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Abstract

The subdifferential calculus for the expectation of nonsmooth random integrands

involves many fundamental and challenging problems in stochastic optimization. It

is known that for Clarke regular integrands, the Clarke subdifferential of the expec-

tation equals the expectation of their Clarke subdifferential. In particular, this holds

for convex integrands. However, little is known about the calculation of Clarke sub-

gradients for the expectation of non-regular integrands. The focus of this contribution

is to approximate Clarke subgradients for the expectation of random integrands by

smoothing methods applied to the integrand. A framework for how to proceed along

this path is developed and then applied to a class of measurable composite max inte-

grands. This class contains non-regular integrands from stochastic complementarity

problems as well as stochastic optimization problems arising in statistical learning.
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1 Introduction

Let X ⊆ R
n be a convex compact set with non-empty interior and Ξ ⊆ R

� be a

Lebesgue measurable closed set with non-empty interior. In this paper, we consider

the stochastic optimization problem

min
x∈X

F(x) := E[ f (ξ, x)], (1)

where ξ : Ω → Ξ is a random variable on the probability space (Ω,F , ς) with

ς absolutely continuous with respect to Lebesgue measure, f : Ξ × X → R is

continuous on X and measurable in Ξ for every x ∈ X , and E[·] denotes the expected

value over Ξ . A point x ∈ R
n is called a Clarke stationary point for (1) if it satisfies

0 ∈ ∂ F(x)+NX (x), (2)

where ∂ denotes the Clarke subdifferential (see Appendix Definition 9 (i)) and NX (x)

is the normal cone to X at x ∈ X . Condition (2) is a first-order necessary condition

for optimality of problem (1).

The subdifferential ∂ F(x) = ∂E[ f (ξ, x)] does not in general have a closed form

and is difficult to calculate. Consequently, much the existing literature [29,31,33]

employs the first-order necessary condition

0 ∈ E[∂x f (ξ, x)] +NX (x), (3)

where

E[∂x f (ξ, x)] := {E[φ(ξ, x)]|φ(ξ, x) is a measurable selection from ∂x f (ξ, x)}

is the Aumann (set-valued) expectation of ∂x f (ξ, x) with respect to ξ defined in [2].

Points x satisfying (3) are called weak stationary points for problem (1) [21,34]. In

some cases, elements of E[∂x f (ξ, x)] can be computed [26]. However, as the name

implies, condition (3) is much weaker than condition (2). In particular, it is always the

case that

∂ F(x) ⊆ E[∂x f (ξ, x)] = co E[∂x f (ξ, x)], (4)

where “co” denotes the convex hull. In (4), the inclusion is given by Clarke [14, Theo-

rem 2.7.2] and equivalence follows from either Aumann’s Convexity Theorem [2,23]

or Lyapunov’s Convexity Theorem [19,30]. Moreover, since the Clarke subdifferential

is the closed convex hull of the Mordukhovich subdifferential (M-subdifferential) ∂ M

((see Appendix Definition 9) [27, Definition 8.3]), the subdifferential inclusion

∂ M F(x) ⊆ ∂ F(x) ⊆ E[∂x f (ξ, x)] = E

[
co ∂ M

x f (ξ, x)
]
= E

[
∂ M

x f (ξ, x)
]

holds where the final equality follows from [2, Theorem 3] (see [20, Lemma 6.18] for

connections to the M-subdifferential).
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The subdifferential of measurable composite max integrands… 231

Consequently, if x satisfies (2), then x satisfies (3), but the converse is not in

general true. On the other hand, [14, Theorem 2.7.2] tells us that if f (ξ, ·) is Clarke

regular [14, Definition 2.3.4] on X for almost all ξ ∈ Ξ , then equality holds in (4).

Unfortunately, in many applications of interest, Clarke regularity fails to hold, and the

set E[∂x f (ξ, x)] is much larger than the set ∂E[ f (ξ, x)]. For example, this occurs in

stochastic nonlinear complementarity problems [11,13] and optimal statistical learning

problems [1,3]. In such cases, condition (3) is too weak for assessing optimality. By

way of illustration, consider f (ξ, x) = ξ |x | with ξ ∼ N (0, 1) and x ∈ R. Then

E[ f (ξ, x)] = E[ξ |x |] ≡ 0 for x ∈ R, but E[∂ f (ξ, 0)] = √2/π [−1, 1].
The main contributions of the paper are the development of a framework for

the study of smoothing methods for the expectation of random integrands F(x) =
E[ f (ξ, x)] based on the smoothing of the integrand f , a smoothing approach to the

approximation of the Clarke subgradients of expectation F(x) = E[ f (ξ, x)], and the

application of these techniques to the class of measurable composite max (CM) inte-

grands. CM intergrands arise in several important applications including stochastic

nonlinear complementarity problems [11,13] and optimization problems in statistical

learning [1,3].

The paper is organized as follows. In Sect. 2 and the Appendix, we recall some

basic definitions and properties from variational analysis, the theory of measurable

multifunctions, and the study of the variational properties of the expectation function.

In Sect. 3, we define measurable smoothing functions and give a few fundamental

properties. In particular, we introduce the notions of gradient consistency and sub-

consistency. In Sect. 4, we present an approximation theory of smoothing functions for

measurable CM functions, and prove the gradient sub-consistency of CM integrands.

Finally we show that the subgradient of the expectation function can be approximated

via smoothing in the absence of regularity.

2 The subdifferential properties of F(x) := E[f (�, x)]

In this section, we study the relationship between the variational properties of f and

F(x) = E[ f (ξ, x)]. Our approach is motivated by the case where f is specified

during the modeling process in stochastic optimization, and we are asked to optimize

its expectation. For this reason it is important to understand the properties that f should

satisfy in order that the optimization of F is in some sense numerically tractable. In

particular, we study those properties of f that give access to the desired variational

properties of F . For example, it has already been mentioned that, in general, we only

have ∂ F(x) ⊆ E[∂x f (ξ, x)]. But there are situations in which equality holds. We

begin by reviewing these results. The first step is to recall the standard conditions on

f that imply the local Lipschitz continuity of F (e.g. see [14, Hypothesis 2.7.1]).

2.1 LL integrands

Let λ denote Lebesgue measure on R
n and, let ρ be a probability measure on R

�

that is absolutely continuous with respect to Lebesgue measure with support Ξ . In
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232 J. V. Burke et al.

particular, this implies that ρ is non-atomic. Let ρ̂ denote the induced product measure

on R
� × R

n . We consider the following class of functions.

Definition 1 (Carathéodory Mappings) [27, Example 14.15] We say that the function

f : Ξ × X → R is a Carathéodory mapping on Ξ × X if f (ξ, ·) is continuous on an

open set containing X for all ξ ∈ Ξ , and f (·, x) is measurable on Ξ for all x ∈ X .

Definition 2 (Locally Lipschitz (LL) integrands) Let U be an open subset of R
n . We

say that f : Ξ × U → R is an LL integrand on Ξ × U if f is a Carathéodory

mapping on Ξ × U and for each x̄ ∈ U there is an ε(x̄) > 0 and an integrable

mapping κ f (·, x̄) ∈ L2
1(R

�,M, ρ) such that

| f (ξ, x1)− f (ξ, x2)| ≤ κ f (ξ, x̄)‖x1 − x2‖ ∀ x1, x2 ∈ Bε(x̄)(x̄) and a.e. ξ ∈ Ξ,

where a.e. denotes “almost every” and Bε(x̄) := {x | ‖x − x̄‖ ≤ ε } ⊆ U .

Here and throughout, Lm
n (R�,M, ρ) denotes the Banach space of m-integrable

functions κ : R� → R
n defined on the measure space (R�,M, ρ), where the norm is

given by ‖κ‖m := [
∫

R�[
∑n

j=1 |κ j |m]dρ]1/m .

In what follows we often have functions of two variables, h(u, v), but need to discuss

the variational objects for this function with respect to only one of the two variables.

For this we use ∇vh(u, v), ∂vh(u, v) and dvh(u, v)(d) to denote the derivative, the

Clarke subdifferential, and the subderivative of h(u, v) in the direction d, respectively,

in v for fixed u.

Lemma 1 (Properties of LL integrands) Let U be an open subset of R
n , and let f :

Ξ × U → R be an LL integrand on Ξ × U with f (·, x) ∈ L1
1(R

�,M, ρ) for all

x ∈ U. Then the following statements hold.

(a) The function f (ξ, ·) is strictly continuous on U (see Appendix Definition 10) for

a.e. ξ ∈ Ξ with lipx f (ξ, x̄) ≤ κ f (ξ, x̄) a.e. ξ ∈ Ξ.

(b) The mapping F(x) := E[ f (ξ, x)] is locally Lipschitz continuous on U with local

Lipschitz modulus κF (x̄) := E[κ f (ξ, x̄)]. In particular, F is strictly continuous

on U.

(c) The function d̂x f (ξ, x)(v) (see Appendix Definition 8) is measurable in ξ for every

(x, v) ∈ U × R
n .

(d) The set of measurable selections S(∂x f (·, x)) is a weakly compact, convex set in

L2
n(R�,M, ρ).

(e) The Clarke subdifferential ∂ F(x) is a nonempty, convex, compact subset of R
n

contained in κF (x̄)B for every x ∈ U.

(f) For every E ∈M such that E ⊆ Ξ and every x̄ ∈ U

∫

E

f (ξ, x)dρ ∈
∫

E

f (ξ, x̄)dρ +
∥∥κ f (·, x̄)

∥∥
2
ρ(E)B and

∫

E

∂x f (ξ, x)dρ ⊆
∥∥κ f (·, x̄)

∥∥
2
ρ(E)B

for all x ∈ Bε(x̄)(x̄), where ‖κ f (·, x̄)‖2 :=
√∫

Ξ
κ2

f (ξ, x̄)dρ.
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The subdifferential of measurable composite max integrands… 233

Proof (a) This follows immediately from the definition of strict continuity.

(b) This follows immediately from the inequality

|F(x ′)− F(x)| ≤ E[| f (ξ, x ′)− f (ξ, x)|] ≤ E[κ f (ξ, x̄)]
∥∥x ′ − x

∥∥ .

(c) This follows from the well known fact that the limsup of measurable functions is

measurable, e.g. [17, Theorem 2.7].

(d) This follows immediately from Proposition 2 of the Appendix since κ f (·, x̄) ∈
L2

1(R
�,M, ρ).

(e) This is an immediate consequence of [14, Proposition 2.1.2].

(f) By definition, f (ξ, x) − f (ξ, x̄) ∈ κ f (ξ, x̄)B for all x ∈ ε(x̄)B and ξ ∈ Ξ .

Hence, for all x ∈ ε(x̄)B, f (ξ, x) − f (ξ, x̄) is a measurable selection from the

tube κ f (ξ, x̄)B on Ξ . Similarly, by [27, Theorem 9.13], any measurable selection

s(ξ) from ∂x f (ξ, x) satisfies s(ξ) ∈ κ f (ξ, x̄)B for all x ∈ ε(x̄)B. Therefore, both

inclusions follows from Lemma 11.

2.2 Subdifferential regularity

If f is an LL integrand on Ξ × U , then, by Lemma 1(e), ∂ F(x) is a nonempty,

convex, compact subset of R
n for every x ∈ U . But this does not say that ∂ F(x) is

representable in terms of ∂ f (ξ, x).

Theorem 1 (The subdifferential of F) [14, Theorem 2.7.2] Let U be an open subset

of R
n , and let f : Ξ × U → R be an LL integrand on Ξ × U with f (·, x) ∈

L1
1(R

�,M, ρ) for all x ∈ U. Then

∂ F(x) ⊆ E[∂x f (ξ, x)] ∀ x ∈ U . (5)

If, in addition, x̄ ∈ U is such that f (ξ, ·) is subdifferentially regular (see Appendix

Definition 9 (ii)) in x at x̄ for a.e. ξ ∈ Ξ , then F is subdifferentially regular at x̄ and

equality holds in (5).

Remark 1 In [14, Theorem 2.7.2], Clarke uses the hypothesis that f (ξ, ·) is subdif-

ferentially regular in x at x̄ for all ξ ∈ Ξ . However, the above result holds with

essentially the same proof.

Corollary 1 Let U be an open subset of R
n , and let f : Ξ × U → R be an LL

integrand on Ξ × U with f (·, x) ∈ L1
1(R

�,M, ρ) for all x ∈ U. If x̄ ∈ U is such

that either f (ξ, ·) is subdifferentially regular at x̄ ∈ U for a.e. ξ ∈ Ξ or − f (ξ, ·) is

subdifferentially regular at x̄ ∈ U for a.e. ξ ∈ Ξ , then equality holds in (5).

Proof If f (ξ, ·) is subdifferentially regular in x at x̄ ∈ U for a.e. ξ ∈ Ξ , then the

result follows from Theorem 1. If − f (ξ, ·) is subdifferentially regular in x at x̄ for

a.e. ξ ∈ Ξ , then, by [14, Proposition 2.3.1] and Theorem 1,

∂ F(x̄) = −∂(−F)(x̄) = −E[∂(− f )(ξ, x̄)] = E[∂ f (ξ, x̄)].
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234 J. V. Burke et al.

Note that, in opposition to Theorem 1, the corollary does not say that the hypotheses

imply that F is subdifferentially regular at x̄ . Indeed, this may not be the case. The

following example illustrates this possibility.

Example 1 Consider the Carathéodory function f (ξ, x) := −|ξ ||x |, where ξ ∼
N (0, 1), x ∈ R. It is easy to see that this function is not Clarke regular in x at

(ξ, 0) for all ξ 
= 0. In addition, the function F is not Clarke regular at x = 0. To see

this, observe that

d F(0)(w) = lim inf
τ↓0

E[ f (ξ, τw)] − E[ f (ξ, 0)]
τ

= −E[|ξ |] |w| = −
√

2

π
|w| and

d̂ F(0)(w) = lim sup
x ′→0, τ↓0

E[ f (ξ, x ′ + τw)] − E[ f (ξ, x ′)]
τ

= E[|ξ |] |w|

=
√

2

π
|w| 
= d F(0)(w).

Nonetheless, by Corollary 1, ∂ F(0) = E[∂ f (ξ, 0)]. This can also be verified by direct

computation.

Before leaving this section we provide an elementary lemma useful in the analysis

to follow.

Lemma 2 Let h : Ξ×X → R be a Carathéodory function, and let ξ ∈ Ξ be such that

h(ξ, ·) is strictly continuous and subdifferentially regular at x ∈ X. Given v ∈ R
n ,

set

�1(ξ, x; v) := lim
t↓0

h(ξ, x + 2tv)− h(ξ, x + tv)

t
and

�2(ξ, x; v) := lim
t↓0

h(ξ, x − tv)− h(ξ, x − 2tv)

t
.

Then, for any v ∈ R
n , the limits �1(ξ, x; v) and �2(ξ, x; v) exist and we have

�1(ξ, x; v) = dx h(ξ, x)(v) = sup {〈g , v〉 | g ∈ ∂x h(ξ, x) } and

�2(ξ, x; v) = −dx h(ξ, x)(−v) = inf {〈g , v〉 | g ∈ ∂x h(ξ, x) } .
(6)

Proof Strict continuity (Appendix Definition 10) tells us that

|dx h(ξ, x)(v)| ≤ ‖v‖ lipx h(ξ, x) <∞ ∀ v ∈ R
n,
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The subdifferential of measurable composite max integrands… 235

so that dx h(ξ, x)(v) is finite for all v ∈ R
n . Therefore, by (55), the limit �1(ξ, x; v)

exists and

dx h(ξ, x)(v) = 2dx h(ξ, x)(v)− dx h(ξ, x)(v)

= lim
t↓0

(
2

h(ξ, x + 2tv)− h(ξ, x)

2t
− h(ξ, x + tv)− h(ξ, x)

t

)

= lim
t↓0

h(ξ, x + 2tv)− h(ξ, x + tv)

t
.

The first equvalence in (6) now follows from (56). The second equivalence follows

from the first by replacing v by −v.

3 Smoothing functions for F(x) := E[f (�, x)]

3.1 Measurable smoothing functions

Definition 3 (Smoothing functions) [9, Definition 1] Let F : U → R , where U ⊆ R
n

is open. We say that F̃ : U × R++→ R is a smoothing function for F on U if

(i) F̃(·, μ) converges continuously to F on U in the sense of [27, Definition 5.41],

i.e., limμ↓0,x→x̄ F̃(x, μ) = F(x̄) ∀ x̄ ∈ U , and

(ii) F̃(·, μ) is continuously differentiable on U for all μ > 0.

We now construct a class of smoothing functions for the Carathéordory function f

that generate smoothing functions for F .

Definition 4 (Measurable smoothing functions) Let U ⊆ R
n be open and let f :

Ξ×U → R be a Carathéodory mapping on Ξ×U with f (·, x) ∈ L1
1(R

�,M, ρ) for

all x ∈ U . A mapping f̃ : Ξ ×U ×R++→ R is said to be a measurable smoothing

function for f on Ξ × U × R++ with smoothing parameter μ > 0 if, for all μ > 0,

f̃ (·, ·, μ) is a Carathéodory map on Ξ × U with f̃ (·, x, μ) ∈ L1
1(R

�,M, ρ) for all

(x, μ) ∈ U × R++ and the following conditions hold:

(i) The function f̃ (ξ, ·, μ) converges continuously to f (ξ, ·) on U as μ ↓ 0 for a.e.

ξ ∈ Ξ in the sense of [27, Definition 5.41], i.e.,

lim
μ↓0,x→x̄

f̃ (ξ, x, μ) = f (ξ, x̄) ∀ x̄ ∈ U and a.e. ξ ∈ Ξ, (7)

and, for every (x̄, μ̄) ∈ U ×R++, there is an open neighborhood V ⊆ U of x̄ and

a function κ f (·, x̄, μ̄) ∈ L2
1(Ξ, M, ρ) such that

| f̃ (ξ, x, μ)| ≤ κ f (ξ, x̄, μ̄) ∀ (ξ, x, μ) ∈ Ξ × V × (0, μ̄] . (8)

(ii) For all μ > 0, the gradient ∇x f̃ (ξ, x, μ) exists, is continuous on U for all ξ ∈ Ξ ,

and, for every (x̄, μ̄) ∈ U ×R++, there is an open neighborhood V ⊆ U of x̄ and

a function κ̂ f (·, x̄, μ̄) ∈ L2
1(Ξ,M, ρ) such that
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∥∥∥∇x f̃ (ξ, x, μ)

∥∥∥ ≤ κ̂ f (ξ, x̄, μ̄), ∀ (ξ, x, μ) ∈ Ξ × V × (0, μ̄] . (9)

Remark 2 Just as in Lemma 1, Lemma 11 can be applied to show that (9) implies that

∫

E

∇x f̃ (ξ, x, μ)dρ ∈
∥∥κ̂ f (·, x̄, μ̄)

∥∥
2
ρ(E)B ∀ (x, μ) ∈ V × (0, μ̄] (10)

for all E ∈ M. Note that if we assume that f̃ (ξ, ·, ·) is Lipschitz continuous, then

(8) holds. The conditions in (8) and (9) are added to the usual notion of smoothing

function in Definition 3 to facilitate the application of the Dominated Convergence

Theorem when needed.

Lemma 3 (Measurable smoothing functions yield smoothing functions) Let U ⊆ R
n

be open with X ⊆ U, and let f : Ξ×U → R be a Carathéodory mapping on Ξ×U

such that f (·, x) ∈ L1
1(Ξ,M, ρ) for all x ∈ U. Let f̃ : Ξ × U × R++ → R be a

measurable smoothing function for f on Ξ ×U × R++. Then the functions F(x) :=
E[ f (ξ, x)] and F̃(x, μ) := E[ f̃ (ξ, x, μ)] are well defined on U and U × R++,

respectively, and F̃ is a smoothing function for F on U satisfying

∇x F̃(x, μ) = E[∇x f̃ (ξ, x, μ)] ∀ (x, μ) ∈ U × R++. (11)

Proof The fact that F and F̃ are well defined follows from the definitions. It remains

only to show that F̃ is a smoothing function for F . By (7), (8) and the Dominated

Convergence Theorem, for all x ∈ U ,

lim
μ↓0,x→x̄

F̃(x, μ) = lim
μ↓0,x→x̄

E[ f̃ (ξ, x, μ)] = E

[
lim

μ↓0,x→x̄
f̃ (ξ, x, μ)

]
= E[ f (ξ, x)]

which establishes (i) in Definition 3.

Next let (x̄, μ̄) ∈ U × R++ and d ∈ R
n with d 
= 0. By (9) and the Mean Value

Theorem (MVT), for all small t > 0 and ξ ∈ Ξ there is a zt (ξ) on the line segment

joining x̄ + td and x̄ such that

∣∣∣∣∣
f̃ (ξ, x̄ + td, μ̄)− f̃ (ξ, x̄, μ̄)

t

∣∣∣∣∣ = |∇x f̃ (ξ, zt (ξ), μ̄)T d| ≤ κ̂ f (ξ, x̄, μ̄) ‖d‖ .

Hence, by the Dominated Convergence Theorem,

lim
t↓0

F̃(x̄ + td, μ̄)− F̃(x̄, μ̄)

t
= lim

t↓0
E

[
f̃ (ξ, x̄ + td, μ̄)− f̃ (ξ, x̄, μ̄)

t

]

= E

[
lim
t↓0

f̃ (ξ, x̄ + td, μ̄)− f̃ (ξ, x̄, μ̄)

t

]

=
〈
E[∇x f̃ (ξ, x̄, μ̄)] , d

〉
.
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The subdifferential of measurable composite max integrands… 237

Since this is true for all choices of d ∈ R
n , we have ∇x F̃(x̄, μ̄) = E[∇x f̃ (ξ, x̄, μ̄)]

which establishes (11).

Finally we show that ∇x F̃(·, μ) is continuous on U for all μ > 0. Let (x̄, μ̄) ∈
U × R++. By (11), (9) and the Dominated Convergence Theorem,

lim
x→x̄
∇x F̃(x, μ̄) = lim

x→x̄
E[∇x f̃ (ξ, x, μ̄)]

= E

[
lim
x→x̄
∇x f̃ (ξ, x, μ̄)

]
= E[∇x f̃ (ξ, x̄, μ̄)] = ∇x F̃(x̄, μ̄).

3.2 Gradient consistency of F(x) = E[f(�, x)]

A key concept relating smoothing to the variational properties of F is the notion of

gradient consistency introduced in [9].

Definition 5 (Gradient consistency of smoothing functions) Let U ⊆ R
n be open and

let F : U → R be such that F̃ : U × R++ → R is a smoothing function for F on

U . We say that F̃ is gradient consistent at x̄ ∈ U if

co

{
Limsup
μ↓0,x→x̄

∇x F̃(x, μ)

}
= ∂ F(x̄),

where the limit superior is taken in the multi-valued sense (57).

When F̃ ≡ F , the definition reduces to that of the Clarke subdifferential for the

finite-dimensional case (Appendix Definition 9).

As a first step toward understanding how the gradient consistency of a measurable

smoothing function for f can be used to construct a smoothing function for F , we

give the following result.

Theorem 2 (Gradient consistency and subgradient approximation) Let U ⊆ R
n , x̄ ∈

U, and f : Ξ×U → R be as in Corollary 1, and suppose that f̃ : Ξ×U×R++→ R

is a measurable smoothing function for f on Ξ×U×R++. If, for a.e. ξ ∈ Ξ , f̃ (ξ, ·, ·)
is gradient consistent at x̄ , i.e.

co

{
Limsup
x→x̄,μ↓0

∇x f̃ (ξ, x, μ)

}
= ∂x f (ξ, x̄) a.e. ξ ∈ Ξ, (12)

then F̃(x, μ) := E[ f̃ (ξ, x, μ)] is a smoothing function for F(x) := E[ f (ξ, x)]
satisfying

∂ F(x̄) = E

[
co

{
Limsup
x→x̄,μ↓0

∇x f̃ (ξ, x, μ)

}]
= co E

[
Limsup
x→x̄,μ↓0

∇x f̃ (ξ, x, μ)

]
. (13)

Proof The fact that F̃ is a smoothing function for F comes from Theorem 3. Therefore,

the result is an immediate consequence of Corollary 1 and the Lyapunov convexity

theorem [30].
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The B-subdifferential, denote ∂ B , is defined in Definition 9 part (iii) of the

“Appendix”. In particular, we know that for a fixed ξ ∈ Ξ ,

∂ B
x f (ξ, x) ⊆ ∂ M

x f (ξ, x) ⊆ ∂x f (ξ, x)

and

co ∂ B
x f (ξ, x) = co ∂ M

x f (ξ, x) = ∂x f (ξ, x).

Moreover, by [2, Theorems 1 and 3]

E[∂ B
x f (ξ, x)] = E[∂ M

x f (ξ, x)] = E[∂x f (ξ, x)].

If we replace (12) by
{

Limsup
x→x̄,μ↓0

∇x f̃ (ξ, x, μ)

}
= ∂ B

x f (ξ, x̄) a.e. ξ ∈ Ξ, (14)

then we have the subdifferential inclusion

∂ F(x̄) = E

[
co

{
Limsup
x→x̄,μ↓0

∇x f̃ (ξ, x, μ)

}]
= E[co ∂ B

x f (ξ, x)] = E[∂ B
x f (ξ, x)].

(15)

Obviously, condition (14) implies condition (12). The above argument also holds if

we replace ∂ B in (14)–(15) by ∂ M . However, the converse is not true. For example,

consider f (ξ, x) = −ξ |x |, where ξ follows uniform distribution over [0.5, 1.5]. It is

clear that both − f (ξ, x) and −E[ f (ξ, x)] = |x | are subdifferentially regular. Taking

f̃ (ξ, x, μ) := −ξ
√

x2 + μ, we have

Limsup
x→0,μ↓0

∇x f̃ (ξ, x, μ) = Limsup
x→0,μ↓0

ξ x√
x2 + μ

= ∂x f (ξ, 0) = [−ξ, ξ ] a.e. ξ ∈ Ξ,

and

∂E[ f (ξ, 0)] = E[∂x f (ξ, 0)] = [−1, 1].

However,

∂ B
x f (ξ, 0) = {−ξ, ξ}, ∂ B

E[ f (ξ, 0)] = {−1, 1}, E[∂ B
x f (ξ, 0)] = [−1, 1]

∂ M
x f (ξ, 0) = {−ξ, ξ}, ∂ M

E[ f (ξ, 0)] = {−1, 1}, E[∂M
x f (ξ, 0)] = [−1, 1].

Thus (14) does not hold for either ∂ B or ∂ M . This simple example tells us that even for

a function f (ξ, x) for which − f (x, ξ) is subdifferentially regular in x for all ξ ∈ Ξ ,

it may not be the case that

∂ B
E[ f (ξ, x)] = E[∂ B

x f (ξ, x)], ∂ M
E[ f (ξ, x)] = E[∂ M

x f (ξ, x)]
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and the gradient sub-consistency. Therefore, in this paper we consider the smoothing

approximation for the Clarke subdifferential.

The pointwise condition (12) does not imply the gradient consistency of F̃ at x̄ . To

obtain such a result from (13) we also need to know that

co E

[
Limsup
x→x̄,μ↓0

∇x f̃ (ξ, x, μ)

]
= co

{
Limsup
x→x̄,μ↓0

E[∇x f̃ (ξ, x, μ)]
}

. (16)

The equivalence (16) is nontrivial requiring stronger hypotheses.

Since ∂x f (ξ, x) is compact-, convex-valued in x , the left-hand side of (12) is

contained in the right-hand side if and only if for a.e. ξ ∈ Ξ and ε > 0 there is a

δ(ξ, x̄, ε) > 0 such that

∇x f̃ (ξ, x, μ) ∈ ∂x f (ξ, x̄)+ εB ∀ (x, μ) ∈ (x̄, 0)+ δ(ξ, x̄, ε)B with μ > 0.

This motivates the hypotheses employed in the following theorem.

Theorem 3 (Gradient sub-consistency) Let U ⊆ R
n and f : Ξ × U → R be as in

Corollary 1, and suppose that f̃ : Ξ × U × R++ → R is a measurable smoothing

function for f on Ξ ×U ×R++. If x̄ ∈ U is such that there exists ν̄ ∈ (0, 1) such that

for all ν ∈ (0, ν̄) there exist δ(ν, x̄) > 0 and Ξ(ν, x̄) ∈M with ρ(Ξ(ν, x̄)) ≥ 1− ν

satisfying for a.e. ξ ∈ Ξ(ν, x̄)

∇x f̃ (ξ, x, μ) ∈ ∂x f (ξ, x̄)+ νB ∀ (x, μ) ∈ [(x̄, 0)+ δ(ν, x̄)(B× (0, 1))], (17)

then

co

{
Limsup
x→x̄,μ↓0

∇ F̃(x, μ)

}
⊆∂ F(x̄) = co E

[
Limsup
x→x̄,μ↓0

∇x f̃ (ξ, x, μ)

]
. (18)

Proof Since ∂ F(x) is convex, we need only show that the inclusion, without the

convex hull, is satisfied. Let g ∈ Limsupx→x̄,μ↓0 ∇ F̃(x, μ). Then there is a sequence

(xk, μk) → (x̄, 0) with μk > 0 such that ∇ F̃(xk, μk) → g. By Lemma 1(d), there

is a measurable selection s from ∂x f (·, x̄). Let ν ∈ (0, ν̄), and let k̄ be such that

(xk, μk) ∈ (x̄, 0)+ δ(ν, x̄)(B× (0, 1)) for all k ≥ k̄. For all k ≥ k̄, define

qk(ξ) :=
{
∇x f̃ (ξ, xk, μk), ξ ∈ Ξ(ν, x̄)

s(ξ), ξ ∈ Ξ\Ξ(ν, x̄).

Then

g = lim
k→∞

∇x F̃(xk, μk)

= lim
k→∞

∫

ξ∈Ξ(ν,x̄)

∇x f̃ (ξ, xk, μk)dξ +
∫

ξ∈Ξ/Ξ(ν,x̄)

∇x f̃ (ξ, xk, μk)dξ
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= lim
k→∞

∫

ξ∈Ξ
qk(ξ)dξ −

∫

ξ∈Ξ\Ξ(ν,x̄)

s(ξ)dξ +
∫

ξ∈Ξ\Ξ(ν,x̄)

∇x f̃ (ξ, xk, μk)dξ

∈ E[∂x f (ξ, x̄)]+νB+ν
∥∥κ f (·, x̄)

∥∥
2

B+ν
∥∥κ̂ f (·, x̄, μ̄)

∥∥
2

B

= ∂ F(x̄)+ ν(1+
∥∥κ f (·, x̄)

∥∥
2
+
∥∥κ̂ f (·, x̄, μ̄)

∥∥
2
)B,

where the second equation follows from Theorem 3, the inclusion follows from (17),

Theorem 1(f), and (10), and the final equation follows from Corollary 1. Since ν ∈
(0, ν̄) was chosen arbitrarily, this proves the inclusion in (18) since ∂ F(x̄) is closed.

The equivalence in (18) follows from Theorem 2 since (17) implies (12).

In what follows, we refer to (18) as the gradient sub-consistency property for the

smoothing function F̃ at x̄ , and we refer to (17) as the uniform subgradient approxi-

mation property for the measurable smoothing function f̃ at x̄ .

4 Composite max (CM) integrands

In this section we introduce the class of CM integrands, and smoothing functions for

these integrands, that satisfy the properties required for the application of the results

of the previous sections. The nonsmoothness of CM integrands arises through compo-

sition with finite piecewise linear convex functions on R. The simplest such piecewise

linear functions is given by (t)+ := max{0, t}. Indeed, all piecewise linear convex

functions can be built up from this basic function. Integral smoothing techniques

based on (t)+ first appeared in the work of Chen and Mangasarian [8] and were later

expanded by Chen [9] to a broader class of non-smooth functions under composition.

In [6] it is shown that certain economies are possible by using the piecewise linear

convex functions directly in the construction of smoothers. We use these here. As in

[5,6,8,9], we convolve these piecewise linear functions with a density to obtain a rich

class of measurable smoothing mappings useful in applications. We begin with the

following definition.

Definition 6 (Measurable mappings with amenable derivatives) Let Ξ×X ⊆ R
�×R

n

and let U be an open set containing X . We say that the mapping g : Ξ × U → R
m

is a measurable mapping with amenable derivative if the following two conditions are

satisfied:

(i) Each component of g is a Carathéodory mapping and, for all ξ ∈ Ξ , g(ξ, ·) is

continuously differentiable in x on U ;

(ii) For all x ∈ U , the gradient ∇x g(ξ, x) is locally L2 bounded in x in the sense that

there is a function κ̂g : Ξ × U → R satisfying κ̂g(·, x) ∈ L2
1(R

�,M, ρ) for all

x ∈ U and

∀ x̄ ∈ X ∃ ε(x̄) > 0 such that ‖∇x g(ξ, x)‖ ≤ κ̂g(ξ, x̄) ∀ x ∈ Bε(x̄)(x̄).

Define κ̂ E
g (x̄) := E[κ̂g(ξ, x̄)].

We now define CM integrands.
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Definition 7 (Composite max (CM) Integrands) A CM integrand on Ξ × X is any

mapping of the form

f (ξ, x) := q(c(ξ, x)+ C(g(ξ, x))) (19)

for which there exists an open set U containing X such that

(i) C : R
m → R

m is of the form C(y) := [p1(y1), p2(y2), . . . , pm(ym)]T , where

pi : R → R (i = 1, . . . , m) are finite piecewise linear convex functions having

finitely many points of nondifferentiability,

(ii) the mappings c and g are measurable mappings with amenable derivatives mapping

Ξ ×R
n to R

m and having common underlying open set U containing X on which

c(ξ, ·) and g(ξ, ·) are continuously differentiable in x on U for all ξ ∈ Ξ , and

(iii) the mapping q : Rm → R is continuously differentiable with Lipschitz continuous

derivative on the set

Q := cl (co {c(ξ, x)+ C(g(ξ, x)) | (ξ, x) ∈ Ξ ×U }).

Let κ̄q be a Lipschitz constant for ∇q on Q.

Remark 3 The family of CM integrands is designed to include many important classes

of functions useful in applications, e.g. the gap functions of the Nonlinear Complemen-

tarity Problem (NCP); the conditional value at risk (CVaR) [24]; and the difference of

two Clarke regular functions where nonsmoothness occurs due the presence of com-

positions with piecewise convex functions. Ralph and Xu [22] discussed Aumann’s

integral of piecewise random set-valued mappings which include some special CM

integrands. The censored regression problem in statistics and machine learning has

many important applications [3] and takes the form

min
x

E[(max(a(ξ)T x, 0)− b(ξ))2].

The function f (ξ, x) := (max(a(ξ)T x, 0)− b(ξ))2 is an example of a CM integrand.

In this case, m = 1, and

c(ξ, x) := −b(ξ), C(y) := max(y, 0)− b(ξ), g(ξ, x) := a(ξ)T x, q(z) := z2.

Following [6, Section 4], we assume with no loss of generality that for each i =
1, . . . , m, there is a positive integer ri and scalar pairs (ai j , bi j ), i = 1, . . . , m, j =
1, . . . , ri such that pi (t) := max

{
ai j t + bi j | j = 1, . . . , ri

}
, where ai1 < ai2 <

· · · < ai(ri−1) < airi
. Again with no loss of generality, we assume that the scalar pairs

(ai j , bi j ), i = 1, . . . , m, j = 1, . . . , ri are coupled with a scalar partition of the real

line −∞ = ti1 < ti2 < · · · < tiri
< ti(ri+1) = ∞ such that for all j = 1, . . . , ri − 1,

ai j ti( j+1) + bi j = ai( j+1)ti( j+1) + bi( j+1) and

pi (t) =

⎧
⎨
⎩

ai1t + bi1, t ≤ ti2,

ai j t + bi j , t ∈ [ti j , ti( j+1)] ( j ∈ {2, . . . , ri − 1}),
airi

t + biri
, t ≥ tiri

.
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This representation for the functions pi gives

∂ pi (t) =
{

ai j , ti j < t < ti( j+1), j = 1, . . . , ri

[ai( j−1), ai j ], t = ti j , j = 2, . . . , ri .
(20)

It is easily shown that the functions pi and C (19) are globally Lipschitz continuous

with common Lipschitz constant

κ̄C := max{|ai j | | i = 1, . . . , m, j = 1 . . . , ri }. (21)

Clearly CM integrands on Ξ× X are Carátheodory functions on Ξ× X . Moreover,

CM integrands are explicitly constructed so that they are also LL integrands on Ξ×X .

We record this easily verified result in the next lemma.

Lemma 4 (CM Integrands are LL Integrands) Let f : Ξ × X → R be an CM

integrand as in (19). Then f is an LL integrand on Ξ × X, where, for all x̄ ∈ X, one

may take

κ f (·, x̄) := κ̄q[κ̂c(·, x̄)+ κ̄C κ̂g(·, x̄)], (22)

where κ̄q and κ̄C are defined in Definition 7 and (21), respectively, and κ̂c and κ̂g are

given in Definition 6.

Since the functions pi are continuously differentiable on the open set R\{ti2, . . . , tiri
}

and the functions q, c(ξ, ·), and g(ξ, ·) are continuously differentiable, the set on which

the CM integrand f (ξ, ·) is continuously differentiable is easily identified.

Proposition 1 Let f : Ξ × X → R be a CM integrand as in (19), and, for each

i = 1, . . . , m, set qi (ξ, x) := pi (gi (ξ, x)). Given (ξ, x) ∈ Ξ ×U set

Ũi (ξ) :=
{

x ∈ U

∣∣∣ x /∈ (gi (ξ, ·))−1({ti2, . . . , tiri
})
}

, i = 1, . . . , m,

Ξ̃i (x) :=
{
ξ ∈ Ξ

∣∣∣ ξ /∈ (gi (·, x))−1({ti2, . . . , tiri
})
}

, i = 1, . . . , m,

Ũ (ξ) :=
m⋂

i=1

Ũi (ξ) and Ξ̃(x):=
m⋂

i=1

Ξ̃i (x).

Then qi (ξ, ·) is continuously differentiable on the open set Ũi (ξ) with

∇x qi (ξ, x) = ∇ pi (gi (ξ, x))∇gi (ξ, x), i = 1, . . . , m,

and f (ξ, ·) is continuously differentiable and subdifferentially regular on the open set

Ũ (ξ) with

∇x f (ξ, x)=(∇xc(ξ, x)+ diag(∇ pi (gi (ξ, x)))∇x g(ξ, x))T∇q(c(ξ, x)+ C̃(g(ξ, x̄)))
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and ∂x f (ξ, x) = {∇x f (ξ, x)}. Therefore, given x ∈ U, f (ξ, ·) is continuously differ-

entiable and subdifferentially regular at x for all ξ ∈ Ξ̃(x). In particular, if x ∈ U

is such that ρ(Ξ̃(x)) = 1, then f (ξ, ·) is continuously differentiable and subdifferen-

tially regular at x for a.e. ξ ∈ Ξ .

Proof Observe that each of the sets Ũi (ξ) is open due to the continuity of gi (ξ, ·). In

addition, given x ∈ Ũi (ξ), t := gi (ξ, x) is a point of continuous differentiability for

pi . Hence, by a standard chain rule with the amenable derivatives of c(ξ, ·) and g(ξ, ·)
(e.g. see [28, Theorem 9.15]), qi (ξ, ·) is continuously differentiable at every x ∈ Ũi (ξ).

Therefore, every qi (ξ, ·), i = 1, . . . , m is continuously differentiable for x ∈ Ũ (ξ),

and so, by the same standard chain rule, f (ξ, ·) is continuously differentiable on Ũ (ξ)

with it’s gradient as given. The subdifferential regularity follows from [27, Theorem

9.18 and Exercise 9.64].

Given x ∈ U and ξ ∈ Ξ̃(x) we have gi (ξ, x) /∈ {ti2, . . . , tiri
} for i = 1, . . . , m.

Hence x ∈ Ũ (ξ) so that f (ξ, ·) is continuously differential and subdifferentially

regular at x as required. The final statement of the proposition is now evident.

4.1 Smoothing CM integrands

We use the techniques described in [6] to smooth CM integrands. Let β : R → R+
be a non-negative, symmetric, piecewise continuous density function satisfying

∫

R

β(t) dt = 1, β(t) = β(−t) and ω :=
∫

R

|t |β(t) dt <∞. (23)

We denote the distribution function for the density β by φ, i.e., φ : R→ [0, 1] is given

by φ(x) =
∫ x

−∞ β(t) dt . Since β is symmetric and β(·) ≥ 0, φ is a non-decreasing

continuous function satisfying

φ(0) = 1

2
, 1− φ(x) = φ(−x), lim

x→∞
φ(x) = 1 and lim

x→−∞
φ(x) = 0. (24)

Moreover, for every α ∈ (0, 1), φ−1(α) is a bounded interval in R, and so

φ−1
min(α) := inf

{
ζ

∣∣∣ ζ ∈ φ−1(α)
}
≤ φ−1

max(α) := sup
{
ζ

∣∣∣ ζ ∈ φ−1(α)
}

(25)

with both φ−1
min(α) and φ−1

max(α) finite. Finally, we note that since β is a non-negative,

piecewise continuous density function, it must be bounded on R, so that βmax :=
sup {β(t) | t ∈ R } < +∞ which implies that φ is Lipschitz continuous on R with

modulus βmax, i.e., |φ(t1)− φ(t2)| ≤ βmax|t1 − t2|.

Lemma 5 [6, Lemma 4.1] For each i = 1, . . . , m, let pi : R → R be the finite

max-function defined above. Furthermore, let β : R → R+ be a non-negative, sym-

metric, piecewise continuous density satisfying (23). Then, for each i = 1, . . . , m, the

convolution
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p̃i (t, μ) :=
∫

R

pi (t − μs)β(s) ds

is a (well-defined) smoothing function with

∇t p̃i (t, μ) = ai1

(
1− φ

( t − ti2

μ

))

+
ri−1∑

j=2

ai j

(
φ
( t − ti j

μ

)
− φ

( t − ti( j+1)

μ

))
+ airi

φ
( t − tiri

μ

)
,

(26)

ηi (t) := lim
μ↓0
∇t p̃i (t, μ) =

{
ai j , ti j < t < ti( j+1), j = 1, . . . , ri

1
2
(ai( j−1) + ai j ), t = ti j , j = 2, . . . , ri

(27)

is an element of ∂ pi (t), and Limsupt→t̄,μ↓0 ∇t p̃i (t, μ) = ∂ pi (t̄), ∀t̄ ∈ R. In addi-

tion, for t̂, t̄ ∈ R and 0 < μ̂ ≤ μ̄, we have

| p̃i (t̂, μ̂)− p̃i (t̄, μ̄)| ≤ κ̄C [ |t̂ − t̄ | + |μ̂− μ̄| ] and (28)

|∇t p̃i (t̂, μ̂)− ∇t p̃i (t̄, μ̄)| ≤ 2ri

μ̂
[ |t̂ − t̄ | + (1− μ̂/μ̄) max

j
|t̄ − ti j | ]. (29)

Remark 4 The bounds (28) and (29) do not appear in [6], but are straightforward to

verify directly from the definitions and (26).

Theorem 4 (Smoothing of CM Integrands) [6, Theorem 4.6] Let f be a CM integrand.

Then f̃ : Ξ ×U × R++→ R given by

f̃ (ξ, x, μ) := q(c(ξ, x)+ C̃(g(ξ, x), μ)), (30)

where C̃(y, μ) := [ p̃1(y1, μ), p̃2(y2, μ), . . . , p̃m(ym, μ)]T with each p̃i is as given

in Lemma 5, is a measurable smoothing function for f . If, furthermore, (ξ, x̄) ∈ Ξ×U

is such that rank∇x g(ξ, x̄) = m, then, for all μ > 0,

∇x f̃ (ξ, x̄, μ) = (∇xc(ξ, x̄)+ diag(∇t p̃i (gi (ξ, x̄), μ))∇x g(ξ, x̄))T∇q(c(ξ, x̄)

+ C̃(g(ξ, x̄)))
(31)

and

Limsup
x→x̄,μ↓0

∇x f̃ (ξ, x, μ) ⊆ ∂x f (ξ, x̄) and co

{
Limsup
x→x̄,μ↓0

∇x f̃ (ξ, x, μ)

}
= ∂x f (ξ, x̄),
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where

∂x f (ξ, x̄)=(∇xc(ξ, x̄)+diag(∂t pi (gi (ξ, x̄)))∇x g(ξ, x̄))T∇q(c(ξ, x̄)+ C(g(ξ, x̄))).

We now proceed to show that the function f̃ defined in (30) is a measurable smooth-

ing function for f in the sense of Definition 7. First observe that the expression for

∇t p̃i (t, μ) in Lemma 5 implies the bound

2κ̄C ≥ ‖diag(∇t p̃i (gi (ξ, x̄), μ)))‖∞ ∀ (ξ, x̄, μ) ∈ Ξ × X × R++. (32)

Since this bound is independent of μ, we can use it in conjunction with the represen-

tation (31) to provide a Lipschitz constant for f̃ analogous to (22).

Lemma 6 (Smoothed CM integrands are LL integrands) Let f̃ : Ξ × X → R be

as in Theorem 4. Then, for every μ ∈ R++, f̃ (·, ·, μ) is an LL integrand on Ξ × X,

where, for all x̄ ∈ X, one may take κ
f̃μ

(·, x̄) := κ̄q[κ̂c(·, x̄)+ 2κ̄C κ̂g(·, x̄)].

We also have the following bounds for the functions pi , p̃i , ∇t p̃i , and ηi .

Lemma 7 For i = 1, . . . , m, let ∇t p̃i and ηi be as in Lemma 5, and set

γi (t) :=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

|t − t2|, if ri = 2, t 
= t2,

+∞, if ri = 2, t = t2,

min
{
|t − ti j |

∣∣ j ∈{2, . . . , ri }, t 
= ti j

}
, if ri ≥3, t 
= ti j , j=1, . . . , ri ,

min
{
|ti j̄ − ti( j̄−1)|, |ti j̄ − ti( j̄+1)|

}
, if ri ≥3, t= ti j̄ , j̄=2, . . . , ri .

Then, for each i = 1, . . . , m,

κ̄C (|t̄ − t | + μω) ≥ | pi (t̄)− p̃i (t, μ) | ∀ t̄, t ∈ R, and (33)

bi (t, μ) := (r̄ + 1)κ̄Cφ(−μ−1γi (t)) ≥ |∇t p̃i (t, μ)− ηi (t) |, (34)

where ω is defined in (23), κ̄C is defined in (21) and r̄ := max{r1, . . . , rm}. Moreover,

for i = 1, . . . , m, bi is continuous on R × (0,+∞) when ri = 2 and is continuous

on (R\{ti2, . . . , tiri
}) × (0,+∞) when ri ≥ 3. In addition, for all (t, μ) ∈ R ×

(0,∞), 0 ≤ b(t, μ) ≤ 1
2
(r̄ + 1)κ̄C , and b(t, ·) is non-decreasing on (0,+∞) with

limμ↑∞ b(t, μ) = 1
2
(r̄ + 1)κ̄C and limμ↓0 b(t, μ) = 0 .

Proof The bound (33) is given in the proof of [6, Lemma 4.1]. Next, fix i ∈ {1, . . . , m}.
Since i is fixed, we suppress it in the proof to follow. Let t ∈ R and let k denote some

integer in {2, . . . , r}. One of the following five mutually exclusive cases must hold:

(i) r = 2 and t 
= t2, (ii) r = 2 and t = t2, (iii) r ≥ 3 and (t < t2 or t > tr ), (iv) r ≥ 3

and t = tk , and (v) r ≥ 3 and tk < t < tk+1 with 2 ≤ k ≤ r − 1. Each of the five

cases is addressed separately. In each case, we make free use of the properties of the

function φ as described in (23)–(25).

(i) r = 2 and t 
= t2 :

| ∇t p̃i (t, μ)− ηi (t) | ≤ r κ̄Cφ(μ−1(|t − t2|)) = r κ̄Cφ(−μ−1γ (t)).
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(ii) k = 2 and t = t2 :

| ∇t p̃i (t, μ)− ηi (t) | = 0 = φ(−μ−1γ (t)).

(iii) r ≥ 3 and (t < t2 or t > tr ) :

(t < t2) : | ∇t p̃i (t, μ)− ηi (t) | ≤r κ̄Cφ(μ−1(t − t2)) =r κ̄Cφ(−μ−1γ (t)).

(t > tr ) : | ∇t p̃i (t, μ)− ηi (t) | ≤r κ̄C

(
1− φ(μ−1(t − tr ))

)
=r κ̄Cφ(μ−1(tr − t))

=r κ̄Cφ(−μ−1γ (t)).

(iv) r ≥ 3 and t = tk :

| ∇t p̃i (t, μ)− ηi (t) | ≤ (k − 2)κ̄C

(
1− φ(μ−1(t − tk−1))

)

+
∣∣∣∣ak−1

(
φ(μ−1(t−tk−1))−

1

2

)
+ak

(1

2
−φ(μ−1(t−tk+1))

)
− 1

2
(a(k−1)+ak)

∣∣∣∣

+ (r − k)κ̄Cφ(μ−1(t − tk+1))

≤ (k − 1)κ̄C

(
1− φ(μ−1(t − tk−1))

)
+ (r − k + 1)κ̄Cφ(μ−1(t − tk+1))

= (k − 1)κ̄Cφ(μ−1(tk−1 − t))+ (r − k + 1)κ̄Cφ(μ−1(t − tk+1))

≤ r κ̄Cφ(−μ−1γ (t)).

(v) r ≥ 3 and tk < t < tk+1 with 2 ≤ k ≤ r − 1 :

| ∇t p̃i (t, μ)− ηi (t) | ≤ (k − 1)κ̄C

(
1− φ(μ−1(t − tk−1))

)

+ (r − k)κ̄Cφ(μ−1(t − tk+1))

+
∣∣∣ak

(
φ(μ−1(t − tk))− φ(μ−1(t − t(k+1)))

)
− ak

∣∣∣

≤ kκ̄C

(
1− φ(μ−1(t − tk))

)
+ (r − k + 1)κ̄Cφ(μ−1(t − tk+1))

= kκ̄Cφ(μ−1(tk − t))+ (r − k + 1)κ̄Cφ(μ−1(t − tk+1))

≤ (r + 1)κ̄Cφ(−μ−1γ (t)).

The bound (34) follows. The properties stated for the function b follow from its

definition.

Theorem 5 (Measurable Smoothing Functions for CM Integrands) Let f be a CM

integrand and let f̃ : Ξ × U × R++ → R be as given in Theorem 4. Then f̃ is

a measurable smoothing function for f on Ξ × U × R++. Moreover, the functions

F(x) := E[ f (ξ, x)] and F̃(x, μ) := E[ f̃ (ξ, x, μ)] are well defined on U and U ×
R++, respectively, with F̃ a smoothing function for F on U.
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Proof By Lemma 4, we need only establish (i) and (ii) in Definition 4 to show that f̃

is a measurable smoothing function for f . First note that the bound (33) in Lemma 7

shows that (7) in part (i) in Definition 4(i) is satisfied. The bound (8) is also satisfied

since, by Lemma 6,

| f̃ (ξ, x, μ)| ≤ | f̃ (ξ, x̄, μ)| + κ̄q[κ̂c(ξ, x̄)+ 2κ̄C κ̂g(ξ, x̄)]

∀ (ξ, x, μ) ∈ Ξ ×Bε(x̄)× (0, μ̄] (see Definition 2 and Lemma 4 for the definition of

the terms in this bound). Hence Definition 7(i) is satisfied.

By (31), for all μ > 0, the gradient ∇x f̃ (ξ, x, μ) exists, and ∇x f̃ (ξ, ·, μ) is con-

tinuous on U for all ξ ∈ Ξ . Also, by (31), Definition 6 and (32) (or, more simply

Lemma 6),

|∇x f̃ (ξ, x, μ)| ≤ κ̄q [κ̂c(ξ, x̄)+ 2κ̄C κ̂g(ξ, x̄)] ∀ (ξ, x, μ) ∈ Ξ × Bε(x̄)(x̄)× (0, μ̄],

which establishes a bound stronger than (9) in Definition 7(ii) since it is independent

of μ.

The final statement of the theorem follows from Lemma 3.

4.2 Gradient sub-consistency of CM integrands

We now examine conditions under which the smoothing (30) of CM integrands satisfy

the gradient sub-consistency property (18). Our approach is to develop conditions

under which Theorem 3 can be applied. The key condition in this regard is the uniform

subgradient approximation property (17). This property is equivalent to saying that

there exists ν̄ ∈ (0, 1) such that for all ν ∈ (0, ν̄) there exist δ(ν, x̄) > 0 and

Ξ(ν, x̄) ∈M with ρ(Ξ(ν, x̄)) ≥ 1− ν satisfying, for a.e. ξ ∈ Ξ(ν, x̄),

dist
(
∇x f̃ (ξ, x, μ) | ∂x f (ξ, x̄)

)
≤ ν ∀ (x, μ)∈[(x̄, 0)+ δ(ν, x̄)(B× (0, 1))].

(35)

To establish this condition, we use Theorem 4 to derive a bound on the distance to

∂x f (ξ, x̄) in terms of the distances to the subdifferentials ∂t pi (gi (ξ, x̄)). For this we

require the following Lipschitz hypothesis on the Jacobians ∇q, ∇x g and ∇x c: for all

x̄ ∈ U , there is a δ̄(x̄) > 0 for which there exist kg(x̄) > 0 and kc(x̄) > 0 such that,

for all ξ ∈ Ξ and x ∈ Bδ̄(x̄)(x̄),

‖∇q(y)−∇q(ȳ)‖ ≤ κ̄q‖y − ȳ‖
‖∇x g(ξ, x)−∇x g(ξ, x̄)‖ ≤ kg(x̄)‖x − x̄‖, and

‖∇x c(ξ, x)− ∇x c(ξ, x̄)‖ ≤ kc(x̄)‖x − x̄‖ ∀ ξ ∈ Ξ, x ∈ Bδ̄(x̄)(x̄),

(36)

where κ̄q is the Lipschitz constant for ∇q given in Definition 6. The Lipschitz conti-

nuity of∇x c and∇x g on Bδ̄(x̄)(x̄) uniformly in ξ on Ξ implies that these functions are
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bounded on Bδ̄(x̄)(x̄) uniformly in ξ on Ξ . Denote these bounds by κc(x̄) and κg(x̄),

respectively. We also assume that ∇q is bounded by κq. Taken together, we have

‖∇q‖ ≤ κq, ‖∇x c(ξ, x)‖ ≤ κc(x̄) and

‖∇x g(ξ, x)‖ ≤ κg(x̄) ∀ (ξ, x) ∈ Ξ × Bδ̄(x̄)(x̄).
(37)

Lemma 8 Let f be a CM integrand as given in Definition 7 and let f̃ be the smoothing

function for f as in Theorem 4 for which (36) and (37) hold, and set

K1(x̄) := [κq(kc(x̄)+2
√

mkg(x̄)κ̄C )+ κ̄q(κc(x̄)+κ̄Cκg(x̄))(κc(x̄)+
√

mκg(x̄)κ̄C )],
K2(x̄) :=

√
mωκ̄q κ̄C (κc(x̄)+

√
mκg(x̄)κ̄C ), and

K3(x̄) :=
√

mκqκg(x̄).

If x̄ ∈ U is such that rank∇x g(ξ, x) = m for all x ∈ Bδ̄(x̄)(x̄) for a.e. ξ ∈ Ξ , then

dist
(
∇x f̃ (ξ, x, μ) | ∂x f (ξ, x̄)

)

≤ K1(x̄)‖x − x̄‖ + K2(x̄)μ

+ K3(x̄) max
i=1,...,m

dist (∇t p̃i (gi (ξ, x), μ) | ∂ pi (gi (ξ, x̄))) (38)

for all (ξ, x) ∈ Ξ × Bδ̄(x̄)(x̄) and μ > 0.

Proof Let x ∈ Bδ̄(x̄)(x̄) and set Y = diag(y) and Z := diag(z) where yi :=
∇t p̃i (gi (ξ, x), μ)) and zi ∈ ∂ pi (gi (ξ, x̄)), i = 1, . . . , m. Then, by Theorem 4, for

a.e. ξ ∈ Ξ ,

g̃ := ∇x f̃ (ξ, x, μ) = (∇xc(ξ, x)+ Y∇x g(ξ, x))T∇q(c(ξ, x)+ C̃(g(ξ, x)))

and

g := (∇xc(ξ, x̄)+ Z∇x g(ξ, x̄))T∇q(c(ξ, x̄)+ C(g(ξ, x̄))) ∈ ∂x f (ξ, x̄).

By using the bound (33), the constants defined in (36) and (37), and the fact that

‖·‖2 ≤
√

m ‖·‖∞ on R
m , we have

‖g̃ − g‖ ≤ [(kc(x̄)+ 2
√

mkg(x̄)κ̄C ) ‖x − x̄‖ + κg(x̄) ‖Y − Z‖]κq

+ [κc(x̄)+
√

mκg(x̄)κ̄C ]κ̄q

[
κc(x̄) ‖x − x̄‖ +

∥∥∥C̃(g(ξ, x))− C(g(ξ, x̄))

∥∥∥
]

≤ [(kc(x̄)+ 2
√

mkg(x̄)κ̄C ) ‖x − x̄‖ + κg(x̄) ‖Y − Z‖]κq

+ [κc(x̄)+
√

mκg(x̄)κ̄C ]κ̄q [κc(x̄) ‖x − x̄‖
+κ̄C (κg(x̄) ‖x − x̄‖ +

√
mωμ)

]

≤ [κq(kc(x̄)+2
√

mkg(x̄)κ̄C )+κ̄q(κc(x̄)+κ̄Cκg(x̄))(κc(x̄)

+
√

mκg(x̄)κ̄C )] ‖x− x̄‖

123



The subdifferential of measurable composite max integrands… 249

+
√

mωκ̄q κ̄C (κc(x̄)+
√

mκg(x̄)κ̄C )μ

+
√

mκqκg(x̄) max
i=1,...,m

|∇t p̃i (gi (ξ, x), μ)−zi |, (39)

or equivalently,

‖g̃ − g‖ ≤ K1(x̄) ‖x − x̄‖ + K2(x̄)μ+ K3(x̄) max
i=1,...,m

|∇t p̃i (gi (ξ, x), μ)− zi |,

for a.e. ξ ∈ Ξ , which proves the lemma.

Lemma 8 shows that if we can obtain a bound on the distances to the subdifferentials

∂ pi (gi (ξ, x̄)) similar to the bound in (35), then we can choose δ̂(x̄) and μ small enough

to ensure that (35) also holds.

Lemma 9 Let f and f̃ satisfy the hypotheses of Lemma 8. Set

τ̄ := κ̄C (r̄ + 1)/2, ε̄ := 1

4
min

{
|ti j − ti( j+1)| | i = 1, · · · , m, j = 2, · · · , ri − 1

}

and, for every ε ∈ (0, ε̄] and x ∈ U, define

Ξ̄ε(x) :=

⎧
⎪⎪⎨
⎪⎪⎩

ξ ∈ Ξ

∣∣∣∣∣∣∣∣

∃ i ∈ {1, · · · , m}, gi (ξ, x) ∈
ri⋃

j=2

(ti j + [−ε, ε])

but gi (ξ, x) /∈ {ti1, · · · , tiri
}

⎫
⎪⎪⎬
⎪⎪⎭

.

Let x̄ ∈ U and consider the following assumption:

for any τ ∈ (0, τ̄ ), ∃ ε̃(τ, x̄) ∈ (0, ε̄), s.t. ρ(Ξ̄ε(x̄)) ≤ τ, ∀ ε ∈ (0, ε̃(τ, x̄)).

(40)

If x̄ ∈ U is such that (40) holds, then, for all i ∈ {1, . . . , m}, τ ∈ (0, τ̄ ) and ε ∈
(0, ε̃(τ, x̄)),

dist (∇t p̃i (gi (ξ, x), μ) | ∂ pi (gi (ξ, x̄)) ) ≤ τ (41)

for all ξ ∈ Ξ̄ c
ε (x̄) := Ξ\Ξ̄ε(x̄) whenever (x, μ) ∈ Bδ̃(ε,τ,x̄)(x̄) × (0, μ̃(ε, τ, x̄)),

where δ̃(ε, τ, x̄) := min{δ̄(x̄), ε/(2κg(x̄))} and

μ̃(ε, τ, x̄) := ε

−2φ−1
min

(
τ

(r̄+1)κ̄C

)

with δ̄(x̄) and κg(x̄) as given in Lemma 8 and (37), respectively.
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Proof Let δ̄(x̄), κ̄q , κq , kg(x̄), κg(x̄), kc(x̄) and κc(x̄) be as in Lemma 8 and it’s

proof. Observe that, for every ε ∈ (0, ε̄] and x ∈ U ,

Ξ̄ c
ε (x) =

{
ξ ∈ Ξ

∣∣∣∣∣
∀i ∈ {1, · · · , m}, gi (ξ, x) ∈ [ti j + ε, ti( j+1) − ε],

or gi (ξ, x) ∈ {ti1, · · · , tiri
}

}
,

and note that these sets are measurable.

By (40), for any τ ∈ (0, τ̄ ), we have ρ(Ξ̄ε(x̄)) ≤ τ for all ε ∈ (0, ε̃(τ, x̄)]. Let

ε ∈ (0, ε̃(τ, x̄)). Then, for all (ξ, x) ∈ Ξ × Bδ̃(ε,τ,x̄)(x̄), we have for i = 1, · · · , m,

‖gi (ξ, x)− gi (ξ, x̄)‖ ≤ ε
2
.

Let ε ∈ (0, ε̃(τ, x̄)] and ξ ∈ Ξ̄ c
ε (x̄). We consider two cases, both of which make

use of the following two elementary facts without reference:

(a) If t < t1 < t2, then

|φ(μ−1(t − t1))− φ(μ−1(t − t2))| ≤ φ(μ−1(t − t2)) = φ(−μ−1|t − t2|).
(b) If t > t1 > t2, then

|φ(μ−1(t − t1))− φ(μ−1(t − t2))| ≤ 1− φ(μ−1(t − t1)) = φ(−μ−1|t − t1|).

Case 1 (gi (ξ, x̄) ∈ [ti j̄ +ε, ti( j̄+1)−ε] for some j̄ ∈ {1, · · · , ri }) Let x ∈ Bδ̃(ε,τ,x̄)(x̄)

and μ > 0. Then gi (ξ, x) ∈ [ti j̄ + ε
2
, ti( j̄+1) − ε

2
] for all x ∈ Bδ̃(ε,τ,x̄)(x̄), in which

case ∇ pi (gi (ξ, x̄)) = ∇ pi (gi (ξ, x)) = ηi (gi (ξ, x)). By Lemma 7, we have

|∇t p̃i (gi (ξ, x), μ)−∇ pi (gi (ξ, x̄))|≤ (ri+1)κ̄Cφ

(−1

μ
γi (gi (ξ, x))

)
≤ (r̄+1)κ̄Cφ

(−ε

2μ

)
.

Since τ/(κ̄C (r̄+1)) ≤ 1/2 (so that φ−1
min(

τ
(r̄+1)κ̄C

) < 0 by (24)), we have the inequality

|∇t p̃i (gi (ξ, x), μ) − ∇ pi (gi (ξ, x̄))| ≤ τ whenever 0 < μ ≤ μ̃(ε, τ, x̄). Hence, for

any (x, μ) ∈ Bδ̃(ε,x̄)(x̄)× (0, μ̃(ε, τ, x̄)), we have

|∇t p̃i (gi (ξ, x), μ)− ∇ pi (gi (ξ, x̄))| ≤ τ.

Case 2 (gi (ξ, x̄) = ti j̄ for some j̄ ∈ {2, · · · , ri }) In this case ∂ pi (gi (ξ, x̄)) =
[ai( j̄−1), ai j̄ ]. Clearly,

η̃(gi (ξ, x), μ) :=ai( j̄−1)

(
1− φ(μ−1(gi (ξ, x)−ti j̄ ))

)
+ai j̄φ(μ−1(gi (ξ, x)−ti j̄ ))

∈∂ pi (gi (ξ, x̄)),

and so

dist (∇t p̃i (gi (ξ, x), μ) | ∂ pi (gi (ξ, x̄)) ) ≤ |∇t p̃i (gi (ξ, x), μ)− η̃i (gi (ξ, x̄), μ)|.
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If ri = 2, then (26) tells us that ∇t p̃i (gi (ξ, x), μ) = η̃i (gi (ξ, x̄), μ), so that

|∇t p̃i (gi (ξ, x), μ)− η̃i (gi (ξ, x̄))| = 0 ≤ (r2 + 1)κ̄Cφ

(
− ε

2μ

)
.

If ri ≥ 3 and 2 
= j̄ 
= ri , the expression in (26) for ∇t p̃i (gi (ξ, x), μ) tells us that

|∇t p̃i (gi (ξ, x), μ)− η̃i (gi (ξ, x̄), μ)|

≤
( j̄−2)∑

j=1

κ̄C (1− φ(μ−1(gi (ξ, x)− ti j )))

+|ai( j̄−1)(φ(μ−1(gi (ξ, x)− ti( j̄−1)))− φ(μ−1(gi (ξ, x)− ti j̄ )))

+ai j̄ (φ(μ−1(gi (ξ, x)− ti j̄ ))− φ(μ−1(gi (ξ, x)− ti( j̄+1)))− η̃i (gi (ξ, x̄), μ)|

+
ri∑

j= j̄+1

κ̄Cφ(μ−1(gi (ξ, x)− ti j ))

≤ ( j̄ − 2)κ̄Cφ(− ε
2μ

)+ |ai( j̄−1)|(1− φ(μ−1(gi (ξ, x)− ti( j̄−1)))|
+|ai j̄ |φ(μ−1(gi (ξ, x)− ti( j̄+1)))+ (ri − j̄)κ̄Cφ

(
− ε

2μ

)

≤ r̄ κ̄Cφ
(
− ε

2μ

)
.

If ri ≥ 3 and j̄ = 2 or j̄ = ri ,

|∇t p̃i (gi (ξ, x), μ)− η̃i (gi (ξ, x̄), μ)| ≤ (r̄ − 1)κ̄Cφ

(
− ε

2μ

)
.

Hence, we always have

dist (∇t p̃i (gi (ξ, x), μ) | ∂ pi (gi (ξ, x̄)) ) ≤ (r̄ + 1)κ̄Cφ

(
− ε

2μ

)
,

and so, as in Case 1, whenever 0 < μ ≤ μ̃(ε, τ, x̄), we have

dist (∇t p̃i (gi (ξ, x), μ) | ∂ pi (gi (ξ, x̄)) ) ≤ τ.

The result follows by combining these two cases.

Remark 5 One can strengthen the hypothesis (40) to

∃ τ > 0 s.t. ∀ τ ∈ (0, τ̄ ) ∃ ε̃(τ, x̄) ∈ (0, ε̄) s.t. ρ(Ξ̂ε(x̄)) ≤ τ ∀ ε ∈ (0, ε̃(τ, x̄)).

(42)

Then Lemma 9 still holds. However, under (42), we have that ρ(Ξ̃(x̄)) = 1, where

Ξ̃(x̄) =
{
ξ ∈ Ξ

∣∣∣∀ i ∈ {1, . . . , m} ξ /∈ (gi (·, x))−1({ti2, . . . , tiri
})
}
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is defined in Proposition 1. Consequently, (42) implies that f (ξ, ·) is continuously

differentiable and subdifferentially regular at x̄ for a.e. ξ ∈ Ξ .

We now combine Lemmas 8 and 9 to establish conditions under which (35) is

satisfied.

Theorem 6 (Uniform subgradient approximation) Let f be a CM integrand as given

in Definition 7 and let f̃ be the smoothing function for f given in Theorem 4. Suppose

that the basic assumptions of Lemmas 8 and 9 are satisfied so that their conclusions

hold. Then f̃ satisfies the uniform subgradient approximation property at x̄ . That is,

there exists ν̄ ∈ (0, 1) such that, for all ν ∈ (0, ν̄), there exists δ(ν, x̄) > 0 and

Ξ(ν, x̄) ∈M with ρ(Ξ(ν, x̄)) ≤ 1− ν for which (35) is satisfied.

Proof Let x̄ ∈ U be such that rank∇x g(ξ, x̄) = m and let ν ∈ (0, ν̄). Let

δ̄(x̄), K1(x̄), K2(x̄) and K3(x̄) be as given by Lemma 8 so that (38) is satisfied

for all x ∈ Bδ̄(x̄)(x̄) and μ > 0. Set

δ1(ν, x̄) := min{δ̄(x̄), ν/(3K1(x̄))}, μ1(ν, x̄) := ν/(3K2(x̄)), and

τ := ν/(3K3(x̄)+ 1).

Let ε̃(τ, x̄) be as in (40). Take ε ∈ (0, ε̃(τ, x̄)), and set Ξ(ν, x̄) equal to Ξ̄ c
ε (x̄).

Observe that ρ(Ξ(ν, x̄)) ≥ 1 − τ ≥ 1 − ν by construction. Set δ2(ν, x̄) :=
min{δ1(ν, x̄), δ̃(ε, τ, x̄)} and μ2(ν, x̄) := min{μ1(ν, x̄), μ̃(ε, τ, x̄)} where δ̃(ε, τ, x̄)

and μ̃(ε, τ, x̄) are given in (41). Then, by (38) and the definitions given above,

dist
(
∇x f̃ (ξ, x, μ) | ∂x f (ξ, x̄)

)
≤ K1(x̄)‖x − x̄‖ + K2(x̄)μ

+ K3(x̄) max
i=1,...,m

dist (∇t p̃i (gi (ξ, x), μ) | ∂ pi (gi (ξ, x̄)) )

≤ ν

3
+ ν

3
+ ν

3
= ν

for all x ∈ Bδ2(ν,x̄)(x̄) and μ ∈ (0, μ2(ν, x̄)).

We can now apply Theorem 3 to obtain the gradient sub-consistency of smoothed

CM integrands.

Theorem 7 (Gradient sub-consistency of smoothed CM integrands) Let f be a CM

integrand as given in Definition 7 and let f̃ be the smoothing function for f given in

Theorem 4. Suppose that the basic assumptions of Lemmas 8 and 9 are satisfied so

that their conclusions hold. We further assume that f (ξ, ·) is subdifferentially regular

x̄ for a.e. ξ ∈ Ξ or − f (ξ, ·) is subdifferentially regular at x̄ for a.e. ξ ∈ Ξ . Then

F̃(x, μ) := E[ f̃ (ξ, x, μ)] satisfies the gradient sub-consistency property (18) at x̄ ,

i.e.,

co

{
Limsup
x→x̄,μ↓0

∇ F̃(x, μ)

}
⊆ ∂ F(x̄) = co E

[
Limsup
x→x̄,μ↓0

∇x f̃ (ξ, x, μ)

]
.
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Proof The result follows once it is shown that the hypotheses of Theorem 3 are sat-

isfied. Theorem 6 tells us that the uniform subgradient approximation property is

satisfied. Lemma 4 shows that every CM integrand is an LL integrand, so, the subdif-

ferential regularity requirement implies that the hypotheses of Corollary 1 are satisfied.

Hence, all hypotheses of Theorem 3 are satisfied at x̄ .

4.3 Subgradient approximation via smoothing without regulartity

Theorem 7 uses the subdifferential regularity of f (ξ, x) or− f (ξ, x) for a.e. ξ to obtain

the gradient sub-consistency property of the smoothing approximation F̃ . However,

gradient sub-consistency is often stronger than what is required in some applications.

In this section it is shown that a useful subgradient approximation result can be obtained

without assumptions on subdifferential regularity.

Let f̃ be the measurable smoothing function introduced in (30). We show that if

(ξ, x̄) ∈ Ξ × X is such that rank∇x g(ξ, x̄) = m, then the limit limμ↓0 ∇x f̃ (ξ, x̄, μ)

exits, and we provide an explicit formula for this limit. For i = 1, . . . , m, define the

functions

zi (ξ, x̄) := ηi (gi (ξ, x̄))∇x gi (ξ, x̄)

h1
i (ξ, x̄)(v) :=

⎧
⎪⎨
⎪⎩

ai j∇x gi (ξ, x̄)T v, ti j < gi (ξ, x̄) < ti( j+1), j = 1, . . . , ri

ai j∇x gi (ξ, x̄)T v, 〈∇x gi (ξ, x̄), v〉 ≥ 0, gi (ξ, x̄) = ti j , j = 2, . . . , ri

ai( j−1)∇x gi (ξ, x̄)T v, 〈∇x gi (ξ, x̄), v〉 < 0, gi (ξ, x̄) = ti j , j = 2, . . . , ri ,

h2
i (ξ, x̄)(v) :=

⎧
⎪⎨
⎪⎩

ai j∇x gi (ξ, x̄)T v, ti j < gi (ξ, x̄) < ti( j+1), j = 1, . . . , ri

ai( j−1)∇x gi (ξ, x̄)T v, 〈∇x gi (ξ, x̄), v〉 ≥ 0, gi (ξ, x̄) = ti j , j = 2, . . . , ri

ai j∇x gi (ξ, x̄)T v, 〈∇x gi (ξ, x̄), v〉 < 0, gi (ξ, x̄) = ti j , j = 2, . . . , ri ,

where the functions ηi are defined in (27). Note that

〈zi (ξ, x̄), v〉 = 1

2
(h1

i (ξ, x̄)(v)+ h2
i (ξ, x̄)(v)), (43)

and, by Lemma 5,

z(ξ, x̄) = diag(ηi (gi (ξ, x̄)))∇x g(ξ, x). (44)

Lemma 10 Consider the CM integrand f and its smoothing function f̃ defined in

(30). Assume that rank∇x g(ξ, x̄) = m for a fixed (ξ, x̄) ∈ Ξ × X. Then the following

limits exist as given with u(ξ, x̄) ∈ ∂x f (ξ, x̄): for all v ∈ R
n ,

u(ξ, x̄) := lim
μ↓0
∇x f̃ (ξ, x̄, μ)

= (∇xc(ξ, x̄)+ (z1(ξ, x̄), . . . , zm(ξ, x̄))T∇q(c(ξ, x̄)+ C(g(ξ, x̄)))

(45)
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�1(ξ, x̄; v) := lim
t↓0

f (ξ, x̄ + 2tv)− f (ξ, x̄ + tv)

t

= ∇q(c(ξ, x̄)+ C(g(ξ, x̄)))T (∇xc(ξ, x̄)v)

+ (h1
1(ξ, x̄)(v), · · · , h1

m(ξ, x̄)(v))T ) (46)

and

�2(ξ, x̄; v) := lim
t↓0

f (ξ, x̄ − tv)− f (ξ, x̄ − 2tv)

t

= ∇q(c(ξ, x̄)+ C(g(ξ, x̄)))T (∇xc(ξ, x̄)v)

+ (h2
1(ξ, x̄)(v), · · · , h2

m(ξ, x̄)(v))T ). (47)

Moreover, by (43), we have

〈u(ξ, x̄), v〉 = 1

2
(�1(ξ, x̄; v)+ �2(ξ, x̄; v)) ∀ v ∈ R

n . (48)

Proof By combining (31) and (27), we find that the right hand side of (45) is an

element of ∂x f (ξ, x̄). Moreover, by (27) in Lemma 5 and (31) in Theorem 4, the limit

u(ξ, x̄) exists as given in (45). Since (48) follows from (46) and (47), it remains only

to establish the limits �1(ξ, x̄; v) and �2(ξ, x̄; v) exist as given.

First consider the nonsmooth functions hi (ξ, x) := pi (gi (ξ, x)), i = 1, · · · , m.

For each ξ , the functions hi (ξ, ·) are convex-composite functions [4]. Hence, by [4,

Section 2],

∂x hi (ξ, x̄) = ∂x (pi ◦ gi )(ξ, x̄)) = ∂ pi (gi (ξ, x̄))∇x gi (ξ, x̄) (49)

and

∇x ( p̃i ◦ gi )(ξ, x̄), μ) = ∇t p̃i (gi (ξ, x̄), μ)∇x gi (ξ, x̄).

By combining (20), (44) and (49), we have that zi (ξ, x) ∈ ∂x (pi ◦ gi )(ξ, x) for all

(ξ, x) ∈ Ξ × X . Since, for each x ∈ X , zi (ξ, x) is defined by ηi which is the limit of

measurable functions in ξ from (27), zi (ξ, x) is measurable in ξ . In addition, by [4,

Section 2], each of the mappings x �→ hi (ξ, x) = pi (gi (ξ, x)) is Clarke regular. Since

g(ξ, x) is smooth, limx ′→x̄∇x gi (ξ, x ′) = ∇x gi (ξ, x̄). Combining (20) and Lemma 2,

for any x ∈ X and direction v ∈ R
n , we have

h1
i (ξ, x̄)(v) = lim

t↓0

hi (ξ, x + 2tv)− hi (ξ, x + tv)

t
= max

ν∈∂x hi (ξ,x)
〈ν, v〉 and

h2
i (ξ, x̄)(v) = lim

t↓0

hi (ξ, x − tv)− hi (ξ, x − 2tv)

t
= min

ν∈∂x hi (ξ,x)
〈ν, v〉.
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Note that, for every t > 0, the mean value theorem tells us that there exists wt ∈ R
m

on the line segment connecting the two vectors c(ξ, x̄ − tv) + C(g(ξ, x̄ − tv)) and

c(ξ, x̄ − 2tv)+ C(g(ξ, x̄ − 2tv)) such that

�2(ξ, x̄; v) = lim
t↓0

q(c(ξ, x̄−tv)+ C(g(ξ, x̄−tv)))−q(c(ξ, x̄−2tv)+ C(g(ξ, x̄−2tv)))

t

= lim
t↓0
∇q(wt )

T (c(ξ, x̄−tv)+ C(g(ξ, x̄−tv)))−(c(ξ, x̄−2tv)+C(g(ξ, x̄−2tv)))

t

= lim
t↓0
∇q(wt )

T

(
c(ξ, x̄−tv)−c(ξ, x̄−2tv)

t
+C(g(ξ, x̄− tv))−C(g(ξ, x̄−2tv))

t

)

= ∇q(c(ξ, x̄)+C(g(ξ, x̄)))T (∇c(ξ, x̄)T v+(h2
1(ξ, x̄)(v), · · · ,h2

m(ξ, x̄)(v))T),

and similarly,

�2(ξ, x̄; v)=∇q(c(ξ, x̄)+C(g(ξ, x̄)))T(∇c(ξ, x̄)Tv+(h1
1(ξ, x̄)(v),· · ·,h1

m(ξ, x̄)(v))T ).

This establishes (46) and (47) which combined imply (48).

Theorem 8 (Subgradient approximation by smoothing) Consider the CM integrand f

and its smoothing function f̃ defined in (30), and suppose the hypotheses of Lemma 8

hold. Set F(x) := E[ f (ξ, x)] and F̃(x, μ) := E[ f̃ (ξ, x, μ)] for all x ∈ X. Then, for

a.e. ξ ∈ Ξ ,

dist
(
∇x f̃ (ξ, x̄, μ) | ∂x f (ξ, x̄)

)

≤ K2(x̄)μ+K3(x̄)(r̄+1)κ̄C max
i=1,...,m

φ

(−1

μ
γi (gi (ξ, x̄))

)
. (50)

Moreover, F̃(·, μ) is differentiable at x̄ for all μ > 0 with ∇x F̃(x̄, μ) equal

= E[∇x f̃ (ξ, x̄, μ)], the function u in (45) is well defined, and,

lim
μ↓0
∇x F̃(x̄, μ) = lim

μ↓0
E[∇x f̃ (ξ, x̄, μ)] = E[u(ξ, x̄)] ∈ ∂E[ f (ξ, x̄)] = ∂ F(x̄).

Proof Combining (34) and (38), we have (50).

By Lemma 4, f is an LL integrand. By Lemma 10, the function u in (45) is well

defined a.e. in Ξ and measurable. By Theorem 5, F̃(·, μ) is differentiable at x̄ for all

μ > 0 with ∇x F̃(x̄, μ) = E[∇ f̃ (ξ, x̄, μ)]. By Theorem 5, (45) and the Dominated

Convergence Theorem,

lim
μ↓0
∇x F̃(x̄, μ) = lim

μ↓0
E[∇x f̃ (ξ, x̄, μ)] = E[u(ξ, x̄)].

Since ∂E[ f (ξ, x̄)] = ∂ F(x̄), it remains only to show that E[u(ξ, x̄)] ∈ ∂ F(x̄).

Let v ∈ R
n . By [17, Theorem 2.7], each of the mappings∇ f̃ (ξ, x, μ) is measurable

in ξ for each (x, μ) ∈ X × R++. By Lemma 10 and [17, Proposition 2.7], u(ξ, x̄) ∈
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∂x f (ξ, x̄) is measurable. Moreover, by (48) in Lemma 10,

�1(ξ, x̄; v)− 〈u(ξ, x̄), v〉 = −(�2(ξ, x̄; v)− 〈u(ξ, x̄), v〉) a.e. ξ ∈ Ξ,

with both limits existing and measurable. Consequently,

E[�1(ξ, x̄; v)] − E[〈u(ξ, x̄), v〉] = −(E[�2(ξ, x̄; v)] − E[〈u(ξ, x̄), v〉]). (51)

Since f is an LL integrand,

max

{| f (ξ, x̄ + 2tv)− f (ξ, x̄ + tv)|
t

,
| f (ξ, x̄−tv)− f (ξ, x̄−2tv)|

t

}
≤κ f (ξ, x̄) ‖v‖ .

Therefore, by the Dominated Convergence Theorem,

E[�1(ξ, x̄; v)] = lim
t↓0

E

[
f (ξ, x̄ + 2tv)− f (ξ, x̄ + tv)

t

]
and

E[�1(ξ, x̄; v)] = lim
t↓0

E

[
f (ξ, x̄ − tv)− f (ξ, x̄ − 2tv)

t

]
,

which tells us that

d̂ F(x̄)(v)= lim sup
t↓0,z→x̄

E

[
f (ξ, z + tv)− f (ξ, z)

t

]

≥ lim
t↓0

E

[
f (ξ, x̄ + 2tv)− f (ξ, x̄ + tv)

t

]
=E[�1(ξ, x̄; v)]

and

d̂ F(x̄)(v)= lim sup
t↓0,z→x̄

E

[
f (ξ, z + tv)− f (ξ, z)

t

]

≥ lim
t↓0

E

[
f (ξ, x̄ − tv)− f (ξ, x̄ − 2tv)

t

]
=E[�2(ξ, x̄; v)].

Hence, by (51),

d̂ F(x̄)(v)− 〈E[u(ξ, x̄)] , v〉 ≥ E[�1(ξ, x̄; v)] − 〈E[u(ξ, x̄)] , v〉
= −(E[�2(ξ, x̄; v)] − 〈E[u(ξ, x̄)] , v〉)

and d̂ F(x̄)(v)− 〈E[u(ξ, x̄)] , v〉 ≥ E[�2(ξ, x̄; v)] − 〈E[u(ξ, x̄)] , v〉 , and so

d̂ F(x̄)(v)− 〈E[u(ξ, x̄)] , v〉 ≥ |E[�2(ξ, x̄; v)] − 〈E[u(ξ, x̄)] , v〉 | ≥ 0.

Since v was chosen arbitrarily, Appendix Definition 9 tells us that E[u(ξ, x̄)] ∈ ∂ F(x̄).
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Corollary 2 Let the assumptions of Theorem 8 hold. For μ > 0 and x̄ ∈ U, set

K4(x̄) := [K1(x̄)μ+ 2r̄ K3(x̄)κg(x̄)]. Then

∥∥∥∇ f̃ (ξ, x, μ)−∇ f̃ (ξ, x̄, μ)

∥∥∥ ≤ K4(x̄)

μ
‖x − x̄‖ ∀ ξ ∈ Ξ and x ∈ Bδ̄(x̄)(x̄)

(52)

and

dist
(
E[∇ f̃ (ξ, x, μ)] | ∂ F(x̄)

)
≤ K4(x̄)

μ
‖x− x̄‖

+ dist
(
∇x F̃(x̄, μ) | ∂ F(x̄)

)
∀ x ∈Bδ̄(x̄)(x̄).

(53)

Moreover, we have the following gradient sub-consistency property at x̄ for any γ ∈
(0, 1):

Limsup
x→x̄, μ=O(‖x−x̄‖γ )

E[∇ f̃ (ξ, x, μ)] ∈ ∂ F(x̄). (54)

Proof The proof of (52) follows the pattern of proof given for (39) to first establish

that

‖∇ f̃ (ξ, x, μ)−∇ f̃ (ξ, x̄, μ)‖≤ K1(x̄)‖x− x̄‖
+K3(x̄) max

i=1,...,m
|∇t p̃i (gi (ξ, x, μ)−∇t p̃i (gi (ξ, x̄, μ)|.

Then use (29) to obtain the bound (52).

To see (53), note that

dist
(
E[∇ f̃ (ξ, x, μ)] | ∂ F(x̄)

)
≤‖E[∇ f̃ (ξ, x, μ)] − E[∇ f̃ (ξ, x̄, μ)]‖

+ dist
(
∇xE[ f̃ (ξ, x̄, μ)] | ∂ F(x̄)

)

≤ K4(x̄)

μ
‖x − x̄‖ + dist

(
∇xE[ f̃ (ξ, x̄, μ)] | ∂ F(x̄)

)

≤ K4(x̄)
‖x − x̄‖

μ
+ dist

(
∇x F̃(x̄, μ) | ∂ F(x̄)

)
.

Hence, (54) follows from Theorem 8.

One of stopping criteria in smoothing algorithms is to require that the smoothing

gradient ∇ F̃(xk, μ) is sufficiently small. However, in keeping with our program,

we prefer a stopping criteria based on the integrand. Such a criteria is provided by

Theorem 8 where it is shown that the expectation E[u(ξ, x̄)], with u is defined in (45),

provides an arguably better estimate of proximity to stationarity in the CM function

setting. This expectation is computable and satisfies u(ξ, x̄) ∈ ∂x f (ξ, x̄) a.e. ξ .
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5 Conclusion

In this paper, we provide a framework for the study of smoothing functions for non-

smooth random integrands with the primary focus being the study of the gradient

consistency property and the approximation of Clarke subgradients of expectation

functions. For the large class of measurable CM functions, we show the gradient sub-

consistency property when the integrand or its negative is subdifferentially regular for

a.e. ξ ∈ Ξ (Theorems 6, 7). Moreover, when this subdifferential regularity hypothesis

fails, we show that for any x ∈ R
n ,

lim
μ↓0

E[∇ f̃ (ξ, x, μ)]∈∂E[ f (ξ, x)] and Limsup
x→x̄, μ=O(‖x−x̄‖γ )

E[∇ f̃ (ξ, x, μ)]∈∂E[ f (ξ, x)].

Consequently, we can approximate an element of the Clarke subdifferential of the

expectation function using gradients of a smoothing function for the non-smooth

integrand (Theorem 8 and Corollary 5.19). Measurable CM functions arise in several

important applications, e.g.

E[‖min(x, ϕ(ξ, x))‖2] and E[(max(a(ξ)T x, 0)− b(ξ))2] + λ

m∑

i=1

log(1+ |dT
i x |)).

The first comes from stochastic nonlinear complementarity problems with a contin-

uously differentiable function ϕ : Ξ × Rn → Rn [11,13], and the second is from

optimal statistical learning problems with a(ξ) ∈ Rn, b(ξ) ∈ R and di ∈ Rn [1,3].

Other interesting application might be stochastic programs with the P-matrix lin-

ear complementarity constraints. The P-matrix linear complementarity constraints

can be rewritten as piecewise linear constraints [10,22,32] and approximated by

continuously differentiable constraint functions using a smoothing approximation.

Our goal is to apply these approximation techniques in cases where the inclusion

∂E[ f (ξ, x)] ⊆ E[∂ f (ξ, x)] is insufficient for guiding both numerical optimization

and optimality assessment.

Acknowledgements We would like to thank Associate Editor and two referees for their helpful comments.

6 Appendix: Background

6.1 Finite-dimensional variational analysis

Since we allow mappings to have infinite values, it is convenient to define the extended

reals R := R ∪ {+∞}. The effective domain of f : R
n → R , denoted dom f ⊆ R

n ,

is the set on which f is finite. To avoid certain pathological mappings the discussion is

restricted to proper not everywhere infinite) lower semi-continuous (lsc) functions. Of

particular importance is the epigraph of such functions: epi f := {(x, μ) | f (x) ≤ μ }.
We have that f is lsc if and only if epi f is closed, and f is convex if and only if epi f

is convex.
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Definition 8 (Subderivatives) [27, Exercise 9.15] For a locally Lipschitz function f :
R

n → R near a point u∗ ∈ R
n with f (u∗) finite,

(i) the subderivative d f (u∗) : Rn → R is defined by

d f (u∗)(w) := lim inf
τ↓0

f (u∗ + τw)− f (u∗)

τ
;

(ii) the regular subderivative (or the Clarke generalized directional derivative when f

is locally Lipschitz) d̂ f (u∗) : Rn → R is defined by

d̂ f (u∗)(w) := lim sup
u→u∗, τ↓0

f (u + τw)− f (u)

τ
.

Definition 9 (Subgradients, subdifferentials and subdifferential regularity) Consider

a locally Lipschitz function f : Rn → R, a point v ∈ R
n , and a point u∗ ∈ R

n with

f (u∗) finite.

(i) [27, Theorem 8.49] The vector v is a Clarke subgradient of f at u∗ if v satisfies

d̂ f (u∗)(w) ≥ 〈v , w〉 ∀ w ∈ R
n .

We call the set of Clarke subgradients v the Clarke subdifferential of f at u∗ and

denote this set by ∂ f (u∗).
(ii) [27, Corollary 8.19] f : R

n → R is said to be subdifferentially regular (or Clarke

regular) at u∗ ∈ dom f with ∂ f (u∗) 
= ∅ if

d f (u∗)(w) = d̂ f (u∗)(w) ∀w ∈ R
n .

(iii) [14, Definition 2.6.1] [12] The vector v is a B-subgradient of f at u∗ if

v = lim
uk→u∗

∇ f (uk), where f is differentiable at uk .

We call the set of B-subgradients v of f at u∗ the B-subdifferential of f at u∗ and

denote this set by ∂ B f (u∗).
(iv) [27, Definition 8.3] The vector v is an M-subgradient of f at u∗ if there are

sequences uk → u∗ and vk → v with

lim inf
u→uk

f (u)− f (uk)−
〈
vk , u − uk

〉

‖u − uk‖ ≥ 0.

We call the set of M-subgradients v of f at u∗ the M-subdifferential of f at u∗
and denote this set by ∂ M f (u∗).

Remark 6 In [27], the notion of subdifferential regularity is defined in [27, Definition

7.25]. In the definition given above we employ characterizations of this notion given

by the cited results. Note that subdifferential mappings are multi-functions.
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Definition 10 (Strict continuity and strict differentiability) Let H : D → R
m , D ⊆

R
n , and h : R

n → R .

(i) [Strict Continuity [27, Definition 9.1]] We say that H is strictly continuous at

x̄ ∈ int (D) if

lip H(x̄) := lim sup
x,x ′→x̄

x 
=x ′

∥∥H(x ′)− H(x)
∥∥

‖x ′ − x‖ <∞ .

(ii) [Strict Differentiability [27, Definition 9.17]] We say that h is strictly differentiable

at a point x̄ ∈ dom h if h is differentiable at x̄ and

lim
x,x ′→x̄

x 
=x ′

h(x ′)− h(x)−
〈
∇h(x̄) , x ′ − x

〉

‖x ′ − x‖ = 0 .

It is easily seen that if h is continuously differentiable on an open set U , then h is

strictly differentiable and subdifferentially regular on U with ∂h(x) = {∇h(x)} for

all x ∈ U ([27, Theorem 9.18 and Exercise 9.64]).

The notion of strict continuity of f at a point x̄ implies the existence of a neighbor-

hood of x̄ on which f is Lipschitz continuous, that is, f is locally Lipschitz continuous

at x̄ where the local Lipschitz modulus is lower bounded by lip H(x̄). In this light,

Definition 8 and Definition 9(ii) combine to tell us that

d f (u∗)(w) = d̂ f (u∗)(w) = lim
τ↓0

f (u∗ + τw)− f (u∗)

τ
∀w ∈ R

n, (55)

wherever f is strictly continuous and subdifferentially regular at u∗. Moreover, in this

case, [27, Theorem 8.30] tells us that

d f (x)(v) = sup {〈g , v〉 | g ∈ ∂ f (x) } . (56)

Remark 7 (Subdifferentials of Compositions) If g : X ⊂ R
n → R is given as the

composition of two functions f : Y ⊂ R
m → R and h : X → Y , i.e. g(x) =

( f ◦ h)(x) = f (h(x)), then we write ∂g(x) = ∂( f ◦ h)(x). On the other hand, we

write ∂ f (h(x)) to denote the subdifferential of f evaluated at h(x).

Theorem 9 (Strict differentiability and the subdifferential) [27, Theorem 9.18] [14,

Proposition 2.2.4] Let h : R
n → R with x̄ ∈ dom h. Then h is strictly differentiable

at x̄ if and only if h is strictly continuous at x̄ and ∂h(x̄) = {∇h(x̄)}.

6.2 Measurable multi-functions

We now review some of the properties of measurable multi-functions used in this

paper [2,15,18,27]. For more information on this topic, we refer the interested reader

to [27, Chapter 14] and [25].
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A multi-function, or multi-valued mapping, S from R
k to R

s is a mapping that takes

points in R
k to sets in R

s , and is denoted by S : R
k

⇒ R
s . The outer limit of S at

x̄ ∈ R
k relative to X ⊆ R

k is

Limsup
x→X x̄

S(x) :=
{
v ∈ R

s | ∃{xk} →X x̄, {vk} → v ∈ R
s : vk ∈ S(xk) ∀k ∈ N

}

(57)

and the inner limit of S at x̄ relative to X is

Liminf
x→X x̄

S(x) :=
{
v ∈ R

s | ∀{xk} →X x̄, ∃{vk} → v ∈ R
s : vk ∈ S(xk) ∀k ∈ N

}
.

Here the notation {xk} →X x̄ means that {xk} ⊆ X with xk → x̄ . If X = R
k , we

write x → x̄ instead of x →Rk x̄ . We say that S is outer semicontinuous (osc) at x̄

relative to X if

Limsup
x→X x̄

S(x) ⊆ S(x̄).

When the outer and inner limits coincide, we write

Lim
x→X x̄

S(x) := Limsup
x→X x̄

S(x),

and say that S is contiuous at x̄ relative to X .

Let Ξ be a nonempty subset of R
� and let A be a σ -field of subsets of Ξ , called

the measurable subsets of Ξ or the A-measurable subsets. Let ρ : A → [0, 1]
be a σ -finite Borel regular, complete, non-atomic, probability measure on A. The

corresponding measure space is denoted (Ξ,A, ρ). A multi-function Ψ : Ξ ⇒ R
n is

said to be A-measurable, or simply measurable, if for all open sets { V } ⊆ R
n the set

{ξ | { V } ∩ Ψ (ξ) 
= ∅} is in A. The multi-function Ψ is said to be A⊗Bn-measurable

if gph(Ψ ) = {(ξ, v) | v ∈ Ψ (ξ) } ∈ A ⊗ Bn , where Bn denotes the Borel σ -field on

R
n and A⊗Bn is the σ -field on Ξ ×R

n generated by all sets A× D with A ∈ A and

D ∈ Bn . If Ψ (ξ) is closed for each ξ then Ψ is closed-valued. Similarly, Ψ is said to

be convex-valued if Ψ (ξ) is convex for each ξ . Finally, we note that the completeness

of the measure space guarantees the measurability of subsets of Ξ obtained as the

projections of measurable subsets {G } of Ξ × R
n :

{G } ∈ A⊗ Bn �⇒
{
ξ ∈ Ξ

∣∣ ∃ v ∈ R
n with (ξ, v) ∈ {G }

}
∈ A.

In particular, this implies that the multi-function Ψ is A-measurable if and only if

gph(Ψ ) is A⊗ Bn-measurable [27, Theorem 14.8].

Let Ψ : Ξ ⇒ R
n , and denote by S(Ψ ) the set of ρ-measurable functions f : Ξ →

R
n that satisfy f (ξ) ∈ Ψ (ξ) for a.e. ξ ∈ Ξ . We call S(Ψ ) the set of measurable

selections of Ψ .
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Theorem 10 (Measurable selections) [27, Corollary 14.6] A closed-valued measur-

able map Ψ : Ξ ⇒ R
n always admits a measurable selection.

We say that the measurable multi-function Ψ : Ξ ⇒ R
n is integrably bounded, or

for emphasis ρ-integrably bounded, if there is a ρ-integrable function a : Ξ → R
n
+

such that

‖v‖∞ ≤ a(ξ) (58)

for all pairs (ξ, v) ∈ Ξ × R
n satisfying v ∈ Ψ (ξ). Here and elsewhere we interpret

vector inequalities as element-wise inequalities. Let 1 ≤ p ≤ ∞. When Ξ = R
�,

we let L
p
m(R�,A, ρ) denote the Banach space of functions mapping R

� to R
m . When

p = 2, L2
m(R�,A, ρ) is a Hilbert space with the inner product on the measure space

(R�,A, ρ) given by

〈ψ, φ〉ρ =
∫

R�

〈ψ(ξ) , φ(ξ)〉 dρ,

where 〈· , ·〉 denotes the Euclidean inner product. If ρ(R�) <∞, then

L
q
m(R�,A, ρ) ⊆ L

p
m(R�,A, ρ) whenever 1 ≤ p ≤ q ≤ ∞.

If the function a in (58) is such that ‖a(ξ)‖p is integrable with respect to the measure ρ

on the measure space (Ξ,A, ρ), then the multi-function Ψ is said to be L p-bounded,

where ‖·‖p denotes the p-norm of vectors.

Proposition 2 [7, Proposition 2.2] and [16, Corollary IV.8.4](Weak compactness of

measurable selections) Let the multi-function Ψ : R�
⇒ R

m be closed- and convex-

valued, and L2-bounded on L2
m(R�,Mn, λn), where Mn is the Lebesgue field on R

n

and λn is n-dimensional Lebesgue measure. Then the set of measurable selections

S(Ψ ) is a weakly compact, convex set in L2
m(R�,Mn, λn).

We now develop some properties of integrals of multi-valued mappings. Given a

measurable multi-function Ψ : Ξ ⇒ R
n , we define the integral of Ψ over Ξ with

respect to the measure ρ by

∫
Ψ dρ :=

{∫

Ξ

f dρ | f ∈ S(Ψ )

}
.

The next theorem, due to Hildenbrand [18], is a restatement of Theorems 3 and 4 of

Aumann [2] for multi-functions on the non-atomic measure space (Ξ,A, ρ). These

results are central to the theory of integrals of multi-valued functions.

Theorem 11 (Integrals of multi-functions) [18, Theorem 4 and Proposition 7] The

following properties hold for integrably bounded multi-functions Ψ : Ξ ⇒ R
n on

non-atomic measure spaces (Ξ,A, ρ).

(a) If Ψ is A⊗ Bn-measurable, then
∫

Ψ dρ =
∫

conv Ψ dρ.
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(b) If Ψ is closed valued (not necessarily A⊗Bn-measurable), then
∫

Ψ dρ is compact.

We conclude this section with a very elementary, but useful lemma on measurable

tubes, i.e. multi-valued mappings Ψ : Ξ ⇒ R
n of the form

Ψ (ξ) := κ(ξ)B, (59)

where B := {x | ‖x‖2 ≤ 1 } is the closed unit ball in R
n and κ : Ξ → R+ is

measurable.

Lemma 11 (Tubes) Let Ψ : Ξ ⇒ R
n be a measurable tube as in (59) with

κ ∈ L2
1(Ξ,A, ρ) non-negative a.e. on Ξ . Then, for every E ∈ A,

∫
E

Ψ (ξ)dρ ⊆[∫
E

κ(ξ)dρ
]
B ⊆ ‖κ‖2 ρ(E)B.

Proof The mapping Ψ in (59) is obviously closed valued and measurable. Therefore,

Theorem 10 tells us that S(Ψ ) is non-empty. Let E ∈ A and s ∈ S(Ψ ). Then

∣∣∣∣
∫

E

s(ξ)dρ

∣∣∣∣ ≤
∫

E

|s(ξ)|dρ ≤
∫

E

κ(ξ)dρ,

so that
∫

E
s(ξ)dρ ∈

[∫
E

κ(ξ)dρ
]
B. This proves the lemma since

∫
E

κ(ξ)dρ =
〈κ , XE 〉 ≤ ‖κ‖2 ρ(E).
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