists ¢ > 1
so that ty + (1 —t)y’ € Oh(c). Choose a y' € Oh(c) with y' #y.

(=) If there exists ig € {1,...,k:} and j € {1,...,¢}, with (u(c,v)i,); =0, then, by (39),

Oh(c)aty+ (1 —1t)y = Qiyc+ by, + AP [tu(c,y)i, + (1 =) e,y )i

By Lemma 9, p(c,ty+ (1 —1)y')i, =tu(e,y)i, + (1 —1t)u(c,y');,. By assumption, the right-hand side
has its jth component is negative for all ¢ > 1, a contradiction.

(<) We must show there exists € > 0 such that if ¢ :=1+ e then tu(c,y);, + (1 —t)u(e,y')i, > 0.
After rearranging, this is equivalent to finding e > 0 so that p(c,y);, + €[u(c,y)i, — (e, y')i,] > 0. If
wle,y)ip — (e, y')i, >0, the claim is immediate. Otherwise, we choose € via

(1(e,y)ig); — (e, y)ig);

Then y € ri (0h(c)). O
However, a weaker notion of strict complementarity in conjunction with nondegeneracy suffices to
show that ri (0h(c)) # 0 throughout M.

0<6<min{ (M(ny)i())j ‘ (N(Cay)io)j - (ﬂ(ca y/)io)j <0,5€ {17"'76}}'
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DEFINITION 14 (k-STRICT COMPLEMENTARITY). Let Mz be as in (34), let Assumption 1 hold,
and recall the notation of Definition 12. We say k-strict complementarity holds at (c,y) for p=
(b seeeypg) T if
(a) ce Mg, y€0h(c),

(b) There exists k € K(¢) with p, >0,

(c) Whenever there exists j € K(c)\{k} and i € {1,...,¢} with (u;); =0, then the scalars (Pj/);; =1
for all j' € K(c),

(d) (y,nu) satisfies (39).

REMARK 8. When k-strict complementarity holds at a pair (¢,y) and an index j satisfies (c),
the active polyhedra {Ck}kelC(E) are all within the same closed half-space of the corresponding
hyperplane. Also observe that y € ri (ah(c)) implies k-strict complementarity at (c,y).

A requirement of partial smoothness is that the normal space to Mz and par (ah(c)) are equal.
The nondegeneracy condition allows us to describe par (9h(c)) using the vectors in U(c) rather
than the subgradients in dh(c).

LEMMA 11. Let Mz be as in (34), let Assumption 1 hold, and recall the notation of Defini-
tion 12. Suppose Mz satisfies the nondegeneracy condition. Then, for any ¢ € Mx,
par (0h(c)) = Ran (A) <= par (U(c)) = Null (A). (41)

Proof. By Lemma 7, N (c|M;z) = Ran(A), and by Lemma 8, 0h(c) = \o(c) + AU(c). The
system of linear equations (40) in U(c) has coefficient matrix A defined in (38) which is block-
circulant and can be block row-reduced to

AP, 0 0 -+ —-A
0 AR, O --- -—-A
. . . .“ . (42)
0 0 AP, , —A
0 v .- 0 0

We now compute Null (A). Suppose p= (1] ,...,pr )" € Null (A). Then (42) and nondegeneracy
imply that € Null (A) if and only if p; = Pjpy for all j € {1, ok — 1}, ie.,

Py pug; Prey
Null (A) = 1 ‘WGRZ ,with basis o pe{l ) = {0 G}
Pr_px Pr_iep
Mg €p
(43)
By (40),
par (U(c)) :=R(U(c) —U(c)) C Null(A), (44)

and since A = 1 [AP, --- AP;_; A], (39) implies

par (Oh(c)) = par (ZZ/{(C)) = Apar (U(c)) C ANull (A) = {A,uk

,ukE]RZ}:Ran(A),

so (<) in (41) is clear as “C” becomes an equation. For (=), suppose strict containment:
par (U(c)) € Null (A). Then there exists p € {1,...,¢} such that ¢, & par (U(c)). This implies that
the pth column of A is not in par (Oh(c)) which we have assumed equal to Ran (A). This contra-
diction establishes (41). O
We now show that nondegeneracy and k-strict complementarity together imply that the normal
space and subdifferential are parallel.
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LEMMA 12. Let Mgz be as in (34), let Assumption 1 hold, and recall the notation of Defini-
tion 12. Suppose Mz satisfies the nondegeneracy condition, and the k-strict complementarity of

Definition 14 holds at (c,y) for w. Then,
par (Oh(c)) = N (¢c| M), (45)

where it is shown in Lemma 7 that N (¢| Mz) = Ran (A). Moreover, (45) holds throughout Mz, and
Oh is inner semicontinuous relative to M.

Proof. We first show that a sufficient condition to guarantee the right-hand side of (41) is
(c,v) satisfying the k-strict complementarity condition of Definition 14 for € U(c). To see this
note that, by relabeling the active polyhedral sets if necessary, we can assume without loss of
generality that the index k in k-strict complementarity is k. Let p € {1,...,¢}, t € R, and consider
the step given by p+t(,, where (, is the pth basis element of Null (A) given in (43), i.e.,

251 Plep

pttG = - | +t| - 7 (46)
Hr—1 Pr_iep
Hr €p

We consider two cases. If, for all j € {1, e ,E}, (t7)p > 0, then for sufficiently small ¢, p+t¢, >
0, and A(u+ #¢,) = Ap. That is, both € U(c) and p+ ¢, € U(c), which implies ¢, € par (U(c)).
Otherwise, there exists j € {1,...,%} with (u;), = 0. By part (c) of k-strict complementarity,

the scalars Pje, =1 for all j' € {1, .. .,k}, so repeating the previous argument with ¢ > 0 gives

Cp € par (U (c)) Since p € {1,...,¢} was arbitrary, k-strict complementarity is a sufficient condition
guaranteeing par (U(c)) = Null (A).
This argument shows, under nondegeneracy, that

k-strict complementarity at (c,y) for p=>ri (dh(c)) #0, (47)

because, given any p € U(c), the fact that par (U(c)) = Null (A) together with (39) implies there
exists a strictly positive fi € U(c) and a § € Oh(c) given by § = \o(c) + Afi, with p(c,7) = ji. By
Lemma 10, § € ri (8h(c)).

We now argue that if, for some ¢ € Mz, y € Oh(c), k-strict complementarity holds at (¢, y) for pu,
then ri (Oh(c)) # 0 throughout M . This will imply (45) holds throughout M as well. By (47),
suppose y € ri (8h(c)) so that u(c,y) >0 by Lemma 10.

Choose any other ¢’ € Mz. Since Mz is relatively open, there exists ¢’ € Mz and X € (0,1) so that
=X+ (1—-XN)". Let y’ € Oh(c”). By Lemma 9, there exists a unique vector pu(c”,y”) associated
with (¢,y"). Since ¢, ¢ € Mz and p(c,y) >0, Au(d,y') + (1 — AN u(e,y) > 0. It follows from (39)
that for all j € {1%} and ) € (0, 1),

Y+ (1= Ny" = Q¢ + b, + AP;(Au(e,y) + (1= Nu(c”,y")). (48)

Define 3’ := Ay + (1 — A\)y”. Then (48) implies that the equations (39) defining membership y’ €
Oh(c') are satisfied, with p(c,y') = Au(c,y) + (1= XN)p(c”,y") >0, so y' €1i (Oh(c')) by Lemma 10.
Since ¢’ € M. was arbitrary, ri (9h(c)) # 0 for all M-.

We lastly establish Oh(c) is inner semicontinuous relative to Ms. The previous paragraph and
(48) showed Oh|,. is graph-convex. By defining S(c) = 9h(c) for ¢ € Mz and S(c) =0 otherwise
and noting the convex sets {c} and M; cannot be separated, [37, Theorem 5.9(b)] gives inner
semicontinuity of Oh at all ¢ € My relative to M.

The main result of this section shows that partial smoothness follows from nondegeneracy and
k-strict complementarity.
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THEOREM 5. Let Mz be as in (34), let Assumption 1 hold, and recall the notation of Defini-
tion 12. Suppose Mz satisfies the nondegeneracy condition, and ¢ € Mz and y € Oh(c) are such
that (¢,y) satisfies the k-strict complementarity condition of Definition 14. Then h is partly smooth
relative to Mx.

Proof. By definition of Mg, for any k € K(¢) and any c € Mz, h(c) = 3 (¢, Qic) + (by, ¢) + b,
50 h| a4, is smooth. By Proposition 1, dom (0h) = dom (h) D Mz, so existence of subgradients holds

throughout Mgz as well. The normal cone and subdifferential being parallel along with subdiffer-
ential inner semicontinuity relative to Mz are the content of Lemma 12. O

REMARK 9. Observe that if the hypotheses of Theorem 5 are satisfied, the assumption that f
satisfies (TC) at T is equivalent to requiring

Null <Vc(f)T) ARan (A) = {0}. (49)

This condition and the nondegeneracy condition imply the n x £ matrix V¢(Z)" A has full rank
equal to £ <n, i.e., Null (Ve(z)"A) = {0}.

We now show the assumptions of Theorem 5 allow us to write the cone of non-ascent directions as
a subspace at strictly critical points.

LeEMMA 13 (Non-ascent directions). Let M; be as in (34), let Assumption 1 hold, and recall
the notation of Definition 12. Suppose f satisfies (BCQ) at T, y € M(T), and ¢ := c(T). Then,
D(w) D Null (ATVC(T)). If, in addition, f satisfies (SC) at T fory and Mz satisfies the nondegen-
eracy condition, then D(z) C Null (ATVe(T)).

Proof. Since f satisfies (BCQ) at Z, Theorem 1 gives D(Z) = {d eR” ’ R (c(Z); Ve(T)d) < O} .
(D) Since 5 € M(z), by (39), there exists 7 € U(c) so that Jy = Q¢ + B + Af. Then, for any
je{l,...,%},

<ij5+ b, Vc(T)d> <0
PjATVe(T)d<0

Cx-\

D(z) = by (19), Definition 12

.
I
—

<y — AP, Vc(f)d> <0
P,ATVc(T)d<0

I
C:s-\

since y € M ()

<.
Il
s

<ﬁj, PjATVc(E)d> >0
PATVe(z)d <0

I
C?r\

<.
Il
i

The inclusion follows.

(C) Let 0#d € D(z), and suppose to the contrary that d =d; + da, where d; € Null (A" Ve(Z))
and dy = Ve(T) " Aw, w # 0. By Lemma 12, Ran (A) C par (9k()). Since 7 € ri (9h(€)), there exists
e >0 so that ¥+ eAw € 0h(¢). Then,

0> 1 (c(Z); Ve(T)d)

= yes{l;}}?a <VC(T)Ty, d>

> <y +eAw, Ve(T)(dy + Vc(f)TAw)>
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2

> <Vc(§)Ty, d> + | Ve@) T Aw

2
Vc(f)TAw‘ ,

=€

so w =0 (see Remark 9). O
By a continuity argument in (z,y), we have the following result which is important for our discussion
of the metric regularity of Newton’s iteration in the next section. It states that, in the presence of
partial smoothness, (TC) and the curvature condition are local properties.

LEMMA 14. Suppose (49) holds and that for all j € K(¢) and
d'Ve@) Q,Ve@)d+d V2, L(T,57)d >0, V deNull (ATVC(E)) \ {0}
Then, there exists a neighborhood N of (Z,y) such that if (x,y) € N then for all j € K(¢),
d"Ve(r)'Q;Ve(z)d+d'V2 L(z,y)d >0, V deNull (ATVC(LL‘)) \ {0}, (50)

and Null (Ve(z)T) NRan (4) = {0}.

The following examples are inspired by the discussion in [23].

ExaMPLE 1. In R2 let h,(c) = ||c|ﬁ, so h is piecewise linear-quadratic convex. If M := {0},

then h, is not partly smooth relative to M because 0h,(0) = {0} while N (0| M) =R". On the
other hand, if hy(c) =||c||, with the same domain representation, then 9h(0) =B, in which case
hy is partly smooth relative to M.
Suppose we represent the domain of h, and h, as the four quadrants in the plane, relative to each
of which h,, h; are linear-quadratic. This representation meets the criteria of the Rockafellar-Wets
PLQ representation of Theorem 4. For both h, and h;, the nondegeneracy condition for M holds
since A can be taken to be I.

EXAMPLE 2. In R?, the domain of h, and h; in the previous example can be presented in the
following way. Take each of the four quadrants in the plane and split them along their respective
diagonal. Define h, as usual on each of the pieces. Then this presentation describes dom (h,) using
4 hyperplanes and also meets the Rockafellar-Wets PL(Q representation theorem. However, the
nondegeneracy condition fails for M in this representation.

On the manifold M given by an “artificial” diagonal, the matrix A is comprised of a single column,
with N (¢| M) =Ran (A) for any ¢ € M. However, h, is smooth on M with par (9h(c)) = {0}.

We end this section with a relationship between partial smoothness and the convergence analysis
of Newton and quasi-Newton methods. Combining Proposition 2 and [24, Theorem 4.10], we have
the following relationship between the sufficient conditions for superlinear convergence of the quasi-
Newton method Q and the finite identification of an active manifold at a solution.

ProrosITION 3 (Finite Identification). Let Mz be as in (34), let Assumption 1 hold, and
recall the notation of Definition 12. Let T € dom (f) and ¢:=¢(T).
Suppose
(a) Mz satisfies the nondegeneracy condition,
(b) the k-strict complementarity condition of Definition 14 holds at (c,y) € R™ x R™,
(c) M(z) = {7}, and
(d) the second-order sufficient conditions of Theorem 2 are satisfied at .
Consider the neighborhood U of (Z,7) of Proposition 2, and a starting point (z°,y°) € U. Suppose
the sequence {(mk,yk)}keN is generated from the optimality conditions for Qy, remains in U for
all k €N, and satisfies (z*,y*) # (Z,y) for all k € N. Then, the sufficient conditions for superlinear
convergence of Proposition 2 imply c(z*) + Ve(z*)[z* ! — z¥] € Mz for all large k.
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Proof. Since z* — T, d* — 0. By continuity, ¢ := c(a*) + Ve(zF) [z — 2*] — €. The quasi-
Newton method (5) with By given by (31) implies y**! € Oh(c}), so {¢,} C dom (h). By Proposi-
tion 1, h(¢y) — h(c). Since y* — 7, dist (7 | 8h(€k)) <||g — ¥**|| = 0. Then, by partial smoothness
and [24, Theorem 4.10], ¢, € Mg for all large k. O

7. Strong Metric Regularity and Local Quadratic Convergence of Newton’s Method
The point of this section is to marry the partial smoothness hypothesis to the hypotheses used to
establish strong metric subregularity in Section 6 to establish strong metric regularity of a solution
mapping that is an appropriately defined local version of g + G in (9). In addition, we establish
the local quadratic convergence of the Newton method for g+ G.

DEFINITION 15 (METRIC REGULARITY). A set-valued mapping S : R" = R™ is metrically reg-
ular at T for § when y € S(Z), the graph of S is locally closed at (Z,7), and there exists k > 0
and neighborhoods U of Z and V' of 7 such that dist (ac | Sil(y)) < kdist (y ‘ S(x)) for all (z,y) €
U x V. The infimum of x over all (k, U, V) satisfying the display is called the metric regularity
modulus of S at T for 7, and is denoted reg(S;Z|y).

DEFINITION 16 (STRONG METRIC REGULARITY). A set-valued mapping S : R" = R™ is
strongly metrically reqular at T for 3 when it is metrically regular at T for 7 and S~ has a single-
valued localization at 7 for Z. Equivalently, when S~' has a Lipschitz continuous single-valued
localization around ¥y for 7.

7.1. Partly Smooth Problems

In this section, we make the following assumptions:

ASSUMPTION 2. Let h and f be as in P, with dom (h) given by the Rockafellar-Wets PLQ
representation of Theorem 4. Let (7,7) € dom (f) x R™, and set ¢ := ¢(T), k := |K(¢)|, where
K(c) = {ki,...,kg} are the active indices given in Definition 7. Let M; be the active manifold
defined in (34). By Lemma 6, there exists an integer ¢ such that ¢ = |I,(¢)| for any k € K(¢), and
let i, € R for j € {1, . ,E}. With these specifications, we assume that
(a) cis C3-smooth,

(b) Mz satisfies the nondegeneracy condition (in particular, k > 2),

(c) f satisfies (SC) at T for 7; i.e., Null (Ve(z) ") Nri(0h(¢)) = {y} , so that in particular, as in
(39), Jy= Q¢ + B+ Afi, where i = (@, ... ,ﬁ%)T >0 by Lemma 10,

(d) T satisfies the second-order sufficient conditions of Theorem 2, i.e.,

1 (c(@); Ve(@)d) + (d, V2, L(Z,7)d) >0 Vd e Null (ATVC@)) \ {0},

where, by Lemma 1, M (Z) = {y}, and by Lemma 13, D(Z) = Null (A" V¢(z)).

The conditions (c) - (e) in Assumption 2 can be interpreted in terms of similar assumptions
employed in classical NLP. Condition (c) corresponds to the linear independence of the active
constraint gradients, (d) corresponds to strict complementary slackness, and (e) corresponds to
the strong second-order sufficiency condition. The convergence results developed in this section
subsume those known for NLP, since they follow from the case in which A is non finite-valued
piecewise linear convex.

We begin with a key technical lemma important for establishing metric regularity.

LEMMA 15. In the notation of Definition 12, for anyi,j € {1, e ,E}, (Qr; — Qx; )Null (AT) -
Ran (A).
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Proof. Let we Null (AT). By polyhedrality, there exists |t| > 0 such that ¢, :==¢+ tw € M.
By Proposition 1, dom (0h) = dom (h), so there exists v € Oh(c;) and ¥ € Oh(¢). By (39), (v, pu(ct,v))
and (v, 1) satisfy Jv = Qc; + B+ Au(c,v) and Jv = Q¢+ B+ Afi. Then for any i,j € K(¢),

0= (le — Qk:j)ct + A(-Pi,u(ctuv)i - leu’(ct)v)j) + bk’i - bk’j’
0= (Qr, — Qr, e+ A(Pifi; — Pifi;) + by, — b,

Subtracting the second equation from the first and rearranging gives

(@i, = Qi) =t A{ P (ulers0); ~ ) = Palpalea v~ ) | (51)

0

We now define a family of local approximations to g + G for which strong metric regularity is
established.

DEFINITION 17 (MRESTRICTED KKT MAPPINGS). For a point ¢ € M; and each j €

{1, . ,E}, define g; : RMm+ — R+ and Gy by

T o (8
Voo | Y Quye@) — by — AP, an = ¢
9i(@,y, 1) = ATe(z) -7 d Gy {0}

THj R}

and set T, := (Z,7,71;) € R""*, where Z,7,7i; are as in Assumption 2. We call the mappings
g; + Gy the Mzrestricted KKT Mappings.
Observe that

V2 L(z,y) Ve(z)T 0 0
—Qu.V I —AP, B 0 ,
Vg, y, 1) = ﬁkjvc(cg(;) 0 0 7| and g;(%;) = 0 | € —GY (see Assumption 2 (c)).
0 0 I =

In parallel to the study in Section 5, we introduce the linearization of these mappings.
DEFINITION 18 (LINEARIZED MRESTRICTED KKT MAPPINGS). Let ¢ and k be given by

Assumption 2, and g; and G|, be as in Definition 17. For all j € {1, . ,E}, define the linearization
of g+ Go at u=(Z,y,11;) by

Gl (x) == g;(u) + Vg;(u)(x —u) + Gy, or equivalently, (52)
x—7T
@y (@Y 115) 1= 95T, Y, 115) + Vg5 (2,4, 1) | y=Y | +Go.
p —

In the sequel, we will need to compute the normal cone to the graph of the linearized Mg-restricted
KKT Mappings. For this purpose, we define for every u = (Z,¥, [i;) the function

Ve(@)Ty+ V2, LE Dz - 7] - 2
Y — Qi [c(Z) + V(@) [z —Z]] — by, — APjp; — 22
AT e(@) 4+ Ve(T)[x —T] —¢] — 23
—Hj T 2

Fu(x,z):=g¢;(u)+Vgj(u)(x—u)—z= . (53)

Then,
eph @} = {(@.2) | Fulw,2) € ~Go |, (54)
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with dom (G7) = R**™*¢. Explicitly,

21 = Ve(®) Ty + V2, L(E 5l — 3]

j . ) Zgzy—Qk[C(§)+v0(£)[$—fb’\]]—bk—APJILLJ
gphg(f,g,ﬁj) = (w7y7ﬂj7zla22az3az4) 2 :AT[C(@Z)—FVC(./%\)[l'—/f] —E] ! . (55>

Z4 € — ;i + Rﬁ
The next lemma shows that the error in the Newton iterates can be measured in terms of (x,y)
alone, independent of the vectors p;. We omit its proof since it is a straightforward computation.

LEMMA 16. LetZ,7,71,¢, k, and Q be as in Assumption 2, and g; and Gy be as in Definition 17.
For any j € {1,.-.,E}, define n; : R™ x R™ — R7+m+ py

Ve(z) 'y
n;(x,y) = | Qr;(c—c(z)) | . (56)
Al (e(x) —70)
Observe that for any (z,y,p;) € R™ x R™ x R,
0 00 O
i(x, —y+ AP, (i, — Vni(x,y) 0 01 —AP;
g]_(x,yhuj): <77](g y)) + y—-y OJ(NJ ;“J) and ng(I,y,,LLj)—< m(()x y) 0) + 00 o J
—u, 00 —1I
Set T;:= (T,y,1i;). Then, for any w:= (Z,7,[1;) € R" x R™ x R,
_ _ PO N\ [(T—Z _
HF‘M("BJagJ(w]))H: nj(l.vy)—i_vnj(x?y) y_’y\ _773‘(5373/) ) (57)

since 1;(Z,y) = 0.

The following lemma uses the strict criticality assumption to show the normal cone to the graph
of these linearizations is captured by the range of VFz,.

LEMMA 17. Let Z,%, 1, k, and Q be as in Assumption 2 and set T, := (7,9,1;). Then, for all
je {1, . ,E}, the mapping Q%j in (54) has N ((@-,O) | gphg%j) = Ran (W), where

V2. L(Z,5) —Ve(@) Qx, Ve(T)TA
Ve(T I, 0
0 P AT 0
we=| I, 0 0 (58)
-1, 0

0
0 0 -1,
0 0 0
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Proof. The set gph g;;j =< (x,2) ’F@. (x,2) € —G} defined in (54) is closed with (Z;,0) €
gph 2 . Tn addition, i, > 0, N ( F5,(®;,0)| — G, ) =R™™+ x {0}", and

V2. L(@,g) —Ve(@) ' Qr, Ve(T)TA 0

Ve(T) I, 0 0
0 —P;AT 0o I
VF;,(x;,0)" = —1I, 0 0 0|=(W|R),
0 I, 0 0
0 0 -I, 0
0 0 0 I

where the matrix R is being defined by this expression. Combining the facts in the srevious

two sentences, the constraint qualification in [37, Theorem 6.14], for N ((Ej,O) | gph g;;j is the

requirement that Null (W) = {0}. If we verify Null (W) = {0}, then N ((Ej, 0)| gph g;j) = Ran (W)
by [37, Theorem 6.14]. But the presence of the identity matrices in W immediately give Null (W) =
{0}. O
The metric regularity of the mappings g; + G follow from the second-order sufficient conditions
of Theorem 2.

LEMMA 18. LetZ,%,7,¢ k, and Q be as in Assumption 2, W as in (58) and set T, := (7,7, ;).
For all j € {1,...,%},
(0,~2) € N ((@,,0)| gph G} ) = 2=0,
where g%j is given by (54). Then, g%j is metrically reqular at ©; for 0 and
V2,L(z,5) Ve@)T 0
_Qk]- VC(E) Im —APJ
ATVe(z) 0 0

is monsingular.

Proof. By Lemma 17, N ((Ej,O) | gph Q%j) = Ran (W), and so the statement

(0,—z) €N (@,0) | gphg;j) — z=0

is equivalent to

0 V2, L(T,5) —Ve(T) ' Qy, Ve(T)TA
0 Ve(@) I 0
0 0 —P,AT 0 d d 1
-z | = -1, 0 0 v | forsome [ v || < |%]=0. (59)
—29 0 -1, 0 w w =3
2 0 0 iy 4
—24 0 0 0

Since (<) is trivial, we only establish (=). Define H := V2 L(Z,7). Then the left-hand side of
(59) becomes

0=Hd- VC(f)Tij’U + V(@) " Aw, (60)
0=Vc(T)d+v, (61)
0=-PA'v, (62)

z1=d, zo=v, zz=w, z4=0.
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Since z, =0, we need only show z; = z, = 23 = 0, which we establish by showing d =v =w = 0.
First suppose d # 0. From (62) and Definition 12, v € Null (A"). Then (61) and gives Ve(Z)d =
—v€Null (AT). By Lemma 13, d € D(z) \ {0}. Taking the inner product on both sides of (60) with
d and using (61) gives d' Hd=d"Ve(T)' Qv = —d"Ve(T) ' Qr, Ve(T)d, so

d"Ve(T) " Qr, Ve(T)d+d Hd =0.
But the second-order sufficient conditions of Theorem 2 imply that for any j € {1, e ,E},
d"Ve(T) ' Qr, Ve(T)d+d Hd > 0.

This contradiction implies d = 0. But then v =0 by (61). Finally, (60) states that w must satisfy
Aw € Null (Ve(z) ") NRan (A) = {0}. By the nondegeneracy condition of Definition 13, w = 0.
Equation (54) gives local closedness of %j at (Z;,0), so the coderivative criterion for metric regu-

larity [13, Theorem 4C.2] implies Q%j is metrically regular at =, for 0, as required. O
The metric regularity of the mappings g;j imply a parameterized uniform version of metric regu-
larity, where we allow &, to move.

LEMMA 19. Let T,9,71,¢,k, and Q be as in Assumption 2, set T; := (7,9,1,), and let g;j
be given by (54). For all j € {1,...,%}, there exists a neighborhood U; C R™™ of E; and a
neighborhood V; C R"T™ 4+ of O such that the mapping

(u,2) =G/ (2) = (g;) _(1z) for (u,z)eU; xV;

is single-valued with G,7(0) € Uj.

Proof. Fixje {1, ...,k . By Lemma 18 and [13, Theorem 6D.1], for every A > reg(Q%j;iﬂO)
there exists @ >0 and b > 0 such that

dist (a: ’ g;j(z)) < \dist (z |g;(m)> , for every u,x € T; +aB, z € bB. (63)

By reducing a, if necessary, we may assume the conclusion of Lemma 14 holds on Z; + aB. We
follow the argument given in [13, Theorem 6D.2] by recalling (56) and choosing

) _ ol ot
L>1lip(Vn;;(z,y)):=  limsup [Vs(z.9) V7/7] (;ac all , and v > 1)\L.
(@) a1)(53) [(2,y) = (=) 2
z,Yy z Yy

Define @ := min {%, a} >0, U; :=%;+aB, and V; := bB. We first establish nonemptiness of G,/ (z).

Fix & =%, and choose any (u, z) € U; x V;, and consider two cases in (63). If dist (z ‘ g;(fj)) =
0, then by closedness of the set GJ (&), it follows that Z; € G,7(z). On the other hand, if 0 <
dist (z 1G4, (@)) < 00, where finiteness is guaranteed because dom (G7) =R™*"**. Then the impli-

cation

dist (@ 1627 (z)) < Adist (z | gg;(@)) — dist (@ | g;j(z)) < o0

holds, so in both cases G,7(2) # 0.
We now show single-valuedness. For the same j, u, and z, write uw = (Z,¥, 1i;), and suppose there
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are two points @, = (z1,y1, iy, ), T2 = (Ta,Ya, ft),) satisfying x;, x> € G;7(z). Then subtracting the
equations in (55) gives

0= V5. L@ §)lws — 21] + Ve(@) " (y2 — 1) (64)
= Qr, Ve(T) w2 — 2] + AP; (1, — p15,) (65)
O A'Ve(Z)[xg — 4] (66)

Then Ve(Z)[z, — 21] € Null (AT). Suppose x, # x;. Taking the inner product on both sides of (64)
and using the choice of @ in accordance with Lemma 14,

0=l — 1] V2, L(Z, ) [ws — 1] + 23 — 1] Ve(@) " (g2 — 1) by (64)
= [zs — wl]Tvz L(Z,9)[s — 1] + [x2 — 21] ' Ve(Z) T [Qu, Vc(x) [w2 — @1] + AP;(py, — p5,)] by (65)
=[1y — 1] V2, L(T, 92 — 1] + [22 — 1] ' Ve(Z) " Qu, Ve(T) 2 — 21] by (66)

>0,

S0 o = x;. But then (64), (65), and Lemma 14 imply
ys — y1 € Null (vc(a)T) ARan (A) = {0},
s0 Yo = y1. The nondegeneracy condition of Definition 13 and (65) together imply
0=AP;(pj, = p1j,) = Hjp = i

so single-valuedness is established. We conclude the proof by following the proof given in [13,
Theorem 6D.2] and write (x,y, ;) = =G,7(0). Then the quadratic bound lemma and the choice
of v gives

()

SIEa

= dist (@ | g;j(o))
)

< Mdist (0 |Gl (z;)

< P gist (0 \gg(@))
<7

2L |g;(w) + Vg, (w)(T; —u) — g;(x;)|| by (52) and — g;(Z;) € Go
= || Fu@;.95()| by (53)
=@+ v (325) -nen| o)
=7 <§:y>
<ylu-z
<a,
sox=GJ(0)eU;. O

Our work so far implies that Newton’s method applied to the individual mappings Q%j exhibit local
quadratic convergence.



Burke and Engle: PLQ Convez-Composite
28 Mathematics of Operations Research 00(0), pp. 000-000, © 0000 INFORMS

THEOREM 6. Let Z,7,71,¢,k, and Q be as in Assumption 2, set T, = (7,7, fi;), and let g;j be

Y

given by (54). Then, the mappings {g;]} are strongly metrically reqular (see Definition 16) at
i=1

x; for 0. Moreover, for all j € {1, e ,E}, there exists a neighborhood U; of T; such that, for every

x° € Uj, there is a unique sequence x* = (z*,y*, u¥) C U; generated by Newton’s method for g; + Gy
(4). Both this sequence, and the sequence (z*,y"), converge at a quadratic rate to T; and (T,7)
respectively.

Proof. The metric regularity at @, for 0 was established in Lemma 18. Lemma 19 with u ==;
shows g;j has a single-valued localization around 0 for x;, so the strong metric regularity of g;j
at ; for O follows.

For the second claim, we again follow the proof in [13, Theorem 6D.2] by taking U; as in
Lemma 19, and choosing any x° € U;. Following the proof of the final claim of Lemma 19, we find,
for every k> 1, the existence and uniqueness of x* given x*~! satisfying

2
(53) (-75)
¥ -y y* -7y
Moreover, since 0 :=||z° — ;|| <ya <1, ||z* — ;|| < 92]6*1“:100 —EjHQ for all k> 1, which com-
pletes the proof of quadratic convergence of both sequences. O
We now move from an isolated analysis of the mappings G/, to how they behave as a whole. The

goal is to guarantee the y obtained by solving 0 € GZ (x) at some u = (Z,y, f1;) for = (x,y, ;) has
y € Oh(c(Z) + Ve(Z)[z — 7).

2

OEgik,l(mk), , and z* € U;.

<7

THEOREM 7. Let Z,7,0i,Ck, and Q be as in Assumption 2, set T; := (T,7,11;), and let
g;j be given by (54). Suppose i # j and i,j € {1,...,%}. There exists a neighborhood N of

(Z,Y,fy,-- -, i) = (T,7,0) € R TR guch that, if (Z,9, 1, ..., puz) €N and u; = (2,7, 1;), w;:=
(Z,y, i), with f; >0 and r; >0, then

, Zj , Li T Z _
z;:=G.0)=y; |, x:=G.0)=|wy | satisfy ( 7) = ( Z) foralli,je {1,...,k}.
’ K Z M Yi vi

(67)
That is, there ezists (x,y) € R™ x R™ such that (z,y) = (x;,y;) for all i€ {1, e ,E}. Moreover,
(i) c(z)+ Ve(z)[x — 7] € Mg,
(i) w(c(@)+Ve@)[x —3],y); = p; >0 for all j € {1%}
(i) y € 1i (Oh(c(Z) + Ve(T) [z — 7)),
where the mapping p(c,y) is defined in Lemma 9.

Proof. For j € {1,...,%}, define m; : R TR s ROEmHE by (@9, g, [l e ) =
(:v,y,ujl. We first show there exists a neighborhood N of (Z,9, %, ...,a5) such that, for all j €
Lok} and all (3,35, 7) = u; € N i= (),

k
a) the mappings {Q;jj (0)} are single-valued with G,7(0) € N
. Jj=1
b) p; associated to G,7(0) has p; >0,
(c) the condition (50) is satisfied at all (x,y, ;) € Nj, and
(d) (@) + Ve(@;)[z; — ;] € Mz, where (25,5, 14;) = G555, (0)-

(
(
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Parts (a), (b), and (c) are a consequence of Lemma 19. We now justify (d). For any j € {1, . ,E},

the definition of (z;,y;, ;) =G fjgﬂ ,(0) implies, in particular, AT[c(Z;) + V(7)) [z; — 2] — ¢(T)] =
0. By the polyhedral structure of Mg, for any w € Null (AT) =T (¢| Mz), there exists 7 > 0 such

that ¢+ tw € Mg for all |t| < 7. Lemma 19 argued that, for all sufficiently small € > 0,
G.7(0) € (T, + €B) for all u € T, + B (see (a)). (68)

The continuity of ¢ and (68) imply that for w; sufficiently close to T;, ¢(Z;)+ Ve(Z;)[z; — ;] can

be made as close to c(7) as desired. Then there exists a neighborhood of (Z,%,7;) such (d) holds.

The neighborhood N also exists because there are only finitely many indices j in consideration.
Now let w; := (Z,y,11;) € N;, w; = (2,7, ;) € N;, with ; >0 and 71; > 0, and denote

6.:0)= |, dui0=u
M i
By (59),
0= V2 L(Z,9) [SUJ — 2]+ V(@) (y; — vi) (69)
Qu(e(2) + Ve(@)[r — 7)) + APy, +by, (70)
Qr, (c(T) + Ve(T)[x; — T]) + APjpu; + by, (71)
0 A Ve(@)[z; — xi] (72)

Define ¢; := ¢(Z) + V() [x; — 7] € Mg by (d). By Assumption 3, § = Qy,C + by, + AP;f1; = Qp, ¢+
by, + AP;p;, and in particular,

Qr,C+ by, — by, = Qr,c+ AP, — AP, (73)
Then (51) with w:=¢; —¢€ Null (A7), t=1, and any y € Oh(¢;) gives
Yi = Qr,w + Qp, T+ by, + AP,
G%W+A{((%Wfﬁw—HW@w%—m”>+@p+%+ABm+%—%j
= Quyw -+ by, + [Que+ by, — b+ AP+ A{ Py (u(@.y); — 1)) — P(u(@ ) —71) }
= Q1[G — T+ by, + Qe+ AP, — APE] + APy + A{ P(u(@.9); — ;) — Polu(@): — 71) |

= Qu,Ci + by, + AP i — (@i, y)i] + AP u(C:,y)
€y;+Qy, Ve(Z)[z; — x;] + Ran (A)

where the fourth equivalence follows from (73). This implies
Y;i — Yi — Qu, Ve(T)[z; — xi] € Ran (A). (74)
Taking the inner product on both sides of (69) with z; —z; gives

0=[z; — 2] V2, L(Z,9)[z; — x:] + [x; — 2] " Ve(@) (y; — vi)
= [z; — 2] V2, L(E,Y) [x; — 2] + [x; — 23] 'V e(T) " Qr, Ve(Z)[z; — ;] by (74),(72).

By Lemma 14 and (72), ; = z;. Then (74), (69), and (c) imply y; —y; € Ran (A) NNull (Ve(z) ") =
{0}, which proves (67).
Since ¢ and j were arbitrary, letting x and y denote the common values of the first two components
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of G,7(0) for each j € {1, . ,E}. Then Jy = Q(c(Z) + V(@) [z — 7)) + B+ Ap, with ¢(Z) + Ve(Z) [z —
z] € Mg, and pq,...,u; > 0. By (39) and Lemma 10, p(c(z) + Ve(@)[z — Z],y); = p; > 0, with
y €1i (Oh(c(Z) + Ve(Z) [z — f])) O
Our final theorem integrates the ideas from Section 6 and our work in this section to establish the
local quadratic convergence of Newton’s method for P.

THEOREM 8. Let 7,7, 1[I, k, and Q be as in Assumption 2, set T; := (T,7, ), and let g%], be
given by (54). There exists a neighborhood N of (Z,7, 1) on which the conclusions of Lemma 14 are
satisfied such that if (z°,y°, u°) € N, then there exists a unique sequence {(x’“, Yk, uk)}keN satisfying
the optimality conditions of Py, for all k € N, with
(a) c(z*1) 4+ Ve(zb 1) [z* — 2F 1] € Mg,

(b) ple(zF=1) + Ve(ah 1) [aF — 2571, y%); > 0 for all j € {1, e ,E},

(c) y* eri (ah(c(xkfl) + Ve(zh 1) [zh — $k*1])),

(d) Hy_y[z* — 281+ Ve(zF 1) Tyk =0,

(e) x* —x*=1 is a strong local minimizer of d— h(c(z*~') +Ve(z1)d) + 1d" Hy,_1d.
Moreover, the sequence (z*,y*) converges to (Z,7) at a quadratic rate.

Proof. All claims except (e) follow from Theorem 6 and Theorem 7. By Lemma 22 and
Lemma 23, claim (e) is equivalent to showing

B (e(z" 1) + Ve(z Y[z — 2571, Ve(zF1)8) + 6T Hy_ 16 > 0 V6 € Null (ATVc(azk_l)) \ {0}. (75)
Using (15) and partial smoothness,
R (e(z" 1) + V(@) [z* — 2571 Ve(a"1)6) = T Ve(z* )T Q,; Ve(z"1)s, Vi e K(2),
so (50) gives (75). O

REMARK 10. The fact that {mk — mkfl} are strong local minimizers does not mean that there
are not other critical points outside the neighborhood of quadratic convergence. It may be that at
any iteration the problem P does not have a finite optimal value, in particular, should there exist
directions of negative curvature orthogonal to the manifold.

7.2. Smooth Problems In this section, we make the following assumptions:

AssuMPTION 3. Let h and f be as in P, with dom (h) given by the Rockafellar-Wets PLQ
representation of Theorem 4. Let (7,7) € dom (f) x R™, and set ¢:=c(Z), k= |K(¢)|, where K(¢)
are the active indices given in Definition 7. Let M; be the active manifold defined in (34). We
assume that

(a) cis C*-smooth,

(b) K(¢) = {ko},

(c) T satisfies the second-order sufficient conditions of Theorem 2,
REMARK 11. Since k=1, we omit reference to the index ky for the rest of this section.
REMARK 12. By (b), ¢(Z) € intdom (h) and 0h(¢) = {y}. Then, (c) becomes

y=Qc+b, Ve(z)'5=0, d"Ve(z) ' QVe(T)d+d'V2, L(Z,5)d >0 VdeR"\ {0}, where D(z) =R".
As in Lemma 14, we have the following stability result.

LEMMA 20. Suppose d'Ve(z)'QVe(T)d+d V2, L(Z,y)d >0 for all d € R"\ {0}. Then, there
exists a neighborhood N of (Z,7y) such that if (x,y) € N then,

d"Ve(z)'QVe(r)d+d'V2, L(x,y)d >0, YV deR"\{0}, (76)
and c(x) € intdom (h).
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The differentiability of h at ¢(Z) suggests the following KKT mapping (9).
DEFINITION 19 (MzRESTRICTED SMOOTH KKT MAPPING). Define g:R"*" — R"+™ by

ste)i=(, Yol ). =0y

and set T := (7,7), so that,

Vo(r.y) = <Yiéf%(§;: y)) VC}Z)T) L g(z,y) = <8> .

Assumption (c) implies Vg(Z,y) is nonsingular. Consequently, the Newton method (4) corresponds
to the classical Newton’s method for solving the equation g(x,y) =0, whose local quadratic conver-
gence near (7,7) with Vg(7,7) nonsingular is well-known. We conclude with the following theorem,
which parallels Theorem 8.

THEOREM 9. Let Z,y,¢ :=c(T), and Mz be as in Assumption 3. Then, there exists a neigh-
borhood N of (T,y) on which the conclusions of Lemma 20 are satisfied such that if (z°,y°) € N,
then there exists a unique sequence {(mk,yk)}keN satisfying the optimality conditions of Py for all
keN, with
(a) c(z*)+ Vc(xk‘l)[mk k_l] € ./\/lg,

() Oh(ete )4 Telat ot )= {3

(¢) Hmalet — 1]+ Veat~ o

(d) ¥ —a*~1 is a strong local minimizer of d— h(c(xF~') 4+ Ve(a*~1)d) + $d" Hy,_1d.
Moreover, the sequence (z*,y*) converges to (Z,7) at a quadratic rate.

Appendix

The model function minimized in P plays a pivotal role in our analysis. Here, we establish
properties of this function.
Let f be as in P and u:= (Z,7) € dom (f) x R™. Define H := V2, L(Z,

),
P(v,w) :=h(v) +w, and D, (d) := ( 1?‘;26(1 )

Then, for any (v,w) € dom (h) X R and (d,s) € R™ x R,

Vo, (d) = (ZS}) U (0,0)5(d,9) = W (osd)+5, 6 (0,0); (d,s)) =B (v3).

Define the model function ¢,,(d) := (P, (d)) = h(c(Z)+ Ve(Z)d) + %dTﬁd. By [37, Theorem 13.14],
¢ is piecewise linear-quadratic, though not necessarily convex because H may not be positive
semi-definite. However, ¢,, is convex-composite with 1 piecewise linear-quadratic convex.

The following lemma shows that if f satisfies (BCQ) at T, then the model function at T satisfies
its (BCQ) throughout its domain.

LEMMA 21. Let f be as in P, u:= (Z,y) € dom (f) x m, (md suppose | satisfies (BCQ) at .
Then, ¢y, satisfies (BCQ) at all points d € dom (¢,,) = { Z)+ Ve(Z)d € dom (h)}
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Proof. Letde {d | ¢(&) + Ve(@)d € dom (h) } By definition,
Null (Vb (d)" ) =Null ((vc(a)T ﬁd)) and N (®,,(d)|dom (1)) =N (¢(Z) + Ve(@)d|dom (h)) {0} .
Suppose v = (vy, vy) € Null (Wu(a)T) NN (cpu(a) | dom (w)) . Then v, =0, and
v; € Null (vC(f)T) NN (C(EE) +Ve(z)d|dom (h)) € Null (vC(a)T) AN (¢()|dom (h)) = {0},
where the inclusion follows since <v1, vc@)8> =0. O

LEMMA 22.  Let f be as in P, u:=(Z,y) € dom (f) x R™, and suppose f satisfies (BCQ) at T.
Then, the cone of non-ascent directions Dy, (d) at any d € dom (¢,,) is given by

Do(@={

W (c(Z) + Ve(@)d; Ve(@)d) +d H5 <0 } . (77)

Moreover, the second-order necessary and sufficient conditions of Theorem 2 applied to min ¢, are
1. If ¢u has a local minimum at d, then 0 € Hd+ Vc(Z) "0h(c(Z) + Ve(Z)d) and

B (c(Z) + Ve(Z)d; Ve(Z)6) +6 T HS >0,

for all 6 € Dy, (d). B
2. If0€ Hd+Ve(z) TOh(c(Z) + Ve(Z)d) and
W' (c(Z) + Ve(@)d; Ve(@)8) +6THS > 0,
for all § € Dy, (d) \ {0}, then d is a strong local minimizer of ¢,
Proof. Since (BCQ) is satisfied at all points d € dom (¢,,), the chain rule of Theorem 1 gives

0¢u(d) = Hd+ V(@) Oh(c(F) + Ve(@)d),
Ao (d)(8) = I (¢(T) + Ve(F)d; Ve(7)6) +d T H,
which is (77). The set of Lagrange multipliers for ¢, becomes
M,, (d) := Null (vq>u(d)T) N 9Y(®o (d))

N R R (78)
= Null ((VC(E)T Hd>> N (Oh(c(Z) + Ve(Z)d) x {1}),
so that (y1 y2) € My, (d) <= {ﬁd+ Ve(@) Ty, v € Oh(c(T) + Ve(Z)d), yo=1. The Lagrangian
[4] is L(d,y) := (y, Pu(d)) = ¥"(y), y = (y1,92) € R™ x R, with V3,L(d,y) = yoH. Then, from
Theorem 2, for any ¢ € R",
V" (D, (d); VP, (d)d) + max {<5, Vi L(d,y)8) |y € My, (d) } = 1"(e(Z) + Ve(@)d; Ve(Z)8) + 6T H.

O
The final lemma of this section characterizes the directions of non-ascent for the model function

¢, in the presence of an active manifold. The proof is identical to Lemma 13 using Dy, (d) =

{5 ER" [ (@, (d); VP, (d)d) <0 }
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LEMMA 23 (Model non-ascent directions). Let h and f be as in P, with dom (h) given
by the Rockafellar-Wets PLQ representation of Theorem 4. Let (Z,y) € dom (f) x R™, and set
¢:=c(Z), k:=|K(¢)|, where K(¢) = {ki,..., kg } are the active indices given in Definition 7. Let Mz
be the active manifold defined in (34). Let u:= (z,y) € dom (f) x R™, suppose f satisfies (BCQ)
at & and (d.5) satisfy 0 = Hd+ Ve(@)T7, o)+ Ve(@)d € Mz, and 7 € 1i <8h(c(§) + vc(m))
Then, ¢, satisfies (SC) at d for (y,1), and

under Assumption 2, in the notation of Definition 12, Dy, (d)=Null (ATVc(Z)).

under Assumption 3, Dy, (d) =R".
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