Downloaded 08/28/20 to 128.95.104.109. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

SIAM J. OPTIM. © 2020 Society for Industrial and Applied Mathematics
Vol. 30, No. 3, pp. 1822-1849

INEXACT SEQUENTIAL QUADRATIC OPTIMIZATION WITH
PENALTY PARAMETER UPDATES WITHIN THE QP SOLVER*

JAMES V. BURKE', FRANK E. CURTIS}, HAO WANG$, AND JIASHAN WANGY

Abstract. This paper focuses on the design of sequential quadratic optimization (commonly
known as SQP) methods for solving large-scale nonlinear optimization problems. The most compu-
tationally demanding aspect of such an approach is the computation of the search direction during
each iteration, for which we consider the use of matrix-free methods. In particular, we develop a
method that requires an inexact solve of a single QP subproblem to establish the convergence of the
overall SQP method. It is known that SQP methods can be plagued by poor behavior of the global
convergence mechanism. To confront this issue, we propose the use of an exact penalty function with
a dynamic penalty parameter updating strategy to be employed within the subproblem solver in such
a way that the resulting search direction predicts progress toward both feasibility and optimality. We
present our parameter updating strategy and prove that, under reasonable assumptions, the strategy
does not modify the penalty parameter unnecessarily. We close the paper with a discussion of the
results of numerical experiments that illustrate the benefits of our proposed techniques.

Key words. nonlinear optimization, sequential quadratic optimization, exact penalty functions,
convex composite optimization, inexact matrix-free methods, infeasibility detection

AMS subject classifications. 49M20, 49M29, 49M37, 65K05, 65K10, 90C06, 90C20, 90C25

DOI. 10.1137/18M1176488

1. Introduction. In this paper, we consider the use of sequential quadratic
optimization (SQP) methods for solving large-scale nonlinear optimization problems
(NLPs) [1, 2, 3, 5, 9, 13, 16]. While they have proved to be effective for solving small-
to medium-scale problems, SQP methods have traditionally faltered in large-scale
settings due to the expense of (accurately) solving large-scale quadratic subproblems
(QPs) during each iteration. However, with the use of matrix-free methods for solving
these subproblems, one may consider the acceptance of inexact subproblem solutions.
Such a feature offers the possibility of terminating the subproblem solver early, per-
haps well before an accurate solution has been computed. This characterizes the type
of strategy that we propose in this paper.

Some work has been done to provide global convergence guarantees for SQP meth-
ods that allow inexact subproblem solves [8]. However, the practical efficiency of such
an approach remains an open question. A critical aspect of their implementation is
the choice of a subproblem solver since it must be able to provide good inexact solu-
tions quickly, as well as have the ability to compute highly accurate solutions—say,
by exploiting well-chosen starting points—in the neighborhood of a solution of the
NLP. In addition, while a global convergence mechanism such as a merit function or
filter is necessary to guarantee convergence from remote starting points, any NLP al-
gorithm can suffer when such a mechanism does not immediately guide the algorithm

*Received by the editors March 20, 2018; accepted for publication (in revised form) April 7, 2020;

published electronically July 2, 2020.
https://doi.org/10.1137/18M 1176488

TDepartment of Mathematics, University of Washington, Seattle, WA 98195 (jvburke@Quw.edu).

*Department Industrial and Systems Engineering, Lehigh University, Bethlehem, PA 18015 (frank.
e.curtis@gmail.com).

8School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210
(wanghaol@shanghaitech.edu.cn).

TDepartment of Mathematics, University of Washington, Sunnyvale, CA 94085 (jswll19@math.
washington.edu).

1822

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/28/20 to 128.95.104.109. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

INEXACT SQP WITH DYNAMIC PENALTY PARAMETER UPDATES 1823

toward promising regions of the search space. To confront this issue when an exact
penalty function is used as a merit function, we propose a dynamic penalty parame-
ter updating strategy to be incorporated within the subproblem solver so that each
computed search direction predicts progress toward both feasibility and optimality.
This strategy represents a stark contrast to previously proposed techniques that only
update the penalty parameter after a sequence of iterations, in hindsight at the end
of an iteration [1, 9, 10], or at the expense of numerous subproblem solves within a
single iteration [3, 6, 7].

To provide some context about how the algorithm proposed in this paper compares
to other recently proposed SQP-type methods in the literature, let us contrast our
approach with those proposed in [3, 8]. The penalty SQP method proposed in [3] was
motivated by the desire to formulate an SQP approach that attains strong convergence
guarantees when solving problems regardless of whether they involve constraints that
are feasible or infeasible. Toward this end, the approach involved a novel dynamic
updating scheme for the penalty parameter that, e.g., quickly drives the algorithm
toward constraint violation minimization when infeasibility is detected. The approach
relies on exact solves of two QP subproblems per iteration; the first determines the
reduction that can be obtained in a local model of an infeasibility measure while the
second minimizes a local model of the objective while ensuring that the reduction in a
local model of the infeasibility measure is proportional to that attained by the solution
of the first QP. In this manner, rapid convergence can be attained when solving
either a feasible or infeasible problem, although a high price is paid by needing exact
subproblem solutions. The method in [8] overcomes this obstacle by allowing inexact
subproblem solves. However, it also potentially requires (approximate) solutions of
two QPs per iteration, one aimed at minimizing constraint violation and one aimed at
reducing the objective subject to an appropriate bound on constraint violation. The
approach proposed in this paper also allows inexactness in the QP solves, but only
requires solving a single QP in each iteration. This is made possible by a new strategy
for dynamically updating the penalty parameter within the QP solver. This dynamic
penalty parameter updating strategy is the focus of our investigation. We prove that
our algorithm does not reduce the penalty parameter unnecessarily and that one can
ensure convergence to an optimal solution (when a given problem is feasible) or to an
infeasible stationary point (when a given problem is infeasible).

Overall, the contributions in this paper can be summarized as the following.

e Our proposed SQP technique is specifically designed to be effective in large-
scale settings. In particular, it allows for the use of iterative methods for
solving the QP subproblems, allowing inexactness in the subproblem solves.

e Our technique involves a dynamic penalty parameter updating strategy to
be employed within the subproblem solve. This makes the approach efficient
while not having to accurately solve multiple QPs in a single iteration.

e By ensuring that each computed step predicts progress toward minimizing
constraint violation, our technique allows for automatic infeasibility detection.

1.1. Organization. In the remainder of this section, we outline our notation and
introduce various concepts that will be employed throughout the paper. In section
2, we introduce a basic penalty-SQP algorithm. Our penalty parameter updating
strategy is detailed in section 3. A complete algorithm is presented and analyzed in
section 4. The results of numerical experiments are presented in section 5. Concluding
remarks are provided in section 6.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/28/20 to 128.95.104.109. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1824 J. V. BURKE, F. E. CURTIS, H. WANG, AND J. WANG

1.2. Notation. Let R™ be the space of real n-vectors, R’} be the nonnegative
orthant of R™ (i.e., R} := {z € R" : x > 0}), and R}, be the interior of R} (i.e.,
R%, :={z € R" : > 0}). The set of m x n real matrices is denoted R™*". On R",
the ¢5 (i.e., Euclidean) norm is indicated as ||-||,, with the unit ¢5-norm ball defined as
By := {z € R" : ||z||]2 < 1}. For a pair of vectors (u,v) € R" x R™, their inner product
is written as (u,v) := uTv and the line segment between them is written as [u, v]. The
middle value operator applied to (a, b, c) € R xR xR, denoted by mid{a, b, ¢}, returns
the median of {a,b, c}. For a scalar a, let (a); := max{a,0} and (a)_ := min{a,0}.
The set of nonnegative integers is denoted by N. The extended real number line is
defined as R = R U {—o0, +00}.

For a set of scalars b; € R for ¢ € {l1,...,m}, we denote the vector b =
[b1,b2,...,bm]T € R™. For convenience, we use 1, to denote the nm-vector of all
ones and 0, to denote the n-vector of all zeros. Given vectors y* € R% for i €
{1,...,m}, we use boldface to denote the element y = (y',...,y™) on the product
space R4 x ... x R% . Conversely, given y € R% x ... x R%_ the ith component of
y (an element of R%) is denoted ' while the jth element of y is written as y; For
convex sets C; € R% for i € {1,...,m}, the distance functions are defined as

distz (y' | Ci) == inf ly* = 2'll>-
2t i

The interior of a set C' is denoted by int(C).

For an extended-real-valued function f : R* — R, the Legendre Fenchel con-
jugate of f is denoted as f*. For a convex set X C R", we define the charac-
teristic function 6(d|X) which evaluates to 0 if d € X and evaluates to oo other-
wise. The conjugate of d(:|X) is the support function of X, which we denote by
0*(y|X) = supgex (y,d). For example, for a hyperplane C' := {d : (a,d) +b = 0}
(resp., half space C' = {d: {(a,d) + b < 0}), one finds that ¢*(y|C) < oo if and only if
(y,a) = £yl2llallz (resp., (y,a) = llyll2llall2). In this case,

(1.1) y=Ca with (= —(y,a), meaning that §*(y|C) = —(b.

lall3

For an iterative algorithm, we use superscript k to indicate the iteration number
for vectors and subscript k for scalars to avoid confusion with the kth power of the
scalar, e.g., ¥ and py. For an algorithm for solving the subproblem, we use superscript
(j) to indicate the iteration number for vectors and subscript (j) for scalars.

2. A penalty-SQP framework. Consider the following NLP with equality
and inequality constraints where we assume that the functions f : R — R and
c¢:R™ — R™ are continuously differentiable:

min f(z)
(NLP) sit. ci(x) =0 forall i€ {1,...,m};
ci(z) <0 forall ie {m+1,...,m}.
Our penalty-SQP framework uses two functions for use in the algorithm and for

characterizing first-order stationary solutions. First, with a penalty parameter p €
R, we define the measure of infeasibility and exact penalty function

v(@) = lea@)|+ Y (ci(z)y and ¢z, p) = pf(x) + v(x).
i=1 i=m+1

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/28/20 to 128.95.104.109. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

INEXACT SQP WITH DYNAMIC PENALTY PARAMETER UPDATES 1825

Generally speaking, our penalty-SQP framework aims to solve (NLP) through sys-
tematic minimization of ¢(-, p) for appropriately chosen values of p € R4 . However,
if the constraints of (NLP) are infeasible, then the algorithm is designed to return an
infeasibility certificate in the form of a stationary point for the feasibility problem

(2.1) fg}iRI}z ¢(x,0), where ¢(z,0) =v(z).

Given p € Ry and n € R™, we define the Fritz John function for (NLP) by

F(x,p,n) = pf(x) + (n, c(z)).

Note that p € Ry plays a double role as penalty parameter in ¢ and objective multi-
plier in F'. This makes sense from both theoretical and practical perspectives. First-
order stationarity conditions for (NLP) can be written in terms of VF, the constraint
function ¢, and bounds on the dual variables [8].

In the kth iteration of our penalty-SQP framework, the search direction computa-
tion is based on a local model of the penalty function about a primal iterate z* € R™
that can make use of a dual iterate n* € R™. We define this model over a convex set
X C R” containing {0} by

J(d, p;a®,n") == U(d, p;2*) + $(d, H(p; ¥, n")d) + 6(d| X),

where [is a linearized model of the penalty function (ignoring pf(z*)) defined by

(d, pi2*) = p(V I (@), d)+ 3 [esla?) + (Veulah))|+ 3 (eala®) + (Vei(a®), d))s
=1 i=m—+1

and H represents an approximation of V2 F with

m

H(p; % n*) = V2, F(p;a*,n%) = pV2, f(2") + D niV2,ei(a).
=1

In particular, the search direction d is computed as an approximate minimizer of
J(-, pr; x¥,nF) for some py, € (0, pi_1], i-e.,

(QP) d* ~ arg Inin J(d, p; a*,m*) for some py € (0, pr_1].
e n

We introduce the set X to allow for the possibility of employing, e.g., a trust region
constraint; e.g., for some A € Ry, one may define X such that X C {d: ||d||2 < A}.

The value py € (0, pg—1] is computed during the iterative solve of (QP). Roughly
speaking, we aim to adjust this value so that the (inexact) solution d* to (QP) pre-
dicts progress toward both feasibility and optimality. In particular, this occurs if the
reduction in a linearized model of the feasibility measure,

(2.2) Al(d®,0;2%) :=1(0,0; 2%) — 1(d¥, 0; %),
(2.3) where generally Al(d*, pr;) := 10, pp; o) — 1(d®, py; %),

and the reduction in the local model of the penalty function,

(2.4) AJ(d¥, pi; 2®, ") == J(0, prs ¥, 0") — J(d, pr; 2,),

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/28/20 to 128.95.104.109. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1826 J. V. BURKE, F. E. CURTIS, H. WANG, AND J. WANG

are sufficiently positive, in which case d* represents a direction of sufficient descent
for both v and ¢(-, p) from 2*. However, if 2¥ is (nearly) stationary for v and/or
for ¢(-, pi), then requiring both of these reductions to be positive can force the algo-
rithm to compute a highly accurate solution of (QP) when one is not entirely needed.
Therefore, the precise conditions that (d*, ps) must satisfy—introduced in the next
section—involve margins that allow one or both of these reductions to be small or
even negative for an acceptable step.

Overall, the kth iteration of our penalty-SQP strategy proceeds as in Algorithm 1.
First, a search direction and penalty parameter pair (d*, py) is computed by a sub-
problem solver such that d* yields reductions in the local models of the penalty
function and measure of infeasibility that satisfy our conditions in section 3. Then, a
line search is performed with respect to the merit function ¢(-, pr) from x* along the
search direction d*, yielding a stepsize o, € R, . Finally, the new iterate is set as
ok« 2k 4+ ap.d* and the algorithm proceeds to the (k + 1)st iteration. We discuss
choices for the new dual iterate n**1 with the complete algorithm in section 4.

Algorithm 1 Penalty-SQP Algorithm (Preliminary)

Require: (v,60) € (0,1) and p_; € (0,00).
1: Choose (z°,n") € R x R™.
2: for all k € N do
3: Solve (approximately) (QP) to obtain (d¥, pr) € R™ x (0, p_1].
4: Let o be the largest value in {7°,7',~4%,...} such that

oz + ard®, pr) — (2", pr) < =0 Al(d", pr; 2*).

5: Set z**! < 2F + apd® and choose nf*+1 € R™.

Before proceeding, it is worthwhile to emphasize the benefit of ignoring the term
pf(z*) in our definitions of the models J and [above. It is valid to do this since this
term has no effect on the solution of (QP), and since its presence would not affect
the model reduction values in (2.2) and (2.4). On the other hand, ignoring this term
simplifies our presentation and analysis significantly since it allows us to avoid the
fact that if this term were not ignored, then the optimal value of (QP) for a given x*
would shift with changes in the penalty parameter.

3. A dynamic penalty parameter updating strategy. In this section, we
present a dynamic penalty parameter updating strategy. As mentioned, the method
is novel since the update is employed within a solver for the subproblem arising in
our penalty-SQP framework. A potential pitfall of such an approach is that, since the
penalty parameter dictates the weight between the objective terms in (QP), one may
disrupt typical convergence guarantees of the subproblem solver by manipulating this
weight during the solution process. However, under reasonable assumptions, we prove
that for sufficiently small values of the penalty parameter, our updating strategy will
no longer be triggered. Consequently, once the penalty parameter reaches a sufficiently
small value, it will remain fixed and the subproblem solver will effectively be applied
to solve (QP) for a fixed value py.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/28/20 to 128.95.104.109. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

INEXACT SQP WITH DYNAMIC PENALTY PARAMETER UPDATES 1827

3.1. Preliminaries. For ease of exposition in this section, we drop the depen-
dence of certain quantities on the iteration number:

QZVf(l'k), ai :Vci(xk)a bi:Ci(xk)7 A= [al’.”’am]T’

3.1
() Hf ~ VT’I‘f 7 Hy ~ vak zz€ Ik ’ and HP = pr + Ho.

We also temporarily drop the dependence of the functions J, [, etc. on the kth iterate.
We make the following assumption about the subproblem data.

ASSUMPTION 1. The subproblem data matrices A, Hy, and Hy are such that
(i) H, is positive definite for any p € [0, pr—1] and
(ii) |la’ll2 > 0 for alli € {1,...,m}.

We claim that this assumption is reasonable due to the following considerations.
First, in large-scale contexts, it is typically impractical to construct complete second-
derivative matrices. Hence, as indicated in (3.1), one can assume that Hy and Hy
represent (limited memory) Hessian approximations with at least Hy being positive
definite. Second, if a® = 0 for any i € {1,...,m}, then the model of the ith constraint
is constant with respect to d, meaning that the ith constraint can be removed from the
subproblem. Such a phenomenon can be detected during a preprocessing phase before
solving the subproblem, so for simplicity, we assume that each constraint gradient is
nonzero. Under Assumption 1, we define the scaled quantities @’ := a’/||a’||2 and

b; == b;/|a’||s for all i € {1,...,m}.

Of central importance in the subproblems are the convex sets
Ci:={deR":(a',d)y+b;=0} forall ic{l,...,m}
and C;:={dcR":(@,d)+b <0} forall ic{m+1,...,m}.

The quadratic and penalty terms in J can be written, respectively, as

(d,p) = plg,d) + 1{d. Hyd) and 1(d,0) = 3 [la’odistz (d | C;)

=1

meaning that we may rewrite the penalty-SQP subproblem (QP) as

(QPrho) ;IEI]%I}L J(d,p), where J(d,p)=1(d,p)+1(d,0)+d(dX).

We refer to (QPrho) with p > 0 as a penalty subproblem and we refer to (QPrho) with
p = 0 as the feasibility subproblem. The Fenchel-Rockafellar dual of (QPrho) is

D £ u® o’ +u™+ =0
oopiy weee D) st 3t

and u’ € By forall i€ {1,...,m},

where the dual objective function is given by

D(u,p) = =5’ — pg, H, ' (u° — pg)) leallz5* Cy) = 6% (u™ X)),

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/28/20 to 128.95.104.109. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1828 J. V. BURKE, F. E. CURTIS, H. WANG, AND J. WANG

Letting ¢;(u) := (u’,a") for a dual feasible u, one finds from (1.1) and the constraint
in (DQPrho) that D(u, p) is finite if and only if

u' = ¢ (u)at,

[-1,1] forallie{l,...,m}

[0,1] forallie {m+1,...,m},
and 6*(’U,Z|Cz) = 7@(11)1_)1

(3.2) which means ¢;(u) € {

An interesting aspect of the dual subproblem (DQPrho) is that the penalty pa-
rameter appears only in the objective. Thus, if u satisfies the constraints of (DQPrho),
then it is dual-feasible regardless of the value of p appearing in the subproblem. As a
result, by weak duality, we have for any primal-dual feasible pair (d, u) that both

(3.3) D(u,0) < J(d,0) and D(u,p) < J(d,p).

We close this subsection by noting that the projection onto the set Cj,

Pe,(y') := arg min 2" =o',

is easy to compute for any ¢ € {1,...,m}; in particular,

d— ((@,d)+b)a" forall ie{l,...,m},
— ((@,d) +b;)ya forall i€ {m+1,...,m}.

3.2. Updating the penalty parameter. Given p > 0, let (dz, u;) represent an
optimal primal-dual pair for the penalty subproblem (QPrho) corresponding to p; in
particular, (d§,u) represents an optimal primal-dual pair for the feasibility subprob-
lem. The algorithm is presented in the context of a subproblem solver that generates
two sequences of iterates: the first sequence, call it {(d),u()}, is a sequence of
primal-dual feasible solution estimates for a penalty subproblem, while the second
sequence, call it {w()}, is a sequence of dual feasible solution estimates for the fea-
sibility subproblem. (In our strategy, we do not make separate use of a sequence of
primal solution estimates for the feasibility subproblem; rather, the sequence {d(j)}
plays this role as well.) Without loss of generality, we assume that the jth primal
solution estimate d) represents a better (or no worse) primal solution estimate for
the penalty subproblem than a zero step in the sense that

(3.4) J(d9, piy)) < J(0, pz)-

Similarly, we assume that the dual solution estimate w(/) represents a better (or no
worse) dual solution estimate for the feasibility subproblem than ul, and that each
dual solution estimate u?) is no worse than the feasible u(®), in that

(3.5) D(w,0) > D(u®,0) > D(u®,0) > —co.

These are both reasonable assumptions since if (3.4) (resp., (3.5)) were not to hold,

then one could consider d) = 0 (resp., wi) = ul) = u®) for the jth iterate (even

if the subproblem solver works with a different estimate in its internal operations).
Observe that, by the definition of the model .J, we have for any p € (0,00) that

m m

JO = J(0,p) = J(0,0) = 1(0,0) = > _|bil + > (bi)+ > 0.

i=1 i=m+1

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/28/20 to 128.95.104.109. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

INEXACT SQP WITH DYNAMIC PENALTY PARAMETER UPDATES 1829

Let J” := J© 4 o for any scalar w € (0,00). (As will be discussed later, w is held
fixed during a given subproblem solve, but will sequentially be reduced to zero over
the course of the overall penalty-SQP framework.) We then define the following ratios
corresponding to the jth subproblem solver iterate:

JLO) _ l(d(])’o) N G gy — J(d(J),p(j))

56 | - ore)
JU(JO) — (D(w(),0)) JCE;O) — D(u", pejy)

(Referring to our discussion surrounding (2.2) and (2.4), note that the numerators
of these ratios are Al(d\7),0) +w and AJ(dY), p;)) + w, respectively.) The critical
property of these ratios is that if they are sufficiently large, then the corresponding
subproblem solver iterates must yield reductions in the feasibility and penalty function
models that are proportional to those obtained by corresponding exact subproblem
solutions. In particular, suppose that for some prescribed 3, € (0,1) we have

(Rv) ri) > B,.

Then the reduction in the linearized constraint violation model obtained by the sub-
problem solver iterate d7) relative to a zero step satisfies

JO —1(dD,0) > 6, (SO — (D(w,0),)

(3.7) > 6, (19 = D(u;,0)) = 8, (I~ 7(d5,0))

where the first inequality follows by (Rv), the second follows by the optimality of ug
with respect to the feasibility subproblem (for which it is known that D(uf,0) > 0),
and the last follows by strong duality. Similarly, if for 84 € (0,1), we have
(Rphi) 9 > By,
then it follows that
T = J(d9, pij)) = Be(J — DY), p(j))

> B (S = D(W) s p())) = Bo(JE) = J(d s pij)-

The last component of our updating strategy involves an estimate of the comple-
mentarity of a primal-dual solution estimate. This is needed since we only reduce the
penalty parameter if a primal-dual solution estimate is approximately complementary.
We do this in the following manner. First, defining the index sets

(3.8)

Ei(d):={ic{l,...,m}: (@, d) +0b; >0},
E (d):={ie{l,...,m}: (a' d)+b; <0},
and Z,(d):={ic{m+1,...,m}:(@,d) +b; >0},

we define the complementarity measure

X(dou) = Y (1= Gu)a'llzdist (@] Ci) + Y (1+Gw)a’l|2dist (d | C;) -

i€5+UI+ €€
To reduce the penalty parameter, we require that (d\¢), u¥)) satisfies

XV = x (@, u?) < (1= 8,)%0,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/28/20 to 128.95.104.109. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1830 J. V. BURKE, F. E. CURTIS, H. WANG, AND J. WANG

or, equivalently,

. o)
(Re) r) =1,/ >4,
I

In our strategy, if the optimality QP subproblem is solved sufficiently accurately,
then we turn to verify whether feasibility has also been improved to a satisfactory
extent. Therefore, the key idea here is to determine a criterion reflecting that the
optimality QP has been solved sufficiently accurately. Making this determination re-
quires us to check a measure of complementarity. In particular, if the initial objective

J©) is far from optimal, then rg)1 might not indicate that the subproblem solution

is nearly primal-dual optimal since a large J(® can cause the numerator of 7"((15) to be
very close to the denominator, even though the dual value is far from dual optimality.
As a result, the updating strategy may be triggered too early, so that p is inappropri-
ately driven to zero. Therefore, we need a certification showing the progress achieved
by the dual estimates, which can be reflected by the complementary condition (Rc).

Overall, our penalty parameter strategy is motivated by the desire to ensure that
if the jth iterate of the subproblem solver offers a sufficiently accurate solution of
the penalty subproblem for p(;y > 0, then it should also offer a sufficiently accurate
solution of the feasibility subproblem; otherwise, the penalty parameter should be
reduced. Specifically, choosing parameters

(3.9) 0<pBy<Bg<1,

we initialize p(gy <= px—1 (from the preceding iteration of the penalty-SQP framework)
and apply the subproblem solver to (QPrho) to initialize {(d),u), w())}. If at the
end of the jth subproblem solver iteration we conclude that (Rphi) or (Rc) is not
satisfied, then we continue to iterate toward solving (QPrho) with p = p(;). Otherwise,
if (Rphi) and (Rc) hold but (Rv) does not, then we reduce the penalty parameter by
setting

(3.10) PG+1) = Opp()

for some prescribed 6, € (0,1). A special case that one should consider occurs when
(Rphi), (Rc), and (Rv) all hold with d¥) = 0. For simplicity in our presentation,
in such a case, we have the subproblem solver terminate with d¥) = 0, causing
the penalty-SQP framework to take a null step in the primal space. As previously
mentioned, this would be followed by a decrease in w, prompting the penalty-SQP
framework to eventually make further progress or terminate with a stationarity cer-
tificate. In practice, this decrease in w in this scenario need not occur over a sequence
of iterations. It can occur immediately within a subproblem solve. We merely state
the occurrence of a null step for simplicity in our discussions.
We state our dynamic updating strategy (DUST) as

Given p(;y and the jth iterate (d(j), u(j),w(j)), perform the following:
e if (Rphi), (Re), and (Rv) hold, then terminate;
e else if (Rphi) and (Rc) hold, but (Rv) does not, then apply (3.10);

e clse set p(j11) < p@)-

(DUST)

We formally analyze (DUST) in the following subsections. We begin with the
following intuitive arguments to motivate the strategy for adjusting the penalty pa-
rameter in a few cases of interest. These cases depend on properties of the kth iterate

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/28/20 to 128.95.104.109. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

INEXACT SQP WITH DYNAMIC PENALTY PARAMETER UPDATES 1831

of the penalty-SQP framework, namely, z*, with respect to the constraint violation
measure and the penalty function.
e First, observe that with an optimal primal-dual solution (d;7 u;) for a penalty
subproblem, one has (;(u;) = 1 for i € £,.(d}), ¢i(u;) = —1 for i € £ _(dy),
and (;(uy) = 1 for i € Z,(d}), from which it follows that x(dj,uj) = 0.
Therefore, for a given w € (0, 00), the condition (Re) will hold for sufficiently
accurate primal-dual solutions of the penalty subproblem.
e If ¥ is not stationary with respect to ¢(-, p) for any p € (0, px_1], then, with
(d9D,u) pg)) = (dy,uy, p) for any such p, one finds that réf) =1> 8.
In turn, this means that (Rphi) holds for any (d),u)) in a neighborhood
of (d;;7 u;). If, in addition, ¥ is not stationary with respect to v, then one
should expect that for a sufficiently small p(;) the condition (Rv) would also

be satisfied for such a d). This should be expected since for (dj, uj;) one has

I —1(dz, 0) I — J(dg,0)
JE — (D(ug,0))4 — JY — D(ug,0)

meaning that r$’) > 3, for (dY9), w)) in a neighborhood of (d, u). Overall,
in this case, one should expect that (DUST) would only reduce the penalty
parameter a finite number of times, if at all.

e If 2% is not stationary with respect to ¢(-,p) for any p € (0, pr_1], but is
stationary with respect to v, then for (df, ujj) one has

S 1d0) _w
I = (D(ug,0)5 @

)

meaning that ri) > B, for (d9), w()) in a neighborhood of (dj,uj). Hence,
as in the previous bullet, one should expect that (DUST) would only reduce
the penalty parameter a finite number of times.

e If z¥ is stationary with respect to ¢(-, p¢y) for pejy > 0 encountered during
the subproblem solve, then, under Assumption 1, the only primal iterate
satisfying (Rphi) is d) = 0. For this value, one finds that

P — ©v _
o wtJO—(D(wW),0))4

There are now two cases to consider. If 7 < By, then (DUST) decreases the
penalty parameter, as is appropriate. Otherwise, if rl(,j) > By, then—with a
sufficiently accurate dual solution—(DUST) returns a null step to the penalty-
SQP framework. (In a later subproblem solved with a smaller w, one would
find that either (Rphi) holds for dY) = 0—and a sufficiently accurate dual
solution—but (Rv) does not, prompting a decrease of the penalty parameter,
or—again with a sufficiently accurate dual solution—one would terminate the
overall algorithm with certificate of stationarity for 2*.)

We close this subsection by making a few practical remarks regarding the use of
(DUST) within a subproblem solver for (QPrho). In particular, while we have defined
the sequence {(d¥),ul?), w(9))} as being generated by the solver, it may be reasonable
to reinitialize the solver—or at least perform some auxiliary computations—after any
iteration in which (3.10) is invoked. (Such auxiliary computations may involve scaling

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/28/20 to 128.95.104.109. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1832 J. V. BURKE, F. E. CURTIS, H. WANG, AND J. WANG

vectors and /or matrices due to the change in the penalty parameter.) That being said,
it is reasonable to assume that, during any sequence of iterations in which the penalty
parameter does not change, the subproblem solver would be applied as if it were being
applied to a static instance of (QPrho). In such a manner, any convergence guarantees
for the subproblem solver would hold if/when the penalty parameter stabilizes at a
fixed value, as is guaranteed to occur under common conditions described next.

3.3. Finite updates for a single subproblem. The purpose of this subsection
is to show that if (DUST) is employed within an algorithm for solving (QPrho), then,
under reasonable assumptions on the subproblem data, for any p(;) € (0, p] for some
sufficiently small p > 0 whose value depends only on the subproblem data, if (Rphi)
and (Rc) are satisfied, then (Rv) is also satisfied. In other words, after a finite number
of iterations, the update (3.10) will never be triggered. Let)\, and \¢ be the smallest
and largest eigenvalues of Hy, and similarly for A, and Xp with respect to the matrix
H,. Notice that, since p(;) € (0, p(g)], it follows that

(3.11) A, > A:=min{)

2py 2 < Ai=max{,,,, Ao}

P(0)? = PG —

We formalize our assumption for this analysis as the following.

ASSUMPTION 2. For all j € N, the sequence {(dY9),u") wi))} has dV) € X,
(3.4) and (3.5) hold, and u'9) and w9 are feasible for (DQPrho).

We first show that the dual sequences {u”)} and {w'/)} are bounded in norm.

LEMMA 3. Under Assumption 1, there exists ko > 0 such that, for all j € N,
[uP |y < ko and ||[w9 |y < ko.

Proof. Since u) is feasible for (DQPrho), the elements {(u?)@)} for all i €
{1,...,m} are bounded in norm by 1. Therefore, by the first constraint of (DQPrho),
it suffices to show that {(u°)¥)} is bounded. We show this by contradiction. Sup-
pose there exists an infinite index set 7 such that {|(u®)@|2};e7 * oo. Notice
that for (u™*1)U) it holds that &*((u™*1)W)|X) = sup, ¢ ((u™ 1))) > 0 since it
is assumed that 0 € X. All together, with these facts and Assumption 1, we may
conclude that {D(u?),0)},e7 — —oc, which contradicts (3.5). Therefore, {(u®))}
must be bounded, so overall the sequence {u)} is bounded.

Following the same argument for w@), it follows that {w(j)} is bounded. 0

We now show that the primal variables {d/)} are also bounded in norm.

LEMMA 4. Under Assumptions 1 and 2, it follows that, for all j € N,

(3.12) 14Dz < k1= (poyllglls + /0% lgl3 + 22T /A

Proof. By Assumption 2, it follows that d¥) € X for all j € N, which implies that
§(dW|X) =0 for all j € N. By (3.4), every (d9),u"), p(;)) for j € N must satisfy

PGy (9, dY) + §(d9, H, dD) < J(dD), pg5)) < J(0,p05) = T
It follows that

A

Ao, 14913 < IO+ [py (9. d9) < TO + oy lgll21dD 2,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/28/20 to 128.95.104.109. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

INEXACT SQP WITH DYNAMIC PENALTY PARAMETER UPDATES 1833

which, using the quadratic formula, implies that

14912 < (proyllallz + /o) 91 +22,, 7@) /2,

Together with (3.11), this proves (3.12), as desired. 0

The next lemma shows that the differences between the primal and dual values
of the penalty and feasibility subproblems are bounded with respect to p.

LEMMA 5. Under Assumptions 1 and 2, it follows that, for any j € N,

(3.13a) [7(d9, pij)) = J(d9),0)] < Kapg)
(313b> and |D(u(j)7 p(])) - D(u(j)7 O)‘ < K3P(j),

where, with k1 > 0 defined in Lemma 4,

ko = |lgllars + 5| Hyll2k3
Ko + poyllgll2 _ _
and k3 1= ——— = (Kol Ho YallHyllz + llgll2) + 260l Hy M l2llgll2-

Proof. For the primal values, it holds true that

[7(d9, p(g)) = J(dD,0)] = |pyy (9, dD) + 3(d, H, dD) = 5(dD, HodD)]
= |p(j)<gv d(J)> + %p(j)<d(])v Hfd(J)>|
< 2 (lglz11dD 11> + 511 Hylla[1d 1),

which combined with Lemma 4 proves (3.13a).

We now aim to prove (3.13b). Toward this goal, let) := H, (uf —p(j)9) and
gl .= Ho_luéj). Then, by Assumption 2, it follows that

1992 < (50 + p(3)llgll2) /A, < (Ko + poyllgll2) /A
In addition, it follows that
g =ui’ = (Wi’ = pijyg) = Hog? — H,, 99 = Ho(59 — §9) = pjy Hpg?,
which implies that, for all j € N,

199 =391l = llpg Hy (g + g)ll2
(3.14) < py |1 Ho Il Hs Y + gl

_ Ko + po)llgll2
< pollts e (11" ERRE g,)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/28/20 to 128.95.104.109. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1834 J. V. BURKE, F. E. CURTIS, H. WANG, AND J. WANG

The difference between the dual values is then given by

DY, pi;)) = D(u,0)]
= 1= 3 = g Hy (6 =) + 30 Hy)
3 =99, ug”) + 300 (9.99)]
< 3159 = 59l + 3o s 19911
oo (0850 (g2 EOME) g, 2t 2ol

(Kot p gl
J 2A

A

AN

(rollHy N2l Hell2 + llgll2) + §K0H01||2||9||2> ;

where the last inequality follows by (3.14) and Assumption 2. d

Let us now define

U={j:(dP) satisfies (Rphi) and (Rc) but not (Rv)},

meaning that U is the set of subproblem iterations in which (3.10) is triggered. Now
we are ready to prove our main result in this section.

THEOREM 6. Suppose Assumptions 1 and 2 hold. Let
= i 0) _ (4)) > = 0) _ €)) > 0.
K4]1215{‘] J(dY,pi))} >0 and ks jlg{l{J D(u"V’,0)} >0
Then, for p(; € (0, p], where
_ w+ min{kg, K5} /
3.15 [S 1— v
() P max{ka, K3} (b //B(b)

if (dY9),u) satisfies (Rphi) and (Rc), then (d9), w()) satisfies (Rv). In other words,
for any p¢jy € (0,p], the update (3.10) is never triggered by (DUST).

Proof. In order to derive a contradiction, suppose that I/ is infinite, meaning that
the subproblem solver is never terminated and p(;y — 0. We have from (3.13a) that

—rap(y) < J(AD), pig) = J(dD,0) < kapyy for any j €U,

which, after adding and dividing through by I (d9), p(y), yields for j € U that

(3.16) 1- 2P0 S L) R, M
I = (D, pgy) ~ I = T(dD, i) I = J(dD, p(j))

Thus, for any

w+ B Jo J(dY, By
P3) < F4 1—,/22 | <« (p(J)) 1—4/=,
K9 Btﬁ K9 Bqﬁ

it follows from the first inequality of (3.16) that

JO — J(dY),0) B
3.17 w _ > 22
(3.17) JO = J(dD,piy) T\ Be

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/28/20 to 128.95.104.109. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

INEXACT SQP WITH DYNAMIC PENALTY PARAMETER UPDATES 1835

Following an argument similar to that for (3.13b), we have that for any

0) _)
poy < T (g [0} o Jem ZDWILO) (B
K3 Be K3 Bo

one finds that

JO — D@ p,.
(3.18) o= DO, pg) o [Bo
JO — D(u,0) By

Overall, we have shown that for any p(;) < p with p defined in (3.15), it follows that
(3.17) and (3.18) both hold true and, since D(w(),0) > D(u"),0), that

JO — D(uD, p; JO — DD, p;
(3.19) w — D, pj) 5 Jo = DI PG B
JO — D(w(),0) JY — D(u\),0) Bs
Since our supposition that ¢ is infinite implies that p(;) — 0, we may now proceed
under the assumption that j € U with p(;) € (0, p]. Let us now define the ratios

0 ; 0 ;
20 o I = JdD,0) IS~ 1(d.0)
&~ (W, 0), Y~ D(w),0)
where, since J(d?),0) = 1(dY),0) + $(dY), Hyd?)) > 1(dY),0) and by the definition
of the operator (-), it follows that i) > #{) > 7). From (3.17) and (3.19),

and ﬁgj) =

@ _ 8- J@dD,0) 3 - DD pp) B,
79 I =D, pgg)) I —DwD,0) = By’

yielding
r0) > 70 > P 5 g
Bo ?
However, this contradicts the fact that j € U. Overall, since we have reached a
contradiction, we may conclude that U is finite.]

4. A complete penalty-SQP algorithm. In the previous section, a dynamic
penalty parameter updating strategy was proposed to guarantee that the computed
search direction simultaneously offers progress toward reducing the penalty function
and reducing infeasibility. In this section, a complete algorithm for solving (NLP)
that employs this strategy is proposed and analyzed. It follows the general strategy
in Algorithm 1, but includes additional details.

Our complete algorithm involves an additional check of the penalty parameter
after the search direction has been computed as is similarly done in various algorithms
that employ a penalty function as a merit function. Let pi be the value of the penalty
parameter obtained by applying (DUST) within the kth subproblem solve. Then,
given a constant 8; € (0, 84(1 — By)], we require py, € (0, p] so that

(4.1) A", pr;) + wi > Bi(AL(d",0;2%) + wy),
where the right-hand side of this inequality is guaranteed to be positive due to (Rv).
More precisely, we employ the following Posterior Subproblem STrategy:

Dk if this yields (4.1)
(PSST) Pk (1 — ﬂl)(Al(dk, O; :Ek) + wk)

therwise.
<Vf(1-k)’dk:> + %(dk, H(pk7xk’nk)dk> otherwise

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/28/20 to 128.95.104.109. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1836 J. V. BURKE, F. E. CURTIS, H. WANG, AND J. WANG

Observe that if the choice pr = pr does not yield (4.1), then, by setting py according
to the latter formula in (PSST), it follows (since H(px;x*,n*) = 0) that

pr(V (%), d*) < (1 = B)(AL(dF,0;2%) + wy),
which means that
Al(dk,pk;xk) + wp = Al(dk,O;xk) — pk<Vf(;vk),dk> + wg > ﬁl(Al(dk,O;xk) + wk),

implying that (4.1) holds.

The intuition of this posterior updating strategy is to detect whether the iterate
may be near an infeasible stationary point. If a step has achieved improvement on
optimality but not very much on feasibility, then the algorithm should decrease p to
reduce the effect of the objective in the penalty function. This is the typical approach
used by penalty methods that update the penalty parameter in hindsight at the end
of an iteration. This idea is similar to the updating strategy in [3]. A novel aspect
of (PSST), however, is that this model reduction condition is imposed inexactly (due
to the presence of wy > 0). In fact, for a relatively large wy, the model reduction in
I(-, pr; 2¥) is not necessarily at least a fraction of that in I(-,0;2%). This difference
makes (PSST) more suitable for an inexact penalty-SQP framework.

Our complete algorithm employing (DUST) and (PSST) is given as Algorithm 2.
While we do not complicate the notation by making the dependence explicit on k € N,
it should be clear that in the inner loop (over j) one is solving a subproblem with
quantities dependent on the kth iterate; see (3.1). Also, while our analysis does not
depend on this choice, we remark that a reasonable choice for n**! for all k € N
are the QP multipliers, i.e., n*+t1 = ((u\)), where (u) is defined prior to (3.2).
We do not specify this choice since one might also consider using, e.g., least squares
multipliers [12]. Our analysis, which focuses on primal convergence, works with any
such choice as long as the sequence of dual estimates remains bounded (see below).

In the remainder of this section, we show that if (DUST) and (PSST) are em-
ployed within a penalty-SQP algorithm for solving (NLP), then, under reasonable as-
sumptions, the algorithm converges from any starting point. Specifically, if (DUST)
and (PSST) are only triggered a finite number of times, then every limit point of the
iterates is either infeasible stationary or first-order stationary for (NLP). Otherwise,
if (DUST) and (PSST) are triggered an infinite number of times, driving the pen-
alty parameter to zero, then every limit point of the iterates is either an infeasible
stationary point or a feasible point at which a constraint qualification fails to hold.

For our analysis in this section, we extend our use of the sub/superscript k to
denote the value of quantities associated with iteration & € N. For example, U*
denotes the set U defined in section 3.3 while solving the kth subproblem and gy is
the constant k¢ in Assumption 2 for the kth subproblem.

We make the following assumption throughout this analysis.

ASSUMPTION 7. The compact convex set X C R™ with 0 € int (X) is used in
defining all subproblems, and there exist positive scalar constants A, A and Ky with
A < A such that the following hold true.

(i) f and ¢; for alli € {1,...,m}, and their first- and second-order derivatives,

are all bounded in an open conver set containing {x*} and {z* + d*}.

(ii) For allk € N and any p € [0, pol,

0<A<Ap<Aop <A and 0<A<A <X <A

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/28/20 to 128.95.104.109. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

INEXACT SQP WITH DYNAMIC PENALTY PARAMETER UPDATES 1837

Algorithm 2 Penalty-SQP with a Dynamic Penalty Parameter Updating Strategy

ReqUire: (7>0p79a59w;5vaﬁ¢) € (07 1)7 ﬁl € (Oaﬂ(b(l - Bv))a and (p717w0) € (05 OO)
1: Choose (z°,n") € R" x R™.

2: for k € N do
3: Set P0) < Pk—1
4: for y e N do
5: Generate a primal-dual feasible solution estimate (d0), u?), w())
6: Set p(;4+1) by applying (DUST)
7 Set d* + d¥) and Pk PG)-
8: Set py. by applying (PSST)
9: Let o be the largest value in {7°,7',~7%,...} such that
(4.2) d(a* + ard”, pr) — d(a*, pr) < —Oar Al(d", pi;).
10: Choose wg+1 € (0,0,wg].
11: Set x*+1 « 2% + agd* and choose n € R™.

(iii) o < Ko for all k € N.
(iv) | Vei(z%)]l2 > 0 for allk € N and i € {1,...,m}.
(v) {n*} is bounded.

Recalling Lemmas 4 and 5, it follows under Assumption 1, 2, and 7 that there
exist positive scalar constants K7, Ko, and K3 such that

(43) 0< K1,k <K, 0< Kok < K5, and 0< K3,k < K3 for all ke N.

Let us define the index set
D:={k e N:U* +#p}.

Moreover, for every k € D, let j be the subproblem iteration number corresponding
to the value of the smallest ratio r,, i.e., such that

rUR) <) for any i), € U*.
Let us also define the index set
T :={k € N : p;, is reduced by (PSST)}.

It follows from these definitions that pp < pr_1 if and only if K € DU T.

Before analyzing the behavior of the iterates of our algorithm, we first provide
a couple results related to our subproblem and its solutions. For this result and the
remainder of this section, let d*(p;x,n) denote a minimizer of J(d, p; x,n). From [3,
Lemma 4.2, 4.3, and 4.4], we have the properties stated in the following lemma.

LEMMA 8. Under Assumption 7, the following hold at any (z*,n%).
(i) The minimizer of J(-, p;z®,n®) is unique for any p > 0.
(ii) Al(d*(0,2%,n*); 2%) > 0, where equality holds if and only if d*(0;z*,n*) = 0.
(iii) d*(0;2%,n*) = 0 if and only if x* is stationary for v.
(iv) If d*(p; 2%, %) = 0 for p > 0 and v(z*) = 0, then x* is stationary for (NLP).

We also have the following fact about the subproblem solutions.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/28/20 to 128.95.104.109. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1838 J. V. BURKE, F. E. CURTIS, H. WANG, AND J. WANG

LEMMA 9. Under Assumption 7, {d*(0; 2%, n%)} and {d* (px; 2%,m*)} are bounded.
Proof. The proof follows the same line of argument for bounding each primal step
in norm as is used in the proof of Lemma 4, where the facts that
J(d*(0;2%,0"), 052", 0") < J(0,0;2%, %)
and J(d* (pr; 2®, 0*), prs 2®, ") < J(0,0;2%, %)

follow from the definitions of d*(0; 2%, n*) and d*(px; z*,n%). |
We now prove a useful lower bound for the stepsize in each iteration.

LEMMA 10. Under Assumption 7, it follows that, for all k € N, the stepsize
satisfies ay, > CAl(d¥, py; 2¥) for some constant C > 0 independent of k.

Proof. 1f d* = 0, then (4.2) holds with o* = 4% = 1. Hence, for the remainder of
the proof, let us assume that d* # 0. Under Assumption 7, applying Taylor’s theorem
and [3, Lemma 4.2], we have that for all positive « that are sufficiently small, there
exists 7 > 0 such that

d)(xk + ozdk,pk) - qﬁ(xk, px) < —ozAl(dk,pk; zk) + Toz2||dk||§.
Thus, for any a € [0, (1 — 0,)Al(d*, p; 2*)/(7]|d*||3)], it follows that
—aAl(d*, p; 2*) + T0?(|d"[[5 < —abaAl(d", pr; 2"*),

meaning that the sufficient decrease condition (4.2) holds. During the line search, the
stepsize is multiplied by ~ until (4.2) holds, so we know by the above inequality that
the backtracking procedure terminates with

ar 2 (1 — 0a)ALd", pr;2®) /(7] d"]3).

The result follows from this inequality since {||d¥||>} is bounded above by K. |

Next we show that the reductions in the models of the constraint violation and
the penalty function both vanish in the limit. For this purpose, it will be convenient
to work with the shifted penalty function

o(z,p) == p(f(x) — f) +v(z) >0,

where f is the infimum of f over the smallest convex set containing {z*}. The
existence of f follows from Assumption 7(i). The function ¢ possesses a useful mono-
tonicity property proved in the following lemma.

LEMMA 11. Under Assumption 7, it holds that, for all k € N,

l,k+1

(@™ pry1) < p(a®, pr) — Oac Al(dF, pr; 2").

Proof. By the line search condition (4.2), it follows that
P, i) < @b, pr) — oo AL(d, prs 2®),
which implies
(@™t prra) < o(@®, pr) — (pk — prg) (F (@*FY) = f) = Oacr AL(dF, pi; 2*).

The result then follows from this inequality, the fact that {px} is monotonically de-
creasing, and since f(z**1) > f for all k € N. d

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/28/20 to 128.95.104.109. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

INEXACT SQP WITH DYNAMIC PENALTY PARAMETER UPDATES 1839

We now show that the model reductions and duality gap all vanish asymptotically.

LEMMA 12. Under Assumption 7, the following limits hold.

(i) 0= limg_ 00 Al(d¥, pr; 2%) = limp 00 AT (d*, pr; 2%, 0F),

(ii) 0 = limg_y0o Al(d¥,0; 2F) = limg_,00 AJ(d¥,0; 2%, 70%),

(iii) 0 = limp_ 00 AJ(d*(0; 2%, 7%),0; 2%, 0%) = limp 0o AT (d* (p1; 2%, 0%), prs 2%, 1F),

(iv) 0= limy o0 [J(0, pi; 2%, 0%) — D(u¥, pp; 2%, %)),

(v) 0= limp_00[J(0,0; 2%, n*) — D(w*,0; 2%, n%)].

Proof. Let us first prove (i) by contradiction. Suppose that Al(d*, py; 2*) does
not converge to 0. Then, there exists a constant ¢ > 0 and an infinite C N such
that Al(d*, pg;a*) > € for all k € K. It then follows from Lemmas 10 and 11 that
@(z*; pr) — —o0, which contradicts the fact that {¢(z*, px)} is bounded below by
zero. Therefore, Al(d¥, py; x%) — 0. The second limit in (i) then follows from the first
limit, the fact that H(pg; 2", n*) = 0 for all k € N, and the fact that

Al(d", pi; a*) = AT(d*, pr; 2®,0") + L(d*, H(py; 2%, n¥)d")

44
44 > AJ(d¥, pr; a®,nb).

Next, from (4.1) and (4.4), it follows that

Al(d", pr; 2®) +wi = Bi(AUA®, 0;2%) + wi) = Bu(AT (d*, 028, 9") + wr).
The limits in (ii) follow from these inequalities, the first limit in (i), and the fact that
{wr} — 0. Finally, the limits in (iii), (iv), and (v) follow from the limits in parts (i)
and (ii) along with the inequalities in (3.7) and (3.8). 0
We now show that the primal steps and the exact subproblem solutions vanish.

LEMMA 13. Suppose Assumption 7 holds and {py} — p«. Then, {d*} — 0, and
for any limit point x* of {x*} it follows that d*(0;x*,) = 0 and d*(p.;z*,-) = 0.

Proof. From Lemma 12(ii), it follows that
0= lim —AJ(d*,0;z%,7%) = lim —Al(d*,0;2%) + %(dk,H(O;xk,nk)dk>
k— o0 k—o0

= lim 3(d*, H(0;2",n")d") > lim $A[d"[3.
k—o0 k—o0

This implies that {d*} — 0, as desired. Next, from Lemma 12(iii) and continuity, it

follows that AJ(d*(0;2*,+),0;x*,-) = 0, from which it follows that

J(@ (0;2%,),0;2*,) = J(0,0; 2%, -).

From the strong convexity of J(-, 0;z*, -) and the fact that d*(0; 2*, -) is its minimizer,
it follows that d*(0;z*,-) = 0. Using a similar argument and Lemma 12(iii) again, it
follows that d*(ps;x*,-) = 0, completing the proof. d

Our first global convergence theorem follows.

THEOREM 14. Under Assumption 7, the following statements hold.
(i) Any limit point of {x*} is first-order stationary for v, i.e., it is feasible or an
infeasible stationary point for (NLP).
(ii) If px — p« for some p. > 0 and v(z*) — 0, then any limit point z* of {x*}
with v(x*) = 0 is a KKT point for (NLP).
(iii) If pr. — O, then either all limit points of {x*} are feasible for (NLP) or all
are infeasible.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/28/20 to 128.95.104.109. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1840 J. V. BURKE, F. E. CURTIS, H. WANG, AND J. WANG

Proof. Part (i) follows by combining Lemma 13 with Lemma 8(iii). Similarly,
part (ii)follows by combining Lemma 13 with Lemma 8(iv).

We prove (iii) by contradiction. Suppose there exist infinite £* C N and £* C N
such that {#*}recs — o with v(z*) = 0 and {2F}pexx — X with v(z*) = € > 0.
Since pi — 0, there exists k* > 0 such that for all £ € £* and k > k* one has that
prt1(f(z%)—f) < €/4 and v(z*) < €/4, meaning that p(z*, pr11) < €/2. On the other
hand, it follows that pgi1(f(z*) — f) > 0 for all k € N and there exists k* € N such
that v(z*) > ¢/2 for all k > kX with k € KX, meaning that ¢(x*, pr11) > €/2. This
contradicts Lemma 11, which shows that ap(gck,pkﬂ) is monotonically decreasing.
Thus, the set of limit points of {z*} must be all feasible or all infeasible. |

Theorem 14 is satisfactory in the case when py, — p. > 0, since it shows that any
limit point of the primal sequence is a KKT point for (NLP). But more needs to be
said when pr — 0. We now address this case, showing that it only occurs if a limit
point of the algorithm is either an infeasible stationary point or a feasible point at
which a constraint qualification fails to hold. We begin with the following lemma.

LEMMA 15. Suppose Assumption 7 holds and pi, — 0. Let x* be a limit point of
{2*}repuT that is feasible for (NLP) with infinite S C DUT such that {x*}res — x*.
Then, the following hold true:

(i) [SND| is finite or {AJ(dY%), iy 2, %) tkesnp — 0;

(ii) |SND| is finite or {dU%) }resnp — 0;

(iil) any limit point of {u'*)}rcsnp U {uF}resnt is optimal for D(-,0;x*,-);

(iv) {uUr)liesnp U{u*}resnt has a nonzero limit point.

Proof. For part (i), if |S N D] is finite, then there is nothing left to prove. Hence,
let us assume that |S ND| = co. Observe that, for all k£ € N, it holds that

0 < AJ(dYR), pjysa®, k)
= v(@®) — pj (Vf(aF),dUR) — 290 (qUm) Hp(a%)d)) — J(dU%), 0y 2%, nF)
< 0(2%) — pjo) (VF(2F),d00) — 28 (400 ¢ (27)dln)),

where the first inequality follows from (3.4) and the second inequality follows from
the definition of .J, which ensures that J(dW*) 0;2% 7*) > 0. In addition, {dU*)} is
bounded due to Lemma 4 and Assumption 7(ii)—(iii). Consequently, since |[SND| = co
and {v(z*)}resnp — 0 with p(;,) — 0, the limit in part (i) holds.

For part (ii), again, if |S N D] is finite, then there is nothing left to prove. Oth-
erwise, since {J(0,0; 2%, 7")}resnp = {v(@*)}resnp — 0 and p(j,) — 0, the limit in
part (ii) holds due to Lemma 4 and Assumption 7(ii)—(iii).

Now consider part (iii). If |[S N D] is infinite, then for a limit point u* there must
exist an infinite Sp € S ND such that {ul*)};cs, — u*. Then, it follows that

0 < J(0,0;z",-) — D(u*,O;x*,)
= kleig}; J(O,p(jk); xk’ D) - D(u(j’“),p(jk);xk,)

k— oo
(45) < lim 5¢[J(07 p(jk); xka) - J(d(M)v p(jk); xkv)]

kESPH
k— oo

_ % Lok k) .k . i A
= klérsr}) BelJ(0,0;2%,-) — J(dV*),0;2%,-)] < klégr; BeJ(0,0;2%,-) =0,
k—oco k—oco

where the second inequality is by (Rphi) and the third inequality is by the fact that
J(dU¥),0; 2% -) > 0. This means that u* is optimal for D(-,0;z*,-). On the other

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/28/20 to 128.95.104.109. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

INEXACT SQP WITH DYNAMIC PENALTY PARAMETER UPDATES 1841

hand, if |S N D] is finite, then |S N 7| must be infinite, in which case for a limit point
u* there must exist an infinite S+ C SN 7T such that {uk}kegT — u*. Then, again
from Lemma 12 and (4.5), it follows that u* is optimal for D(-,0;z*,-).

For part (iv), first observe that

I(d,0;2%) = > [Vei(zF)|2dist (d | CF)
1€EL (A)UE_ (d)UT(d)

and that x(d,u;z*) can be viewed as a weighted variant of this sum with weights

1—¢i(u) forall i€ & (d)UZy(d) and 1+ ((u) for all ie & (d).

Also observe that (Rc) holds at any primal-dual point

(d,u) € {(d9, u9))}csap U{(d*, u") bresnT

due to the facts that

(4.6)
4.7

(1= B,)%(v(z®) + wy) forall ke SND and
(1= B, (w(x") +wy) forall keSNT.

We now consider three cases.

Case (a):

Case (b):

Case (¢):

Assume there exists an infinite Sp C S N D such that
(4.8) 1(dY)0; 2F) > (1 — B,)(v(z*) + wy) forall ke Sp.

Then, ||¢(u*))||o > B, for all k € Sp; indeed, if this were not the case, then
for some k € Sp one would find from the definition of x and (4.8) that

XA, 0328) 2 (1= B, 052%) > (1= 5% (0(a") + wp),

contradicting (4.6). In this case, combining Lemma 3, Assumption 7(iv), and
the fact that ||¢(uU))| . > B, for all k € Sp shows that {ul*)};csnp has a
nonzero limit point, proving part (iv), as desired.

Assume there exists an infinite S C SN T such that

(4.9) 1(d*,0;2%) > (1 — B,)(v(z"®) +wy) forall ke Sy.

Then, ||¢(u*)||c > B, for all k € S7; indeed, if this were not the case, then
for some k € Sy one would find from the definition of x and (4.8) that

X(d* u®;ak) > (1= 8,)1(d*, 0:2%) > (1= B,)*(v(a®) +wi),

contradicting (4.7). In this case, combining Lemma 3, Assumption 7(iv), and
the fact that [|((u¥)|« > B, for all k € Sy shows that {u*}yesn7 has a
nonzero limit point, proving part (iv), as desired.

Suppose that (4.8) and (4.9) only hold for finite subsets of SND and SNT.
In this case, there exists a sufficiently large k € N such that

(4.10) 1(dY%) | 0;2F) < (1 — By)(v(z®) + wy) for all k € SN'D with k > k;
(4.11) 1(d",0;2%) < (1 — B,)(v(z®) +wy) for all k € SNT with k > k.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/28/20 to 128.95.104.109. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1842

J. V. BURKE, F. E. CURTIS, H. WANG, AND J. WANG

We can further assume that

[¢(u9)||l s < B, for all k € S N'D with k > k and
1¢(u¥)||oo < By for all k € SNT with k > k;
since, otherwise, as in Cases (a) and (b), respectively, part (iv) would hold.
Now, for k > k with k € SN D, it follows from (4.10) that
J(0,0;2%,0") + wi, — 1(dYY), 05 2%)
> v(a®) +wp — (1= By)(v(z") + wy)
= Bu(v(z") + wy)
> By[v(a*) +wy, — (D(WUR,0;2%, %)) 1],

from which it follows that

#Ur) — J(0,0; 2%, %) + wy — 1(dUK), 0; %)

- > By.
o(eF) + oo — (DO, 0%, i)y =

This indicates that (DUST) is not triggered at any iteration k > k with
k € SND. By the definition of D, this implies that S N D is finite. On the
other hand, for k € SNT with k£ > k, it holds that

J(0,0; 2%, n*) — D(u¥, pp; ¥,)

> +Z||v«:l 6" ()

- gmxm £ 2 (s - L IV
) ;il|cz<xk>|+i§1<ci<x’f>>+ —gauk)ci(wk)

- ilncl(xk)l e v_iﬂ[(cz(ka ~ Ciuh)er ()]

> i(l I e + i (=),

> (1- Bv)ilczv(xk)l +(1-5) __f;l@i(x% = (1= By)v(="),

where the first inequality is from the positive definiteness of H(0,z*,7*) and
§*(uk 1| X) = supgex (uF,,1,d) > 0, and the first equality is from (3.2).
Since (Rphi) is satisfied, the first inequality in (3.8) and (4.12) imply
AJ(d y Pk T ank)+wk - (O Oxkank) _J(dk?pkaxkank)_FWk
> By[J (0,052, 5%) — D(u*, pr; 2®,n*) + wi]
> Byl(1 = Bo)o(a®) +wi] > Bs(1 = Bu) (v(z") + wi)
> Bi(v(@F) + wr) > Bi(AL(dF, 0; 2F) + wy),

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/28/20 to 128.95.104.109. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

INEXACT SQP WITH DYNAMIC PENALTY PARAMETER UPDATES 1843

which, together with (4.4), yields
AU(d*, pi; 2*) + wi > AT(d*, prs 2, n*) + wr > Bi(AL(A", 0;2%) + wy).

Therefore, (PSST) is not triggered in any iteration k € SN7T with k& > k. By
the definition of 7, this means that S N7 is finite. Overall, we have shown
in this case that SND and SN T are finite, meaning S is finite. However,
this contradicts the statement of the lemma, which defines S to be infinite.
Overall, since Case (c) leads to a contradiction, it follows that either Case (a) or (b)
must occur, which proves part (iv). |

We are now prepared to prove a theorem about the behavior of the algorithm
when the penalty parameter is driven to zero. The theorem involves a statement
about points satisfying the well-known Mangasarian—-Fromovitz constraint qualifica-
tioin (MFCQ). Defining &€ = {1,...,m}, Z={m+1,...,m},

Alz)y={ie{m+1,...,m}: ¢(x) =0},
and NM(z)={ie{m+1,....,m}:¢(z) <0},

we now recall this qualification then state and prove our theorem.

DEFINITION 16. A point x satisfies the MFCQ for problem (NLP) if v(z) = 0,
{Vei(z) i € E} are linearly independent, and there exists d € R™ such that

ci(x) + (Ve(z),d) =0 forall i €&
and c;(x) + (Vei(z),d) <0 forall i €T,

or, equivalently,
(Vei(x),dy =0 forall i€& and (Vei(xz),d) <0 forall i € A(x).

The dual form [14] of MFCQ states that ¢* = 0,i € £ U A(z) is the unique solution
of the linear system

Y. ('Vailx) =0, ¢'>0,i € Ax).

I€EEUA(x)

THEOREM 17. Suppose Assumption 7 holds and px, — 0. Then, every limit point
of {x*}repuT is either an infeasible stationary point or a feasible point where the
MFCQ does not hold.

Proof. By Theorem 14(i), any limit point of {*},cpuT is either feasible or an
infeasible stationary point. If any such point is infeasible, then there is nothing left
to prove. We may thus proceed by letting z* represent a feasible limit point of
{2*}repuT. Our goal is to show that the MFCQ fails to hold at z*.

Let S C DUT be an infinite set such that {2"}rcs — 2*. By Theorem 15(iv),
it follows that there exists a nonzero limit point u* of {u¥*}rcsnp U {u*f}resnr
In addition, from Lemma 13, it follows that (d,u) = (0,u*) is stationary for the
feasibility subproblem at x*. Therefore, it follows from (3.2) and the fact under
Assumption 7 that d = 0 lies in the interior of X that u;,,; = 0 and

TVei(z)]l2 H2

CroaD with ¢2e(0,1] forallieZ,

X {g* Vel with (P e [—1,1] foralli€ &,
u =
INZCRIE

meaning that §*(u}|C}) = foralli e EUT.

_pi_ci(@)
G e (e

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/28/20 to 128.95.104.109. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1844 J. V. BURKE, F. E. CURTIS, H. WANG, AND J. WANG

It follows that
0= ’U(J)*) = ‘](Ov Oa .I‘*,) = D(U*a 07 Z‘*7)

= —3(ug, H(0;2%,) hug) — > ([Vei(@®)[|26" (u|Ch) — 6% (w411 X)
i€EUT

= —3uy, H0; 2%,)) + Y Clei(a®)
i€EUT

= —3(ug, HO; 2%,) ug) + Y Cleia™).
ieN (z*)

Since H(0;2*,-) is positive definite and Y=, () Ciei(z*) <0, it follows that

(ug, H(0;2*,)7 lug) =0 and Z Ciei(z*) =0,
ieN (z*)

yielding u$ = 0 and ¢! = 0 for all i € N(z*). Overall, we have shown that the
constraints of (DQPrho) imply that

(4.13) > Vet =0

IEEUA(z*)

Therefore, x* violates the dual form of the MFCQ because (i,i € £ U A(x*) are not
all zero. Since we have reached a contradiction, it follows that the MFCQ cannot hold
at x*, as desired. O

We summarize the results of all of our theorems in the following corollary.

COROLLARY 18. Suppose Assumption 7 holds. Then, one of the following occurs.

(i) pr — ps for some constant p, > 0 and each limit point of {z*} either corre-

sponds to a KKT point or an infeasible stationary point for problem (NLP).

(i) px — 0 and all limit points of {z*} are infeasible stationary points for (NLP).

(iii) pr — 0, all limit points of {x*} are feasible for (NLP), and the MFCQ fails
to hold at all limit points of {z*}r.epuT-

5. Numerical experiments. We present numerical experiments that illustrate
the impact of the central contribution of this paper, namely, our dynamic penalty
parameter updating strategy. With this in mind, the choice of the QP subproblem
solver only requires that it generate both primal and dual solution estimates. For
this purpose, a coordinate descent algorithm is used to generate the primal and dual
variables to solve the subproblem [4]. Experimental results are given for both feasible
and infeasible test sets. Our code is implemented using Python and tested on a 2014
MacBook Air with 4 GB memory and a 1.4 GHz Intel Core i5 processor.

5.1. Feasible test. First, we tested on 126 CUTEr Hock-Schittkowski (hs)
problems [11] which are all feasible. We set the parameters stated in Algorithm
2as 7y =05 p1y =1, By = 0.7, B, = 0.1, B = 0.685(1 — B,), wo = 1072,
0,=0.9,0, =07 0, = 1074, and n° = 0,,, with 2° set as defined for each CUTEr
problem. The maximum iteration limit for the subproblem solver was set as 106,
while a maximum iteration limit for Algorithm 2 was set to be 200. We defined the
maximum constraint violation ve,(x) and the optimality KKT error €,,:(x) as

Voo () = max{|c;(x)| i =1,...,m, (c;(x))y+ i=m+1,...,m},

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/28/20 to 128.95.104.109. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

INEXACT SQP WITH DYNAMIC PENALTY PARAMETER UPDATES 1845

m

€opt () := max { va) D WALE

SR C(x)lloo},

where o denotes elementwise product. We terminate the algorithm if vy (2) < 1075
and €ope(7) < 1074, or the maximum iteration number 200 is reached. These 126
problems are of small size; hence we use the exact Hessian in our implementation. If
the Hessian, call it H, is not positive definite, then we apply the following modification
to adjust its negative eigenvalues. Let H = UAUT be the eigendecomposition of H,
where A = diag{\1,...,\,}. For a prescribed constant 7 > 0 (e.g., we use 7 = 1074
in these experiments), we reset \; < max{\;, 7} and replace H with UAU” where A
is the corresponding modification of A. We also perform the following modification
to control the condition number of the Hessian (approximation) employed in the
algorithm: If cond(H) > t. > 0 (e.g., we use t. = 10° in these experiments), then
we replace H by aH + (1 — a)I where « is the largest value in [0, 1] such that the
resulting matrix has a condition number less than or equal to t..

TABLE 1
Performance comparison of SQuID and the proposed algorithm on feasible problems.

Problem type | Algorithm Succeed Fail Infeasible Total
Feasible hs SQuID 110 (90.16%) 11 (9.02%) 1 (0.82%) 122
problems Proposed | 115 (91.20%) 11 (8.80%) 0 126

For these experiments, we have the following observations.

e Out of 126 CUTEr hs problems, our algorithm successfully solved 115, which
is a success rate of about 91% ~ 115/126.1 Our proposed method outperforms
the SQuID algorithm proposed in [3], which is also a penalty-SQP method
with automatic infeasibility detection, although it requires two exact QP
solves per iteration. The comparison statistics? are shown in Table 1. For
the complete set of numerical test results, see [4].

e Our (DUST) updating strategy works very well in these experiments, and
does not cause p to become excessively small for most cases. To illustrate the
behavior of the penalty parameter updates, we plot p values for three sample
problems—hs11, hs43, and hs61—in Figure 1.

e The parameter w did not require much tuning. We used wy = 1072 across
all problems and achieved our 91% success rate. We also ran the experiment
with wy = 107! and saw the same set of 115 problems solved successfully.

e We test the sensitivity of our algorithm with respect to the parameter (.
We ran the same experiments with 8, = 0.5 and 4 = 0.99. We have 113
successful cases for 34 = 0.5, and 111 successful cases for 34 = 0.99 . The
additional failure cases in 34 = 0.5 and B4 = 0.99 compared to 84 = 0.7 are
all due to the subproblem exceeding the maximum iteration number.

e Coordinate descent performs poorly on ill-conditioned subproblems. We ob-
served that some subproblems require more than 5 x 10° steps to reach the
specified accuracy. Since the focus of this paper is on the p update strat-
egy, we did not explore other subproblem solvers that might have performed
better. Instead, we used a large iteration limit for the subproblem solver.

1The termination criterion of SQuID in [3] is based on the relative KKT residual scaled by p.

2The performance statistics for SQuID is obtained from [3], where the overall number of hs
problems is 122 due to compiling errors.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/28/20 to 128.95.104.109. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1846 J. V. BURKE, F. E. CURTIS, H. WANG, AND J. WANG

e In a few cases, the Hessian modification strategy described above did not
work well. For example, for problems hs72 and hs75, we had to reduce the
modification constant to 10~® to achieve convergence, since the scale of the
Hessian for both problems is around 10~%. For problem hs93, convergence is
observed with modification constant 10~2.

HS11 HS43 HS61

0.8-

0.4-

0.2-

) i)) |)) |)
8 12 4 8 12
Iteration number

Fic. 1. p values for problems hsll, hsd3, and hs61.

5.2. Infeasible test. As in [3], we modified the 126 CUTEr hs problems by
adding bound constraints ;1 < 0 and x7; > 1 to make all hs problems infeasible;
we refer to these problems as hs_inf. All of the parameters used for this infeasible
test set are the same as mentioned for the feasible test set, except we increase the
maximum iteration limit for the subproblem solver to 20000. Defining the feasibility
KKT error €fcq(x) as

Zchi(w) e =) o (ce @)+ o - [(e +0%) 0 (ce (@) . -
"o (er(x))-[| }

we use the same stopping criteria as in [3], except that we do not necessarily need to
drive p to 0; hence we drop “p < 103" from the stopping criteria used in [3].

€fea(T) = max {

[(e = n") o (ez(@))4 | »

TABLE 2
Performance comparison of SQuID and the proposed algorithm on infeasible problems.

Problem type Algorithm Succeed Fail Total
Infeasible his SQuID | 111 (90.24%) 12 (9.76%) 123
problems (hs_inf) Proposed | 116 (92.10%) 10 (7.90%) 126

For these experiments, we have the following observations.

e Out of 126 hs_inf problems, our algorithm successfully solved 116, which is
a success rate of about 92% =~ 116/126. Our proposed method also outper-
forms SQuID on infeasible problems. The comparison statistics® are shown
in Table 2.

3The performance statistics for SQuID is obtained from [3], where the overall number of hs

problems is 123 due to compiling errors.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/28/20 to 128.95.104.109. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

INEXACT SQP WITH DYNAMIC PENALTY PARAMETER UPDATES

1847

e In a few cases, the Hessian modification strategy described above did not work
well. For example, for problems hs104_inf, hs114_inf, hs8_inf, hs23_inf,
and hs93_inf, convergence is observed when we increase the modification
constant from 10~ to 1072,

TABLE 3

CUTEr 13 large scale problems.

Problem ‘ # constraints # variables # equalities
DTOC1NA 3996 5998 3996
DTOC1NB 3996 5998 3996
DTOC1ND 3996 5998 3996
EG3 20000 10001 1
GILBERT 1 5000 1
JANNSON4 2 10000 0
LUKVLE1 9998 10000 9998
LUKVLE10 9998 10000 9998
LUKVLE3 2 10000 2
LUKVLES6 4999 9999 4999
LUKVLI13 6664 9998 0
LUKVLI3 2 10000 0
LUKVLI6 4999 9999 0

5.3. Large scale test. We also applied our implementation to solve some large
scale problems from the CUTEr test set; see Table 3. The parameter settings used
were the same as those in section 5.1, except that we set the iteration limit for the
subproblem solver to be 2000. We used L-BFGS for the Hessian approximations which
pairs well with the coordinate descent algorithm giving a O(n 4 ¢) total complexity
for each coordinate update. Table 4 presents the results for successful runs. For the
remaining problems not shown, the coordinate descent QP algorithm could not reach
the desired accuracy within the maximum number of subproblem iterations. We leave
further investigation into the most effective iterative QP solver for these problems to
future work since this is beyond the scope of this paper.

TABLE 4

Test results on CUTEr 13 large scale problems.

Problem | # iter # f f(x*) v(z*) KKT Final p CPU (s)
DTOC1NA 13 13 4.138866e+00 2.2154e—06 1.8787e—05 0.751447 1.7
DTOC1NB 13 13 7.138849e4-00 4.8350e—07 3.5507e—05 0.849347 1.3
DTOC1ND 14 19 4.760303e4+-01 1.7999e—07 4.8070e—05 0.815373 1.5
EG3 10 10 8.048306e—06 0.0000e+00 7.3171le—05 0.479603 49.9
GILBERT 74 74 2.459468e4-03 2.1702e—08 4.0472e—06 0.024360 2.6
JANNSON4 79 80 9.801970e+4-03 6.9569e—08 1.8301le—05 0.009923 24.7
LUKVLE1 13 25 4.821043e—14 3.0876e—08 5.3643e—05 0.960000 1.9
LUKVLE10 191 191 3.534934e+03 2.2246e—09 9.7836e—05 0.282103 64.2
LUKVLE3 41 49 2.758658e4-01 9.7477e—14 4.9497e—05 0.318856 1.7
LUKVLE6 39 68 6.286441e4+05 1.4360e—12 6.9166e—05 0.360397 3.6
LUKVLI13 65 76 1.321855e+02 3.2121e—09 7.0523e—05 0.293858 9.0
LUKVLI3 70 78 1.157754e+01 9.0105e—13 6.6447e—05 0.442002 3.1
LUKVLI6 43 63 6.286441e4+05 1.3907e—11 6.7668e—05 0.195366 28.6

To recognize the benefits of our proposed algorithm compared to an alternative
approach, let us consider the CPU times required to run the experiments whose
results are shown in Table 4 compared to the CPU times that would be required

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/28/20 to 128.95.104.109. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1848 J. V. BURKE, F. E. CURTIS, H. WANG, AND J. WANG

by SQuID from [3]. The aforementioned implementation of SQuID was not able to
terminate successfully on any of the problems in Table 3 within ten minutes. The
primary expense is solving the QP subproblems to high accuracy in each iteration.
By contrast, the result shown in Table 4 that required the most CPU time was the
run for problem LUKVLE10, where the entire run terminated in 64 seconds. The
benefits of our proposed algorithm are clear when solving large scale problems. (On
a contemporary laptop computer, the state-of-the-art code Ipopt [15] solves problem
LUKVLE10 in only a couple of seconds, but that code benefits from two decades of
software development.)

6. Conclusion. In this paper, we have proposed a penalty-SQP framework for
solving nonlinear optimization problems. The novelty of this work is a dynamic pen-
alty parameter updating strategy that is carried out within the QP subproblem solver,
so that at the end of the QP solve, a search direction and a new penalty parameter
are both obtained. The key idea is to force improvement toward feasibility whenever
optimality and complementarity are sufficiently improved. This enables the SQP al-
gorithm to finish penalty parameter updating and infeasibility detection via inezact
solves for only one subproblem in each iteration, a feature which is not shared with
most contemporary solvers which require two subproblem solves per iteration.

The convergence properties that we have proved for our algorithm guarantee the
effectiveness of our updating strategy under reasonable assumptions. The empirical
effects of our strategy are demonstrated in numerical results on small CUTEr exam-
ples. We remark, however, that the performance could be further enhanced with the
development of a more efficient QP subproblem solver and a more robust approach
to addressing ill-conditioning of the Hessian approximation.

REFERENCES

[1] J. V. BURKE, A Sequential quadratic programming algorithm for potentially infeasible mathe-
matical programs, J. Math. Anal. Appl., 139 (1989), pp. 319-351.
[2] J. V. BURKE, A robust trust region method for constrained nonlinear programming problems,
SIAM J. Optim., 2 (1992), pp. 325-347, https://doi.org/10.1137/0802016.
[3] J. V. BURKE, F. E. CURTIS, AND H. WANG, A sequential quadratic optimization algorithm with
rapid infeasibility detection, SIAM J. Optim., 24 (2014), pp. 839-872, https://doi.org/10.
1137/120880045.
[4] J. V. BURrkE, F. E. Curtis, H. WANG, AND J. WANG, Inezact Sequential Quadratic Op-
timization with Penalty Parameter Updates Within the QP Solve: Extended Version,
https://arxiv.org/abs/1803.09224, 2018.
[5] J. V. BURKE AND S.-P. HAN, A robust sequential quadratic programming method, Math. Pro-
gramming, 43 (1989), pp. 277-303.
[6] R. H. BYyrD, G. LoPEZ-CALVA, AND J. NOCEDAL, A line search exact penalty method using
steering rules, Math. Programming, 133 (2012), pp. 39-73.
[7] R. H. BYrD, J. NOCEDAL, AND R. A. WALTZ, Steering ezact penalty methods for nonlinear
programming, Optim. Methods Softw., 23 (2008), pp. 197-213.
[8] F.E. Curtis, T. JOHNSON, D. P. ROBINSON, AND A. WACHTER, An inezact sequential quadratic
optimization algorithm for nonlinear optimization, SIAM J. Optim., 24 (2014), pp. 1041-
1074, https://doi.org/10.1137/130918320.
. P. HAN, A globally convergent method for nonlinear programming, J. Optim. Theory Appl.,
22 (1977), pp. 297-3009.
[10] S. P. HAN AND O. L. MANGASARIAN, Ezact penalty functions in nonlinear programming, Math.
Programming, 17 (1979), pp. 251-269.

[11] W. Hock AND K. SCHITTKOWSKI, Test ezamples for nonlinear programming codes, J. Optim.
Theory Appl., 30 (1980), pp. 127-129.

[12] J. NOCEDAL AND S. J. WRIGHT, Numerical Optimization, Springer Series in Operations Re-
search and Financial Engineering, 2nd ed., Springer, New York, 2006.

=
|92}

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/28/20 to 128.95.104.109. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

INEXACT SQP WITH DYNAMIC PENALTY PARAMETER UPDATES 1849

[13] M. J. D. PowELL, A fast algorithm for nonlinearly constrained optimization calculations, in
Numerical Analysis, Lecture Notes in Math. 630, Springer, Berlin, 1978, pp. 144-157.

[14] M. V. SorLopov, Constraint Qualifications, in Wiley Encyclopedia of Operations Research and
Management Science, John Wiley & Sons, London, 2010.

[15] A. WACHTER AND L. T. BIEGLER, On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming, Math. Programming, 106 (2006), pp. 25—
57, https://doi.org/10.1007/s10107-004-0559-y.

[16] R. B. WiLsoN, A Simplicial Algorithm for Concave Programming, Ph.D. thesis, Graduate
School of Business Administration, Harvard University, Cambridge, MA, 1963.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

	Introduction
	Organization
	Notation

	A penalty-SQP framework
	A dynamic penalty parameter updating strategy
	Preliminaries
	Updating the penalty parameter
	Finite updates for a single subproblem

	A complete penalty-SQP algorithm
	Numerical experiments
	Feasible test
	Infeasible test
	Large scale test

	Conclusion
	References

