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Abstract

The subdifferential calculus for the expectation of nonsmooth random integrands
involves many fundamental and challenging problems in stochastic optimization. It
is known that for Clarke regular integrands, the Clarke subdifferential of the expec-
tation equals the expectation of their Clarke subdifferential. In particular, this holds
for convex integrands. However, little is known about the calculation of Clarke sub-
gradients for the expectation of non-regular integrands. The focus of this contribution
is to approximate Clarke subgradients for the expectation of random integrands by
smoothing methods applied to the integrand. A framework for how to proceed along
this path is developed and then applied to a class of measurable composite max inte-
grands. This class contains non-regular integrands from stochastic complementarity
problems as well as stochastic optimization problems arising in statistical learning.
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1 Introduction

Let X € R” be a convex compact set with non-empty interior and & C R’ be a
Lebesgue measurable closed set with non-empty interior. In this paper, we consider
the stochastic optimization problem

min F(x) :=E[f(, )], ey
xeX
where £ : 2 — & is a random variable on the probability space (§2, F, ¢) with
¢ absolutely continuous with respect to Lebesgue measure, f : & x X — R is
continuous on X and measurable in = for every x € X, and [E[-] denotes the expected
value over &. A point x € R" is called a Clarke stationary point for (1) if it satisfies

0e€dF(x)+Nx(x), (2)

where 9 denotes the Clarke subdifferential (see Appendix Definition 9 (i)) and Ny (x)
is the normal cone to X at x € X. Condition (2) is a first-order necessary condition
for optimality of problem (1).

The subdifferential d F(x) = dE[ f (&, x)] does not in general have a closed form
and is difficult to calculate. Consequently, much the existing literature [29,31,33]
employs the first-order necessary condition

0 € E[0x f (&, x)] + Nx (x), 3)
where
E[ox f(&, x)] :={E[¢ (&, x)]| ¢ (£, x) is a measurable selection from 9, f (£, x)}

is the Aumann (set-valued) expectation of d, f (£, x) with respect to & defined in [2].
Points x satisfying (3) are called weak stationary points for problem (1) [21,34]. In
some cases, elements of E[d, f (£, x)] can be computed [26]. However, as the name
implies, condition (3) is much weaker than condition (2). In particular, it is always the
case that

IF(x) S E[dx f(§,x)] = coE[d, f (&, x)], “

where “co” denotes the convex hull. In (4), the inclusion is given by Clarke [14, Theo-
rem 2.7.2] and equivalence follows from either Aumann’s Convexity Theorem [2,23]
or Lyapunov’s Convexity Theorem [19,30]. Moreover, since the Clarke subdifferential
is the closed convex hull of the Mordukhovich subdifferential (M-subdifferential) 9
((see Appendix Definition 9) [27, Definition 8.3]), the subdifferential inclusion

OYF(x) S OF() S IO f € 0] = E[codl £6, )| =E[0} (6.

holds where the final equality follows from [2, Theorem 3] (see [20, Lemma 6.18] for
connections to the M-subdifferential).
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Consequently, if x satisfies (2), then x satisfies (3), but the converse is not in
general true. On the other hand, [14, Theorem 2.7.2] tells us that if f (&, -) is Clarke
regular [14, Definition 2.3.4] on X for almost all £ € Z, then equality holds in (4).
Unfortunately, in many applications of interest, Clarke regularity fails to hold, and the
set E[dy f (€, x)] is much larger than the set dE[ f (£, x)]. For example, this occurs in
stochastic nonlinear complementarity problems [11,13] and optimal statistical learning
problems [1,3]. In such cases, condition (3) is too weak for assessing optimality. By
way of illustration, consider f(£,x) = &|x| with & ~ N(0,1) and x € R. Then
E[f (£, x)] = E[€]x]] = 0 for x € R, but E[d f (£, 0)] = v2/m[~1, 1].

The main contributions of the paper are the development of a framework for
the study of smoothing methods for the expectation of random integrands F(x) =
E[f (&, x)] based on the smoothing of the integrand f, a smoothing approach to the
approximation of the Clarke subgradients of expectation F(x) = E[ f (&, x)], and the
application of these techniques to the class of measurable composite max (CM) inte-
grands. CM intergrands arise in several important applications including stochastic
nonlinear complementarity problems [11,13] and optimization problems in statistical
learning [1,3].

The paper is organized as follows. In Sect. 2 and the Appendix, we recall some
basic definitions and properties from variational analysis, the theory of measurable
multifunctions, and the study of the variational properties of the expectation function.
In Sect. 3, we define measurable smoothing functions and give a few fundamental
properties. In particular, we introduce the notions of gradient consistency and sub-
consistency. In Sect. 4, we present an approximation theory of smoothing functions for
measurable CM functions, and prove the gradient sub-consistency of CM integrands.
Finally we show that the subgradient of the expectation function can be approximated
via smoothing in the absence of regularity.

2 The subdifferential properties of F(x) := E[f(¢&, x)]

In this section, we study the relationship between the variational properties of f and
F(x) = E[f (&, x)]. Our approach is motivated by the case where f is specified
during the modeling process in stochastic optimization, and we are asked to optimize
its expectation. For this reason it is important to understand the properties that f should
satisfy in order that the optimization of F is in some sense numerically tractable. In
particular, we study those properties of f that give access to the desired variational
properties of F. For example, it has already been mentioned that, in general, we only
have 0 F(x) € E[d, f(&, x)]. But there are situations in which equality holds. We
begin by reviewing these results. The first step is to recall the standard conditions on
f that imply the local Lipschitz continuity of F (e.g. see [14, Hypothesis 2.7.1]).

2.1 LL integrands

Let A denote Lebesgue measure on R” and, let p be a probability measure on R¢
that is absolutely continuous with respect to Lebesgue measure with support =. In
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particular, this implies that p is non-atomic. Let ¢ denote the induced product measure
on R x R”. We consider the following class of functions.

Definition 1 (Carathéodory Mappings) [27, Example 14.15] We say that the function
f: & x X — R is aCarathéodory mapping on & x X if f(&, -) is continuous on an
open set containing X forall £ € &, and f (-, x) is measurable on = for all x € X.

Definition 2 (Locally Lipschitz (LL) integrands) Let U be an open subset of R”. We
say that f : & x U — R is an LL integrand on & x U if f is a Carathéodory
mapping on = x U and for each x € U there is an €(x) > 0 and an integrable
mapping « 7 (-, ¥) € L2(RY, M, p) such that

[f(&, x1) — f(&, x| <krE, X)llx1 —x2]l Yxi,x2 €Bery(x) andae. & € &,

where a.e. denotes “almost every” and B (x) := {x |||lx — X| <€} C U.
Here and throughout, L,’f(RZ, M, p) denotes the Banach space of m-integrable
functions « : RY — R" defined on the measure space (Rt, M, p), where the norm is

given by lliclly, := [ fpe[X iy licj ™ 1dp] /™.

In what follows we often have functions of two variables, (1, v), but need to discuss
the variational objects for this function with respect to only one of the two variables.
For this we use Vyh(u, v), dyh(u, v) and dyh(u, v)(d) to denote the derivative, the
Clarke subdifferential, and the subderivative of & (u, v) in the direction d, respectively,
in v for fixed u.

Lemma 1 (Properties of LL integrands) Let U be an open subset of R, and let f :
E x U — R be an LL integrand on & x U with f(-,x) € L}(RZ,M,p)for all
x € U. Then the following statements hold.

(a) The function f(§, ) is strictly continuous on U (see Appendix Definition 10) for
ae & € Ewithlip, f(§,%) <«ksr(§,X) ae & eck.

(b) The mapping F (x) := E[f (&, x)] is locally Lipschitz continuous on U with local
Lipschitz modulus kg (x) := Elk ¢ (&, x)]. In particular, F is strictly continuous
onU.

(¢) Thefunction Zi\xf(é, x)(v) (see Appendix Definition 8) is measurable in & for every
(x,v) e U x R™.

(d) The set of measurable selections S(0y f (-, x)) is a weakly compact, convex set in
L2(R*, M, p).

(e) The Clarke subdifferential d F(x) is a nonempty, convex, compact subset of R"
contained in K (X)B for every x € U.

(f) Forevery E € M such that E C 2 and every x € U

fE FEx)dp e / FE Do + |65, p(ENE and

/Eaxf@,x)dp < s D)), p(E)B

for all x € Begz (%), where |k (-, )2 := ./ [z k3, D)dp.
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Proof (a) This follows immediately from the definition of strict continuity.
(b) This follows immediately from the inequality

|F(x') = F) < Bl f (€, x") = f(€, 0] < Elk (€, D] [x" —x] .

(c) This follows from the well known fact that the limsup of measurable functions is
measurable, e.g. [17, Theorem 2.7].

(d) This follows immediately from Proposition 2 of the Appendix since k¢ (-, X) €
L3R, M, p).

(e) This is an immediate consequence of [14, Proposition 2.1.2].

(f) By definition, f(&,x) — f(§,x) € kr(§,X)B for all x € e(x)B and & € Z.
Hence, for all x € €(x)B, f(§,x) — f(&, x) is a measurable selection from the
tube « ¢ (&, x)B on Z. Similarly, by [27, Theorem 9.13], any measurable selection
s(&) from 9, f(§, x) satisfies s(§) € « (&, x)B for all x € €(x)B. Therefore, both
inclusions follows from Lemma 11.

2.2 Subdifferential regularity

If f is an LL integrand on & x U, then, by Lemma 1(e), d F'(x) is a nonempty,
convex, compact subset of R” for every x € U. But this does not say that 0 F(x) is
representable in terms of d f (&, x).

Theorem 1 (The subdifferential of F) [14, Theorem 2.7.2] Let U be an open subset
of R", and let f : & x U — R be an LL integrand on & x U with f(-,x) €
L%(Rl, M, p) forall x € U. Then

dF(x) S E[d,f(§,x)] VxeU. (&)

If, in addition, x € U is such that f (&, -) is subdifferentially regular (see Appendix
Definition 9 (ii)) in x at x for a.e. § € E, then F is subdifferentially regular at x and
equality holds in (5).

Remark 1 In [14, Theorem 2.7.2], Clarke uses the hypothesis that f (&, -) is subdif-

ferentially regular in x at x for all £ € E. However, the above result holds with
essentially the same proof.

Corollary 1 Let U be an open subset of R", and let f : & x U — R be an LL
integrand on E x U with f(-,x) € L%(Re, M, p) forall x € U.Ifx € U is such
that either f (&, ) is subdifferentially regular at x € U fora.e. £ € E or —f(&, ) is
subdifferentially regular at x € U for a.e. § € E, then equality holds in (5).

Proof If f(£&,-) is subdifferentially regular in x at x € U for a.e. £ € Z, then the
result follows from Theorem 1. If — f (&, -) is subdifferentially regular in x at x for
a.e. £ € Z, then, by [14, Proposition 2.3.1] and Theorem 1,

IF(x) = —0(=F)(x) = —E[d(= ), D)) = E[0 f(§, X)].
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Note that, in opposition to Theorem 1, the corollary does not say that the hypotheses
imply that F is subdifferentially regular at x. Indeed, this may not be the case. The
following example illustrates this possibility.

Example 1 Consider the Carathéodory function f(&,x) := —|&||x|, where & ~
N(,1), x € R. It is easy to see that this function is not Clarke regular in x at
(&, 0) for all £ # 0. In addition, the function F is not Clarke regular at x = 0. To see
this, observe that

dF(0)(w) = 1im¢ionfE[f(g’ T = EVE O pep ) = —\/g|w| and

T

JFO)(w) = Tim sup ELfE & +tw)] - BLAE, xD] _ B[] [w]

x'—0,700 T

2
\ = lwl # dFO)(w).
T

Nonetheless, by Corollary 1, d F(0) = E[d f (&, 0)]. This can also be verified by direct
computation.

Before leaving this section we provide an elementary lemma useful in the analysis
to follow.

Lemma2 Leth : & x X — R be a Carathéodory function, and let ¢ € E be such that
h(&, ) is strictly continuous and subdifferentially regular at x € X. Given v € R”,
set

h(E, x 4+ 2tv) — h(£, x +tv) )
t

6(§, x; v) := lim h(§. x —tv) — h(§. x — 2tv)
t}0 ¢

nd

G x;v) = ltifol

Then, for any v € R", the limits £1(&, x; v) and £, (&, x; v) exist and we have

i€, x;v) =deh(§, x)(v) =sup{(g, v) g € dch(§,x)}  and ©)
€6, x;v) = —dch(§, x)(—v) = inf {(g, v) | g € 0xh(§,x)}.
Proof Strict continuity (Appendix Definition 10) tells us that

ldxh(§, x)(v)| < [lvlllip, h(§,x) <00 Vv eR",
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so that dyh (&, x)(v) is finite for all v € R". Therefore, by (55), the limit £; (&, x; v)
exists and

dxh(§, x)(v) = 2dh(§, x)(v) — dih(§, x)(v)
— lim <2h(§, x + 2tv) — h(&, x) B h(é&,x +1tv) —h(§, x))

10 2t t
. h(E, x4+ 2tv) —h(&,x +tv)

= lim .
t}0 t

The first equvalence in (6) now follows from (56). The second equivalence follows
from the first by replacing v by —v.

3 Smoothing functions for F(x) := E[f (&, x)]
3.1 Measurable smoothing functions

Definition 3 (Smoothing functions) [9, Definition 1] Let F : U — R, where U C R"
is open. We say that F' : U x R,, — R is a smoothing function for F on U if

@) F (-, u) converges continuously to F on U in the sense of [27, Definition 5.41],
Le., limy0,x—»z F(x,u) = F(x) Vx e U, and
(i) F(-, u) is continuously differentiable on U for all u > 0.

We now construct a class of smoothing functions for the Carathéordory function f
that generate smoothing functions for F.

Definition 4 (Measurable smoothing functions) Let U < R”" be open and let f :
& x U — R be a Carathéodory mapping on =& x U with f(-, x) € L}(Re, M, p) for
all x € U. A mapping f: 8 xUxR,, — R is said to be a measurable smoothing
function for f on & x U x R, with smoothing parameter u > 0 if, for all © > O,
f(-, -, i) is a Carathéodory map on & x U with f(-, X, ) € L}(R‘Z, M, p) for all
(x, n) € U x R, and the following conditions hold:

(i) The function f (&, -, n) converges continuously to f(&,-) on U as u | O for a.e.
& € & in the sense of [27, Definition 5.41], i.e.,

igm fE x,u) = f(€,%) VieUandae.£e 3, (7
nl0,x—x

and, for every (x, i) € U x R, there is an open neighborhood V C U of x and
a function k ¢ (-, X, i) € L}(Z, M, p) such that

|fE x| <kpE X ) VE x, 0 €8xV x4l (3)
(i) Forall > 0, the gradient V, f (&, x, ) exists, is continuous on U forall £ € &,
and, for every (x, i) € U x R, there is an open neighborhood V C U of x and

afunction k¢ (-, X, j1) € L%(E, M, p) such that
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[vifExw|=ire s, YerwesxvxOa. O
Remark 2 Just as in Lemma 1, Lemma 11 can be applied to show that (9) implies that
fvxf@,x,uwp € ks, % |, p(E)B V(x,u) €V x(0,a]  (10)

E

for all E € M. Note that if we assume that f (&, -, -) is Lipschitz continuous, then
(8) holds. The conditions in (8) and (9) are added to the usual notion of smoothing
function in Definition 3 to facilitate the application of the Dominated Convergence
Theorem when needed.

Lemma 3 (Measurable smoothing functions yield smoothing functions) Let U € R”
be openwith X C U, andlet f : E xU — R be a Carathéodory mapping on E x U
such that f(-,x) € Ll([_'] M, ,o)forallx ceU.Let f : ExUxR., > R bea
measurable smoothing function for f on & x U x R.,. Then the functions F(x) :=

E[f(&,x)] and F(x w) ]E[f(é x, )] are well defined on U and U x R,,,
respectively, and Fisa smoothing function for F on U satisfying

Vo F(x, ) =EBIV. f(&,x, )] ¥ (x,p) € U xR (1D

Proof The fact thatNF and F are well defined follows from the definitions. It remains
only to show that F' is a smoothing function for F. By (7), (8) and the Dominated
Convergence Theorem, for all x € U,

lim _Fx, 1) = i})igcn_)ilE[f(E,x,u)]=E[M})i§1%f($,x,u)]ZE[f(S,X)]

nl0,x—>x

which establishes (i) in Definition 3.

Next let (x, ) € U x R, and d € R" with d # 0. By (9) and the Mean Value
Theorem (MVT), for all small # > 0 and § € & there is a z;(£) on the line segment
joining x + td and x such that

fGE X+1td i) — fE X 1)
t

= Vo f (&, &), Td| <kp(&, %, ) Ild]l .

Hence, by the Dominated Convergence Theorem,

FGx+td, ) — F(x, g
m =IlimE
40 t 110

_E{l. F& % +1d, i)~ f@m]
= m
tl0

t

[f@,ﬂzd,m F& %, i) ]

t

= (V. f& 5 1. d).
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Since this is true for all choices of d € R", we have VXI?()E, n) = E[V, f(&, X, )]
which establishes (11). ~
Finally we show that V, F (-, u) is continuous on U for all © > 0. Let (x, i) €
U x R,,. By (11), (9) and the Dominated Convergence Theorem,
lim V, F(x, i) = lim E[V, f(§. x. )]
X—>X

X—>X

=Ebgngnﬁﬂ=mwf@xﬁn=wf@ﬁy

3.2 Gradient consistency of F(x) = E[f(¢, x)]

A key concept relating smoothing to the variational properties of F is the notion of
gradient consistency introduced in [9].

Definition 5 (Gradient consistency of smoothing functions) Let U € R" be open and
let F: U — R besuchthat F: U x R, — R is a smoothing function for F on
U. We say that F is gradient consistent at x € U if

co { Limsup Vi F(x, u) } = 0F (%),
nl0,x—x

where the limit superior is taken in the multi-valued sense (57).

When F = F, the definition reduces to that of the Clarke subdifferential for the
finite-dimensional case (Appendix Definition 9).

As a first step toward understanding how the gradient consistency of a measurable
smoothing function for f can be used to construct a smoothing function for F, we
give the following result.

Theorem 2 (Gradient consistency and subgradient approximation) Ler U € R", x €
U,and f : ExU — R beasin Corollary 1, and suppose that f : ExU xRy, — R
is a measurable smoothing function for f on & xU xRy If, fora.e. £ € &, f(£,-,")
is gradient consistent at X, i.e.

co {Limsup fo(é,x,,u)} =0, f(§,X) ae &€, (12)

x—>x,ul0

then I?(x, w) = E[f("g‘,x, W) is a smoothing function for F(x) = E[f(&, x)]
satisfying

x—>x,u10 x—>x,u10

AF(X) =E |:co { Limsup Vy f (&, x, M)” =coE |:Limsup V, (£, x, u)] . (13)

Proof The fact that F is a smoothing function for ' comes from Theorem 3. Therefore,
the result is an immediate consequence of Corollary 1 and the Lyapunov convexity
theorem [30].
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The B-subdifferential, denote 3%, is defined in Definition 9 part (iii) of the
“Appendix”. In particular, we know that for a fixed £ € Z,

3B fE,x) cal fe,x) CacfE,x)

and

codl f(E.x) =cod) f(&,x) =0 f(£.%).
Moreover, by [2, Theorems 1 and 3]
E[97 f (€. x)] = B[0} f (&, x)] = E[3, f (. x)].
If we replace (12) by
[Limsup fo(é,x,,u)} =3Bf %) aetes, (14)
x—>x,u0

then we have the subdifferential inclusion

x—>x, 10

AF(x) =E |:co { Limsup V, f (¢, x, M)” =ElcodB f(&, x)] = E[a8 £ (£, x)).
(15)

Obviously, condition (14) implies condition (12). The above argument also holds if
we replace 32 in (14)—(15) by 3™. However, the converse is not true. For example,
consider f (&, x) = —&|x|, where & follows uniform distribution over [0.5, 1.5]. It is
clear that both — f(§, x) and —E[ f (&, x)] = |x| are subdifferentially regular. Taking

f(&, x, 1) = —&/x% + u, we have

Limsup V;, f(.f, x, u) = Limsup A

x—0,1140 x—=0,110 VX2 4+ 1

and

=0 f(5,0) =[-§.,§] ae s €&,

E[f(§,0)] = E[0x f(§,0)] = [-1, 1].
However,

3 f(£.0) = (—¢.£), 3PEf(E. 0] ={-1.1}, E[3] (. 0)] = [-1.1]

W fE 0)=(-&&) OVE[f(E 0] ={-1.1}, E[@Y (. 0)] =[-1,1].
Thus (14) does not hold for either 35 or 3™ . This simple example tells us that even for
a function f (£, x) for which — f (x, &) is subdifferentially regular in x for all £ € Z,
it may not be the case that

IPELf (5, )1 =E[38 f(&, )1, aMEL[f (€, )] = E[0M f (£, x)]
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and the gradient sub-consistency. Therefore, in this paper we consider the smoothing
approximation for the Clarke subdifferential. _

The pointwise condition (12) does not imply the gradient consistency of F at x. To
obtain such a result from (13) we also need to know that

x—x,u0 x—>x,u0

colE |:Limsup V, f(€, x, M)} =co { Limsup E[V, f (€, x, w)] } . (16)

The equivalence (16) is nontrivial requiring stronger hypotheses.

Since dy f (€, x) is compact-, convex-valued in x, the left-hand side of (12) is
contained in the right-hand side if and only if for a.e. £ € & and € > O there is a
8(&, x, €) > 0 such that

fo(é,x,u) € f(&,X)+€B VY(x,u € (x,0)+8(, x, e)B with u > 0.

This motivates the hypotheses employed in the following theorem.

Theorem 3 (Gradient sub-consistency) Let U € R" and f : & x U — R be as in

[l

Corollary 1, and suppose that f : E x U x Ry — R is a measurable smoothing
function for f on E x U x Ry4. If x € U is such that there exists v € (0, 1) such that
forallv € (0, V) there exist §(v, x) > 0and (v, x) € M with p(E(v,x)) >1—v
satisfying for a.e. £ € E(v, x)

Vif (€ x, 1) €0, f(£,%) +VvB V(x, ) € [(F,0)+ 80w, DB x (0, 1)], (17)

then

co {Limsup Vﬁ(x, ,u,)} CoF(x) =coE |:Limsupfo(E, X, ,u):| . (18)

x—>x,u10 x—>x,ul0

Proof Since dF(x) is convex, we need only show that the inclusion, without the
convex hull, is satisfied. Let g € Limsup, _,; o VF (x, u). Then there is a sequence

(xk, i) — (x,0) with ur > 0 such that VF (xk, ur) — g. By Lemma 1(d), there
is a measurable selection s from d, f (-, x). Let v € 0, v), and_let k be such that
(x*, w) € (x,0) +8(v, ©)(B x (0, 1)) for all k > k. For all k > k, define

(E) — fo(évxk’ Mk), E [S E(U, )E)
T ]s@®, £e B\EW, ).

Then
g = lim V. F(x*, )
k—o00

= lim fo(é,xk,uk)dé—i-/ Ve f &, x5, pi)de

k=00 Jecm (1,7) E€E/E(1.%)
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—tim [ q@)ds - s(E)dE + f Vi &, ude

ki)oo el EeE\E(v,X) EeE\E(v,X)
€ B0, f (€, ©)]+vB+v |k (-, X) |, B+v| &, %, )|, B
=0F @) + v+ ks D), + |frC X )| )B,

where the second equation follows from Theorem 3, the inclusion follows from (17),
Theorem 1(f), and (10), and the final equation follows from Corollary 1. Since v €
(0, v) was chosen arbitrarily, this proves the inclusion in (18) since 9 F (x) is closed.
The equivalence in (18) follows from Theorem 2 since (17) implies (12).

In what follows, we refer to (18) as the gradient sub-consistency property for the
smoothing function F at x, and we refer to (17) as the uniform subgradient approxi-
mation property for the measurable smoothing function f at x.

4 Composite max (CM) integrands

In this section we introduce the class of CM integrands, and smoothing functions for
these integrands, that satisfy the properties required for the application of the results
of the previous sections. The nonsmoothness of CM integrands arises through compo-
sition with finite piecewise linear convex functions on R. The simplest such piecewise
linear functions is given by (#)4 := max{0, ¢t}. Indeed, all piecewise linear convex
functions can be built up from this basic function. Integral smoothing techniques
based on (¢) first appeared in the work of Chen and Mangasarian [8] and were later
expanded by Chen [9] to a broader class of non-smooth functions under composition.
In [6] it is shown that certain economies are possible by using the piecewise linear
convex functions directly in the construction of smoothers. We use these here. As in
[5,6,8,9], we convolve these piecewise linear functions with a density to obtain a rich
class of measurable smoothing mappings useful in applications. We begin with the
following definition.

Definition 6 (Measurable mappings with amenable derivatives)Let 5 x X € R xR”
and let U be an open set containing X. We say that the mapping g : & x U — R"™
is a measurable mapping with amenable derivative if the following two conditions are

satisfied:

(i) Each component of g is a Carathéodory mapping and, for all £ € &, g(§,-) is
continuously differentiable in x on U;

(ii) For all x € U, the gradient V, g(&, x) is locally L? bounded in x in the sense that
there is a function £, : & x U — R satisfying k¢ (-, x) € L%(Re, M, p) for all
x € U and

Ve X3e(x) >0 suchthat [[Vyg(§, x)ll <kg(€,%) Vx €Beg)(X).
Define /QgE()"c) = Elkg (&, 0)].

We now define CM integrands.
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Definition 7 (Composite max (CM) Integrands) A CM integrand on & x X is any
mapping of the form

fE,x)=q(cé, x)+ C(g(&, x)) (19)

for which there exists an open set U containing X such that
(i) C: R™ — R™ is of the form C(y) := [p1(y1), p2(32). ..., Pm(ym)]", where
pi :R— R(@G =1,...,m) are finite piecewise linear convex functions having

finitely many points of nondifferentiability,

(i) the mappings c and g are measurable mappings with amenable derivatives mapping
& x R" to R™ and having common underlying open set U containing X on which
c(&,-) and g (&, ) are continuously differentiable in x on U for all § € &, and

(iii) the mapping q : R — R is continuously differentiable with Lipschitz continuous
derivative on the set

Q:=cl(co {c(§,x) +C(gE.x) [ (5, x) e &ExU).

Let i, be a Lipschitz constant for Vg on Q.

Remark 3 The family of CM integrands is designed to include many important classes
of functions useful in applications, e.g. the gap functions of the Nonlinear Complemen-
tarity Problem (NCP); the conditional value at risk (CVaR) [24]; and the difference of
two Clarke regular functions where nonsmoothness occurs due the presence of com-
positions with piecewise convex functions. Ralph and Xu [22] discussed Aumann’s
integral of piecewise random set-valued mappings which include some special CM
integrands. The censored regression problem in statistics and machine learning has
many important applications [3] and takes the form

min E[(max(a(§)"x, 0) — b())’].

The function f (&, x) := (max(a(£)Tx, 0) — b(£))?is an example of a CM integrand.
In this case, m = 1, and

c(€,x) == =b(&), C(y):=max(y,0) —b(&), g x):=a®'x, q(z):=2".

Following [6, Section 4], we assume with no loss of generality that for each i =
1, ..., m, there is a positive integer r; and scalar pairs (a;;, b;j), i =1,...,m, j =
1,...,ri such that p;(r) := max {a;;t +b;j | j=1,....r;}, where q;j; < ap <
- < @i(r—1) < ajr;- Again with no loss of generality, we assume that the scalar pairs
(aij, bij), i=1,...,m, j=1,...,r; are coupled with a scalar partition of the real
line —o0 =t;] <tjp < -+ <t <tiz+1) =00suchthatforall j=1,...,r;, —1,
aijtij+1 + bij = aij+ntii+1) + bij+1) and
ajit +biy, t < iy,
pi(t) =1 aijt +bij, t €tij, i+l (G €{2,...,ri —1}),
airyt + biry, > tiy;.
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This representation for the functions p; gives

a;i, tii <t <ticivn, j=1,....r;
api(ty=1{" i Hot ’ (20)
laij—1),aijl, t=tij, j=2,...,r.

It is easily shown that the functions p; and C (19) are globally Lipschitz continuous

with common Lipschitz constant

ke =max{laij| | i=1,....,m, j=1...,r} @21)

Clearly CM integrands on = x X are Caradtheodory functions on = x X. Moreover,
CM integrands are explicitly constructed so that they are also LL integrands on & x X.
We record this easily verified result in the next lemma.

Lemma4 (CM Integrands are LL Integrands) Let f : & x X — R be an CM
integrand as in (19). Then f is an LL integrand on E x X, where, for all x € X, one
may take

K (e, X) 1= kglke(, X) + Kcke (-, X1, (22)

where iy and k¢ are defined in Definition 7 and (21), respectively, and k¢ and K, are
given in Definition 6.

Since the functions p; are continuously differentiable on the openset R\ {#;2, ..., t;; }
and the functions g, c(§, -), and g (&, -) are continuously differentiable, the set on which
the CM integrand f (&, -) is continuously differentiable is easily identified.

Proposition1 Let f : & x X — R be a CM integrand as in (19), and, for each
i=1,...,m,setqi(§,x):= pi(gi&,x)). Given (§,x) € E x U set

U:) = {x e U |x ¢ e, » ™ iz -1 )
Ewi={eed|e¢ @t W)

},i
b

m m
UE) = (Ui and Ex):=() & ).
i=1 i=1
Then g, (&, -) is continuously differentiable on the open set ﬁi (&) with

Vigi(§.%) = Vpi(gi(§. x)Vgi(§. x), i =1,....m,

and f (&, -) is continuously differentiable and subdifferentially regular on the open set
U (&) with

Vi f(&,x)=(VyC(E, x) + diag(V p; (gi (£, X)) Vg (€, X)) Vq(c(&, x) + C(g(&, X))
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and 0 f (&, x) = {Vy f (&, x)}. Therefore, given x € U, f (&, -) is continuously differ-
entiable and subdifferentially regular at x for all & € Zx). In particular, if x € U
is such that ,0(5' (x)) =1, then f (&, ) is continuously differentiable and subdifferen-
tially regular at x for a.e. § € 5.

Proof Observe that each of the sets U,- (&) is open due to the continuity of g; (&, -). In
addition, given x € U;(€), t := gi (&, x) is a point of continuous differentiability for
pi. Hence, by a standard chain rule with the amenable derivatives of c(&, -) and g(&, -)
(e.g.see[28, Theorem 9.15]), g; (§, -) is continuously differentiable atevery x € [7,- ).
Therefore, every ¢;(£,-),i = 1, ..., m is continuously differentiable for x € U &),
and so, by the same standard chain rule, f (£, -) is continuously differentiable on U &)
with it’s gradient as given. The subdifferential regularity follows from [27, Theorem
9.18 and Exercise 9.64].

Givenx € U and £ € §(x) we have g;(§,x) & {tia, ..., tip}fori =1,..., m.
Hence x € U (&) so that f(£, ) is continuously differential and subdifferentially
regular at x as required. The final statement of the proposition is now evident.

4.1 Smoothing CM integrands

We use the techniques described in [6] to smooth CM integrands. Let 8 : R — R4
be a non-negative, symmetric, piecewise continuous density function satisfying

/ B)ydt =1, B) = pB(—t) and w :=/ [t|B(t) dt < oo. (23)
R R

We denote the distribution function for the density 8 by ¢,i.e.,¢ : R — [0, 1]is given
by ¢(x) = ffoo B(t)dt. Since B is symmetric and B(-) > 0, ¢ is a non-decreasing
continuous function satisfying

¢0) = % 1 —¢(x) =¢(—x), xli?;o‘b(x) =1 and lirllootﬁ(x) =0. (29
Moreover, for every o € (0, 1), ¢’1 (@) is a bounded interval in R, and so
ban(@) =it ¢ ¢ €07 @ | = gub@ =sw e [c e o7 @] @9)

with both ¢;iln (o) and ¢5§X () finite. Finally, we note that since S is a non-negative,
piecewise continuous density function, it must be bounded on R, so that Bpax =
sup{B(t) |t € R} < 4oo which implies that ¢ is Lipschitz continuous on R with
modulus :BmaXa i.e., |¢(tl) - ¢(t2)| = ﬂmax'tl - t2|‘

Lemma5 [6, Lemma 4.1] For eachi = 1,...,m, let p; : R — R be the finite
max-function defined above. Furthermore, let B : R — R4 be a non-negative, sym-
metric, piecewise continuous density satisfying (23). Then, for eachi =1, ..., m, the
convolution
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pi(t, ) = /Rpi (t — pus)B(s)ds
is a (well-defined) smoothing function with
Vii ) = an(1-9(*—2))
t ) - -
4 L M

ri_l — .. — fe, . — i}”i
+§2a,~,~(¢(t Mz,>_¢<; tpf’“’))+air,¢(t M’ ).

(26)

aij, tij<l‘<l‘i(j+1),j=1,...,

| . ")
saig—n *aij), t=tij, j=2,....r

ni(t) = }Lii%vtl;i(tvﬂ) = :

is an element of 3 p;(t), and Limsup,_7 , 10 Vi pi(t, u) = dp;i(t), Vi € R. In addi-
tion, forf,t € Rand 0 < i < i, we have

|pi (5, ) — pi(t, W)| < kcl|f — 7| + | — | ] and (28)
Y A - - 2ri . - oo _
IVepi(t, 1) — Vi pi(t, )| < ﬁl[lt -+ —M/M)mj?lXIt —till. (29)

Remark 4 The bounds (28) and (29) do not appear in [6], but are straightforward to
verify directly from the definitions and (26).

Theorem 4 (Smoothing of CM Integrands) [6, Theorem 4.6] Let f be a CM integrand.
Then f : & x U x R, — R given by

FE x, 0 = q(c&, x) + C(g(&, x), 1), (30)

where C(y, ) := (P11, 1)y P22y 1)+« + s P (s )17 with each p; is as given
in Lemma 5, is a measurable smoothing function for f. If, furthermore, (§,x) € & xU
is such that rankV, g (&, X) = m, then, for all u > 0,

Vi f (&, %, 1) = (Voc(E, %) + diag(V; i (gi (&, X), 1) Vag (&, )7 Va(c(€, %)

- 31)
+ C(g(§, X))

and

Limsup V, f (€, x, ) C 8, f(£,%) and co {Limsup vxf@,x,m} =3 f(&, %),
x—x,u0 x—>Xx,10

@ Springer



The subdifferential of measurable composite max integrands... 245

where

Or f (€, ¥) = (VxC(&, X)+diag(d; pi (gi (&, ) Vg (&, ©) Vq(c(&, %) + C(g(&, 1))

We now proceed to show that the function f defined in (30) is a measurable smooth-
ing function for f in the sense of Definition 7. First observe that the expression for
V;pi(t, n) in Lemma 5 implies the bound

2kc z ||diag(Vipi(gi (5, %), i))lloo Y (&, X, ) € E X X xRy (32)

Since this bound is independent of 1, we can use it in conjunction with the represen-
tation (31) to provide a Lipschitz constant for f analogous to (22).

Lemma 6 (Smoothed CM integrands are LL integrands) Let f:ExX >R be
as in Theorem 4. Then, for every p € R, f(-,-, n) is an LL integrand on & x X,
where, for all X € X, one may take K7, (-, X) 1= Kqlkc(-, X) 4 2kcig (-, X)].

We also have the following bounds for the functions p;, p;, V; p;, and ;.

Lemma7 Fori =1,...,m, let V,p; and n; be as in Lemma 5, and set
It — 2], ifri =2,t # 1,
@) +00, lfri =2,t=1,
l min {|t — ;] | j€{2, ... ri}, 1G5}, ifri =30 £, j=1,.. i,
min“tij_ti(]l])h |t,'j_ti(j7+1)|}a l'friZ?’»thi],j:Z,...,ri.

Then, for eachi =1, ..., m,

Kc(|t —t| 4+ pw) > [ pi(t) — pi(t,u)| Vi, t €R, and (33)
bi(t, 1) == (F + Diccp (= v (1) = [ Vipi(t, p) — ni (1) |, (34)
where w is defined in (23), k¢ is defined in (21) and r := max{ry, ..., r,}. Moreover,
fori =1,...,m, b; is continuous on R x (0, +00) when r; = 2 and is continuous

on (R\{t;2, ..., tir;}) x (0, +00) when r; > 3. In addition, for all (t, ) € R x
(0,00), 0 < b(t,n) < %(f + k¢, and b(t, -) is non-decreasing on (0, +00) with
lim 100 b(t, ) = 3(F + Dicc and lim, 10 b(t, n) = 0.

Proof The bound (33) is given in the proof of [6, Lemma4.1]. Next, fixi € {1, ..., m}.
Since i is fixed, we suppress it in the proof to follow. Let r € R and let k denote some
integer in {2, ..., r}. One of the following five mutually exclusive cases must hold:
(A)r=2andt # t,(i)r =2andt =, ({ii))r >3and(t <t ort > t.),([iv)r >3
andr = fg,and (v) r > 3 and fy < t < fx41 with 2 < k < r — 1. Each of the five
cases is addressed separately. In each case, we make free use of the properties of the
function ¢ as described in (23)—(25).

()r=2andt #1:

| Vipi(t, ) = ni@) | < riccd (™" (It — ) = ricc(—p ™"y (@)).
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(ik=2andt =1 :

| Vipit, ) = ni(@) | = 0= ¢(—u""y(1)).

(iii)r >3and (t <t ort >t,):

(1 <) | Vet ) =m0 | <rcg (™' =) =rkcd(=ny (1),
(> 1)1 [ Vepi(t ) =m0 | =rie (1= ¢ = 1)) =rked (W™t = 1)

=riccg(—p "y (1)

(v)r >3andt =t :

| Vepitt, ) =m0 | < (k= 2)c (1= @G~ ¢ = 15-1))

+

1 1 1
a1 (¢ (™ =tm) =5 ) +ar(5=$ 0 =) =5 @ +a)

+(r —kkcp(w (= 1ig1)
< k= Dfc (1= 90" = 1-1))) + ¢ =k + DEco (0™ = 1)
= (k= Dikcp(u™ " (trm1 — ) + (r —k + Dicc (™" (t — tr1))
<ricp(—pn"y ).

Vr>=3andty <t <txyywith2 <k <r—1:

| Vipitt, ) =m0 | = (k= Die (1= ¢ @ = 51
+ (r = ke (™t — iey1)
| (667 = 1) = 6™t = tges1))) — e
< kic (1= o™t = 1)) + ( =k + DRco (™ (0 = ti41)
= kiccd(u™ " (tx — 1)) + (r —k + Dikcp(u™" (t = tr41))
< (r+ Dikcd(—p~y (1)),

The bound (34) follows. The properties stated for the function b follow from its
definition.

Theorem 5 (Measurable Smoothing Functions for CM Integrands) Let f be a CM
integrand and let f : E xU xR, — R be as given in Theorem 4. Then f is
a measurable smoothing function for f on E x U x Ry. Moreover, the functions
F(x) :=E[f(§,x)] and F(x, n) = E[f(g, x, )] are well defined on U and U x
R, respectively, with Fa smoothing function for F on U.
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Proof By Lemma 4, we need only establish (i) and (ii) in Definition 4 to show that f
is a measurable smoothing function for f. First note that the bound (33) in Lemma 7
shows that (7) in part (i) in Definition 4(i) is satisfied. The bound (8) is also satisfied
since, by Lemma 6,

IF(E, x, | < |fE, &, w)| + kqlke(E, %) + 2ikckq (&, X)]

V(E,x,n) € E xB(x) x (0, it] (see Definition 2 and Lemma 4 for the definition of
the terms in this bound). Hence Definition 7(i) is satisfied.

By (31), for all .« > 0, the gradient V, f (£, x, j1) exists, and V, f (£, -, w) is con-
tinuous on U for all £ € &. Also, by (31), Definition 6 and (32) (or, more simply
Lemma 6),

Vi f (&, x, )| < ieglRe(§, ) + 2iecke (5, )] Y (5, x, 1) € E X Be()(X) x (0, fl,

which establishes a bound stronger than (9) in Definition 7(ii) since it is independent
of .
The final statement of the theorem follows from Lemma 3.

4.2 Gradient sub-consistency of CM integrands

We now examine conditions under which the smoothing (30) of CM integrands satisfy
the gradient sub-consistency property (18). Our approach is to develop conditions
under which Theorem 3 can be applied. The key condition in this regard is the uniform
subgradient approximation property (17). This property is equivalent to saying that
there exists v € (0, 1) such that for all v € (0, V) there exist §(v,x) > 0 and
Z(v,x) € M with p(Z (v, x)) > 1 — v satisfying, for ae. & € Z (v, x),

dist (fo(é‘,x, ) |3xf(f;',f)) vV, wel, 0+, x)B x (0, )]
(35)

To establish this condition, we use Theorem 4 to derive a bound on the distance to
dx f (&€, x) in terms of the distances to the subdifferentials 9; p; (g; (&, x)). For this we
require the following Lipschitz hypothesis on the Jacobians Vq, V,g and V,c: for all
X € U, there is a §(X) > 0 for which there exist k¢(x) > 0 and k.(x) > O such that,
forall§ € & and x € Bg(j)(i),

IVa(y) = Vall < kqlly = ¥l
IVxg (&, x) — Vig(§, X)|| < kg(X)]lx — X||, and (36)
IVxe(§, x) = Vie€ Dl <kc(D)llx — X[l V&€&, x € B, (%),

where i, is the Lipschitz constant for Vq given in Definition 6. The Lipschitz conti-
nuity of V,c and V, g on BS()E) (x) uniformly in & on & implies that these functions are
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bounded on Bg(i)(i) uniformly in & on &. Denote these bounds by k. (x) and kg (X),

respectively. We also assume that Vq is bounded by «¢. Taken together, we have
IVall = «q, IVxc(§, x)|| < ke(x) and 37)
IVeg(6. 0l < kg () ¥ (£.x) € & x Bz (3.

Lemma8 Let f be a CM integrand as given in Definition T and let f be the smoothing
function for f as in Theorem 4 for which (36) and (37) hold, and set

K1 (%) = [kg (ke (X)4+2+/mkg (X)icc) + Kq (ke (X)+icky () (ke (X) + /micg (Dicc)],
K>(X) := /mwigic (ke(X) + /mikg(X)ic), and
Ki(x) = \/ﬁ/cqlcg(i).

If x € U is such that rankVyg(&,x) = m forall x € Bg(j)()f)for a.e & € &, then

dist (V. (&, x, 1) 1, /€, )
< Ki®llx — ¥l + K2

38
1,..., ( )
forall (E,x) € E x Bg@()f) and > 0.

Proof Let x € Bg(i)(i) and set Y

= diag(y) and Z := diag(z) where y; :=
Vi pi(gi(§,x), n) and z; € dp;(gi(§,%)),i = 1,...,m. Then, by Theorem 4, for
ae. £ e &,

G = Vo (€, x, 1) = (Voc(E, x) + Y Vg (&, X)) T VQ(c(E, x) + C(g(&, x)))
and

g = (VoC(€, %) + ZV,g(5, ©)T Va(c(E, ) + C(g(£, %)) € 3y f (&, X).

By using the bound (33), the constants defined in (36) and (37), and the fact that
[-ll, < /m ||-loo on R™, we have

13 = gl < [(ke(®) + 2/mky (D7) llx = 51 + 5 () 1Y = Zleg
e () + Vg ()R T [ () I = £+ | C (a6, 1) — Clee, 9| ]
< [(ke(®) + 2v/mky (DIC) [lx = 5 + (D) 1Y = Z1k,
o Dee () + Vg (DRCTR [e(D) 1 — T
e (g () ¥ = 5 + Vimow)]
< g (ke (B) 42/ tk (£)RC) R (e () + Ry (9) (e ()
+ Vg (DR Ix—
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+ Vmoiqie (e () +/micg (Riec)
gy () max |V, pi(gi (€, x), W)=l (39)

.....

,,,,,

for a.e. £ € =, which proves the lemma.

Lemma 8 shows that if we can obtain a bound on the distancs:s to the subdifferentials
dpi(gi (&€, x)) similar to the bound in (35), then we can choose § (x) and u small enough
to ensure that (35) also holds.

Lemma9 Let f and f satisfy the hypotheses of Lemma 8. Set
- _ 1 . .
T:ZKC(r+1)/25 S:ZZmln{ltij_tl.(j+])||l=17"'7m7,]=29"'5rl'_1}

and, for every ¢ € (0, €] and x € U, define

Jie(l, -, m), i x) e Jwj+ [~ el)

=
but gi (&, x) & {ti1, -+, tir;}

Let x € U and consider the following assumption:

forany T € (0,7), 38(r,%) € (0,€), s.t.p(E:(X)) <71, Ve € (0,2(t, X)).
(40)

If x € U is such that (40) holds, then, for alli € {1,...,m}, T € (0,7) and ¢ €
0, &(z, X)),

dist (V; pi (gi(§,x), ) 10pi(gi(§, %)) =t (41)

forall § € E{(X) = E\E¢(X) whenever (x, 1) € By, /() x (0, (e, 7, X)),
where §(e, 7, X) 1= min{§(%), £/ (2k, (%))} and

&

-1
2 (72

(e, T, X) =

with §(x) and kg (x) as given in Lemma 8 and (37), respectively.
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Proof Let §(x), Kg, Kq, kg(X), kg(x), kc(x) and k.(X) be as in Lemma 8 and it’s
proof. Observe that, for every ¢ € (0,&] and x € U,

@uﬁ=FeE

Viel{l,--- ,m}, g, x) €[ty +e tir1) — el
orgi(&,x) € {ti, -, tir} |

and note that these sets are measurable.

By (40), for any t € (0, T), we have p(Z(x)) < 7 forall ¢ € (0, &(t, x)]. Let
e € (0,&(t, x)). Then, for all (§,x) € & x Bg(&m)(i), we have fori = 1,--- ,m,
lgi(5, x) — g, 0l < 5.

Lete € (0,&(t,x)] and & € E'_,EC()E). We consider two cases, both of which make
use of the following two elementary facts without reference:

(a) If t <11 < tp, then

o e — 1) —p(u™ ¢ — )| < ¢t — 1)) = p(—p "t — 1))

(b) Ift > t1 > tr, then

('t =) —p(u e =) < 1=t —n) =dp(—u "t — 1)

Casel(g;(§,x) € [tl-]v—l—a, LiG4n —¢]forsome j € {1,---,ri})Letx € BS(S’T’E)()E)

L

and p > 0. Then g; (§, x) € [t;; + % LG — £]for all x € Bj y(X), in which

S(e,T,x

case Vpi(gi(§, X)) = Vpi(gi(§, x)) = ni(gi(§, x)). By Lemma 7, we have
-1 —
IVipi(8i(§, x), W)=V pi(gi(§, X)) < (ri+Dkce (7%'(&(5, X))) = (r+Dico <27j) .

Since 7/(kc(r+1)) < 1/2 (sothat ¢r;i1n (m) < 0by (24)), we have the inequality

IV:pi(gi(€,x), ) — Vpi(gi(§,%))| < v whenever 0 < u < fi(e, 7, X). Hence, for
any (x, u) € BS(S,;)()E) x (0, fi(e, T, X)), we have

Vi pi(gi(§,x), w) — Vpi(gi(§, X)) = 7.

Case 2 (g;(§,x) = L5 for some j € {2,---,r;}) In this case dp;(gi(&, %)) =
[ai(f_l), ai]]. Clearly,

(g1 €. 00 = (1= 00~ @6 1) =1, ) +a, 76 (™ (816, ) =1;7)
€dpi(gi(§, X)),

and so

dist (V; pi(8i(§, x), ) [9pi(gi(§, %)) = [Vipi(gi(§, x), w) — i (8i (€, X), .
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If r; = 2, then (26) tells us that V; p; (g; (€, x), ) = n;(gi (€, X), u), so that
[Vipi(gi(§,x), ) —Mi(gi(§, X)) =0 =< (r + Dkc¢ (—%) :

Ifr; >3and2 # j # ri, the expression in (26) for V; p; (g; (§, x), ) tells us that

IV pi (81 (€, %), 1) — 71 (81 (€, %), )
(=2
< XL kel = oG (@60 1))
iz
Fla; G @ (86, ) — 1,G5_1)) — ¢ (gi (€, 1) = 1;7))
+a ;@ (@i ) = 17) = ¢ (@& ) — 1)) — i (g€ ),

+ Y Rep(u(gi€,x) — 1))
J=i+l
< (J = Dkcd(=57) + a5l (1 = o (™" (gi (5, %) = 1;5_1)]
Hla s 1o (™ (i (€. x) — 1 541)) + (ri — Dicc (—m)

= ke (—3) -
If r; zSandf:Zor]_':ri,

[Vipi(gi(§, x), ) — 0i(8i(§, %), Wl = (F — Diccg (-i) :

Hence, we always have

dist (V; pi(gi(§, x), ) [9pi(gi(§. X)) = (F + Dicé (—%) .

and so, as in Case 1, whenever 0 < u < ji(e, T, X), we have
dist (V; pi(gi(§, x), w) 19pi(gi(§,%))) < 7.
The result follows by combining these two cases.

Remark 5 One can strengthen the hypothesis (40) to

It >0st.Vre0,7)3Ié(r, %) e (0,8)st p(B.(X) <t Vee (035 i).
(42)

Then Lemma 9 still holds. However, under (42), we have that ,0(§ (x)) = 1, where

§()E)={$GE

Vie (L om)§ ¢ (e i tin D) )
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is defined in Proposition 1. Consequently, (42) implies that f (&, -) is continuously
differentiable and subdifferentially regular at x for a.e. £ € Z.

We now combine Lemmas 8 and 9 to establish conditions under which (35) is
satisfied.

Theorem 6 (Uniform subgradient approximation) Let f be a CM integrand as given
in Definition T and let f be the smoothing function for f given in Theorem 4. Suppose
that the basic assumptions of Lemmas 8 and 9 are satisfied so that their conclusions
hold. Then f satisfies the uniform subgradient approximation property at . That is,
there exists v € (0, 1) such that, for all v € (0, V), there exists §(v,x) > 0 and
E,x) € Mwith p(E (v, x)) <1 — v forwhich (35) is satisfied.

I_’roof Let x € U be such that rankV,g(§,x) = m and let v € (0,v). Let
3(x), K1(x), K2(x) and K3(x) be as given by Lemma 8 so that (38) is satisfied
for all x € Bg@)(}?) and u > 0. Set

S1(v, x) := min{S()E), v/(BK1(x))}, m1(v,x):=v/(3K2(x)), and
T:=v/(BK3(x)+ 1).

Let &(t, x) be as in (40). Take ¢ € (0, &(z, X)), and set = (v, x) equal to E?';‘()E).
Observe that p(&Z(v,x)) > 1 — 1 > 1 — v by construction. Set § (v, x) =
min{§ (v, x), S(s, 7,x)} and po (v, x) := min{u; (v, x), (e, T, x)} where S(s, T,X)
and fi(e, T, x) are given in (41). Then, by (38) and the definitions given above,

dist (V. f6.x. )| £(6.9)) = K1 (®)llx = 7 + K2

.....

=

for all x € Bs,,7)(x) and u € (0, u2(v, X)).

We can now apply Theorem 3 to obtain the gradient sub-consistency of smoothed
CM integrands.

Theorem 7 (Gradient sub-consistency of smoothed CM integrands) Let f be a CM
integrand as given in Definition 7 and let f be the smoothing function for f given in
Theorem 4. Suppose that the basic assumptions of Lemmas 8 and 9 are satisfied so
that their conclusions hold. We further assume that f (&, -) is subdifferentially regular
X fora.e. & € E or —f(§, ") is subdifferentially regular at X for a.e. § € E. Then
F(x,pn) = E[f(é, x, )] satisfies the gradient sub-consistency property (18) at X,
ie.,

co { Limsup Vf(x, w)t CIF(x) =coE Limsupfo(é,x, w |-
x—>x, 10 x—>x,ul0
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Proof The result follows once it is shown that the hypotheses of Theorem 3 are sat-
isfied. Theorem 6 tells us that the uniform subgradient approximation property is
satisfied. Lemma 4 shows that every CM integrand is an LL integrand, so, the subdif-
ferential regularity requirement implies that the hypotheses of Corollary 1 are satisfied.
Hence, all hypotheses of Theorem 3 are satisfied at x.

4.3 Subgradient approximation via smoothing without regulartity

Theorem 7 uses the subdifferential regularity of f (&, x) or — f (¢, x) fora.e. £ to obtain
the gradient sub-consistency property of the smoothing approximation F. However,
gradient sub-consistency is often stronger than what is required in some applications.
In this section it is shown that a useful subgradient approximation result can be obtained
without assumptions on subdifferential regularity.

Let f be the measurable smoothing function introduced in (30). We show that if
(§,x) € & x X is such that rankV, g (&, X) = m, then the limit lim, o fo(f;’, X, 1)
exits, and we provide an explicit formula for this limit. For i = 1, ..., m, define the
functions

zi(§, %) = 1i(gi (5, X)) Vygi (5, %)

aijVygi, 5T, tij < 8§, X) <tiGj+1), J=1,...,ri

hi(g, H)(v) = {a;jVegi (€, )T v, (Vigi(§,x),v) 20, gi(§, x) =15, j=2,...,1;
aii—nVxgi (€. ) v, (Vigi(€,%),v) <0, g€, X) =15, j=2,....r,
aijVegi 6, D) v, 1 < &€ D) <Gy, J=1,.7

7 (€. 5)®) = {aij-Vegi (6. D) v, (Vigi(€,5),v) 20, gi(E, %) =15, j=2,..., ri
aijVigi(6, )T, (Vxgi(§,%),v) <0, gi(§,x)=tij, j=2,...,ri,

where the functions n; are defined in (27). Note that

1
(zi(5,%),v) = E(hfl (&, ©)(v) + hi(, (), 43)
and, by Lemma 5,

z(§, x) = diag(n; (i (§, X)) Vxg(§, x). (44)
Lemma 10 Consider the CM integrand f and its smoothing function f defined in

(30). Assume that rankV, g(&, X) = m for a fixed (¢, x) € E x X. Then the following
limits exist as given with u(¢,x) € oy f(&, x): forall v € R”,

u§, x) = E%fo(é,f, )

= (VaC(E, %) + (@1(E, 5), ..., Zn (&, ©) Va(c(E, %) + C(g(€, X))
(45)
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f&, x+2tv) — f(§, x4+ tv)
t

= Vq(c(E, %) + C(g &, )N (Vec(E, $)v)
+ (h{(€, ¥)(v), - -, hL &, D )HT) (46)

Li(§, x;v) = lzlff)l

and

f(E x —tv) — f(§, X —2tv)
t

= Vq(c(&, %) + C(g(E, ©)) T (Vic(E, ¥)v)
+ (M (E, )W), -, h2E DHNT). (47)

lr(E,x;v) =1
206, x;v) tlfg

Moreover, by (43), we have

1
(@, x),v) = (€1 X v) + £, X:v)) Ve R™. (48)

Proof By combining (31) and (27), we find that the right hand side of (45) is an
element of d, f (&, x). Moreover, by (27) in Lemma 5 and (31) in Theorem 4, the limit
u(&, x) exists as given in (45). Since (48) follows from (46) and (47), it remains only
to establish the limits £ (&, x; v) and £» (&, X; v) exist as given.

First consider the nonsmooth functions #; (€, x) := pi(gi(§,x)),i = 1,---,m.
For each &, the functions %; (€, -) are convex-composite functions [4]. Hence, by [4,
Section 2],

Oxhi(§,X) = 0x(pi 0 8i)(§, X)) = dpi(gi(§, X)) Vxgi(§, X) (49)

and

Vx(ﬁi ogi)(S’x_)a /"l') = Vtﬁi(gi(fvf), /J‘)ngl(%-y)z)

By combining (20), (44) and (49), we have that z; (&, x) € d,(p; o gi)(&, x) for all
(&,x) € E x X. Since, for each x € X, z;(£, x) is defined by n; which is the limit of
measurable functions in & from (27), z; (€, x) is measurable in &. In addition, by [4,
Section 2], each of the mappings x — h; (€, x) = p;(gi (&, x)) is Clarke regular. Since
g(&, x) is smooth, lim,/_, ;V,g; (&, x) = Vygi (&, X). Combining (20) and Lemma 2,
for any x € X and direction v € R", we have

h; (&, 2tv) — h; (&, t
h! (&, ¥)(v) = lim i, x +20v) = i@ X +0v) max (v,v) and
110 t veEIhi(§,x)
hi(§,x —tv) —h;j(§,x — 2t .
h2(E, B)(v) = lim EX T i@ x Z20) ),
10 : vedohi(€.x)
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Note that, forevery ¢ > 0, the mean value theorem tells us that there exists w; € R™
on the line segment connecting the two vectors c(&, x — tv) + C(g(§€,x — tv)) and
c(&,x —2tv) + C(g(&, x — 2tv)) such that

q(c, x—rv) + C(g(§, x—1v))) —q(c(§, X —2rv) + C(g(§, X —21v)))
t

7 (€€, x—1v) + C(g(E, X —1v))) —(c(§, X —2tv) + C (g (§, X —21v)))
t

— limVq(w,)” (C(S,i—tv)—C(S,f—Ztv) +C(g(é,f— tv))—C(g(S,i—%v)))
= t
t}0 t t

= Vq(c(E, ) +C (g, DN (Ve HTv+(hiE, D)), -+, hiE D)D),

6(E xv) =1
28, %3 v) lim

= 1limV
tllfg q(wy)

and similarly,

08, % v)=Va(cE, ©)+C(gE D)) (V@ ©) v+ (i D)), - h), €, D).
This establishes (46) and (47) which combined imply (48).

Theorem 8 (Subgradient approximation by smoothing) Consider the CM integrand f
and its smoothing function f defined in (30), and suppose the hypotheses of Lemma 8
hold. Set F(x) :=E[f(&,x)] and F(x, n) :=E[f (&, x, n)] for all x € X. Then, for

ae & € &,

dist (V. /(6. % 1) [0 /&, 9))

—1
< Ko()u+K3(x)r+1ic max ¢ <77/i (gi (&, f))) : (50)

.....

Moreover, F(-, W) is differentiable at x for all u > 0 with V, F(i, W) equal
= E[V, f(&, x, n)], the function u in (45) is well defined, and,

lim V, F (¥, 1) = im E[V, f (&, ¥, )] = E[u(&, ©)] € 0E[f (£, ©)] = dF (¥).
1wl0 ul0

Proof Combining (34) and (38), we have (50).

By Lemma 4, f is an LL integrand. By Lemma 10, the function u in (45) is well
defined a.e. in EL and measurable. By Theorem 5, F (-, ) is differentiable at x for all
u > 0 with Vo F(x, u) = E[Vf(é, X, i)]. By Theorem 5, (45) and the Dominated
Convergence Theorem,

lim VXF()?, u) = limE[fo(é, x, )] =E[u, x)].
10 wl0

Since JE[f(§, x)] = 0 F (X), it remains only to show that E[u(§, x)] € 9 F (x).
Letv € R".By[17, Theorem 2.7], each of the mappings V f (&, x, i) is measurable
in & for each (x, u) € X x R4. By Lemma 10 and [17, Proposition 2.7], u (&, x) €
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3, f (£, %) is measurable. Moreover, by (48) in Lemma 10,
G(&, X v) — (u(E, x), v) = =208, x;0) — (u(§, x),v)) ae.§ ek,

with both limits existing and measurable. Consequently,
E[¢1(§, x; v)] — E[(u(§, x), v)] = —(E[€2(8, X; v)] — E[(u(§, X), v)]).  (51)

Since f is an LL integrand,

{If(é‘,f +2t0) = f(E X +tv)| [f(E, x—1v)— f(§, x—21v)]
max ’

; ; }SKf(é,i) vl -

Therefore, by the Dominated Convergence Theorem,

El1 (€. % 0)] = lim [f@’ E4200) - fEF + m)] "

t

f(é,f—tv)—f(é,i—Ztv)]
; ;

=1

E[¢;(5, %; v)] = nmE[

110

which tells us that

ZfF()E)(U) =limsup E |:

10,2 %

f(§,z+tv)—f(5,z)]
t

SE x+2tv)— f(§,x +tv)
t

s V)]

=1

>limE [
110

]=EWM§

and

F (%)(v) =lim sup E [f(fv 21— [, z)]

110,z % t

[f(%',f —tv)—f(§,x —2tv)
t

>limE
140

=

<
~
—

]=E[€z(é, X;
Hence, by (51),
dF(®)(v) — (E[u(E, D)1, v) = E[£;(E, % v)] — (EuE, O], v)
= —(E[2(8, x; v)] — (E[u(&, X)], v))

and dF (¥)(v) — (E[u(&, ©)]. v) = E[62(. %: v)] — (E[u(£. H)], v). and so
dF (¥)(v) — (E[u(E. H)]. v) > |E[L2(E, 1 v)] — (E[uE. 5], v) [ = 0.

Since v was chosen arbitrarily, Appendix Definition 9 tells us that E[u (£, x)] € 0 F (x).
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Corollary 2 Let the assumptions of Theorem 8 hold. For w > 0 and x € U, set
Ky4(x) = [K1()p + 2r K3(x)kg(x)]. Then

) lx —x|| VEe€ & and x € Bg(j)(i)

[ViE v w-viezw)| =
(52

and

K4(x)

dist (E[V /€. ¥, ;)] 9F () ) =
+dist (Ve F (¥, 1) | 0F (X)) V x € By g (&)
(53)

Moreover, we have the following gradient sub-consistency property at X for any y €
0, D):

Limsup E[Vf(&, x, 1)) € 0F (X). (54)

X=X, u=0([x—x[)

Proof The proof of (52) follows the pattern of proof given for (39) to first establish
that

IVFE, x, W=V FE X wll< Ki@)lx—%|
+K3(8) max [V, pi(8i(€, x, 1) = Vi pi(gi (€, % )l

Then use (29) to obtain the bound (52).
To see (53), note that
dist (ELV 7 (&, x, j0] [0F () <[ELV f (&, x, 0] = E[V (€. £, )|

+ dist (vxE[f(g, X, 1| 8F(i))
_ K4(x)

o — 21 + dist (VLELF 6, %, )] | 0F (3)

_ =Xl
< K4(x)

+ dist (Vi F (&, ) | F(%)).

Hence, (54) follows from Theorem 8.

One of stopplng criteria in smoothing algorithms is to require that the smoothing
gradient VF (x*, ) is sufficiently small. However, in keeping with our program,
we prefer a stopping criteria based on the integrand. Such a criteria is provided by
Theorem 8 where it is shown that the expectation E[u (&, Xx)], with u is defined in (45),
provides an arguably better estimate of proximity to stationarity in the CM function
setting. This expectation is computable and satisfies u(&, x) € dy f (&, x) a.e. §.
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5 Conclusion

In this paper, we provide a framework for the study of smoothing functions for non-
smooth random integrands with the primary focus being the study of the gradient
consistency property and the approximation of Clarke subgradients of expectation
functions. For the large class of measurable CM functions, we show the gradient sub-
consistency property when the integrand or its negative is subdifferentially regular for
a.e. £ € & (Theorems 6, 7). Moreover, when this subdifferential regularity hypothesis
fails, we show that for any x € R”,

E%E[Vf(%‘,x,M)]GaE[f(E,X)] and  Limsup B[V f(, x, )] €IE[f (€, )].

x—=X, u=0([lx—Xx[")

Consequently, we can approximate an element of the Clarke subdifferential of the
expectation function using gradients of a smoothing function for the non-smooth
integrand (Theorem 8 and Corollary 5.19). Measurable CM functions arise in several
important applications, e.g.

E[|| min(x, (¢, )| and E[(max(a(§)"x,0) = b(E)*1+4 Y log(l + |d] x])).

i=1

The first comes from stochastic nonlinear complementarity problems with a contin-
uously differentiable function ¢ : & x R" — R”" [11,13], and the second is from
optimal statistical learning problems with a(§) € R",b(£) € R and d; € R" [1,3].
Other interesting application might be stochastic programs with the P-matrix lin-
ear complementarity constraints. The P-matrix linear complementarity constraints
can be rewritten as piecewise linear constraints [10,22,32] and approximated by
continuously differentiable constraint functions using a smoothing approximation.
Our goal is to apply these approximation techniques in cases where the inclusion
AE[f(&,x)] € E[0f(&, x)] is insufficient for guiding both numerical optimization
and optimality assessment.

Acknowledgements We would like to thank Associate Editor and two referees for their helpful comments.

6 Appendix: Background
6.1 Finite-dimensional variational analysis

Since we allow mappings to have infinite values, it is convenient to define the extended
reals R := R U {4-00}. The effective domain of f : R" — R, denoted dom f C R”",
is the set on which f is finite. To avoid certain pathological mappings the discussion is
restricted to proper not everywhere infinite) lower semi-continuous (1sc) functions. Of
particular importance is the epigraph of such functions: epi f := {(x, u) | f(x) < u}.
We have that f is Isc if and only if epi f is closed, and f is convex if and only if epi f
is convex.
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Definition 8 (Subderivatives) [27, Exercise 9.15] For a locally Lipschitz function f :
R" — R near a point u, € R" with f(u,) finite,

(i) the subderivative df (uy) : R* — R is defined by

F s+ Tw) = flu).

T

df (uy)(w) := linrljgf

(ii) the regular subderivazve (or the Clarke generalized directional derivative when f
is locally Lipschitz) d f(uy) : R® — R is defined by

df(uy)(w) := limsup flutTw) — fa)

U—>Uy, T]0 T

Definition 9 (Subgradients, subdifferentials and subdifferential regularity) Consider
a locally Lipschitz function f : R* — R, a point v € R”, and a point u, € R" with
f(uy) finite.

(i) [27, Theorem 8.49] The vector v is a Clarke subgradient of f at u, if v satisfies
df)w) > (v, w) Yw e R".

We call the set of Clarke subgradients v the Clarke subdifferential of f at u, and
denote this set by 9 f (u).

(ii) [27, Corollary 8.19] f : R” — R is said to be subdifferentially regular (or Clarke
regular) at u,, € dom f with 9 f (uy) # @ if

df (u)(w) =d f(u)(w) YweR".
(iii) [14, Definition 2.6.1] [12] The vector v is a B-subgradient of f at u, if

v= lim Vf(uk), where f is differentiable at uk.

uk—u,

We call the set of B-subgradients v of f at u, the B-subdifferential of f at u, and
denote this set by 85 f (u).

(iv) [27, Definition 8.3] The vector v is an M-subgradient of f at u, if there are
sequences uX — u, and v* — v with

ey k&
liming L0 SO (4w —uf)

u—suk ”M - l/lk”

> 0.

We call the set of M-subgradients v of f at u, the M-subdifferential of f at u,
and denote this set by a¥ f (u,).

Remark 6 In [27], the notion of subdifferential regularity is defined in [27, Definition
7.25]. In the definition given above we employ characterizations of this notion given
by the cited results. Note that subdifferential mappings are multi-functions.
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Definition 10 (Strict continuity and strict differentiability) Let H : D — R™, D €
R*, andh: R" — R.

(i) [Strict Continuity [27, Definition 9.1]] We say that H is strictly continuous at
x € int (D) if

/ —
lipH(x) := limsupM < 00.
/ llx" — x|l

x,x'—x

x#x'

(ii) [Strict Differentiability [27, Definition 9.17]] We say that 4 is strictly differentiable
at a point X € dom 4 if & is differentiable at x and

o h(x) —h(x) — (Vh()?), x' — x)
lim

x,x' =% ”-x/ - x”
x#x!

=0.

It is easily seen that if / is continuously differentiable on an open set U, then £ is
strictly differentiable and subdifferentially regular on U with dh(x) = {Vh(x)} for
all x € U ([27, Theorem 9.18 and Exercise 9.64]).

The notion of strict continuity of f at a point x implies the existence of a neighbor-
hood of x on which f is Lipschitz continuous, that s, f is locally Lipschitz continuous
at x where the local Lipschitz modulus is lower bounded by lip H (x). In this light,
Definition 8 and Definition 9(ii) combine to tell us that

fuse +tw) — f(uy)

T

Yw e R", (55)

df (us)(w) = d f (uy) (w) = lim

wherever f is strictly continuous and subdifferentially regular at u,.. Moreover, in this
case, [27, Theorem 8.30] tells us that

df(x)(v) =supf(g. v) [g€df(x)}. (56)

Remark 7 (Subdifferentials of Compositions) If g : X € R” — R is given as the
composition of two functions f : ¥ C R" — Randh : X — Y, ie g(x) =
(f oh)(x) = f(h(x)), then we write dg(x) = d(f o h)(x). On the other hand, we
write d f (h(x)) to denote the subdifferential of f evaluated at i (x).

Theorem 9 (Strict differentiability_ and the subdifferential) [27, Theorem 9.18] [14,
Proposition 2.2.4] Let h : R" — R with X € domh. Then h is strictly differentiable
at x if and only if h is strictly continuous at X and oh(x) = {Vh(x)}.

6.2 Measurable multi-functions
We now review some of the properties of measurable multi-functions used in this

paper [2,15,18,27]. For more information on this topic, we refer the interested reader
to [27, Chapter 14] and [25].

@ Springer



The subdifferential of measurable composite max integrands... 261

A multi-function, or multi-valued mapping, S from R¥ to R® is a mapping that takes
points in R¥ to sets in R, and is denoted by S : R = R®. The outer limit of S at
X € R¥ relative to X € R¥ is

Limsup S(x) := {v R I x5, ) > veR W e SR Vke N}

X—>xX

(57)
and the inner limit of S at x relative to X is

Liminf S(x) := {v € R® | V{x*} - x %, 3"} - v e R : vF € S(x¥) Vk e N}

X—>xX

Here the notation {x¥} — x X means that {x*} € X with x¥ — x. If X = R, we
write x — x instead of x —p« x. We say that S is outer semicontinuous (osc) at x
relative to X if

Limsup S(x) € S(x).

X—> X)f
When the outer and inner limits coincide, we write

Lim_ S(x) := Limsup S(x),

X—>xX X—xX
and say that S is contiuous at x relative to X.

Let & be a nonempty subset of R¢ and let A be a o-field of subsets of &, called
the measurable subsets of Z or the A-measurable subsets. Let p : A — [0, 1]
be a o-finite Borel regular, complete, non-atomic, probability measure on A. The
corresponding measure space is denoted (=, A, p). A multi-function ¥ : & = R" is
said to be A-measurable, or simply measurable, if for all open sets { V } € R” the set
{€ {VINW(E) # @}isin A. The multi-function ¥ is said to be AQ B"-measurable
if gph(¥) = {(§&,v) |[ve ¥ (§)} € A® B", where B" denotes the Borel o-field on
R" and A ® B" is the o-field on = x R" generated by all sets A x D with A € A and
D € B". If W (&) is closed for each & then V¥ is closed-valued. Similarly, ¥ is said to
be convex-valued if ¥ (&) is convex for each &. Finally, we note that the completeness
of the measure space guarantees the measurability of subsets of Z obtained as the
projections of measurable subsets { G } of & x R":

{(Gle A®B" = {te&|TveR"with(,v)e{G}}eA

In particular, this implies that the multi-function ¥ is .A-measurable if and only if
gph(¥) is A ® B"-measurable [27, Theorem 14.8].

Let¥ : & = R" and denote by S(¥) the set of p-measurable functions f : & —
R" that satisfy f(§) € W (&) fora.e. &£ € &. We call S(¥) the set of measurable
selections of W.
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Theorem 10 (Measurable selections) [27, Corollary 14.6] A closed-valued measur-
able map ¥ : E = R" always admits a measurable selection.

We say that the measurable multi-function ¥ : & = R" is integrably bounded, or
for emphasis p-integrably bounded, if there is a p-integrable functiona : & — R’
such that

[vllee = a(§) (58)

for all pairs (§,v) € & x R”" satisfying v € ¥ (§). Here and elsewhere we interpret
vector inequalities as element-wise inequalities. Let 1 < p < oco. When & = R¢,
we let LE (R¢, A, p) denote the Banach space of functions mapping R¢ to R™. When
p=2, L,zn (RY, A, p) is a Hilbert space with the inner product on the measure space
(RY, A, p) given by

(¥, 9)p = /Rf (&), o) dp,

where (-, -) denotes the Euclidean inner product. If p(R?) < oo, then
LL(RE, A, p) € LE(RY, A, p) whenever 1 < p <g < c0.

If the function a in (58) is such that [la(§)]| , is integrable with respect to the measure p
on the measure space (&, A, p), then the multi-function ¥ is said to be L”-bounded,
where [|-||, denotes the p-norm of vectors.

Proposition 2 [7, Proposition 2.2] and [16, Corollary IV.8.4](Weak compactness of
measurable selections) Let the multi-function ¥ : Rt = R™ be closed- and convex-
valued, and L*-bounded on L,zn (RE, M", A,,), where M™ is the Lebesgue field on R"
and Ay is n-dimensional Lebesgue measure. Then the set of measurable selections
S(W) is a weakly compact, convex set in L,zn (RE, M™, A).

We now develop some properties of integrals of multi-valued mappings. Given a
measurable multi-function ¥ : & = R", we define the integral of ¥ over & with
respect to the measure p by

/‘Ifdprz{/sfdplfeS(lP)}.

The next theorem, due to Hildenbrand [18], is a restatement of Theorems 3 and 4 of
Aumann [2] for multi-functions on the non-atomic measure space (&, A, p). These
results are central to the theory of integrals of multi-valued functions.

Theorem 11 (Integrals of multi-functions) [18, Theorem 4 and Proposition 7] The
following properties hold for integrably bounded multi-functions ¥ : E = R" on
non-atomic measure spaces (5, A, p).

(a) If ¥ is AQ B"-measurable, then [ Wdp = [ conv ¥dp.
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(b) IfW is closed valued (not necessarily AQB" -measurable), then f Ydp is compact.

We conclude this section with a very elementary, but useful lemma on measurable
tubes, i.e. multi-valued mappings ¥ : Z = R" of the form

(&) ==« (&)B, (59)

where B := {x ||lx|[, <1} is the closed unit ball in R” and x : & — Ry is
measurable.

Lemma 11 (Tubes) Let ¥ : & = R”" be a measurable tube as in (59) with
K € L%(E, A, p) non-negative a.e. on . Then, for every E € A, fE Y (&)dp C
[[zk&)dp]B C |kl p(E)B.

Proof The mapping ¥ in (59) is obviously closed valued and measurable. Therefore,
Theorem 10 tells us that S(¥) is non-empty. Let E € 4 and s € S(¥). Then

‘/ $@)dp 5/ |s<s>|dps/f<(s>dp,
E E E

so that [, s(&)dp € [[zk(§)dp]B. This proves the lemma since [ x(§)dp =
(i, Xg) <kl p(E).
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