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We establish conditions for strong metric subregularity and strong metric regularity of the corresponding
set-valued mappings. This allows us to extend classical convergence of Newton and quasi-Newton methods
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In particular we establish local quadratic convergence of the Newton method under conditions that parallel
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1. Introduction This work concerns local convergence theory of Newton and quasi-Newton
methods for the solution of the convex-composite problem:

minimize
x∈Rn

f(x) := h(c(x)), (P)

where h : Rm → R ∪ {+∞} is piecewise linear-quadratic (PLQ) and convex, and c : Rn → Rm is
C2-smooth. When h = 1

2
‖·‖

2
, P is the classical nonlinear least-squares problem. Numerous other

problems fall within this class including nonlinear programming (NLP), mini-max optimization,
estimation of nonlinear dynamics with non-Gaussian noise as well as many modern approaches
to large-scale data analysis and machine learning [1, 2, 11]. Convex-composite optimization has a
long history with investigations in the 1970s [29, 30], 1980s [3, 4, 22, 34, 35, 39, 40], and 1990s
[6, 7, 12, 37], where much of the emphasis was on a calculus for compositions and its relationship to
nonlinear programming (NLP) and exact penalization [19]. Recently, there has been a resurgence
of interest in local [15, 18] and global [9, 10, 15, 16, 17, 24] algorithms for this class of problems
especially with respect to establishing the iteration complexity of first-order methods for P. Much
of this work has focused on the case where the function h is finite-valued.
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These, as well as most methods for solvingP, use a direction-finding subproblem similar to

minimize
x∈Rn

h(c(xk)+∇c(xk)[x−xk]) +
1

2
[x−xk]>Hk[x−xk], (Pk)

where Hk is the Hessian of a Lagrangian for P [4]. When the Hessian Hk is used in the subproblems,
the method corresponds to a Newton method (4), and when Hk is approximated by a matrix Bk,
it corresponds to a quasi-Newton method (5). In either case, the subproblems Pk may or may
not be convex depending on whether Hk, Bk � 0. In the context of the broader class of prox-
regular h, Lewis and Wright [24] take Bk = µkI at each iteration, thereby guaranteeing existence
and uniqueness of the “proximal step” and a global descent algorithm. Instead, our focus is on
developing methods possessing fast local rates of convergence by taking advantage of second-order
information together with the convex geometry of dom(h) developed by Rockafellar [35].

When h is assumed to be a finite-valued piecewise linear convex function, Womersley [38] estab-
lished second-order rates of convergence for these algorithms under conditions comparable to those
used in NLP, i.e., linear independence of the active constraint gradients, strict complementarity,
and strong second-order sufficiency. Notwithstanding this correspondence to NLP, the method of
proof differs significantly from the standard methodology for establishing such results in the NLP
case developed by Robinson [31, 32]. Notably, in the case of NLP, the function h is piecewise linear
but not finite-valued. In subsequent work, Robinson [33] introduced the revolutionary idea of gen-
eralized equations, whose variational properties can be used to establish local rates of convergence
for Newton’s method for NLP. By employing the techniques of generalized equations, Cibulka
et. al. [8] recently connected classical second-order necessary and sufficient conditions for a local
minimizer of P with strong metric subregularity (see Definition 9) of the underlying KKT mapping
when h is piecewise linear convex but not necessarily finite-valued. However, their analysis relies
heavily on the fact that h is piecewise linear. And so, the old question of what conditions imply
local quadratic convergence when h is not piecewise linear remains open. However, their technique
created the possibility of an extension to the case where h is a member of the PLQ class. This
extension is our goal. It is hoped that the methods and techniques developed in this paper provide
insight into how to extend these results beyond the PLQ class.
As noted above, we couch the analysis in the context Newton’s method for generalized equations.

The first-order necessary conditions of a local minimum of P are encoded through a generalized
equation of the form g(x, y) +G(x, y) 3 0, where g : Rn+m → Rn+m is a C1-smooth function, G :
Rn+m ⇒ Rn+m is a set-valued mapping, (x, y) represents a primal-dual pair, and the function
∇g(x, y) is a KKT matrix for P (see Definition 5). Newton’s method (4) for solving this generalized
equation corresponds to solving the optimality conditions for Pk. The Newton iterate at (xk, yk)
is obtained by solving the following linearized generalized equation:

Find (xk+1, yk+1) such that g(xk, yk)+∇g(xk, yk)

(
xk+1 −xk

yk+1 − yk

)
+G(xk+1, yk+1)3 0. (1)

The details of this derivation appear in Section 3.
The goal of this paper is to establish local convergence rates for algorithms based on iteratively

solving Pk in the case where h is a PLQ convex function. We do this by augmenting the strategy of
Cibulka et. al. [8] with additional innovations by Lewis [23] and Rockafellar [35]. In particular, we
are able to establish conditions under which these algorithms are locally quadratically convergent.
The first phase of our analysis involves extensive application of the first- and second-order PLQ
calculus [35, 37] to establish conditions under which the underlying generalized equation is strongly
metrically subregular. This allows us to establish sufficient conditions for the superlinear conver-
gence of quasi-Newton methods for algorithms whose direction finding subproblems are based on
Pk. The second phase of our analysis employs the technique of partly smooth functions in the sense
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of [20, 23] to establish conditions under which a local approximation to the underlying generalized
equation is strongly metrically regular (see Definition 15). This allows us to give conditions for the
local quadratic convergence of the Newton method based on Pk.
We also note that recent work by Drusvyatskiy and Lewis [15] considers similar types of results for

convex-composite optimization problems of the form ϕ(x) = h(c(x))+g(x), where h is finite-valued
and L−Lipschitz, ∇c is β-Lipschitz, and g is closed, proper, convex, and possibly infinite-valued.
One of their goals is to understand the convergence of prox-linear type methods through either the
subregularity [15, Theorems 5.10 and 5.11] or strong regularity [15, Theorem 6.2] of ∂ϕ at stable
strong minima or sharp minima of ϕ [15, Theorems 7.1 and 7.2].
When h is only assumed to be finite-valued convex and g is zero, the first result on the local

quadratic convergence for convex-composite problems was that of Burke and Ferris [6]. In that
work, the authors established a constraint qualification for the inclusion c(x) ∈ argminh that
ensures the local quadratic convergence of constrained Gauss-Newton methods. In [6], the authors
assumed argminh was a set of weak sharp minima [5]. However, it was observed by Li and Wang
[26] that the sharpness hypothesis was not required. Rather, a local quadratic growth condition
[26, Theorem 2] was sufficient for the proof techniques in [6] to succeed. The authors continued
research [25] in relaxations of the constraint qualification on c(x)∈ argminh and studied proximal
methods [21] for their convergence.

Our focus on the PLQ class is motivated by the great variety of modern problems in data analysis,
estimation of dynamical systems, inverse problems, and machine learning that are posed within
this class. The key to the success of the convex-composite structure is that it separates the data
associated to the problem, the function c, from the model within which we wish to explore the data,
the function h. Consequently, the broader the class of functions h available, the greater the variety
of ways within which we can explore underlying extremal properties of the input function c, e.g.,
sparsity, robustness, network structure, dynamics, influence of hyperparameters, etc. Importantly,
we have learned that features of the data can be more readily extracted by imposing nonsmoothness
in the function h.
The roadmap of the paper is as follows. Section 2 collects tools from convex and variational

analysis used throughout the paper. Section 3 formally presents the convex-composite problem
class. We take advantage of the structure of the problem class to rewrite the general first-order
optimality conditions for proper functions in the presence of various constraint qualifications used
in this work. We also present the generalized equation (9) associated with the first-order optimality
conditions for P. Section 4 discusses the convex geometry and differential theory of piecewise
linear-quadratic functions collected in [37]. The second-order theory of [37] allows us to rewrite
the general second-order necessary and sufficient conditions for a local minimum of P. We extract
a crucial result from [37] that highlights natural candidates for manifolds of partial smoothness
[23] inherent to the function h. Section 5 extends the result [8, Theorem 7.1] relating the strong
metric subregularity of (9) to the second-order sufficient conditions of local minima and ends with
a convergence study of quasi-Newton methods for P. Section 6 establishes conditions for the partly
smooth structure of PLQ convex functions and sets the stage for Section 7, where we analyze the
local quadratic convergence of Newton’s method as in [13].

2. Notation These sections summarize the relevant notation and tools of convex and varia-
tional analysis used in this work. Unless otherwise stated, we follow the notation in [23, 37, 13].

2.1. Preliminaries We work in (Rn, 〈·, ·〉) with the standard inner product 〈x, y〉 = x>y =∑n

i=1 xiyi and ‖x‖
2
= x>x. Throughout, we switch between the notations 〈x, y〉 and x>y for clarity

considerations. Let B :=
{
x∈Rn

∣∣‖x‖ ≤ 1
}

be the closed unit ball. For A ∈ Rm×n, its range, null

space, and transpose are Ran(A) ,Null (A) ,A> respectively, and for a finite collection of mappings
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{Ak}k∈J with index set J , let diagAk denote the block diagonal matrix with kth block Ak. Let
ej ∈R` denote the standard unit coordinate vector.

2.2. Convex Analysis A set C ⊂ Rm is locally closed at a point c, not necessarily in C, if
there exists a closed neighborhood V of c such that C ∩V is closed. Any closed set is locally closed
at all of its points, and the closure and interior of C is denoted by clC and intC, respectively.

For a closed convex set C ⊂ Rm, let aff C denote the affine hull of C and par (C) the subspace
parallel to C. Then, for any c∈C, par (C) := aff C−c=R(C−C), where we employ Minkowski set
algebra for addition of sets: for sets C1,C2 ⊂Rm and t∈R, define C+C ′ :=

{
c+ c′ | c∈C, c′ ∈C ′

}

and ΛC :=
{
λc |λ∈Λ, c∈C

}
. When C = {c}, we omit the set braces and write c+C ′. The relative

interior of C is given by ri (C) =
{
x∈ aff C

∣∣∃ (ε > 0) (x+ εB)∩ aff C ⊂C
}
.

2.3. Variational Analysis The functions in this paper take values in the extended reals

R := R ∪ {±∞}. For f : Rn → R, the domain of f is dom(f) :=
{
x∈Rn

∣∣f(x)<∞
}
, and the

epigraph of f is epif :=
{
(x,α)∈Rn ×R

∣∣f(x)≤ α
}
.

We say f is closed if epif is a closed subset of Rn+1, f is proper if dom(f) 6= ∅ and f(x)>−∞ for
all x∈Rn, and f is convex if epif is a convex subset of Rn+1.
Suppose f :Rn →R is finite at x and w,v ∈Rn. The subderivative df(x) :Rn →R and one-sided

directional derivative f ′(x; ·) at x for w are

df(x)(w) := lim inf
t↘0

w′→w

f(x+ tw)− f(x)

t
, f ′(x;w) := lim

t↘0

f(x+ tw)− f(x)

t
.

At points w ∈Rn such that f ′(x;w) exists and is finite, the one-sided second directional derivative
is

f ′′(x;w) := lim
t↘0

f(x+ tw)− f(x)− tf ′(x;w)
1
2
t2

.

For any w,v ∈Rn, the second subderivative at x for v and w ∈Rn is

d2f(x|v)(w) := lim inf
t↘0

w′→w

∆2
tf(x|v)(w), where ∆2

tf(x|v)(w) :=
f(x+ tw′)− f(x)− t 〈v, w′〉

1
2
t2

.

The structure of our problem class allows the classical one-sided first and second directional deriva-
tives f ′(x; ·) and f ′′(x; ·) to entirely capture the variational properties of their more general coun-
terparts.
Suppose f :Rn →R is finite at x. Define the (Fréchet) regular subdifferential

∂̂f(x) :=
{
v ∈Rn

∣∣f(x)≥ f(x)+ 〈v, x−x〉+ o(‖x−x‖)
}
,

and the (limiting or Mordukhovich) subdifferential by

∂f(x) :=

{
v ∈Rn

∣∣∣∣∃ (x
n −→

f
x) ∃ (vn → v) ∀ (n∈N) vn ∈ ∂̂f(xn)

}
, (2)

where xn −→
f
x denotes f -attentive convergence, i.e., that xn → x, with f(xn)→ f(x). In the case of

a closed, proper, convex function f , the set ∂f(x) is the usual subdifferential of convex analysis.
A set-valued mapping S : Rn ⇒ Rm is a mapping from Rn into the power set of Rm, so for each
x∈Rn, S(x)⊂Rm. The graph and domain of S are defined to be

gphS :=
{
(x, y)∈Rn ×Rm

∣∣y ∈ S(x)
}

and dom(S) :=
{
x∈Rn

∣∣S(x) 6= ∅
}
,
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and S is graph-convex whenever gphS is a convex subset of Rn ×Rm. For a point (x, y) ∈ gphS,
and neighborhoods U of x and V of y, a graphical localization of S at x for y is a set-valued
mapping S̃ defined by gph S̃ = gphS ∩ (U × V ). A single-valued localization of S at x for y is a
graphical localization that is also function. If the domain of S̃ is a neighborhood of x, S̃ is called a
single-valued localization of S around x for y. The mapping S is outer semicontinuous at x relative
to X ⊂Rn if

limsup
x−→

X
x

S(x) :=

{
u

∣∣∣∣∃ (x
n −→

X
x) ∃ (un → u) ∀ (n∈N) un ∈ S(xn)

}
⊂ S(x),

and is inner semicontinous relative to X ⊂Rn if

S(x)⊂ lim inf
x−→

X
x
S(x) :=

{
u

∣∣∣∣∀ (x
n −→

X
x) ∃ (N ∈N, un → u) ∀ (n≥N) un ∈ S(xn)

}
,

where xn −→
X
x⇐⇒ xn → x with xn ∈X. Then, (2) is ∂f(x) := limsupx−→

f
x ∂̂f(x). The last notion

employed from variational analysis is that of normal and tangent vectors. Let C ⊂ Rn, and let
c∈C. Define the normal cone to C at c as

N (c |C) := limsup
c−→

C
c

N̂(c |C), where N̂(c |C) :=

{
v
∣∣∣∀ (c′ ∈C)

〈
v, c′ − c

〉
≤ o(

∥∥c′ − c
∥∥)
}
, (3)

and the tangent cone to C at c as T (c |C) := limsupt↘0 t
−1(C − c). A set C is Clarke regular

at c ∈ C if C is locally closed at c and N (c |C) = N̂(c |C). A nonempty, closed, convex set C

is Clarke regular at all c ∈ C, with N (c |C) =
{
v
∣∣ 〈v, c− c〉 ≤ 0 for all c∈C

}
, and T (c |C) ={

v
∣∣ 〈v, w〉 ≤ 0 for all w ∈N (c |C)

}
= cl

{
R++(C − c)

}
[37, Theorem 6.9]. We refer the reader to

[37, Chapter 6] for a thorough exposition.
Suppose g : Rn → Rm is C1-smooth, G : Rn ⇒ Rm is a set-valued mapping with closed graph and
{Bk}k∈N

⊂Rm×n. Consider the generalized equation 0∈ g(z)+G(z). The Newton method for g+G
is the iteration

find zk+1 such that 0∈ g(zk)+∇g(zk)(zk+1 − zk)+G(zk+1), for k ∈N, (4)

and the quasi-Newton method for g+G is the iteration

find zk+1 such that 0∈ g(zk)+Bk(z
k+1 − zk)+G(zk+1), for k ∈N. (5)

3. Convex-composite first- and second-order theory We begin by recalling the basic
ingredients of convex-composite optimization and the associated variational structures.

Definition 1 (Convex-composite functions). Let h :Rm →R be a closed, proper, convex
function and c :Rn →Rm a C2-smooth function. Define f :Rn →R by f(x) := h(c(x)). We say the
function f is convex-composite.
Definition 2 (Convex-composite Lagrangian). [4] For any y ∈ Rm, define the function

(yc) : Rn → R by (yc)(x) :=
〈
y, c(x)

〉
. The Lagrangian for the convex-composite f is defined by

L(x, y) := (yc)(x)−h?(y), where h? :Rm →R denotes the Fenchel conjugate of the convex function
h defined by h?(y) := supz∈Rm 〈z, y〉−h(z). The Hessian of L in its first variables is denoted

∇2
xxL(x, y) =∇2(yc)(x) =

m∑

i=1

yi∇
2ci(x). (6)
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Definition 3 (Convex-composite multiplier sets). Suppose f is convex-composite.
Define the set of multipliers at x∈ dom(f) for v ∈Rn as in [37, Theorem 13.14] by

Y (x, v) :=



y

∣∣∣∣∣

(
v
0

)
∈

(
∂xL(x, y)

∂y(−L)(x, y)

)
=

{
y ∈ ∂h(c(x))

∣∣∣∇c(x)>y= v

}
, (7)

and define the set of multipliers at x for 0 by

M(x) := Y (x,0) =Null
(
∇c(x)>

)
∩ ∂h(c(x)). (8)

A calculus for convex-composite functions at a point x ∈ dom(f) requires various types of
“constraint qualifications.” Stronger versions of the basic constraint qualification (BCQ) will be
employed to ensure uniqueness of the multiplier and underlying strict complementarity properties
in later sections.
Definition 4 (Convex-composite constraint qualifications). Suppose f is convex-

composite and x∈ dom(f). We say f satisfies the
• basic constraint qualification at x if

Null
(
∇c(x)>

)
∩N

(
c(x) |dom(h)

)
= {0} , (BCQ)

• transversality condition at x if

Null
(
∇c(x)>

)
∩ par

(
∂h(c(x))

)
= {0}, (TC)

• strict criticality condition at x∈ dom(f) for y if

Null
(
∇c(x)>

)
∩ ri

(
∂h(c(x))

)
= {y} . (SC)

Remark 1. Following [37, Definition 10.23], one says that a convex-composite function f is
strongly amenable at x ∈ dom(f) if f satisfies (BCQ) at x. One says that f is fully amenable at
x∈ dom(f) if f satisfies (BCQ) at x and the function h is PLQ convex. Here, we make use of the
underlying assumption that c is C2-smooth.
Notice the basic constraint qualification is a local property in the following sense. If f satisfies
(BCQ) at x, then there exists a neighborhood U of x such that f satisfies (BCQ) at all x ∈
[U ∩ c−1(dom(h))]. Moreover, the basic constraint qualification ensures that the chain rule applies
in the subdifferential calculus for convex-composite functions and establishes a foundation for the
application of tools from variational analysis.

Theorem 1 (Convex-composite first-order necessary conditions). Suppose f is convex-
composite and x ∈ dom(f) is such that f satisfies (BCQ) at x. Then, ∂f(x) =∇c(x)>∂h(c(x)),
and for any d∈Rn,

df(x)(d) = h′(c(x);∇c(x)d) = lim
t↘0

∆f(x; td)

t
,

where ∆f(x;d) := h(c(x) +∇c(x)d)− h(c(x)). Suppose, in addition, that x is a local solution to
P. Then, M(x) := Null

(
∇c(x)>

)
∩ ∂h(c(x)) 6= ∅, or equivalently, 0 ∈ ∂f(x), and for any d ∈ Rn,

h′(c(x);∇c(x)d)≥ 0.

Proof. This follows from [37, Proposition 8.21, Theorem 10.1, Exercise 10.26(b)]. �

We now establish a relationship between the various notions of a constraint qualification given in
Definition 4.

Lemma 1. Suppose f is convex-composite, x∈ dom(f), and y ∈Rm. Then, the following impli-
cations hold:

(SC) (TC) (M(x) = {y}) (BCQ)
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Proof. [(M(x) = {y}) =⇒(BCQ)]
Let M(x) = {y} and suppose there exists

0 6= v ∈Null
(
∇c(x)>

)
∩N

(
c(x) |dom(h)

)
⊂Null

(
∇c(x)>

)
∩ par

(
∂h(c(x))

)
.

Then, by the subgradient inequality, v+ y ∈Null
(
∇c(x)>

)
∩ ∂h(c(x)) =M(x), which is a contra-

diction.
The rest of the proof follows from the elementary implications

(Null (A)∩ ri (C) = {y}) (Null (A)∩ par (C) = {0}) (Null (A)∩C = {y})

for closed convex sets C and linear maps A. �

Gauss-Newton methods for iteratively solving P are based on finding a search direction that
approximates a solution to subproblems of the form

minimize
d∈Rn

h(c(x̂)+∇c(x̂)d)+
1

2
d>Ĥd. (P̂)

Local rates of convergence for algorithms of this type, where the function h is assumed to be
finite-valued and piecewise linear convex were developed by Womersley [38] based on tools devel-
oped for classical nonlinear programming. More recently, Cibulka et. al. [8] successfully applied a
modern approach through generalized equations to obtain similar and stronger results again in the
piecewise linear convex case. Inspired by these results and the existence of a sophisticated first-
and second-order subdifferential calculus for piecewise linear-quadratic convex functions [37], we
develop a convergence theory in the piecewise linear-quadratic case from the generalized equations
perspective. The basic notational objects for our development are given in the next definition.

Definition 5 (Convex-composite generalized equations). Let f be convex-composite,
and define the set-valued mapping g+G :Rn+m ⇒Rn+m by

g(x, y) =

(
∇c(x)>y
−c(x)

)
, G(x, y) =

(
{0}n

∂h?(y)

)
. (9)

The associated generalized equation for P is g +G 3 0. For a fixed (x, y) ∈ Rn × Rm, define the
linearization mapping

G : (x, y) 7→ g(x, y)+∇g(x, y)

(
x−x
y− y

)
+G(x, y), (10)

where ∇g(x, y) =

(
∇2

xxL(x, y) ∇c(x)
>

−∇c(x) 0

)
.

Observe that for any x ∈ dom(f) where f satisfies (BCQ), x satisfies the first-order necessary
conditions of Theorem 1 for the problem P if and only if there exists y such that (x, y) solves the
generalized equation g+G3 0. More precisely, we have

0∈ g(x, y)+G(x, y)⇔∇c(x)>y= 0 and y ∈ ∂h(c(x))⇔M(x) 6= ∅. (11)

The relationship between the linearization of the generalized equation described in (10) and the
subproblems P̂ is described in the following lemma. The proof follows from Theorem 1.

Lemma 2. Let f be convex-composite and (x̂, ŷ)∈Rn×Rm be such that f satisfies (BCQ) at x̂,
and define Ĥ :=∇2

xxL(x̂, ŷ). Then, (d̃, ỹ)∈Rn×Rm satisfy the optimality conditions for

minimize
d∈Rn

h(c(x̂)+∇c(x̂)d)+
1

2
d>Ĥd (P̂)

if and only if (x̂+d̃, ỹ) solves the Newton equations for g+G: 0∈g(x̂, ŷ)+∇g(x̂, ŷ)

(
x−x̂
y−ŷ

)
+G(x, y).
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4. Geometry of PLQ Functions and Their Domains In this section, unless otherwise
stated, we let f := h ◦ c where h is piecewise linear-quadratic convex and c is C2-smooth.

Definition 6 (piecewise linear-quadratic). A proper function h :Rm →R is called piece-
wise linear-quadratic (PLQ) if dom(h) 6= ∅ and dom(h) can be represented as the union of K≥ 1
polyhedral sets of the form

Ck =

{
c
∣∣∣
〈
akj, c

〉
≤ αkj, for all j ∈ {1, . . . , sk}

}
(12)

relative to each of which h(c) is given by an expression of the form 1
2
〈c, Qkc〉+ 〈bk, c〉+βk for some

scalar βk ∈R, vector bk ∈Rn, and symmetric matrix Qk.
Remark 2. The sets Ck do not necessarily form a partition of the set C.

The following lemma is straightforward.

Lemma 3. Suppose h is piecewise linear-quadratic convex. Then, for any k ∈ K, the matrices
Qk satisfy 〈c, Qkc〉 ≥ 0 for all c∈ par (Ck).

Definition 7 (Active indices). For a piecewise linear-quadratic function h and a point
c ∈ dom(h), define the set K(c) :=

{
k ∈K | c∈Ck

}
, and write k := |K(c)|, so that K(c) ={

k1, k2, . . . , kk
}
.

Our first- and second-order analysis in the PLQ case heavily depends on the following results
compiled from [37] into a single proposition for ease of reference.

Proposition 1. [37, Propositions 10.21, 13.9] If h :Rm →R is piecewise linear-quadratic, then
dom(h) is closed and h is continuous relative to dom(h). Consequently, h is closed. At any point
c∈ dom(h) , h′(c; ·) = dh(c), and h′(c; ·) is piecewise linear with dom

(
h′(c; ·)

)
=
⋃

k∈K(c) T (c |Ck) =

T
(
c |dom(h)

)
. In particular, for k ∈K(c) and w ∈ T (c |Ck),

h′(c;w) = 〈Qkc+ bk, w〉 . (13)

If, in addition, h is convex, then dom(h) is polyhedral,

∅ 6= ∂h(c) =
⋂

k∈K(c)

{
y
∣∣y−Qkc− bk ∈N (c |Ck)

}
, (14)

h′′(c; ·) is piecewise linear-quadratic, but not necessarily convex, and for any w ∈Rm,

0≤ h′′(c;w) =

{
〈w, Qkw〉 when w ∈ T (c |Ck) ,

∞ when w 6∈ T
(
c |dom(h)

)
.

(15)

For every y ∈ ∂h(c), d2h(c|y) is piecewise linear-quadratic and convex. Let K(c, y) :={
w
∣∣h′′(c;w) = 〈y, w〉

}
. Then, K(c, y) is a polyhedral cone, and

d2h(c|y)(w) = lim
τ↘0

∆2
τh(c|y)(w) =

{
h′′(c;w) w ∈K(c, y),

+∞ otherwise.
(16)

Moreover, there exists a neighborhood V of c such that

h(c) = h(c)+h′(c; c− c)+
1

2
h′′(c; c− c) for c∈ V ∩ dom(h) . (17)

The standard development of first- and second-order optimality conditions requires the notion
of directions of non-ascent.
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Definition 8 (Directions of non-ascent). Let f : Rn → R be proper and x ∈ dom(f).

The directions of non-ascent for f at x are denoted by D(x) :=
{
d∈Rn

∣∣df(x)(d)≤ 0
}
.

By Theorem 1, if f is convex-composite and satisfies (BCQ) at x, then

D(x) =
{
d∈Rn

∣∣h′(c(x);∇c(x)d)≤ 0
}
. (18)

In the PLQ convex case, (BCQ) ensures that we have the following convenient representation of
the set D(x).

Lemma 4. Let f be as in P, and let x∈Rn be such that f satisfies (BCQ) at x. Set c := c(x).
Then, D(x) is convex and the union of finitely many polyhedral closed convex sets with following
the representation from Proposition 1:

D(x) =
⋃

k∈K(c)

{
d
∣∣∣∇c(x)d∈ T (c |Ck) ,

〈
Qkc+ bk, ∇c(x)d

〉
≤ 0

}

=
⋃

k∈K(c)



d

∣∣∣∣∣

〈
Qkc+ bk, ∇c(x)d

〉
≤ 0〈

akj, ∇c(x)d
〉
≤ 0, j ∈ Ik(c)





(19)

Proof. (⊂) Suppose d∈D(x). By (18),∇c(x)d∈ dom
(
h′(c; ·)

)
. In particular, by Proposition 1,

∇c(x)d∈ T (c |Ck) for some k ∈K(c). By (13), we also have
〈
Qkc+ bk, ∇c(x)d

〉
= h′(c(x);∇c(x)d)≤

0.

(⊃) If d ∈
⋃

k∈K(c)

{
d
∣∣∣∇c(x)d∈ T (c |Ck) ,

〈
Qkc+ bk, ∇c(x)d

〉
≤ 0

}
, then for some k ∈

K(c),∇c(x)d∈ T (c |Ck). Then, again by Proposition 1, h′(c(x);∇c(x)d) =
〈
Qkc+ bk, ∇c(x)d

〉
≤ 0,

so d∈D(x). �

We now state the first- and second-order optimality conditions for P.

Theorem 2 (PLQ second-order necessary and sufficient conditions). [35, Theorem 3.4].
Let h : Rm → R be piecewise linear-quadratic and convex with x ∈ dom(f) such that f satisfies
(BCQ) at x.
(a) If f has a local minimum at x, then 0∈∇c(x)>∂h(c(x)) and

h′′(c(x);∇c(x)d)+max
{〈
d, ∇2

xxL(x, y)d
〉 ∣∣y ∈M(x)

}
≥ 0

for all d∈D(x).
(b) If 0∈∇c(x)>∂h(c(x)) and

h′′(c(x);∇c(x)d)+max
{〈
d, ∇2

xxL(x, y)d
〉 ∣∣y ∈M(x)

}
> 0

for all d∈D(x) \ {0}, then there exists a neighborhood U of x and a constant γ > 0 such that

f(x)≥ f(x)+ γ‖x−x‖
2
for all x∈U ∩ dom(f) , (20)

i.e., x is a strong local minimizer of f .

5. Strong Metric Subregularity of the KKT Mapping In this section we establish con-
ditions under which the set-valued mapping of Definition 5 satisfies strong metric subregularity.

Definition 9 (Strong metric subregularity). A set-valued mapping S : Rn ⇒ Rm is
strongly metrically subregular at x for y if (x, y)∈ gphS and there exists κ≥ 0 and a neighborhood

U of x such that ‖x−x‖ ≤ κdist
(
y
∣∣S(x)

)
for all x∈U.
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Our discussion of strong metric subregularity only requires f to satisfy (BCQ) at x∈ dom(f).

Lemma 5. Consider the KKT mapping g+G and the mapping G given in Definition 5. Then,
strong metric subregularity of g +G at (x, y) for 0 is equivalent to the property that (x, y) is an
isolated point of G−1(0).

Proof. By [13, Corollary 3I.10], strong metric subregularity of g+G at (x, y) for 0 is equivalent
to strong metric subregularity of the linearization G (10) at (x, y).

By [37, Theorem 11.14, Proposition 12.30] the mapping G(x, y) is polyhedral; that is, gphG is
the union of finitely many polyhedral sets. Then [13, Corollary 3I.11] establishes the equivalence
of strong metric subregularity of G at (x, y) for 0 and (x, y) being an isolated point of G−1(0). �

The main result of this section now follows.

Theorem 3. Suppose h : Rm → R is piecewise linear-quadratic and convex with x ∈ dom(f)
such that f satisfies (BCQ) at x. Then, the following are equivalent:
1. The set M(x) := Null

(
∇c(x)>

)
∩ ∂h(c(x)) in (8) is a singleton and the second-order sufficient

conditions of Theorem 2 are satisfied at x;
2. The mapping g + G is strongly metrically subregular at (x, y) for 0 and x is a strong local

minimizer of f .

Proof. (⇒) By Lemma 5 we argue strong metric subregularity of g+G at (x, y) for 0 by show-
ing that there is a neighborhood of (x, y) on which (x, y) is the unique solution to the generalized
equation G 3 0 (10). After the change of variables d := x−x, we show that there is a neighborhood
U of (0, y) such that (d, y) = (0, y) is the unique solution to the generalized equation

Hd+∇c(x)>y= 0 (21)
c(x)+∇c(x)d∈ ∂h?(y) (⇔ y ∈ ∂h(c(x)+∇c(x)d)), (22)

where H :=∇2
xxL(x, y). Suppose there is no such neighborhood. Then, there exists a sequence of

vectors {(di, yi)}i∈N converging to (0, y) with (di, yi) 6= (0, y) that solve the generalized equation
(21), (22). First assume di 6= 0 for all i ∈ N. Define for each i ∈ N, ti :=

∥∥di
∥∥ , vi := di/

∥∥di
∥∥, and

assume without loss of generality that vi → v and that

{
c(x)+∇c(x)di

}
i∈N

⊂Ck0 for some k0 ∈K(c(x)+∇c(x)di)⊂K(c), (23)

since di → 0. Taking the inner product on both sides of (21) with di, we obtain

0 =
〈
di, Hdi

〉
+
〈
di, ∇c(x)>yi

〉
for all i∈N. (24)

The subgradient inequality for h at c(x)+∇c(x)di with subgradient yi gives

∆f(x;di)≤
〈
di, ∇c(x)>yi

〉
=−

〈
di, Hdi

〉
. (25)

Dividing through (25) by ti > 0 and letting i→∞, (BCQ), Theorem 1, [37, Proposition 8.21] give

df(x)(v) = h′(c(x);∇c(x)v) = lim inf
i

∆f(x; tiv
i)

ti
≤ lim

i
−
〈
vi, Hdi

〉
= 0,

so v ∈D(x)\{0}. By second-order sufficiency, h′′(c(x);∇c(x)v)+v>Hv > 0. We now show∇c(x)v ∈

T
(
c |Ck0

)
. By (23) and the computation c(x)+∇c(x)di−c(x)

ti
=∇c(x)vi →∇c(x)v ∈ T

(
c |Ck0

)
. Then

by (15), h′′(c(x);∇c(x)v) = v>∇c(x)>Qk0∇c(x)v, so that

v>Hv+ v>∇c(x)>Qk0∇c(x)v > 0. (26)



Burke and Engle: PLQ Convex-Composite

Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 11

On the other hand, by (14),

yi∈∂h(c(x)+∇c(x)di)=
⋂

k∈K(c(x)+∇c(x)di)

{
y
∣∣∣y−Qk(c(x)+∇c(x)di)− bk ∈N

(
c(x)+∇c(x)di |Ck

)}
,

and so yi −Qk0(c(x) +∇c(x)di)− bk0 ∈N
(
c(x)+∇c(x)di |Ck0

)
for all i ∈N. Since c(x) ∈Ck0 , we

have

0≥
〈
yi − [Qk0(c(x)+∇c(x)di)+ bk0 ], c(x)− [c(x)+∇c(x)di]

〉

=
〈
yi −Qk0(c(x)+∇c(x)di)− bk0 , −∇c(x)di

〉

=−
〈
di, ∇c(x)>yi

〉
+
〈
Qk0(c(x)+∇c(x)di)+ bk0 , ∇c(x)d

i
〉
.

Together with (24),

0≥
〈
di, Hdi

〉
+
〈
Qk0(c(x)+∇c(x)di)+ bk0 , ∇c(x)d

i
〉

=
〈
di, Hdi

〉
+
〈
∇c(x)di, Qk0∇c(x)d

i
〉
+
〈
Qk0c(x)+ bk0 , ∇c(x)d

i
〉

=
〈
di, Hdi

〉
+
〈
∇c(x)di, Qk0∇c(x)d

i
〉
+h′(c(x);∇c(x)di) (by (13))

≥
〈
di, Hdi

〉
+
〈
∇c(x)di, Qk0∇c(x)d

i
〉
,

where the final inequality follows from Theorem 1, Theorem 2, and the observation that ∇c(x)di ∈
Ck0 − c(x)⊂ T

(
c(x) |Ck0

)
. Next, divide the inequality 0≥

〈
di, Hdi

〉
+
〈
∇c(x)di, Qk0∇c(x)d

i
〉
by

t2i and let i→∞ to yield the contradiction 0≥ v>Hv+ v>∇c(x)>Qk∇c(x)v > 0.
Consequently, di = 0 for all i sufficiently large, so without loss of generality, we now suppose di = 0
for all i ∈ N. Hence by hypothesis, and yi 6= y for all i ∈ N. But then we contradict uniqueness of
M(x).
(⇐) By Lemma 5, (x, y) is an isolated point of G−1(0). That is, there is a neighborhood U of (x, y)
on which (x, y) is the unique solution to the generalized equation

H(x−x)+∇c(x)>y= 0
c(x)+∇c(x)(x−x)∈ ∂h?(y).

For x= x, this implies there is a neighborhood Uy about y such that

Uy ∩M(x) = {y}. (27)

Suppose there is y ∈M(x) \ Uy. Then yt = (1 − t)y + ty ∈M(x) for t ∈ [0,1]. But for t small,
yt ∈Uy ∩M(x), which contradicts (27), so M(x) is the singleton {y}. Therefore, it only remains to
show that the second-order sufficient conditions of Theorem 2 are satisfied at x.
Since x is local minimizer of f at which f satisfies (BCQ), Theorem 1 gives 0 ∈ ∇c(x)>∂h(c(x))
and h′(c(x);∇c(x)d)≥ 0 for all d ∈Rn. Let d ∈Rn \ {0} with h′(c(x);∇c(x)d) = 0, or equivalently,

d∈D(x). Without loss of generality, suppose
∥∥∥d
∥∥∥= 1. In particular, by (19), there exists k0 ∈K(c)

such that
∇c(x)d∈ T

(
c |Ck0

)
and

〈
Qk0c+ bk0 , ∇c(x)d

〉
= h′(c(x);∇c(x)d) = 0 (28)

Since h is PLQ convex, the second-order necessary conditions of Theorem 2 imply

h′′(c(x);∇c(x)d)+ d
>
Hd≥ 0.

We show this inequality is strict to complete the proof. Suppose to the contrary that

h′′(c(x);∇c(x)d)+ d
>
Hd= 0. (29)
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Then, d 6= 0 solves the program

minimize
d

h′(c(x);∇c(x)d)+
1

2
h′′(c(x);∇c(x)d)+

1

2
d>Hd

subject to d∈D(x).

By (17) and continuity of d 7→ c(x)+∇c(x)d, there exists ε > 0 so that

∆f(x;d) = h′(c(x);∇c(x)d)+
1

2
h′′(c(x);∇c(x)d) for d∈ εB∩

{
d
∣∣ c(x)+∇c(x)d∈ dom(h)

}
.

By (28) and polyhedrality, c(x) + t∇c(x)d ∈ dom(h) for sufficiently small t > 0. It follows, after
shrinking ε > 0 if necessary, that

∆f(x; td)+
t2

2
d
>
Hd= 0 for all 0≤ t < ε. (30)

Since 0∈ ∂f(x) and f satisfies (BCQ) at x, [37, Equation 13(19)] with v= 0, y= y, and w ∈Rn gives
d2f(x|0)(w) = d2f(x|0)(w)+w>Hw, where f(x) := h(c(x)+∇c(x)[x−x]) is also piecewise linear-
quadratic by the discussion following [37, Equation 13(19)]. Since x is a strong local minimizer,

d2f(x|0)(w) = lim inf
τ↘0
w′→w

f(x+ tw′)− f(x)
1
2
τ 2

≥ lim inf
τ↘0
w′→w

γ
∥∥w′
∥∥2 = γ‖w‖

2
.

Then, we have d2f(x|0)(w) = d2f(x|0)(w) + w>Hw ≥ γ‖w‖
2
. By (16) the lim inf defining

d2f(x|0)(w) is also expressed as a limit only in τ (because f is piecewise linear-quadratic), so

d2f(x|0)(w) = lim
τ↘0

f(x+ τw)− f(x)
1
2
τ 2

= lim
τ↘0

∆f(x; τw)
1
2
τ 2

.

Putting the last two observations together, d2f(x|0)(w) = limτ↘0
∆f(x;τw)

1

2
τ2

+w>Hw≥ γ‖w‖
2
. But,

for 0< τ < ε and w= d, (30) gives the contradiction 0 = limτ↘0

{
∆f(x;τd)+ τ2

2
d
>
Hd

1

2
τ2

}
=d2f(x|0)(d)≥

γ
∥∥∥d
∥∥∥
2

= γ > 0. �

As an application of Theorem 3, consider the quasi-Newton method (5) initialized at (x0, y0) with
∇g(xk, yk) replaced by

Bk =

(
Bk ∇c(xk)>

−∇c(xk) 0

)
. (31)

This choice allows us to relate the quasi-Newton method to the optimality conditions for the
subproblems P̂ through the relation of Bk to Ĥ, as described in following corollary to [13, Dennis-
Moré Theorem for Generalized Equations].

Proposition 2. Let f be as in P. Suppose M(x) = {y} and the second-order sufficient con-
ditions of Theorem 2 are satisfied at x. Then, (x, y) solves 0 ∈ g(x, y) +G(x, y). Moreover, there
exists a neighborhood U of (x, y) such that if (x0, y0) ∈ U , the sequence

{
(xk, yk)

}
k∈N

generated
from the optimality conditions for

minimize
d∈Rn

h(c(xk)+∇c(xk)d)+
1

2
d>Bkd (Qk)

remains in U with (xk, yk) 6= (x, y) for all k ∈N, and

(xk, yk)→ (x, y) and (Bk −∇2
xxL(x

k, yk))[xk+1 −xk] = o(||(xk+1 −xk, yk+1 − yk)||),

then (xk, yk)→ (x, y) superlinearly.
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Remark 3. Consequently, the sufficient conditions for superlinear convergence of quasi-
Newton methods require us to choose Bk as an approximation to the Hessian of the Lagrangian
∇2

xxL(x
k, yk) =∇2(ykc)(xk) in the update direction xk+1 −xk at every iteration.

We are interested in establishing the local convergence of the Newton iterates associated with
the generalized equation (1). This is not given by Proposition 2 and requires an in depth analysis of
the local active set identification properties for the PLQ function h. For this purpose, we introduce
the notion of partial smoothness.

6. Partial Smoothness Lewis [23] introduced partial smoothness as a way to generalize
classical notions of nondegeneracy, strict complementarity, and active constraint identification by
illuminating the appropriate underlying manifold geometry of optimization problems. This allows
for a more thorough understanding of the convergence behavior of algorithms applied to nonsmooth
optimization problems, where solutions lie on well-defined submanifolds of the parameter space on
which the function behaves smoothly and off of which it behaves nonsmoothly. Partial smoothness
in the context of P allows us in Section 7 to establish metric regularity properties of the solution
mapping.
Definition 10. Define a set M ⊂ Rm to be a manifold of codimension ` around c ∈ Rm if

c ∈M, and there exists an open set V ⊂ Rm containing c and a C2-smooth function F : V → R`

with surjective derivative throughout V such that M∩ V = {c ∈ V : F (c) = 0}. In which case (see
[23]), the tangent space to M at c is T (c |M) = Null

(
∇F (c)

)
, the normal space to M at c is

N (c |M) = Ran
(
∇F (c)>

)
, both independent of the choice of F . Moreover, the set M is Clarke

regular at c, and N (c |M) equals the normal cone defined in (3).
Definition 11 (Partial smoothness for closed, convex functions). Suppose h :Rm →

R is a closed, proper, convex function and that c∈M⊂Rm. The function h is partly smooth at c
relative to M if M is a manifold around c and the following four properties hold:
(a) (restricted smoothness) the restriction h|M is smooth around c, in that there exists a neighbor-

hood V of c and a C2-smooth function g defined on V such that h= g on V ∩M;
(b) (existence of subgradients) at every point c∈M close to c, ∂h(c) 6= ∅;
(c) (normals and subgradients parallel) par

(
∂h(c)

)
=N (c |M) ;

(d) (subgradient inner semicontinuity) the subdifferential map ∂h is inner semicontinuous at c
relative to M.

We say that h is partly smooth relative to M if M is a manifold and h is partly smooth at each
point in M relative to M.
Remark 4. By [23, Proposition 2.4], requiring (a) - (d) in the definition is equivalent to requir-

ing (a), (b), (d), and normal sharpness:

h′(c;−w)>−h′(c;w), ∀w ∈N (c |M) \ {0} , (32)

and is also equivalent to requiring (a), (b), (d), and lineality and tangent equality :
{
w ∈Rm

∣∣−h′(c;w) = h′(c;−w)
}
=: lin h′(c; ·) = T (c |M) . (33)

In the context of the PLQ functions given in Definition 6, a natural choice for the active manifold
at a point c∈ dom(h) for P is the set given by

Mc := ri


 ⋂

k∈K(c)

Ck


 , (34)

where K(c) are the active indices at c (see Definition 7). The analysis of the manifold Mc requires
a more thorough understanding of the structure of dom(h), which we obtain from [37, Lemma
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2.50]. It implies that the domain of h has a finite stratification [14, Definition 3.1] for which h is
a stratifiable function [14, Definition 3.2]. This stratification is central to our discussion of partial
smoothness and is referred to as the Rockafellar-Wets PLQ Representation.

Theorem 4 (Rockafellar-Wets PLQ Representation). Suppose h is piecewise linear-
quadratic convex and intdom(h) 6= ∅. Then, without loss of generality, we may assume the poly-
hedral sets {Ck}

K

k=1 defining h are given in terms of a common set of s > 0 hyperplanes H :={
(aj, αj)

}s
j=1

⊂ (Rm \ {0})×R, so that for all k ∈ {1, . . . ,K},

Ck =

{
c
∣∣∣
〈
ωkjaj, c

〉
≤ ωkjαj, for all j ∈ {1, . . . , s}

}
,

with ωkj ∈ {±1},

Ik(c) =

{
j
∣∣∣
〈
ωkjaj, c

〉
= ωkjαj

}
=

{
j
∣∣∣
〈
aj, c

〉
= αj

}
⊂ {1, . . . , s} , (35)

and

(a) ∅ 6= intCk =

{
c
∣∣∣
〈
ωkjaj, c

〉
<ωkjαj, for all j ∈ {1, . . . , sk}

}
, for all k ∈ {1, . . . ,K},

(b) intCk1 ∩ intCk2 = ∅ when k1 6= k2.
Condition (b) implies that if c∈Ck1 ∩Ck2, then c∈ bdryCk1 ∩ bdryCk2 when k1 6= k2.

Proof. Following the notation in the proof of [37, Lemma 2.50], for every polyhedron Dj and
every i ∈ {1, . . . , s}, either li(x)≤ 0 for all x ∈Dj or li(x)≥ 0 for all x ∈Dj. Therefore each affine
function is used in the definition of Dj, and Dj is contained entirely within one of the sets Ck,
relative to which h takes the form 1

2
〈c, Qkc〉+ 〈bk, c〉+βk. �

Remark 5. If all of the polyhedral sets Ck have the same affine hull, or equivalently, if all of
their relative interiors are defined with respect to a fixed affine set, then one can translate this
fixed affine set to the origin and work entirely within the resulting subspace. In this case, one can
replace the interior requirement of Theorem 4 with a relative interior requirement.
The basic assumptions employed for the remainder of this section are listed below.
Assumption 1.

(a) The function h is PLQ convex with dom(h) given by the Rockafellar-Wets PLQ representation
described in Theorem 4,

(b) c∈ dom(h) satisfies k := |K(c)| ≥ 2,
Remark 6. Whenever K(c) = {k0} , h is continuously differentiable on intCk0 . Therefore, we

assume that k≥ 2 and delay the discussion of k= 1 to Section 7.2
The following lemma further supports the choice for the manifold Mc as the active manifold.

Lemma 6. Let Mc be as in (34) and let Assumption 1 hold. Then, for any c∈Mc, K(c) =K(c),
and so Mc =Mc. Moreover, for any k ∈K(c), the active index sets Ik(c) satisfy Ik(c) = Ik(c)

Proof. Suppose K(c) 6= K(c). Since the definition of Mc implies K(c) ⊂ K(c), there exists
j ∈K(c′) \K(c). By (b) in Theorem 4, we necessarily have c∈ bdryCj.
We first argue the existence of ε > 0 such that that (c+ εB) ∩Ck = ∅ for all k 6∈ K(c). If no such
ε exists, since there are only finitely many k ∈ K \ K(c), there would exist an index k0 6∈ K(c)
and an infinite sequence cn → c with {cn} ⊂Ck0 . By closedness of the set Ck0 , c ∈Ck0 , which is a
contradiction.
Since c, c∈Mc, by [36, Theorem 6.4] there exists a µ> 1 such that c̃ := (1−µ)c+µc∈

⋂
k∈K(c)Ck.

Since c ∈ bdryCj, there exists a z ∈ intCj sufficiently close to c so that the ray R :={
c̃+λ(z− c̃) |0≤ λ

}
meets c+ εB. We consider two cases. To set the stage, for any two points
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x, y ∈Rm, denote the line segment connecting them by [x, y] =
{
(1−λ)x+λy |0≤ λ≤ 1

}
.

Case 1. There is a point x ∈ R ∩ (c+ εB) ∩ C. Then z ∈ [c̃, x] ⊂ Ck for some k ∈ K(c). But then
z ∈ (intCj)∩Ck, a contradiction.
Case 2. We have R∩ (c+ εB)∩C = ∅. Then there is a point x ∈ (c+ εB) \C such that z ∈ [c̃, x].
Since x /∈C, there is a first point, which we denote by ẑ, in Cj on this line segment as one moves
from x to c̃. Then the line segment [ẑ, c] ⊂ C. The point ẑ is not on the line segment [c̃, c] since
then both c′ and z would be on the line segment [c̃, c] and so intCj ∩bdryCk 6= ∅ for some k ∈K(c),
a contradiction. Consequently, the points c̃, c and ẑ are not all collinear and hence form a triangle
inside of C. Let z̃ be on the boundary of c+εB and on the line segment [ẑ, c]. Then the line segment
[z̃, c̃] passes through intCj. This is again a contradiction.
Therefore, no such c exists, and K(c) =K(c) for all c∈Mc.
For the second claim, suppose there exists k ∈K(c), c∈Mc and j ∈ {1, . . . , s} with

〈
c, ωkjaj

〉
<ωkjαj and

〈
c, ωkjaj

〉
= ωkjαj. (36)

Again by [36, Theorem 6.4], we may choose µ > 1 so that µc + (1 − µ)c ∈ Mc. In particular,
µc+(1−µ)c∈Ck. But writing µ= 1+ ε with ε > 0 gives the contradiction

ωkjαj ≥
〈
µc+(1−µ)c, ωkjaj

〉

= (1+ ε)
〈
c, ωkjaj

〉
− ε
〈
c, ωkjaj

〉
>ωkjαj by (36).

Therefore Ik(c)⊂ Ik(c). Reversing the roles of c and c in (36) gives the other inclusion. �

The previous lemma tells us distinct points c, c′ ∈Mc have the same active indices K(c) and K(c′).
Moreover, for any active polyhedron Ck, the active hyperplanes for that polyhedron, Ik(c) and
Ik(c

′), at c and c′ are the same. This observation offers a global description of Mc in terms of the
active hyperplanes at c alone.

Lemma 7. Let Mc be as in (34), and let Assumption 1 hold. Then,

Mc =



c

∣∣∣∣∣

〈
c, aj

〉
= αj for all k ∈K(c), j ∈ Ik(c)〈

c, ωkjaj
〉
<ωkjαj for all k ∈K(c), j 6∈ Ik(c)



 .

In particular, Ik1(c) = Ik2(c) for all c ∈Mc and k1, k2 ∈K(c). Moreover, for any k ∈K(c) and c ∈
Mc, T (c |Mc) = Null

(
Ak(c)

>
)
, and N (c |Mc) = Ran

(
Ak(c)

)
, where Ak(c) is the matrix whose

columns are the gradients of the active constraints at c∈Ck in some ordering.

Remark 7. By Lemma 6 and Lemma 7, for all c∈Mc, k ∈K(c), and j ∈K(c), Ran
(
Ak(c)

)
=

Ran
(
Aj(c)

)
. This observation becomes important in a structural definition to follow.

Proof. Define

C1 :=
⋂

k∈K(c)

Ck, C2 :=



c

∣∣∣∣∣

〈
c, ωkjaj

〉
= ωkjαj for all k ∈K(c), j ∈ Ik(c)〈

c, ωkjaj
〉
≤ ωkjαj for all k ∈K(c), j 6∈ Ik(c)



 .

We aim to show ri (C1)⊃ ri (C2). For k ∈K(c) and j ∈ Ik(c) define Ck,j :=

{
c
∣∣∣
〈
c, ωkjaj

〉
= ωkjαj

}
,

and for k ∈K(c) and j 6∈ Ik(c), let Dk,j :=

{
c
∣∣∣
〈
c, ωkjaj

〉
≤ ωkjαj

}
. Then by defintion of Ik(c),

c∈
⋂

k∈K(c)
j∈Ik(c)

ri
(
Ckj

)
∩
⋂

k∈K(c)
j 6∈Ik(c)

ri
(
Dkj

)
,



Burke and Engle: PLQ Convex-Composite

16 Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

so [36, Theorem 6.5] gives

ri (C2) =



c

∣∣∣∣∣

〈
c, ωkjaj

〉
= ωkjαj for all k ∈K(c), j ∈ Ik(c)〈

c, ωkjaj
〉
<ωkjαj for all k ∈K(c), j 6∈ Ik(c)



 .

Moreover, C1 ⊃ C2 with C2 not entirely contained within the relative boundary of C1 because c ∈
C2 ∩Mc. By [36, Corollary 6.5.2], Mc := ri (C1) ⊃ ri (C2). Lemma 6 shows Mc := ri (C1) ⊂ ri (C2)

because Ik(c) = Ik(c) throughout Mc.

For the second claim, the structure of Mc implies that if
〈
c, ωk1jaj

〉
= ωk1jαj for some k1 ∈K(c),

then
〈
c, ωk2jaj

〉
= ωk2jαj for any other k2 ∈ K(c) as ωkj ∈ {±1}. Hence Ik2(c) ⊃ Ik1(c), and this

argument is symmetric in k1 and k2.

The tangent and normal cone formulas hold throughout Mc by [37, Theorem 6.46]. �

Based on Lemma 7 and Remark 7, we now establish the notational tools required for our analysis.

Definition 12. LetMc be as in (34), and let Assumption 1 hold. Define Ak(c) to be the matrix

whose columns are the gradients of the active constraints at c∈Ck in some ordering. By Theorem 4

and Lemma 7, without loss of generality, we can define A :=Ak(c) independent of the choice of c∈

Mc, and for any j ∈
{
1, . . . , k

}
, there exists a diagonal matrix Pj with entries ±1 on the diagonal

such that

APj =Akj (c) independent of c∈Mc. (37)

We let ` be the common number of columns ` := |Ik(c)| = |Ik′(c)| for all k, k′ ∈ K(c), so that
A∈Rm×`, Pj ∈R`×`, Pk = I`, and define the following block matrices Q̂ := diag(Qk), Â := diagAPj

A :=




(1− k)AP1 AP2 · · · A

AP1 (1− k)AP2 · · · A
...

. . .
. . .

...

AP1 AP2 · · · (1− k)A


, Q :=




Qk1

Qk2

...
Qk

k


, B :=




bk1

bk2

...
bk

k


, J :=




Im
Im
...
Im


 (38)

and averaged quantities

Q= (1/k)J>Q̂J, A= (1/k)J>Â, b= (1/k)J>B, λ0(c) =Qc+ b.

In a fashion similar to the structure functional approach of [38, 27, 28], we give a formula for the

subdifferential in terms of the active manifold structure previously laid out.

Lemma 8. Let Mc be as in (34), let Assumption 1 hold, and recall the notation of Definition 12.

For any c∈Mc, ∂h(c) can be given by two equivalent formulations:

∂h(c) =



y

∣∣∣∣∣
∃µ= (µ>

1 , . . . , µ
>

k
)> ≥ 0

such that Jy=Qc+B+ Âµ



= λ0(c)+AU(c), (39)

where

U(c) :=

{
µ≥ 0

∣∣∣∣Aµ= k
[
Qc+B− J(Qc+ b)

]}
. (40)
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Proof. By (14) and Lemma 6, y ∈ ∂h(c) if and only if y ∈ Qkjc + bkj + N
(
c |Ckj

)
for all

j ∈
{
1, . . . , k

}
. In terms of the active indices at c for the polyhedron Ckj , [37, Theorem 6.46] and

(37) imply

y=Qkjc+ bkj +APjµj, where j ∈
{
1, . . . , k

}
, µj ≥ 0.

Hence y ∈ ∂h(c) if and only if there exists µ= (µ>
1 , . . . , µ

>

k
) such that (y,µ) satisfies the system

Jy=Qc+B+ Âµ, µ= (µ>
1 , . . . , µ

>

k
)> ≥ 0.

Since J>J = kIm, multiplying both sides of the first equation in (39) by (1/k)J> gives y =Qc+
b+Aµ, where µ satisfies

Qc+ b+Aµ=APjµj +Qkjc+ bkj , for all j ∈
{
1, . . . , k

}
, µ≥ 0.

The set of µ that satisfy the display defines membership in U(c), so ∂h(c) = λ0(c)+AU(c). �

The notion of nondegeneracy that we use imposes linear independence of the columns of A.
Definition 13 (Nondegeneracy). Let Mc be as in (34), let Assumption 1 hold, and recall

the notation of Definition 12. We say that Mc satisfies the nondegeneracy condition if Null (A) =
{0}.
Nondegenercy yields a uniqueness property of the multipliers µ∈ U(c).

Lemma 9. Let Mc be as in (34), let Assumption 1 hold, and recall the notation of Definition 12.
Suppose Mc satisfies the nondegeneracy condition of Definition 13, c ∈Mc, and y ∈ ∂h(c). Then,

there is a unique µ ∈ U(c), given by µ(c, y)j = Pj(A
>A)−1A>(y − (Qkjc+ bkj )), j ∈

{
1, . . . , k

}
so

that y= λ0(c)+Aµ(c, y).

Proof. For any j ∈
{
1, . . . , k

}
, Lemma 8 implies there exists µj ≥ 0 such that y=Qkjc+ bkj +

APjµj. Nondegeneracy implies µj is given uniquely by the equation µ(c, y)j = Pj(A
>A)−1A>(y−

(Qkjc+ bkj )). �

A corresponding notion of strict complementarity is provided by the next lemma.

Lemma 10. Let Mc be as in (34), let Assumption 1 hold, and recall the notation of Defini-
tion 12. Suppose c ∈Mc and ri

(
∂h(c)

)
6= ∅. Then y ∈ ri

(
∂h(c)

)
if and only if µ(c, y)i > 0 for all

i∈
{
1, . . . , k

}
.

Proof. By [36, Theorem 6.4], y ∈ ri
(
∂h(c)

)
if and only if for all y′ ∈ ∂h(c), there exists t > 1

so that ty+(1− t)y′ ∈ ∂h(c). Choose a y′ ∈ ∂h(c) with y′ 6= y.

(⇒) If there exists i0 ∈
{
1, . . . , k

}
and j ∈ {1, . . . , `}, with (µ(c, y)i0)j = 0, then, by (39),

∂h(c)3 ty+(1− t)y′ =Qi0c+ bi0 +APi0 [tµ(c, y)i0 +(1− t)µ(c, y′)i0 ].

By Lemma 9, µ(c, ty+(1− t)y′)i0 = tµ(c, y)i0 +(1− t)µ(c, y′)i0 . By assumption, the right-hand side
has its jth component is negative for all t > 1, a contradiction.
(⇐) We must show there exists ε > 0 such that if t := 1 + ε then tµ(c, y)i0 + (1− t)µ(c, y′)i0 > 0.
After rearranging, this is equivalent to finding ε > 0 so that µ(c, y)i0 + ε[µ(c, y)i0 −µ(c, y

′)i0 ]> 0. If
µ(c, y)i0 −µ(c, y′)i0 ≥ 0, the claim is immediate. Otherwise, we choose ε via

0< ε<min

{
(µ(c, y)i0)j

(µ(c, y′)i0)j − (µ(c, y)i0)j

∣∣ (µ(c, y)i0)j − (µ(c, y′)i0)j < 0, j ∈ {1, . . . , `}

}
.

Then y ∈ ri
(
∂h(c)

)
. �

However, a weaker notion of strict complementarity in conjunction with nondegeneracy suffices to
show that ri

(
∂h(c)

)
6= ∅ throughout Mc.
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Definition 14 (k-strict complementarity). Let Mc be as in (34), let Assumption 1 hold,
and recall the notation of Definition 12. We say k-strict complementarity holds at (c, y) for µ =
(µ>

1 , . . . , µ
>

k
)> if

(a) c∈Mc, y ∈ ∂h(c),
(b) There exists k ∈K(c) with µk > 0,
(c) Whenever there exists j ∈K(c)\{k} and i∈ {1, . . . , `} with (µj)i = 0, then the scalars (Pj′)ii = 1

for all j′ ∈K(c),
(d) (y,µ) satisfies (39).

Remark 8. When k-strict complementarity holds at a pair (c, y) and an index j satisfies (c),
the active polyhedra {Ck}k∈K(c) are all within the same closed half-space of the corresponding

hyperplane. Also observe that y ∈ ri
(
∂h(c)

)
implies k-strict complementarity at (c, y).

A requirement of partial smoothness is that the normal space to Mc and par
(
∂h(c)

)
are equal.

The nondegeneracy condition allows us to describe par
(
∂h(c)

)
using the vectors in U(c) rather

than the subgradients in ∂h(c).

Lemma 11. Let Mc be as in (34), let Assumption 1 hold, and recall the notation of Defini-
tion 12. Suppose Mc satisfies the nondegeneracy condition. Then, for any c∈Mc,

par
(
∂h(c)

)
=Ran(A)⇐⇒ par

(
U(c)

)
=Null (A) . (41)

Proof. By Lemma 7, N (c |Mc) = Ran(A), and by Lemma 8, ∂h(c) = λ0(c) + AU(c). The
system of linear equations (40) in U(c) has coefficient matrix A defined in (38) which is block-
circulant and can be block row-reduced to




AP1 0 0 · · · −A
0 AP2 0 · · · −A
...

. . .
. . .

. . .
...

0 · · · 0 APk−1 −A
0 · · · · · · 0 0



. (42)

We now compute Null (A). Suppose µ = (µ>
1 , . . . , µ

>

k
)> ∈ Null (A). Then (42) and nondegeneracy

imply that µ∈Null (A) if and only if µj = Pjµk for all j ∈
{
1, . . . , k− 1

}
, i.e.,

Null (A) =








P1µk

...
Pk−1µk

µk



∣∣∣µk ∈R`




,with basis








P1ep
...

Pk−1ep
ep



∣∣p∈ {1, . . . , `}





=: {ζ1, . . . , ζ`} .

(43)
By (40),

par
(
U(c)

)
:=R(U(c)−U(c))⊂Null (A) , (44)

and since A= 1

k

[
AP1 · · · APk−1 A

]
, (39) implies

par
(
∂h(c)

)
=par

(
AU(c)

)
=Apar

(
U(c)

)
⊂ANull (A) =

{
Aµk

∣∣∣µk ∈R`

}
=Ran(A) ,

so (⇐) in (41) is clear as “⊂” becomes an equation. For (⇒), suppose strict containment:
par

(
U(c)

)
(Null (A). Then there exists p ∈ {1, . . . , `} such that ζp 6∈ par

(
U(c)

)
. This implies that

the pth column of A is not in par
(
∂h(c)

)
which we have assumed equal to Ran(A). This contra-

diction establishes (41). �

We now show that nondegeneracy and k-strict complementarity together imply that the normal
space and subdifferential are parallel.
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Lemma 12. Let Mc be as in (34), let Assumption 1 hold, and recall the notation of Defini-
tion 12. Suppose Mc satisfies the nondegeneracy condition, and the k-strict complementarity of
Definition 14 holds at (c, y) for µ. Then,

par
(
∂h(c)

)
=N (c |Mc) , (45)

where it is shown in Lemma 7 that N (c |Mc) =Ran(A). Moreover, (45) holds throughout Mc, and
∂h is inner semicontinuous relative to Mc.

Proof. We first show that a sufficient condition to guarantee the right-hand side of (41) is
(c, v) satisfying the k-strict complementarity condition of Definition 14 for µ ∈ U(c). To see this
note that, by relabeling the active polyhedral sets if necessary, we can assume without loss of
generality that the index k in k-strict complementarity is k. Let p∈ {1, . . . , `} , t∈R, and consider
the step given by µ+ tζp, where ζp is the pth basis element of Null (A) given in (43), i.e.,

µ+ tζp :=




µ1

...
µk−1

µk


+ t




P1ep
...

Pk−1ep
ep


 , (46)

We consider two cases. If, for all j ∈
{
1, . . . , k

}
, (µj)p > 0, then for sufficiently small t, µ+ tζp ≥

0, and A(µ+ tζp) =Aµ. That is, both µ ∈ U(c) and µ+ tζp ∈ U(c), which implies ζp ∈ par
(
U(c)

)
.

Otherwise, there exists j ∈
{
1, . . . , k

}
with (µj)p = 0. By part (c) of k-strict complementarity,

the scalars Pj′ep = 1 for all j′ ∈
{
1, . . . , k

}
, so repeating the previous argument with t > 0 gives

ζp ∈ par
(
U(c)

)
. Since p∈ {1, . . . , `} was arbitrary, k-strict complementarity is a sufficient condition

guaranteeing par
(
U(c)

)
=Null (A).

This argument shows, under nondegeneracy, that

k-strict complementarity at (c, y) for µ=⇒ ri
(
∂h(c)

)
6= ∅, (47)

because, given any µ ∈ U(c), the fact that par
(
U(c)

)
=Null (A) together with (39) implies there

exists a strictly positive µ̃ ∈ U(c) and a ỹ ∈ ∂h(c) given by ỹ = λ0(c) +Aµ̃, with µ(c, ỹ) = µ̃. By
Lemma 10, ỹ ∈ ri

(
∂h(c)

)
.

We now argue that if, for some c ∈Mc, y ∈ ∂h(c), k-strict complementarity holds at (c, y) for µ,
then ri

(
∂h(c)

)
6= ∅ throughout Mc . This will imply (45) holds throughout Mc as well. By (47),

suppose y ∈ ri
(
∂h(c)

)
so that µ(c, y)> 0 by Lemma 10.

Choose any other c′ ∈Mc. Since Mc is relatively open, there exists c′′ ∈Mc and λ∈ (0,1) so that
c′ = λc+(1−λ)c′′. Let y′′ ∈ ∂h(c′′). By Lemma 9, there exists a unique vector µ(c′′, y′′) associated
with (c′′, y′′). Since c, c′′ ∈Mc and µ(c, y)> 0, λµ(c′, y′) + (1− λ)µ(c, y)> 0. It follows from (39)

that for all j ∈
{
1, . . . , k

}
and λ∈ (0,1),

λy+(1−λ)y′′ =Qkjc
′ + bkj +APj(λµ(c, y)+ (1−λ)µ(c′′, y′′)). (48)

Define y′ := λy + (1− λ)y′′. Then (48) implies that the equations (39) defining membership y′ ∈
∂h(c′) are satisfied, with µ(c′, y′) = λµ(c, y)+ (1−λ)µ(c′′, y′′)> 0, so y′ ∈ ri

(
∂h(c′)

)
by Lemma 10.

Since c′ ∈Mc was arbitrary, ri
(
∂h(c)

)
6= ∅ for all Mc.

We lastly establish ∂h(c) is inner semicontinuous relative to Mc. The previous paragraph and
(48) showed ∂h|Mc

is graph-convex. By defining S(c) = ∂h(c) for c ∈Mc and S(c) = ∅ otherwise
and noting the convex sets {c} and Mc cannot be separated, [37, Theorem 5.9(b)] gives inner
semicontinuity of ∂h at all c∈Mc relative to Mc. �

The main result of this section shows that partial smoothness follows from nondegeneracy and
k-strict complementarity.
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Theorem 5. Let Mc be as in (34), let Assumption 1 hold, and recall the notation of Defini-
tion 12. Suppose Mc satisfies the nondegeneracy condition, and c ∈ Mc and y ∈ ∂h(c) are such
that (c, y) satisfies the k-strict complementarity condition of Definition 14. Then h is partly smooth
relative to Mc.

Proof. By definition of Mc, for any k ∈K(c) and any c∈Mc, h(c) =
1
2
〈c, Qkc〉+ 〈bk, c〉+βk,

so h|Mc
is smooth. By Proposition 1, dom(∂h) = dom(h)⊃Mc, so existence of subgradients holds

throughout Mc as well. The normal cone and subdifferential being parallel along with subdiffer-
ential inner semicontinuity relative to Mc are the content of Lemma 12. �

Remark 9. Observe that if the hypotheses of Theorem 5 are satisfied, the assumption that f
satisfies (TC) at x is equivalent to requiring

Null
(
∇c(x)>

)
∩Ran(A) = {0}. (49)

This condition and the nondegeneracy condition imply the n× ` matrix ∇c(x)>A has full rank
equal to `≤ n, i.e., Null

(
∇c(x)>A

)
= {0}.

We now show the assumptions of Theorem 5 allow us to write the cone of non-ascent directions as
a subspace at strictly critical points.

Lemma 13 (Non-ascent directions). Let Mc be as in (34), let Assumption 1 hold, and recall
the notation of Definition 12. Suppose f satisfies (BCQ) at x, y ∈M(x), and c := c(x). Then,
D(x)⊃Null

(
A>∇c(x)

)
. If, in addition, f satisfies (SC) at x for y and Mc satisfies the nondegen-

eracy condition, then D(x)⊂Null
(
A>∇c(x)

)
.

Proof. Since f satisfies (BCQ) at x, Theorem 1 gives D(x) =
{
d∈Rn

∣∣h′(c(x);∇c(x)d)≤ 0
}
.

(⊃) Since y ∈M(x), by (39), there exists µ ∈ U(c) so that Jy = Qc + B + Âµ. Then, for any

j ∈
{
1, . . . , k

}
,

D(x) =
k⋃

j=1




d

∣∣∣∣∣∣

〈
Qkjc+ bkj , ∇c(x)d

〉
≤ 0

PjA
>∇c(x)d≤ 0





by (19), Definition 12

=
k⋃

j=1




d

∣∣∣∣∣∣

〈
y−APjµj, ∇c(x)d

〉
≤ 0

PjA
>∇c(x)d≤ 0





since y ∈M(x)

=
k⋃

j=1




d

∣∣∣∣∣∣

〈
µj, PjA

>∇c(x)d
〉
≥ 0

PjA
>∇c(x)d≤ 0




.

The inclusion follows.
(⊂) Let 0 6= d ∈D(x), and suppose to the contrary that d = d1 + d2, where d1 ∈ Null

(
A>∇c(x)

)

and d2 =∇c(x)>Aw, w 6= 0. By Lemma 12, Ran(A)⊂ par
(
∂h(c)

)
. Since y ∈ ri

(
∂h(c)

)
, there exists

ε > 0 so that y+ εAw ∈ ∂h(c). Then,

0≥ h′(c(x);∇c(x)d)

= sup
y∈∂h(c)

〈
∇c(x)>y, d

〉

≥
〈
y+ εAw, ∇c(x)(d1 +∇c(x)>Aw)

〉
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≥
〈
∇c(x)>y, d

〉
+ ε
∥∥∥∇c(x)>Aw

∥∥∥
2

= ε
∥∥∥∇c(x)>Aw

∥∥∥
2

,

so w= 0 (see Remark 9). �

By a continuity argument in (x, y), we have the following result which is important for our discussion
of the metric regularity of Newton’s iteration in the next section. It states that, in the presence of
partial smoothness, (TC) and the curvature condition are local properties.

Lemma 14. Suppose (49) holds and that for all j ∈K(c) and

d>∇c(x)>Qj∇c(x)d+ d>∇2
xxL(x, y)d> 0, ∀ d∈Null

(
A>∇c(x)

)
\ {0} .

Then, there exists a neighborhood N of (x, y) such that if (x, y)∈N then for all j ∈K(c),

d>∇c(x)>Qj∇c(x)d+ d>∇2
xxL(x, y)d> 0, ∀ d∈Null

(
A>∇c(x)

)
\ {0} , (50)

and Null
(
∇c(x)>

)
∩Ran(A) = {0} .

The following examples are inspired by the discussion in [23].
Example 1. In R2, let ha(c) =‖c‖

2

1, so h is piecewise linear-quadratic convex. If M := {0},
then ha is not partly smooth relative to M because ∂ha(0) = {0} while N (0 |M) = Rn. On the
other hand, if hb(c) =‖c‖1 with the same domain representation, then ∂h(0) = B∞, in which case
hb is partly smooth relative to M.
Suppose we represent the domain of ha and hb as the four quadrants in the plane, relative to each
of which ha, hb are linear-quadratic. This representation meets the criteria of the Rockafellar-Wets
PLQ representation of Theorem 4. For both ha and hb, the nondegeneracy condition for M holds
since A can be taken to be I2.
Example 2. In R2, the domain of ha and hb in the previous example can be presented in the

following way. Take each of the four quadrants in the plane and split them along their respective
diagonal. Define ha as usual on each of the pieces. Then this presentation describes dom(ha) using
4 hyperplanes and also meets the Rockafellar-Wets PLQ representation theorem. However, the
nondegeneracy condition fails for M in this representation.
On the manifold M given by an “artificial” diagonal, the matrix A is comprised of a single column,
with N (c |M) =Ran(A) for any c∈M. However, ha is smooth on M with par

(
∂h(c)

)
= {0}.

We end this section with a relationship between partial smoothness and the convergence analysis
of Newton and quasi-Newton methods. Combining Proposition 2 and [24, Theorem 4.10], we have
the following relationship between the sufficient conditions for superlinear convergence of the quasi-
Newton method Qk and the finite identification of an active manifold at a solution.

Proposition 3 (Finite Identification). Let Mc be as in (34), let Assumption 1 hold, and
recall the notation of Definition 12. Let x∈ dom(f) and c := c(x).
Suppose
(a) Mc satisfies the nondegeneracy condition,
(b) the k-strict complementarity condition of Definition 14 holds at (c, y)∈Rm ×Rm,
(c) M(x) = {y}, and
(d) the second-order sufficient conditions of Theorem 2 are satisfied at x.
Consider the neighborhood U of (x, y) of Proposition 2, and a starting point (x0, y0) ∈U . Suppose
the sequence

{
(xk, yk)

}
k∈N

is generated from the optimality conditions for Qk, remains in U for
all k ∈N, and satisfies (xk, yk) 6= (x, y) for all k ∈N. Then, the sufficient conditions for superlinear
convergence of Proposition 2 imply c(xk)+∇c(xk)[xk+1 −xk]∈Mc for all large k.
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Proof. Since xk → x, dk → 0. By continuity, ĉk := c(xk) +∇c(xk)[xk+1 − xk]→ c. The quasi-
Newton method (5) with Bk given by (31) implies yk+1 ∈ ∂h(ĉk), so {ĉk} ⊂ dom(h). By Proposi-

tion 1, h(ĉk)→ h(c). Since yk → y, dist
(
y
∣∣∂h(ĉk)

)
≤
∥∥y− yk+1

∥∥→ 0. Then, by partial smoothness

and [24, Theorem 4.10], ĉk ∈Mc for all large k. �

7. Strong Metric Regularity and Local Quadratic Convergence of Newton’s Method
The point of this section is to marry the partial smoothness hypothesis to the hypotheses used to
establish strong metric subregularity in Section 6 to establish strong metric regularity of a solution
mapping that is an appropriately defined local version of g +G in (9). In addition, we establish
the local quadratic convergence of the Newton method for g+G.

Definition 15 (Metric regularity). A set-valued mapping S :Rn ⇒Rm is metrically reg-
ular at x for y when y ∈ S(x), the graph of S is locally closed at (x, y), and there exists κ ≥ 0

and neighborhoods U of x and V of y such that dist
(
x
∣∣S−1(y)

)
≤ κdist

(
y
∣∣S(x)

)
for all (x, y)∈

U × V. The infimum of κ over all (κ, U, V ) satisfying the display is called the metric regularity
modulus of S at x for y, and is denoted reg(S;x|y).
Definition 16 (Strong metric regularity). A set-valued mapping S : Rn ⇒ Rm is

strongly metrically regular at x for y when it is metrically regular at x for y and S−1 has a single-
valued localization at y for x. Equivalently, when S−1 has a Lipschitz continuous single-valued
localization around y for x.

7.1. Partly Smooth Problems
In this section, we make the following assumptions:
Assumption 2. Let h and f be as in P, with dom(h) given by the Rockafellar-Wets PLQ

representation of Theorem 4. Let (x, y) ∈ dom(f) × Rm, and set c := c(x), k := |K(c)|, where
K(c) =

{
k1, . . . , kk

}
are the active indices given in Definition 7. Let Mc be the active manifold

defined in (34). By Lemma 6, there exists an integer ` such that `= |Ik(c)| for any k ∈K(c), and

let µj ∈R` for j ∈
{
1, . . . , k

}
. With these specifications, we assume that

(a) c is C3-smooth,
(b) Mc satisfies the nondegeneracy condition (in particular, k≥ 2),
(c) f satisfies (SC) at x for y; i.e., Null

(
∇c(x)>

)
∩ ri

(
∂h(c)

)
= {y} , so that in particular, as in

(39), Jy=Qc+B+ Âµ, where µ= (µ>
1 , . . . , µ

>

k
)> > 0 by Lemma 10,

(d) x satisfies the second-order sufficient conditions of Theorem 2, i.e.,

h′′(c(x);∇c(x)d)+
〈
d, ∇2

xxL(x, y)d
〉
> 0 ∀d∈Null

(
A>∇c(x)

)
\ {0} ,

where, by Lemma 1, M(x) = {y}, and by Lemma 13, D(x) =Null
(
A>∇c(x)

)
.

The conditions (c) - (e) in Assumption 2 can be interpreted in terms of similar assumptions
employed in classical NLP. Condition (c) corresponds to the linear independence of the active
constraint gradients, (d) corresponds to strict complementary slackness, and (e) corresponds to
the strong second-order sufficiency condition. The convergence results developed in this section
subsume those known for NLP, since they follow from the case in which h is non finite-valued
piecewise linear convex.
We begin with a key technical lemma important for establishing metric regularity.

Lemma 15. In the notation of Definition 12, for any i, j ∈
{
1, . . . , k

}
, (Qki −Qkj )Null

(
A>
)
⊂

Ran(A).



Burke and Engle: PLQ Convex-Composite

Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 23

Proof. Let w ∈Null
(
A>
)
. By polyhedrality, there exists |t|> 0 such that ct := c+ tw ∈Mc.

By Proposition 1, dom(∂h) = dom(h), so there exists v ∈ ∂h(ct) and v ∈ ∂h(c). By (39), (v,µ(ct, v))
and (v,µ) satisfy Jv=Qct +B+ Âµ(ct, v) and Jv=Qc+B+ Âµ. Then for any i, j ∈K(c),

0 = (Qki −Qkj )ct +A(Piµ(ct, v)i −Pjµ(ct, v)j)+ bki − bkj ,
0 = (Qki −Qkj )c+A(Piµi −Pjµj)+ bki − bkj .

Subtracting the second equation from the first and rearranging gives

(Qki −Qkj )w= t−1A
{
Pj(µ(ct, v)j −µj)−Pi(µ(ct, v)i −µi)

}
. (51)

�

We now define a family of local approximations to g + G for which strong metric regularity is
established.
Definition 17 (Mc-restricted KKT Mappings). For a point c ∈ Mc and each j ∈{
1, . . . , k

}
, define gj :R

n+m+` →Rn+m+`+` and G0 by

gj(x, y,µj) :=




∇c(x)>y
y−Qkjc(x)− bkj −APjµj

A>[c(x)− c]
−µj


 and G0 :=




{0}
n

{0}
m

{0}
`

R`
+.




and set xj := (x, y,µj) ∈ Rn+m+`, where x, y,µj are as in Assumption 2. We call the mappings
gj +G0 the Mc-restricted KKT Mappings.
Observe that

∇gj(x, y,µj) =




∇2
xxL(x, y) ∇c(x)> 0

−Qkj∇c(x) I −APj

A>∇c(x) 0 0
0 0 −I`


 and gj(xj) =




0
0
0

−µj


∈−G0 (see Assumption 2 (c)).

In parallel to the study in Section 5, we introduce the linearization of these mappings.
Definition 18 (Linearized Mc-restricted KKT Mappings). Let c and k be given by

Assumption 2, and gj and G0 be as in Definition 17. For all j ∈
{
1, . . . , k

}
, define the linearization

of gj +G0 at u= (x̂, ŷ, µ̂j) by

Gj
u
(x) := gj(u)+∇gj(u)(x−u)+G0, or equivalently, (52)

Gj

(x̂,ŷ,µ̂j)
(x, y,µj) := gj(x̂, ŷ, µ̂j)+∇gj(x̂, ŷ, µ̂j)



x− x̂
y− ŷ
µj − µ̂j


+G0.

In the sequel, we will need to compute the normal cone to the graph of the linearized Mc-restricted
KKT Mappings. For this purpose, we define for every u= (x̂, ŷ, µ̂j) the function

F
u
(x,z) := gj(u)+∇gj(u)(x−u)−z =




∇c(x̂)>y+∇2
xxL(x̂, ŷ)[x− x̂]− z1

y−Qkj [c(x̂)+∇c(x̂)[x− x̂]]− bkj −APjµj − z2
A>[c(x̂)+∇c(x̂)[x− x̂]− c]− z3

−µj − z4


 . (53)

Then,

gphGj
u
=
{
(x,z)

∣∣F
u
(x,z)∈−G0

}
, (54)
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with dom
(
Gj
u

)
=Rn+m+`. Explicitly,

gphGj

(x̂,ŷ,µ̂j)
=




(x, y,µj, z1, z2, z3, z4)

∣∣∣∣∣∣∣∣∣

z1 =∇c(x̂)>y+∇2
xxL(x̂, ŷ)[x− x̂]

z2 = y−Qkj [c(x̂)+∇c(x̂)[x− x̂]]− bkj −APjµj

z3 =A>[c(x̂)+∇c(x̂)[x− x̂]− c]
z4 ∈−µj +R`

+




. (55)

The next lemma shows that the error in the Newton iterates can be measured in terms of (x, y)

alone, independent of the vectors µj. We omit its proof since it is a straightforward computation.

Lemma 16. Let x, y,µ, c, k, and Q be as in Assumption 2, and gj and G0 be as in Definition 17.

For any j ∈
{
1, . . . , k

}
, define ηj :R

n ×Rm →Rn+m+` by

ηj(x, y) :=




∇c(x)>y
Qkj (c− c(x))
A>(c(x)− c)


 . (56)

Observe that for any (x, y,µj)∈Rn ×Rm ×R`,

gj(x, y,µj) =

(
ηj(x, y)

0

)
+




0
y− y+APj(µj −µj)

0
−µj


 and ∇gj(x, y,µj) =

(
∇ηj(x, y) 0

0 0

)
+




0 0 0
0 I −APj

0 0 0
0 0 −I




Set xj := (x, y,µj). Then, for any u := (x̂, ŷ, µ̂j)∈Rn ×Rm ×R`,

∥∥F
u
(xj, gj(xj))

∥∥=
∥∥∥∥∥ηj(x̂, ŷ)+∇ηj(x̂, ŷ)

(
x− x̂
y− ŷ

)
− ηj(x, y)

∥∥∥∥∥ , (57)

since ηj(x, y) = 0.

The following lemma uses the strict criticality assumption to show the normal cone to the graph

of these linearizations is captured by the range of ∇F
xj
.

Lemma 17. Let x, y,µ, c, k, and Q be as in Assumption 2 and set xj := (x, y,µj). Then, for all

j ∈
{
1, . . . , k

}
, the mapping Gj

xj
in (54) has N

(
(xj,0) | gphG

j
xj

)
=Ran(W ), where

W :=




∇2
xxL(x, y) −∇c(x)>Qkj ∇c(x)>A
∇c(x) Im 0

0 −PjA
> 0

−In 0 0
0 −Im 0
0 0 −I`
0 0 0




. (58)
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Proof. The set gphGj
xj

=

{
(x,z)

∣∣∣Fxj
(x,z)∈−G

}
defined in (54) is closed with (xj,0) ∈

gphGj
xj
. In addition, µj > 0, N

(
F

xj
(xj,0) | −G0

)
=Rn+m+` ×{0}

`
, and

∇F
xj
(xj,0)

> =




∇2
xxL(x, y) −∇c(x)>Qkj ∇c(x)>A 0
∇c(x) Im 0 0

0 −PjA
> 0 I`

−In 0 0 0
0 −Im 0 0
0 0 −I` 0
0 0 0 I`




=
(
W |R

)
,

where the matrix R is being defined by this expression. Combining the facts in the previous

two sentences, the constraint qualification in [37, Theorem 6.14], for N
(
(xj,0) | gphG

j
xj

)
is the

requirement that Null (W ) = {0}. If we verify Null (W ) = {0}, then N
(
(xj,0) | gphG

j
xj

)
=Ran(W )

by [37, Theorem 6.14]. But the presence of the identity matrices inW immediately give Null (W ) =
{0}. �

The metric regularity of the mappings gj +G0 follow from the second-order sufficient conditions
of Theorem 2.

Lemma 18. Let x, y,µ, c, k, and Q be as in Assumption 2, W as in (58) and set xj := (x, y,µj).

For all j ∈
{
1, . . . , k

}
,

(0,−z)∈N
(
(xj,0) | gphG

j
xj

)
⇐⇒ z = 0,

where Gj
xj

is given by (54). Then, Gj
xj

is metrically regular at xj for 0 and



∇2
xxL(x, y) ∇c(x)> 0

−Qkj∇c(x) Im −APj

A>∇c(x) 0 0




is nonsingular.

Proof. By Lemma 17, N
(
(xj,0) | gphG

j
xj

)
=Ran(W ), and so the statement

(0,−z)∈N
(
(xj,0) | gphG

j
xj

)
⇐⇒ z = 0

is equivalent to





0
0
0

−z1
−z2
−z3
−z4




=




∇2

xxL(x, y) −∇c(x)>Qkj
∇c(x)>A

∇c(x) I 0
0 −PjA

> 0
−In 0 0
0 −Im 0
0 0 −I`
0 0 0






d
v
w


 for some



d
v
w







⇐⇒




z1
z2
z3
z4


= 0. (59)

Since (⇐) is trivial, we only establish (⇒). Define H :=∇2
xxL(x, y). Then the left-hand side of

(59) becomes

0 =Hd−∇c(x)>Qkjv+∇c(x)>Aw, (60)
0 =∇c(x)d+ v, (61)
0 =−PjA

>v, (62)
z1 = d, z2 = v, z3 =w, z4 = 0.
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Since z4 = 0, we need only show z1 = z2 = z3 = 0, which we establish by showing d = v = w = 0.
First suppose d 6= 0. From (62) and Definition 12, v ∈ Null

(
A>
)
. Then (61) and gives ∇c(x)d =

−v ∈Null
(
A>
)
. By Lemma 13, d∈D(x)\{0}. Taking the inner product on both sides of (60) with

d and using (61) gives d>Hd= d>∇c(x)>Qkjv=−d>∇c(x)>Qkj∇c(x)d, so

d>∇c(x)>Qkj∇c(x)d+ d>Hd= 0.

But the second-order sufficient conditions of Theorem 2 imply that for any j ∈
{
1, . . . , k

}
,

d>∇c(x)>Qkj∇c(x)d+ d>Hd> 0.

This contradiction implies d= 0. But then v = 0 by (61). Finally, (60) states that w must satisfy
Aw ∈ Null

(
∇c(x)>

)
∩ Ran(A) = {0} . By the nondegeneracy condition of Definition 13, w = 0.

Equation (54) gives local closedness of Gj
xj

at (xj,0), so the coderivative criterion for metric regu-

larity [13, Theorem 4C.2] implies Gj
xj

is metrically regular at xj for 0, as required. �

The metric regularity of the mappings Gj
xj

imply a parameterized uniform version of metric regu-
larity, where we allow xj to move.

Lemma 19. Let x, y,µ, c, k, and Q be as in Assumption 2, set xj := (x, y,µj), and let Gj
xj

be given by (54). For all j ∈
{
1, . . . , k

}
, there exists a neighborhood Uj ⊂ Rn+m+` of xj and a

neighborhood Vj ⊂Rn+m+`+` of 0 such that the mapping

(u,z) 7→ G−j
u

(z) :=
(
Gj
u

)−1
(z) for (u,z)∈Uj ×Vj

is single-valued with G−j
u

(0)∈Uj.

Proof. Fix j ∈
{
1, . . . , k

}
. By Lemma 18 and [13, Theorem 6D.1], for every λ> reg(Gj

xj
;xj|0)

there exists a> 0 and b > 0 such that

dist
(
x

∣∣G−j
u

(z)
)
≤ λdist

(
z

∣∣Gj
u
(x)
)
, for every u,x∈xj + aB,z ∈ bB. (63)

By reducing a, if necessary, we may assume the conclusion of Lemma 14 holds on xj + aB. We
follow the argument given in [13, Theorem 6D.2] by recalling (56) and choosing

L> lip(∇ηj; (x, y)) := limsup
(x,y),(x′,y′)→(x,y)

(x,y) 6=(x′,y′)

∥∥∇ηj(x, y)−∇ηj(x
′, y′)

∥∥
∥∥(x, y)− (x′, y′)

∥∥ , and γ >
1

2
λL.

Define a :=min
{

1
γ
, a
}
> 0, Uj :=xj +aB, and Vj := bB. We first establish nonemptiness of G−j

u
(z).

Fix x=xj, and choose any (u,z)∈Uj ×Vj, and consider two cases in (63). If dist
(
z

∣∣Gj
u
(xj)

)
=

0, then by closedness of the set Gj
u
(xj), it follows that xj ∈ G−j

u
(z). On the other hand, if 0 <

dist
(
z

∣∣Gj
u
(xj)

)
<∞, where finiteness is guaranteed because dom

(
Gj
u

)
=Rm+n+`. Then the impli-

cation

dist
(
xj

∣∣G−j
u

(z)
)
≤ λdist

(
z

∣∣Gj
u
(xj)

)
=⇒ dist

(
xj

∣∣G−j
u

(z)
)
<∞

holds, so in both cases G−j
u

(z) 6= ∅.
We now show single-valuedness. For the same j, u, and z, write u= (x̂, ŷ, µ̂j), and suppose there
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are two points x1 = (x1, y1, µj1), x2 = (x2, y2, µj2) satisfying x1,x2 ∈ G−j
u

(z). Then subtracting the
equations in (55) gives

0 =∇2
xxL(x̂, ŷ)[x2 −x1] +∇c(x̂)>(y2 − y1) (64)

y2 − y1 =Qkj∇c(x̂)[x2 −x1] +APj(µj2 −µj1) (65)

0 =A>∇c(x̂)[x2 −x1]. (66)

Then ∇c(x̂)[x2−x1]∈Null
(
A>
)
. Suppose x2 6= x1. Taking the inner product on both sides of (64)

and using the choice of a in accordance with Lemma 14,

0 = [x2 −x1]
>∇2

xxL(x̂, ŷ)[x2 −x1] + [x2 −x1]
>∇c(x̂)>(y2 − y1) by (64)

= [x2 −x1]
>∇2

xxL(x̂, ŷ)[x2 −x1] + [x2 −x1]
>∇c(x̂)>[Qkj∇c(x̂)[x2 −x1] +APj(µj2 −µj1)] by (65)

= [x2 −x1]
>∇2

xxL(x̂, ŷ)[x2 −x1] + [x2 −x1]
>∇c(x̂)>Qkj∇c(x̂)[x2 −x1] by (66)

> 0,

so x2 = x1. But then (64), (65), and Lemma 14 imply

y2 − y1 ∈Null
(
∇c(x̂)>

)
∩Ran(A) = {0} ,

so y2 = y1. The nondegeneracy condition of Definition 13 and (65) together imply

0 =APj(µj2 −µj1) =⇒ µj2 = µj1 ,

so single-valuedness is established. We conclude the proof by following the proof given in [13,
Theorem 6D.2] and write (x, y,µj) =x= G−j

u
(0). Then the quadratic bound lemma and the choice

of γ gives

∥∥∥∥∥

(
x−x
y− y

)∥∥∥∥∥≤
∥∥
x−xj

∥∥

=dist
(
xj

∣∣G−j
u

(0)
)

≤ λdist
(
0
∣∣Gj

u
(xj)

)

≤
2γ

L
dist

(
0
∣∣Gj

u
(xj)

)

≤
2γ

L

∥∥gj(u)+∇gj(u)(xj −u)− gj(xj)
∥∥ by (52) and − gj(xj)∈G0

=
2γ

L

∥∥F
u
(xj, gj(xj))

∥∥ by (53)

=
2γ

L

∥∥∥∥∥ηj(x̂, ŷ)+∇ηj(x̂, ŷ)

(
x− x̂
y− ŷ

)
− ηj(x, y)

∥∥∥∥∥ by (57)

≤ γ

∥∥∥∥∥

(
x̂−x
ŷ− y

)∥∥∥∥∥

2

≤ γ
∥∥
u−xj

∥∥2
<a,

so x= Gj
u
(0)∈Uj. �

Our work so far implies that Newton’s method applied to the individual mappings Gj
xj

exhibit local
quadratic convergence.
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Theorem 6. Let x, y,µ, c, k, and Q be as in Assumption 2, set xj := (x, y,µj), and let Gj
xj

be

given by (54). Then, the mappings
{
Gj
xj

}k

j=1
are strongly metrically regular (see Definition 16) at

xj for 0. Moreover, for all j ∈
{
1, . . . , k

}
, there exists a neighborhood Uj of xj such that, for every

x
0 ∈Uj, there is a unique sequence x

k = (xk, yk, µk
j )⊂Uj generated by Newton’s method for gj +G0

(4). Both this sequence, and the sequence (xk, yk), converge at a quadratic rate to xj and (x, y)
respectively.

Proof. The metric regularity at xj for 0 was established in Lemma 18. Lemma 19 with u=xj

shows G−j
xj

has a single-valued localization around 0 for xj, so the strong metric regularity of Gj
xj

at xj for 0 follows.
For the second claim, we again follow the proof in [13, Theorem 6D.2] by taking Uj as in

Lemma 19, and choosing any x
0 ∈Uj. Following the proof of the final claim of Lemma 19, we find,

for every k≥ 1, the existence and uniqueness of xk given x
k−1 satisfying

0∈ Gj

x
k−1

(xk),

∥∥∥∥∥

(
xk −x
yk − y

)∥∥∥∥∥≤
∥∥∥xk −xj

∥∥∥≤ γ

∥∥∥∥∥

(
xk−1 −x
yk−1 − y

)∥∥∥∥∥

2

≤ γ
∥∥∥xk−1 −xj

∥∥∥
2

, and x
k ∈Uj.

Moreover, since θ := γ
∥∥
x

0 −xj

∥∥< γa < 1,
∥∥
x

k −xj

∥∥≤ θ2
k−1
∥∥
x

0 −xj

∥∥2 for all k ≥ 1, which com-
pletes the proof of quadratic convergence of both sequences. �

We now move from an isolated analysis of the mappings Gj
u
to how they behave as a whole. The

goal is to guarantee the y obtained by solving 0∈ Gj
u
(x) at some u= (x̂, ŷ, µ̂j) for x= (x, y,µj) has

y ∈ ∂h(c(x̂)+∇c(x̂)[x− x̂]).

Theorem 7. Let x, y,µ, c, k, and Q be as in Assumption 2, set xj := (x, y,µj), and let

Gj
xj

be given by (54). Suppose i 6= j and i, j ∈
{
1, . . . , k

}
. There exists a neighborhood N of

(x, y,µ1, . . . , µk) =: (x, y,µ)∈Rn+m+k` such that, if (x̂, ŷ, µ̂1, . . . , µ̂k)∈N and uj := (x̂, ŷ, µ̂j), ui :=
(x̂, ŷ, µ̂i), with µ̂i > 0 and µ̂j > 0, then

xj := G−j
uj

(0) =



xj

yj
µj


 , xi := G−i

ui
(0) =



xi

yi
µi


 satisfy

(
xj

yj

)
=

(
xi

yi

)
for all i, j ∈

{
1, . . . , k

}
.

(67)

That is, there exists (x, y)∈Rn ×Rm such that (x, y) = (xi, yi) for all i∈
{
1, . . . , k

}
. Moreover,

(i) c(x̂)+∇c(x)[x− x̂]∈Mc,

(ii) µ(c(x̂)+∇c(x̂)[x− x̂], y)j = µj > 0 for all j ∈
{
1, . . . , k

}
,

(iii) y ∈ ri
(
∂h(c(x̂)+∇c(x̂)[x− x̂])

)
,

where the mapping µ(c, y) is defined in Lemma 9.

Proof. For j ∈
{
1, . . . , k

}
, define πj : Rn+m+k` → Rn+m+` by πj(x, y,µ1, . . . , µj, . . . , µk) :=

(x, y,µj). We first show there exists a neighborhood N of (x, y,µ1, . . . , µk) such that, for all j ∈{
1, . . . , k

}
and all (x̂j, ŷj, µ̂j) =uj ∈Nj := πj(N ),

(a) the mappings
{
G−j
uj

(0)
}k

j=1
are single-valued with G−j

uj
(0)∈Nj,

(b) µj associated to G−j
uj

(0) has µj > 0,
(c) the condition (50) is satisfied at all (x, y,µj)∈Nj, and
(d) c(x̂j)+∇c(x̂j)[xj − x̂j]∈Mc, where (xj, yj, µj) = G−j

(x̂,ŷ,µ̂j)
(0).
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Parts (a), (b), and (c) are a consequence of Lemma 19. We now justify (d). For any j ∈
{
1, . . . , k

}
,

the definition of (xj, yj, µj) = G−j

(x̂,ŷ,µ̂j)
(0) implies, in particular, A>[c(x̂j)+∇c(x̂j)[xj − x̂j]− c(x)] =

0. By the polyhedral structure of Mc, for any w ∈Null
(
A>
)
= T (c |Mc), there exists τ > 0 such

that c+ tw ∈Mc for all |t|< τ . Lemma 19 argued that, for all sufficiently small ε > 0,

G−j
u

(0)∈ (xj + εB) for all u∈xj + εB (see (a)). (68)

The continuity of c and (68) imply that for uj sufficiently close to xj, c(x̂j)+∇c(x̂j)[xj − x̂j] can
be made as close to c(x) as desired. Then there exists a neighborhood of (x, y,µj) such (d) holds.
The neighborhood N also exists because there are only finitely many indices j in consideration.

Now let uj := (x̂, ŷ, µ̂j)∈Nj, ui := (x̂, ŷ, µ̂i)∈Ni, with µ̂i > 0 and µ̂j > 0, and denote

G−j
uj

(0) =



xj

yj
µj


 , G−i

ui
(0) =



xi

yi
µi


 .

By (55),

0 =∇2
xxL(x̂, ŷ)[xj −xi] +∇c(x̂)>(yj − yi) (69)

yi =Qki(c(x̂)+∇c(x̂)[xi − x̂]) +APiµi + bki (70)
yj =Qkj (c(x̂)+∇c(x̂)[xj − x̂]) +APjµj + bkj (71)

0 =A>∇c(x̂)[xj −xi] (72)

Define ĉi := c(x̂) +∇c(x̂)[xi − x̂] ∈Mc by (d). By Assumption 3, y =Qkic+ bki +APiµi =Qkjc+
bkj +APjµj, and in particular,

Qkic+ bki − bkj =Qkjc+APjµj −APiµi. (73)

Then (51) with w := ĉi − c∈Null
(
A>
)
, t= 1, and any y ∈ ∂h(ĉi) gives

yi =Qkiw+Qkic+ bki +APiµi

=

(
Qkjw+A

{
Pj(µ(ĉi, y)j −µj)−Pi(µ(ĉi, y)i −µi)

})
+Qkic+ bki +APiµi + bkj − bkj

=Qkjw+ bkj + [Qkic+ bki − bkj ] +APiµi +A
{
Pj(µ(ĉi, y)j −µj)−Pi(µ(ĉi, y)i −µi)

}

=Qkj [ĉi − c] + bkj + [Qkjc+APjµj −APiµi] +APiµi +A
{
Pj(µ(ĉi, y)j −µj)−Pi(µ(ĉi, y)i −µi)

}

=Qkj ĉi + bkj +APi[µi −µ(ĉi, y)i] +APjµ(ĉi, y)j
∈ yj +Qkj∇c(x̂)[xi −xj] +Ran(A)

where the fourth equivalence follows from (73). This implies

yj − yi −Qkj∇c(x̂)[xj −xi]∈Ran(A) . (74)

Taking the inner product on both sides of (69) with xj −xi gives

0 = [xj −xi]
>∇2

xxL(x̂, ŷ)[xj −xi] + [xj −xi]
>∇c(x̂)>(yj − yi)

= [xj −xi]
>∇2

xxL(x̂, ŷ)[xj −xi] + [xj −xi]
>∇c(x̂)>Qkj∇c(x̂)[xj −xi] by (74), (72).

By Lemma 14 and (72), xi = xj. Then (74), (69), and (c) imply yi−yj ∈Ran(A)∩Null
(
∇c(x̂)>

)
=

{0}, which proves (67).
Since i and j were arbitrary, letting x and y denote the common values of the first two components
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of G−j
uj

(0) for each j ∈
{
1, . . . , k

}
. Then Jy=Q(c(x̂)+∇c(x̂)[x− x̂])+B+Âµ, with c(x̂)+∇c(x̂)[x−

x̂] ∈ Mc, and µ1, . . . , µk > 0. By (39) and Lemma 10, µ(c(x̂) +∇c(x̂)[x − x̂], y)j = µj > 0, with
y ∈ ri

(
∂h(c(x̂)+∇c(x̂)[x− x̂])

)
. �

Our final theorem integrates the ideas from Section 6 and our work in this section to establish the
local quadratic convergence of Newton’s method for P.

Theorem 8. Let x, y,µ, c, k, and Q be as in Assumption 2, set xj := (x, y,µj), and let Gj
xj

be

given by (54). There exists a neighborhood N of (x, y,µ) on which the conclusions of Lemma 14 are
satisfied such that if (x0, y0, µ0)∈N , then there exists a unique sequence

{
(xk, yk, µk)

}
k∈N

satisfying
the optimality conditions of Pk for all k ∈N, with
(a) c(xk−1)+∇c(xk−1)[xk −xk−1]∈Mc,

(b) µ(c(xk−1)+∇c(xk−1)[xk −xk−1], yk)j > 0 for all j ∈
{
1, . . . , k

}
,

(c) yk ∈ ri
(
∂h(c(xk−1)+∇c(xk−1)[xk −xk−1])

)
,

(d) Hk−1[x
k −xk−1] +∇c(xk−1)>yk = 0,

(e) xk −xk−1 is a strong local minimizer of d 7→ h(c(xk−1)+∇c(xk−1)d)+ 1
2
d>Hk−1d.

Moreover, the sequence (xk, yk) converges to (x, y) at a quadratic rate.

Proof. All claims except (e) follow from Theorem 6 and Theorem 7. By Lemma 22 and
Lemma 23, claim (e) is equivalent to showing

h′′(c(xk−1)+∇c(xk−1)[xk −xk−1];∇c(xk−1)δ)+ δ>Hk−1δ > 0 ∀ δ ∈Null
(
A>∇c(xk−1)

)
\ {0} . (75)

Using (15) and partial smoothness,

h′′(c(xk−1)+∇c(xk−1)[xk −xk−1];∇c(xk−1)δ) = δ>∇c(xk−1)>Qj∇c(x
k−1)δ, ∀ j ∈K(c),

so (50) gives (75). �

Remark 10. The fact that
{
xk −xk−1

}
are strong local minimizers does not mean that there

are not other critical points outside the neighborhood of quadratic convergence. It may be that at
any iteration the problem P̂ does not have a finite optimal value, in particular, should there exist
directions of negative curvature orthogonal to the manifold.

7.2. Smooth Problems In this section, we make the following assumptions:
Assumption 3. Let h and f be as in P, with dom(h) given by the Rockafellar-Wets PLQ

representation of Theorem 4. Let (x, y) ∈ dom(f)×Rm, and set c := c(x), k = |K(c)|, where K(c)
are the active indices given in Definition 7. Let Mc be the active manifold defined in (34). We
assume that
(a) c is C3-smooth,
(b) K(c) = {k0},
(c) x satisfies the second-order sufficient conditions of Theorem 2,

Remark 11. Since k= 1, we omit reference to the index k0 for the rest of this section.
Remark 12. By (b), c(x)∈ intdom(h) and ∂h(c) = {y}. Then, (c) becomes

y=Qc+ b, ∇c(x)>y= 0, d>∇c(x)>Q∇c(x)d+ d>∇2
xxL(x, y)d> 0 ∀d∈Rn \ {0} , where D(x) =Rn.

As in Lemma 14, we have the following stability result.

Lemma 20. Suppose d>∇c(x)>Q∇c(x)d+ d>∇2
xxL(x, y)d > 0 for all d∈Rn \ {0} . Then, there

exists a neighborhood N of (x, y) such that if (x, y)∈N then,

d>∇c(x)>Q∇c(x)d+ d>∇2
xxL(x, y)d> 0, ∀ d∈Rn \ {0} , (76)

and c(x)∈ intdom(h).
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The differentiability of h at c(x) suggests the following KKT mapping (9).
Definition 19 (Mc-restricted Smooth KKT Mapping). Define g :Rn+m →Rn+m by

g(x, y) :=

(
∇c(x)>y

y−Qc(x)− b

)
, G := {0}

n+m
,

and set x := (x, y), so that,

∇g(x, y) =

(
∇2

xxL(x, y) ∇c(x)
>

−Q∇c(x) Im

)
, g(x, y) =

(
0
0

)
.

Assumption (c) implies ∇g(x, y) is nonsingular. Consequently, the Newton method (4) corresponds
to the classical Newton’s method for solving the equation g(x, y) = 0, whose local quadratic conver-
gence near (x, y) with ∇g(x, y) nonsingular is well-known. We conclude with the following theorem,
which parallels Theorem 8.

Theorem 9. Let x, y, c := c(x), and Mc be as in Assumption 3. Then, there exists a neigh-
borhood N of (x, y) on which the conclusions of Lemma 20 are satisfied such that if (x0, y0) ∈N ,
then there exists a unique sequence

{
(xk, yk)

}
k∈N

satisfying the optimality conditions of Pk for all
k ∈N, with
(a) c(xk−1)+∇c(xk−1)[xk −xk−1]∈Mc,
(b) ∂h(c(xk−1)+∇c(xk−1)[xk −xk−1]) =

{
yk
}
,

(c) Hk−1[x
k −xk−1] +∇c(xk−1)>yk = 0,

(d) xk −xk−1 is a strong local minimizer of d 7→ h(c(xk−1)+∇c(xk−1)d)+ 1
2
d>Hk−1d.

Moreover, the sequence (xk, yk) converges to (x, y) at a quadratic rate.

Appendix

The model function minimized in P̂ plays a pivotal role in our analysis. Here, we establish
properties of this function.
Let f be as in P and u := (x̂, ŷ)∈ dom(f)×Rm. Define Ĥ :=∇2

xxL(x̂, ŷ),

ψ(v,w) := h(v)+w, and Φ
u
(d) :=

(
c(x̂)+∇c(x̂)d

1
2
d>Ĥd

)
.

Then, for any (v,w)∈ dom(h)×R and (d, s)∈Rn ×R,

∇Φ
u
(d) =

(
∇c(x̂)

d>Ĥ

)
, ψ′((v,w); (d, s)) = h′(v;d)+ s, ψ′′((v,w); (d, s)) = h′′(v;d).

Define the model function φ
u
(d) :=ψ(Φ

u
(d)) = h(c(x̂)+∇c(x̂)d)+ 1

2
d>Ĥd. By [37, Theorem 13.14],

φ
u
is piecewise linear-quadratic, though not necessarily convex because Ĥ may not be positive

semi-definite. However, φ
u
is convex-composite with ψ piecewise linear-quadratic convex.

The following lemma shows that if f satisfies (BCQ) at x̂, then the model function at x̂ satisfies
its (BCQ) throughout its domain.

Lemma 21. Let f be as in P, u := (x̂, ŷ)∈ dom(f)×Rm, and suppose f satisfies (BCQ) at x̂.

Then, φ
u
satisfies (BCQ) at all points d∈ dom(φ

u
) =
{
d
∣∣ c(x̂)+∇c(x̂)d∈ dom(h)

}
.
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Proof. Let d∈
{
d
∣∣ c(x̂)+∇c(x̂)d∈ dom(h)

}
. By definition,

Null
(
∇Φ

u
(d)>

)
=Null

((
∇c(x̂)> Ĥd

))
and N

(
Φ

u
(d) |dom(ψ)

)
=N

(
c(x̂)+∇c(x̂)d |dom(h)

)
×{0} .

Suppose v= (v1, v2)∈Null
(
∇Φ

u
(d)>

)
∩N

(
Φ

u
(d) |dom(ψ)

)
. Then v2 = 0, and

v1 ∈Null
(
∇c(x̂)>

)
∩N

(
c(x̂)+∇c(x̂)d |dom(h)

)
⊂Null

(
∇c(x̂)>

)
∩N

(
c(x̂) |dom(h)

)
= {0} ,

where the inclusion follows since
〈
v1, ∇c(x̂)d

〉
= 0. �

Lemma 22. Let f be as in P, u := (x̂, ŷ)∈ dom(f)×Rm, and suppose f satisfies (BCQ) at x̂.
Then, the cone of non-ascent directions Dφu

(d) at any d∈ dom(φ
u
) is given by

Dφu
(d) =

{
δ
∣∣∣h′(c(x̂)+∇c(x̂)d;∇c(x̂)δ)+ d

>
Ĥδ≤ 0

}
. (77)

Moreover, the second-order necessary and sufficient conditions of Theorem 2 applied to minφ
u
are

1. If φ
u
has a local minimum at d, then 0∈ Ĥd+∇c(x̂)>∂h(c(x̂)+∇c(x̂)d) and

h′′(c(x̂)+∇c(x̂)d;∇c(x̂)δ)+ δ>Ĥδ≥ 0,

for all δ ∈Dφu
(d).

2. If 0∈Hd+∇c(x̂)>∂h(c(x̂)+∇c(x̂)d) and

h′′(c(x̂)+∇c(x̂)d;∇c(x̂)δ)+ δ>Ĥδ > 0,

for all δ ∈Dφu
(d) \ {0}, then d is a strong local minimizer of φ

u
.

Proof. Since (BCQ) is satisfied at all points d∈ dom(φ
u
), the chain rule of Theorem 1 gives

∂φ
u
(d) = Ĥd+∇c(x̂)>∂h(c(x̂)+∇c(x̂)d),

dφ
u
(d)(δ) = h′(c(x̂)+∇c(x̂)d;∇c(x̂)δ)+ d>Ĥδ,

which is (77). The set of Lagrange multipliers for φ
u
becomes

Mφu
(d) :=Null

(
∇Φ

u
(d)>

)
∩ ∂ψ(Φ

u
(d))

=Null

((
∇c(x̂)> Ĥd

))
∩ (∂h(c(x̂)+∇c(x̂)d)×{1}),

(78)

so that
(
y1 y2

)
∈Mφu

(d)⇐⇒
{
Ĥd+∇c(x̂)>y1, y1 ∈ ∂h(c(x̂)+∇c(x̂)d), y2 = 1. The Lagrangian

[4] is L(d, y) :=
〈
y, Φ

u
(d)
〉
− ψ?(y), y = (y1, y2) ∈ Rm × R, with ∇2

ddL(d, y) = y2Ĥ. Then, from
Theorem 2, for any δ ∈Rn,

ψ′′(Φ
u
(d);∇Φ

u
(d)δ)+max

{〈
δ, ∇2

ddL(d, y)δ
〉 ∣∣y ∈Mφu

(d)
}
= h′′(c(x̂)+∇c(x̂)d;∇c(x̂)δ)+ δ>Ĥδ.

�

The final lemma of this section characterizes the directions of non-ascent for the model function
φ
u
in the presence of an active manifold. The proof is identical to Lemma 13 using Dφu

(d) ={
δ ∈Rn

∣∣∣ψ′(Φ
u
(d);∇Φ

u
(d)δ)≤ 0

}
.
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Lemma 23 (Model non-ascent directions). Let h and f be as in P, with dom(h) given
by the Rockafellar-Wets PLQ representation of Theorem 4. Let (x, y) ∈ dom(f) × Rm, and set
c := c(x), k := |K(c)|, where K(c) =

{
k1, . . . , kk

}
are the active indices given in Definition 7. Let Mc

be the active manifold defined in (34). Let u := (x̂, ŷ) ∈ dom(f)×Rm, suppose f satisfies (BCQ)

at x̂ and (d, y) satisfy 0 = Ĥd+∇c(x̂)>y, c(x̂) +∇c(x̂)d ∈Mc, and y ∈ ri
(
∂h(c(x̂)+∇c(x̂)d)

)
.

Then, φ
u
satisfies (SC) at d for (y,1), and

under Assumption 2, in the notation of Definition 12, Dφu
(d) =Null

(
A>∇c(x̂)

)
.

under Assumption 3, Dφu
(d) =Rn.
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