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Abstract. This paper focuses on the design of sequential quadratic optimization (commonly
known as SQP) methods for solving large-scale nonlinear optimization problems. The most compu-
tationally demanding aspect of such an approach is the computation of the search direction during
each iteration, for which we consider the use of matrix-free methods. In particular, we develop a
method that requires an inexact solve of a single QP subproblem to establish the convergence of the
overall SQP method. It is known that SQP methods can be plagued by poor behavior of the global
convergence mechanism. To confront this issue, we propose the use of an exact penalty function with
a dynamic penalty parameter updating strategy to be employed within the subproblem solver in such
a way that the resulting search direction predicts progress toward both feasibility and optimality. We
present our parameter updating strategy and prove that, under reasonable assumptions, the strategy
does not modify the penalty parameter unnecessarily. We close the paper with a discussion of the
results of numerical experiments that illustrate the benefits of our proposed techniques.
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1. Introduction. In this paper, we consider the use of sequential quadratic
optimization (SQP) methods for solving large-scale nonlinear optimization problems
(NLPs) [1, 2, 3, 5, 9, 13, 16]. While they have proved to be effective for solving small-
to medium-scale problems, SQP methods have traditionally faltered in large-scale
settings due to the expense of (accurately) solving large-scale quadratic subproblems
(QPs) during each iteration. However, with the use of matrix-free methods for solving
these subproblems, one may consider the acceptance of inexact subproblem solutions.
Such a feature offers the possibility of terminating the subproblem solver early, per-
haps well before an accurate solution has been computed. This characterizes the type
of strategy that we propose in this paper.

Some work has been done to provide global convergence guarantees for SQP meth-
ods that allow inexact subproblem solves [8]. However, the practical efficiency of such
an approach remains an open question. A critical aspect of their implementation is
the choice of a subproblem solver since it must be able to provide good inexact solu-
tions quickly, as well as have the ability to compute highly accurate solutions—say,
by exploiting well-chosen starting points—in the neighborhood of a solution of the
NLP. In addition, while a global convergence mechanism such as a merit function or
filter is necessary to guarantee convergence from remote starting points, any NLP al-
gorithm can suffer when such a mechanism does not immediately guide the algorithm
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toward promising regions of the search space. To confront this issue when an exact
penalty function is used as a merit function, we propose a dynamic penalty parame-
ter updating strategy to be incorporated within the subproblem solver so that each
computed search direction predicts progress toward both feasibility and optimality.
This strategy represents a stark contrast to previously proposed techniques that only
update the penalty parameter after a sequence of iterations, in hindsight at the end
of an iteration [1, 9, 10], or at the expense of numerous subproblem solves within a
single iteration [3, 6, 7].

To provide some context about how the algorithm proposed in this paper compares
to other recently proposed SQP-type methods in the literature, let us contrast our
approach with those proposed in [3, 8]. The penalty SQP method proposed in [3] was
motivated by the desire to formulate an SQP approach that attains strong convergence
guarantees when solving problems regardless of whether they involve constraints that
are feasible or infeasible. Toward this end, the approach involved a novel dynamic
updating scheme for the penalty parameter that, e.g., quickly drives the algorithm
toward constraint violation minimization when infeasibility is detected. The approach
relies on exact solves of two QP subproblems per iteration; the first determines the
reduction that can be obtained in a local model of an infeasibility measure while the
second minimizes a local model of the objective while ensuring that the reduction in a
local model of the infeasibility measure is proportional to that attained by the solution
of the first QP. In this manner, rapid convergence can be attained when solving
either a feasible or infeasible problem, although a high price is paid by needing exact
subproblem solutions. The method in [8] overcomes this obstacle by allowing inexact
subproblem solves. However, it also potentially requires (approximate) solutions of
two QPs per iteration, one aimed at minimizing constraint violation and one aimed at
reducing the objective subject to an appropriate bound on constraint violation. The
approach proposed in this paper also allows inexactness in the QP solves, but only
requires solving a single QP in each iteration. This is made possible by a new strategy
for dynamically updating the penalty parameter within the QP solver. This dynamic
penalty parameter updating strategy is the focus of our investigation. We prove that
our algorithm does not reduce the penalty parameter unnecessarily and that one can
ensure convergence to an optimal solution (when a given problem is feasible) or to an
infeasible stationary point (when a given problem is infeasible).

Overall, the contributions in this paper can be summarized as the following.
\bullet Our proposed SQP technique is specifically designed to be effective in large-
scale settings. In particular, it allows for the use of iterative methods for
solving the QP subproblems, allowing inexactness in the subproblem solves.

\bullet Our technique involves a dynamic penalty parameter updating strategy to
be employed within the subproblem solve. This makes the approach efficient
while not having to accurately solve multiple QPs in a single iteration.

\bullet By ensuring that each computed step predicts progress toward minimizing
constraint violation, our technique allows for automatic infeasibility detection.

1.1. Organization. In the remainder of this section, we outline our notation and
introduce various concepts that will be employed throughout the paper. In section
2, we introduce a basic penalty-SQP algorithm. Our penalty parameter updating
strategy is detailed in section 3. A complete algorithm is presented and analyzed in
section 4. The results of numerical experiments are presented in section 5. Concluding
remarks are provided in section 6.
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1.2. Notation. Let R
n be the space of real n-vectors, Rn

+ be the nonnegative
orthant of Rn (i.e., Rn

+ := \{ x \in R
n : x \geq 0\} ), and R

n
++ be the interior of Rn

+ (i.e.,
R

n
++ := \{ x \in R

n : x > 0\} ). The set of m\times n real matrices is denoted R
m\times n. On R

n,
the \ell 2 (i.e., Euclidean) norm is indicated as \| \cdot \| 2, with the unit \ell 2-norm ball defined as
B2 := \{ x \in R

n : \| x\| 2 \leq 1\} . For a pair of vectors (u, v) \in R
n\times R

n, their inner product
is written as \langle u, v\rangle := uT v and the line segment between them is written as [u, v]. The
middle value operator applied to (a, b, c) \in R\times R\times R, denoted by mid\{ a, b, c\} , returns
the median of \{ a, b, c\} . For a scalar a, let (a)+ := max\{ a, 0\} and (a) - := min\{ a, 0\} .
The set of nonnegative integers is denoted by N. The extended real number line is
defined as R̄ = R \cup \{  - \infty ,+\infty \} .

For a set of scalars bi \in R for i \in \{ 1, . . . ,m\} , we denote the vector b =
[b1, b2, . . . , bm]T \in R

m. For convenience, we use 111n to denote the n-vector of all
ones and 000n to denote the n-vector of all zeros. Given vectors yi \in R

di for i \in 
\{ 1, . . . ,m\} , we use boldface to denote the element y = (y1, . . . , ym) on the product
space R

d1 \times \cdot \cdot \cdot \times R
dm . Conversely, given y \in R

d1 \times \cdot \cdot \cdot \times R
dm , the ith component of

y (an element of Rdi) is denoted yi while the jth element of yi is written as yij . For

convex sets Ci \in R
di for i \in \{ 1, . . . ,m\} , the distance functions are defined as

dist2
\bigl( 

yi | Ci

\bigr) 

:= inf
zi\in Ci

\| yi  - zi\| 2.

The interior of a set C is denoted by int(C).
For an extended-real-valued function f : Rn \rightarrow R̄, the Legendre–Fenchel con-

jugate of f is denoted as f \star . For a convex set X \subseteq R
n, we define the charac-

teristic function \delta (d| X) which evaluates to 0 if d \in X and evaluates to \infty other-
wise. The conjugate of \delta (\cdot | X) is the support function of X, which we denote by
\delta \ast (y| X) = supd\in X \langle y, d\rangle . For example, for a hyperplane C := \{ d : \langle a, d\rangle + b = 0\} 
(resp., half space C = \{ d : \langle a, d\rangle + b \leq 0\} ), one finds that \delta \ast (y| C) <\infty if and only if
\langle y, a\rangle = \pm \| y\| 2\| a\| 2 (resp., \langle y, a\rangle = \| y\| 2\| a\| 2). In this case,

(1.1) y = \zeta a with \zeta =
1

\| a\| 22
\langle y, a\rangle , meaning that \delta \ast (y| C) =  - \zeta b.

For an iterative algorithm, we use superscript k to indicate the iteration number
for vectors and subscript k for scalars to avoid confusion with the kth power of the
scalar, e.g., xk and \rho k. For an algorithm for solving the subproblem, we use superscript
(j) to indicate the iteration number for vectors and subscript (j) for scalars.

2. A penalty-SQP framework. Consider the following NLP with equality
and inequality constraints where we assume that the functions f : R

n \rightarrow R and
c : Rn \rightarrow R

m are continuously differentiable:

(NLP)

min
x\in Rn

f(x)

s.t. ci(x) = 0 for all i \in \{ 1, . . . ,m\} ;

ci(x) \leq 0 for all i \in \{ m+ 1, . . . ,m\} .

Our penalty-SQP framework uses two functions for use in the algorithm and for
characterizing first-order stationary solutions. First, with a penalty parameter \rho \in 
R+, we define the measure of infeasibility and exact penalty function

v(x) =

m
\sum 

i=1

| ci(x)| +
m
\sum 

i=m+1

(ci(x))+ and \phi (x, \rho ) = \rho f(x) + v(x).

D
o

w
n
lo

ad
ed

 0
8
/2

8
/2

0
 t

o
 1

2
8
.9

5
.1

0
4
.1

0
9
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

INEXACT SQP WITH DYNAMIC PENALTY PARAMETER UPDATES 1825

Generally speaking, our penalty-SQP framework aims to solve (NLP) through sys-
tematic minimization of \phi (\cdot , \rho ) for appropriately chosen values of \rho \in R++. However,
if the constraints of (NLP) are infeasible, then the algorithm is designed to return an
infeasibility certificate in the form of a stationary point for the feasibility problem

(2.1) min
x\in Rn

\phi (x, 0), where \phi (x, 0) = v(x).

Given \rho \in R+ and \eta \in R
m, we define the Fritz John function for (NLP) by

F (x, \rho , \eta ) = \rho f(x) + \langle \eta , c(x)\rangle .

Note that \rho \in R+ plays a double role as penalty parameter in \phi and objective multi-
plier in F . This makes sense from both theoretical and practical perspectives. First-
order stationarity conditions for (NLP) can be written in terms of \nabla F , the constraint
function c, and bounds on the dual variables [8].

In the kth iteration of our penalty-SQP framework, the search direction computa-
tion is based on a local model of the penalty function about a primal iterate xk \in R

n

that can make use of a dual iterate \eta k \in R
m. We define this model over a convex set

X \subseteq R
n containing \{ 0\} by

J(d, \rho ;xk, \eta k) := l(d, \rho ;xk) + 1
2 \langle d,H(\rho ;xk, \eta k)d\rangle + \delta (d| X),

where l is a linearized model of the penalty function (ignoring \rho f(xk)) defined by

l(d, \rho ;xk) = \rho \langle \nabla f(xk), d\rangle +
m
\sum 

i=1

\bigm| 

\bigm| ci(x
k) + \langle \nabla ci(x

k), d\rangle 
\bigm| 

\bigm| +

m
\sum 

i=m+1

(ci(x
k)+\langle \nabla ci(x

k), d\rangle )+

and H represents an approximation of \nabla 2
xxF with

H(\rho ;xk, \eta k) \approx \nabla 2
xxF (\rho ;x

k, \eta k) = \rho \nabla 2
xxf(x

k) +
m
\sum 

i=1

\eta ki\nabla 
2
xxci(x

k).

In particular, the search direction dk is computed as an approximate minimizer of
J(\cdot , \rho k;x

k, \eta k) for some \rho k \in (0, \rho k - 1], i.e.,

(QP) dk \approx arg min
d\in Rn

J(d, \rho k;x
k, \eta k) for some \rho k \in (0, \rho k - 1].

We introduce the set X to allow for the possibility of employing, e.g., a trust region
constraint; e.g., for some ∆ \in R+, one may define X such that X \subset \{ d : \| d\| 2 \leq ∆\} .

The value \rho k \in (0, \rho k - 1] is computed during the iterative solve of (QP). Roughly
speaking, we aim to adjust this value so that the (inexact) solution dk to (QP) pre-
dicts progress toward both feasibility and optimality. In particular, this occurs if the
reduction in a linearized model of the feasibility measure,

∆l(dk, 0;xk) := l(0, 0;xk) - l(dk, 0;xk),(2.2)

where generally ∆l(dk, \rho k;x
k) := l(0, \rho k;x

k) - l(dk, \rho k;x
k),(2.3)

and the reduction in the local model of the penalty function,

(2.4) ∆J(dk, \rho k;x
k, \eta k) := J(0, \rho k;x

k, \eta k) - J(dk, \rho k;x
k, \eta k),

D
o

w
n
lo

ad
ed

 0
8
/2

8
/2

0
 t

o
 1

2
8
.9

5
.1

0
4
.1

0
9
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1826 J. V. BURKE, F. E. CURTIS, H. WANG, AND J. WANG

are sufficiently positive, in which case dk represents a direction of sufficient descent
for both v and \phi (\cdot , \rho k) from xk. However, if xk is (nearly) stationary for v and/or
for \phi (\cdot , \rho k), then requiring both of these reductions to be positive can force the algo-
rithm to compute a highly accurate solution of (QP) when one is not entirely needed.
Therefore, the precise conditions that (dk, \rho k) must satisfy—introduced in the next
section—involve margins that allow one or both of these reductions to be small or
even negative for an acceptable step.

Overall, the kth iteration of our penalty-SQP strategy proceeds as in Algorithm 1.
First, a search direction and penalty parameter pair (dk, \rho k) is computed by a sub-
problem solver such that dk yields reductions in the local models of the penalty
function and measure of infeasibility that satisfy our conditions in section 3. Then, a
line search is performed with respect to the merit function \phi (\cdot , \rho k) from xk along the
search direction dk, yielding a stepsize \alpha k \in R++. Finally, the new iterate is set as
xk+1 \leftarrow xk + \alpha kd

k and the algorithm proceeds to the (k + 1)st iteration. We discuss
choices for the new dual iterate \eta k+1 with the complete algorithm in section 4.

Algorithm 1 Penalty-SQP Algorithm (Preliminary)

Require: (\gamma , \theta ) \in (0, 1) and \rho  - 1 \in (0,\infty ).
1: Choose (x0, \eta 0) \in R

n \times R
m.

2: for all k \in N do

3: Solve (approximately) (QP) to obtain (dk, \rho k) \in R
n \times (0, \rho k - 1].

4: Let \alpha k be the largest value in \{ \gamma 0, \gamma 1, \gamma 2, . . . \} such that

\phi (xk + \alpha kd
k, \rho k) - \phi (x

k, \rho k) \leq  - \theta \alpha k∆l(d
k, \rho k;x

k).

5: Set xk+1 \leftarrow xk + \alpha kd
k and choose \eta k+1 \in R

m.

Before proceeding, it is worthwhile to emphasize the benefit of ignoring the term
\rho f(xk) in our definitions of the models J and l above. It is valid to do this since this
term has no effect on the solution of (QP), and since its presence would not affect
the model reduction values in (2.2) and (2.4). On the other hand, ignoring this term
simplifies our presentation and analysis significantly since it allows us to avoid the
fact that if this term were not ignored, then the optimal value of (QP) for a given xk

would shift with changes in the penalty parameter.

3. A dynamic penalty parameter updating strategy. In this section, we
present a dynamic penalty parameter updating strategy. As mentioned, the method
is novel since the update is employed within a solver for the subproblem arising in
our penalty-SQP framework. A potential pitfall of such an approach is that, since the
penalty parameter dictates the weight between the objective terms in (QP), one may
disrupt typical convergence guarantees of the subproblem solver by manipulating this
weight during the solution process. However, under reasonable assumptions, we prove
that for sufficiently small values of the penalty parameter, our updating strategy will
no longer be triggered. Consequently, once the penalty parameter reaches a sufficiently
small value, it will remain fixed and the subproblem solver will effectively be applied
to solve (QP) for a fixed value \rho k.

D
o

w
n
lo

ad
ed

 0
8
/2

8
/2

0
 t

o
 1

2
8
.9

5
.1

0
4
.1

0
9
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

INEXACT SQP WITH DYNAMIC PENALTY PARAMETER UPDATES 1827

3.1. Preliminaries. For ease of exposition in this section, we drop the depen-
dence of certain quantities on the iteration number:

(3.1)

g = \nabla f(xk), ai = \nabla ci(x
k), bi = ci(x

k), A = [a1, . . . , am]T ,

Hf \approx \nabla 
2
xxf(x

k), H0 \approx 
m
\sum 

i=1

\eta ki\nabla 
2
xxci(x

k), and H\rho = \rho Hf +H0.

We also temporarily drop the dependence of the functions J , l, etc. on the kth iterate.
We make the following assumption about the subproblem data.

Assumption 1. The subproblem data matrices A, Hf , and H0 are such that

(i) H\rho is positive definite for any \rho \in [0, \rho k - 1] and
(ii) \| ai\| 2 > 0 for all i \in \{ 1, . . . ,m\} .

We claim that this assumption is reasonable due to the following considerations.
First, in large-scale contexts, it is typically impractical to construct complete second-
derivative matrices. Hence, as indicated in (3.1), one can assume that Hf and H0

represent (limited memory) Hessian approximations with at least H0 being positive
definite. Second, if ai = 0 for any i \in \{ 1, . . . ,m\} , then the model of the ith constraint
is constant with respect to d, meaning that the ith constraint can be removed from the
subproblem. Such a phenomenon can be detected during a preprocessing phase before
solving the subproblem, so for simplicity, we assume that each constraint gradient is
nonzero. Under Assumption 1, we define the scaled quantities ai := ai/\| ai\| 2 and
bi := bi/\| a

i\| 2 for all i \in \{ 1, . . . ,m\} .
Of central importance in the subproblems are the convex sets

Ci := \{ d \in R
n : \langle āi, d\rangle + b̄i = 0\} for all i \in \{ 1, . . . ,m\} 

and Ci := \{ d \in R
n : \langle āi, d\rangle + b̄i \leq 0\} for all i \in \{ m+ 1, . . . ,m\} .

The quadratic and penalty terms in J can be written, respectively, as

\psi (d, \rho ) = \rho \langle g, d\rangle + 1
2 \langle d,H\rho d\rangle and l(d, 0) =

m
\sum 

i=1

\| ai\| 2dist2 (d | Ci ) ,

meaning that we may rewrite the penalty-SQP subproblem (QP) as

(QPrho) min
d\in Rn

J(d, \rho ), where J(d, \rho ) = \psi (d, \rho ) + l(d, 0) + \delta (d| X).

We refer to (QPrho) with \rho > 0 as a penalty subproblem and we refer to (QPrho) with
\rho = 0 as the feasibility subproblem. The Fenchel–Rockafellar dual of (QPrho) is

(DQPrho)
max

u\in Rn\times \cdot \cdot \cdot \times Rn
D(u, \rho ) s.t. u0 +

m
\sum 

i=1

\| ai\| 2u
i + um+1 = 0

and ui \in B2 for all i \in \{ 1, . . . ,m\} ,

where the dual objective function is given by

D(u, \rho ) =  - 1
2 \langle u

0  - \rho g,H - 1
\rho (u0  - \rho g)\rangle  - 

m
\sum 

i=1

\| ai\| 2\delta 
\ast (ui| Ci) - \delta 

\ast (um+1| X).
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Letting \zeta i(u) := \langle u
i, āi\rangle for a dual feasible u, one finds from (1.1) and the constraint

in (DQPrho) that D(u, \rho ) is finite if and only if

(3.2)

ui = \zeta i(u)ā
i,

which means \zeta i(u) \in 

\Biggl\{ 

[ - 1, 1] for all i \in \{ 1, . . . , m̄\} 

[0, 1] for all i \in \{ m̄+ 1, . . . ,m\} ,

and \delta \ast (ui| Ci) =  - \zeta i(u)b̄i.

An interesting aspect of the dual subproblem (DQPrho) is that the penalty pa-
rameter appears only in the objective. Thus, if u satisfies the constraints of (DQPrho),
then it is dual-feasible regardless of the value of \rho appearing in the subproblem. As a
result, by weak duality, we have for any primal-dual feasible pair (d,u) that both

(3.3) D(u, 0) \leq J(d, 0) and D(u, \rho ) \leq J(d, \rho ).

We close this subsection by noting that the projection onto the set Ci,

PCi
(yi) := arg min

zi\in Ci

\bigm\| 

\bigm\| zi  - yi
\bigm\| 

\bigm\| 

2
,

is easy to compute for any i \in \{ 1, . . . ,m\} ; in particular,

PCi
(d) =

\Biggl\{ 

d - (\langle ai, d\rangle + bi)a
i for all i \in \{ 1, . . . ,m\} ,

d - (\langle ai, d\rangle + bi)+a
i for all i \in \{ m+ 1, . . . ,m\} .

3.2. Updating the penalty parameter. Given \rho \geq 0, let (d\ast \rho ,u
\ast 
\rho ) represent an

optimal primal-dual pair for the penalty subproblem (QPrho) corresponding to \rho ; in
particular, (d\ast 0,u

\ast 
0) represents an optimal primal-dual pair for the feasibility subprob-

lem. The algorithm is presented in the context of a subproblem solver that generates
two sequences of iterates: the first sequence, call it \{ (d(j),u(j))\} , is a sequence of
primal-dual feasible solution estimates for a penalty subproblem, while the second
sequence, call it \{ w(j)\} , is a sequence of dual feasible solution estimates for the fea-
sibility subproblem. (In our strategy, we do not make separate use of a sequence of
primal solution estimates for the feasibility subproblem; rather, the sequence \{ d(j)\} 
plays this role as well.) Without loss of generality, we assume that the jth primal
solution estimate d(j) represents a better (or no worse) primal solution estimate for
the penalty subproblem than a zero step in the sense that

(3.4) J(d(j), \rho (j)) \leq J(0, \rho (j)).

Similarly, we assume that the dual solution estimate w(j) represents a better (or no
worse) dual solution estimate for the feasibility subproblem than u(j), and that each
dual solution estimate u(j) is no worse than the feasible u(0), in that

(3.5) D(w(j), 0) \geq D(u(j), 0) \geq D(u(0), 0) >  - \infty .

These are both reasonable assumptions since if (3.4) (resp., (3.5)) were not to hold,
then one could consider d(j) = 0 (resp., w(j) = u(j) = u(0)) for the jth iterate (even
if the subproblem solver works with a different estimate in its internal operations).

Observe that, by the definition of the model J , we have for any \rho \in (0,\infty ) that

J (0) := J(0, \rho ) = J(0, 0) = l(0, 0) =

m̄
\sum 

i=1

| bi| +
m
\sum 

i=m̄+1

(bi)+ \geq 0.
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Let J
(0)
\omega := J (0) + \omega for any scalar \omega \in (0,\infty ). (As will be discussed later, \omega is held

fixed during a given subproblem solve, but will sequentially be reduced to zero over
the course of the overall penalty-SQP framework.) We then define the following ratios
corresponding to the jth subproblem solver iterate:

(3.6) r(j)v :=
J
(0)
\omega  - l(d(j), 0)

J
(0)
\omega  - (D(w(j), 0))+

and r
(j)
\phi :=

J
(0)
\omega  - J(d(j), \rho (j))

J
(0)
\omega  - D(u(j), \rho (j))

.

(Referring to our discussion surrounding (2.2) and (2.4), note that the numerators
of these ratios are ∆l(d(j), 0) + \omega and ∆J(d(j), \rho (j)) + \omega , respectively.) The critical
property of these ratios is that if they are sufficiently large, then the corresponding
subproblem solver iterates must yield reductions in the feasibility and penalty function
models that are proportional to those obtained by corresponding exact subproblem
solutions. In particular, suppose that for some prescribed \beta v \in (0, 1) we have

(Rv) r(j)v \geq \beta v.

Then the reduction in the linearized constraint violation model obtained by the sub-
problem solver iterate d(j) relative to a zero step satisfies

(3.7)
J (0)
\omega  - l(d(j), 0) \geq \beta v

\Bigl( 

J (0)
\omega  - (D(w(j), 0))+

\Bigr) 

\geq \beta v
\Bigl( 

J (0)
\omega  - D(u\ast 

0, 0)
\Bigr) 

= \beta v

\Bigl( 

J (0)
\omega  - J(d\ast 0, 0)

\Bigr) 

,

where the first inequality follows by (Rv), the second follows by the optimality of u\ast 
0

with respect to the feasibility subproblem (for which it is known that D(u\ast 
0, 0) \geq 0),

and the last follows by strong duality. Similarly, if for \beta \phi \in (0, 1), we have

(Rphi) r
(j)
\phi \geq \beta \phi ,

then it follows that

(3.8)
J (0)
\omega  - J(d(j), \rho (j)) \geq \beta \phi (J

(0)
\omega  - D(u(j), \rho (j)))

\geq \beta \phi (J
(0)
\omega  - D(u\ast 

\rho (j)
, \rho (j))) = \beta \phi (J

(0)
\omega  - J(d\ast \rho (j)

, \rho (j))).

The last component of our updating strategy involves an estimate of the comple-
mentarity of a primal-dual solution estimate. This is needed since we only reduce the
penalty parameter if a primal-dual solution estimate is approximately complementary.
We do this in the following manner. First, defining the index sets

\scrE +(d) := \{ i \in \{ 1, . . . , m̄\} : \langle ā
i, d\rangle + b̄i > 0\} ,

\scrE  - (d) := \{ i \in \{ 1, . . . , m̄\} : \langle ā
i, d\rangle + b̄i < 0\} ,

and \scrI +(d) := \{ i \in \{ m̄+ 1, . . . ,m\} : \langle āi, d\rangle + b̄i > 0\} ,

we define the complementarity measure

\chi (d,u) :=
\sum 

i\in \scrE +\cup \scrI +

(1 - \zeta i(u))\| a
i\| 2dist (d | Ci ) +

\sum 

i\in \scrE −

(1 + \zeta i(u))\| a
i\| 2dist (d | Ci ) .

To reduce the penalty parameter, we require that (d(j),u(j)) satisfies

\chi (j) := \chi (d(j),u(j)) \leq (1 - \beta v)
2J (0)

\omega ,
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or, equivalently,

(Rc) r(j)c := 1 - 

\sqrt{} 

\chi (j)

J
(0)
\omega 

\geq \beta v.

In our strategy, if the optimality QP subproblem is solved sufficiently accurately,
then we turn to verify whether feasibility has also been improved to a satisfactory
extent. Therefore, the key idea here is to determine a criterion reflecting that the
optimality QP has been solved sufficiently accurately. Making this determination re-
quires us to check a measure of complementarity. In particular, if the initial objective

J (0) is far from optimal, then r
(j)
\phi \approx 1 might not indicate that the subproblem solution

is nearly primal-dual optimal since a large J (0) can cause the numerator of r
(j)
\phi to be

very close to the denominator, even though the dual value is far from dual optimality.
As a result, the updating strategy may be triggered too early, so that \rho is inappropri-
ately driven to zero. Therefore, we need a certification showing the progress achieved
by the dual estimates, which can be reflected by the complementary condition (Rc).

Overall, our penalty parameter strategy is motivated by the desire to ensure that
if the jth iterate of the subproblem solver offers a sufficiently accurate solution of
the penalty subproblem for \rho (j) > 0, then it should also offer a sufficiently accurate
solution of the feasibility subproblem; otherwise, the penalty parameter should be
reduced. Specifically, choosing parameters

(3.9) 0 < \beta v < \beta \phi < 1,

we initialize \rho (0) \leftarrow \rho k - 1 (from the preceding iteration of the penalty-SQP framework)

and apply the subproblem solver to (QPrho) to initialize \{ (d(j),u(j),w(j))\} . If at the
end of the jth subproblem solver iteration we conclude that (Rphi) or (Rc) is not
satisfied, then we continue to iterate toward solving (QPrho) with \rho = \rho (j). Otherwise,
if (Rphi) and (Rc) hold but (Rv) does not, then we reduce the penalty parameter by
setting

(3.10) \rho (j+1) \leftarrow \theta \rho \rho (j)

for some prescribed \theta \rho \in (0, 1). A special case that one should consider occurs when
(Rphi), (Rc), and (Rv) all hold with d(j) = 0. For simplicity in our presentation,
in such a case, we have the subproblem solver terminate with d(j) = 0, causing
the penalty-SQP framework to take a null step in the primal space. As previously
mentioned, this would be followed by a decrease in \omega , prompting the penalty-SQP
framework to eventually make further progress or terminate with a stationarity cer-
tificate. In practice, this decrease in \omega in this scenario need not occur over a sequence
of iterations. It can occur immediately within a subproblem solve. We merely state
the occurrence of a null step for simplicity in our discussions.

We state our dynamic updating strategy (DUST) as

(DUST)

Given ρ(j) and the jth iterate (d(j),u(j)
,w

(j)), perform the following:

• if (Rphi), (Rc), and (Rv) hold, then terminate;

• else if (Rphi) and (Rc) hold, but (Rv) does not, then apply (3.10);

• else set ρ(j+1) ← ρ(j).

We formally analyze (DUST) in the following subsections. We begin with the
following intuitive arguments to motivate the strategy for adjusting the penalty pa-
rameter in a few cases of interest. These cases depend on properties of the kth iterate
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of the penalty-SQP framework, namely, xk, with respect to the constraint violation
measure and the penalty function.

\bullet First, observe that with an optimal primal-dual solution (d\ast \rho ,u
\ast 
\rho ) for a penalty

subproblem, one has \zeta i(u
\ast 
\rho ) = 1 for i \in \scrE +(d

\ast 
\rho ), \zeta i(u

\ast 
\rho ) =  - 1 for i \in \scrE  - (d

\ast 
\rho ),

and \zeta i(u
\ast 
\rho ) = 1 for i \in \scrI +(d

\ast 
\rho ), from which it follows that \chi (d\ast \rho ,u

\ast 
\rho ) = 0.

Therefore, for a given \omega \in (0,\infty ), the condition (Rc) will hold for sufficiently
accurate primal-dual solutions of the penalty subproblem.

\bullet If xk is not stationary with respect to \phi (\cdot , \rho ) for any \rho \in (0, \rho k - 1], then, with

(d(j),u(j), \rho (j)) = (d\ast \rho ,u
\ast 
\rho , \rho ) for any such \rho , one finds that r

(j)
\phi = 1 > \beta \phi .

In turn, this means that (Rphi) holds for any (d(j),u(j)) in a neighborhood
of (d\ast \rho ,u

\ast 
\rho ). If, in addition, xk is not stationary with respect to v, then one

should expect that for a sufficiently small \rho (j) the condition (Rv) would also

be satisfied for such a d(j). This should be expected since for (d\ast 0,u
\ast 
0) one has

J
(0)
\omega  - l(d\ast 0, 0)

J
(0)
\omega  - (D(u\ast 

0, 0))+
\geq 

J
(0)
\omega  - J(d\ast 0, 0)

J
(0)
\omega  - D(u\ast 

0, 0)
= 1,

meaning that r
(j)
v > \beta v for (d(j),w(j)) in a neighborhood of (d\ast 0,u

\ast 
0). Overall,

in this case, one should expect that (DUST) would only reduce the penalty
parameter a finite number of times, if at all.

\bullet If xk is not stationary with respect to \phi (\cdot , \rho ) for any \rho \in (0, \rho k - 1], but is
stationary with respect to v, then for (d\ast 0,u

\ast 
0) one has

J
(0)
\omega  - l(d\ast 0, 0)

J
(0)
\omega  - (D(u\ast 

0, 0))+
=
\omega 

\omega 
= 1,

meaning that r
(j)
v > \beta v for (d(j),w(j)) in a neighborhood of (d\ast 0,u

\ast 
0). Hence,

as in the previous bullet, one should expect that (DUST) would only reduce
the penalty parameter a finite number of times.

\bullet If xk is stationary with respect to \phi (\cdot , \rho (j)) for \rho (j) > 0 encountered during
the subproblem solve, then, under Assumption 1, the only primal iterate
satisfying (Rphi) is d(j) = 0. For this value, one finds that

r(j)v =
\omega 

\omega + J (0)  - (D(w(j), 0))+
.

There are now two cases to consider. If r
(j)
v < \beta v, then (DUST) decreases the

penalty parameter, as is appropriate. Otherwise, if r
(j)
v \geq \beta v, then—with a

sufficiently accurate dual solution—(DUST) returns a null step to the penalty-
SQP framework. (In a later subproblem solved with a smaller \omega , one would
find that either (Rphi) holds for d(j) = 0—and a sufficiently accurate dual
solution—but (Rv) does not, prompting a decrease of the penalty parameter,
or—again with a sufficiently accurate dual solution—one would terminate the
overall algorithm with certificate of stationarity for xk.)

We close this subsection by making a few practical remarks regarding the use of
(DUST) within a subproblem solver for (QPrho). In particular, while we have defined
the sequence \{ (d(j),u(j),w(j))\} as being generated by the solver, it may be reasonable
to reinitialize the solver—or at least perform some auxiliary computations—after any
iteration in which (3.10) is invoked. (Such auxiliary computations may involve scaling
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vectors and/or matrices due to the change in the penalty parameter.) That being said,
it is reasonable to assume that, during any sequence of iterations in which the penalty
parameter does not change, the subproblem solver would be applied as if it were being
applied to a static instance of (QPrho). In such a manner, any convergence guarantees
for the subproblem solver would hold if/when the penalty parameter stabilizes at a
fixed value, as is guaranteed to occur under common conditions described next.

3.3. Finite updates for a single subproblem. The purpose of this subsection
is to show that if (DUST) is employed within an algorithm for solving (QPrho), then,
under reasonable assumptions on the subproblem data, for any \rho (j) \in (0, \rho ] for some
sufficiently small \rho > 0 whose value depends only on the subproblem data, if (Rphi)
and (Rc) are satisfied, then (Rv) is also satisfied. In other words, after a finite number
of iterations, the update (3.10) will never be triggered. Let \lambda 0 and \lambda 0 be the smallest
and largest eigenvalues of H0, and similarly for \lambda \rho and \lambda \rho with respect to the matrix
H\rho . Notice that, since \rho (j) \in (0, \rho (0)], it follows that

(3.11) \lambda \rho (j)
\geq \lambda := min\{ \lambda \rho (0)

, \lambda 0\} and \lambda \rho (j)
\leq \lambda := max\{ \lambda \rho (0)

, \lambda 0\} .

We formalize our assumption for this analysis as the following.

Assumption 2. For all j \in N, the sequence \{ (d(j),u(j),w(j))\} has d(j) \in X,

(3.4) and (3.5) hold, and u(j) and w(j) are feasible for (DQPrho).

We first show that the dual sequences \{ u(j)\} and \{ w(j)\} are bounded in norm.

Lemma 3. Under Assumption 1, there exists \kappa 0 > 0 such that, for all j \in N,

\| u(j)\| 2 \leq \kappa 0 and \| w(j)\| 2 \leq \kappa 0.

Proof. Since u(j) is feasible for (DQPrho), the elements \{ (ui)(j)\} for all i \in 
\{ 1, . . . ,m\} are bounded in norm by 1. Therefore, by the first constraint of (DQPrho),
it suffices to show that \{ (u0)(j)\} is bounded. We show this by contradiction. Sup-
pose there exists an infinite index set \scrJ such that \{ \| (u0)(j)\| 2\} j\in \scrJ \nearrow \infty . Notice
that for (um+1)(j) it holds that \delta \ast ((um+1)(j)| X) = supx\in X\langle (u

m+1)(j), x\rangle \geq 0 since it
is assumed that 0 \in X. All together, with these facts and Assumption 1, we may
conclude that \{ D(u(j), 0)\} j\in \scrJ \rightarrow  - \infty , which contradicts (3.5). Therefore, \{ (u0)(j)\} 
must be bounded, so overall the sequence \{ u(j)\} is bounded.

Following the same argument for w(j), it follows that \{ w(j)\} is bounded.

We now show that the primal variables \{ d(j)\} are also bounded in norm.

Lemma 4. Under Assumptions 1 and 2, it follows that, for all j \in N,

(3.12) \| d(j)\| 2 \leq \kappa 1 :=
\Bigl( 

\rho (0)\| g\| 2 +
\sqrt{} 

\rho 2(0)\| g\| 
2
2 + 2\lambda J (0)

\Bigr) 

/\lambda .

Proof. By Assumption 2, it follows that d(j) \in X for all j \in N, which implies that
\delta (d(j)| X) = 0 for all j \in N. By (3.4), every (d(j),u(j), \rho (j)) for j \in N must satisfy

\rho (j)\langle g, d
(j)\rangle + 1

2 \langle d
(j), H\rho (j)

d(j)\rangle \leq J(d(j), \rho (j)) \leq J(0, \rho (j)) = J (0).

It follows that

1
2\lambda \rho (j)

\| d(j)\| 22 \leq J
(0) + | \rho (j)\langle g, d

(j)\rangle | \leq J (0) + \rho (0)\| g\| 2\| d
(j)\| 2,
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which, using the quadratic formula, implies that

\| d(j)\| 2 \leq 
\Bigl( 

\rho (0)\| g\| 2 +
\sqrt{} 

\rho 2(0)\| g\| 
2
2 + 2\lambda \rho (j)

J (0)
\Bigr) 

/\lambda \rho (j)
.

Together with (3.11), this proves (3.12), as desired.

The next lemma shows that the differences between the primal and dual values
of the penalty and feasibility subproblems are bounded with respect to \rho .

Lemma 5. Under Assumptions 1 and 2, it follows that, for any j \in N,

| J(d(j), \rho (j)) - J(d
(j), 0)| \leq \kappa 2\rho (j)(3.13a)

and | D(u(j), \rho (j)) - D(u(j), 0)| \leq \kappa 3\rho (j),(3.13b)

where, with \kappa 1 > 0 defined in Lemma 4,

\kappa 2 := \| g\| 2\kappa 1 +
1
2\| Hf\| 2\kappa 

2
1

and \kappa 3 :=
\kappa 0 + \rho (0)\| g\| 2

2\lambda 
(\kappa 0\| H

 - 1
0 \| 2\| Hf\| 2 + \| g\| 2) +

1
2\kappa 0\| H

 - 1
0 \| 2\| g\| 2.

Proof. For the primal values, it holds true that

| J(d(j), \rho (j)) - J(d
(j), 0)| = | \rho (j)\langle g, d

(j)\rangle + 1
2 \langle d

(j), H\rho (j)
d(j)\rangle  - 1

2 \langle d
(j), H0d

(j)\rangle | 

= | \rho (j)\langle g, d
(j)\rangle + 1

2\rho (j)\langle d
(j), Hfd

(j)\rangle | 

\leq \rho (j)(\| g\| 2\| d
(j)\| 2 +

1
2\| Hf\| 2\| d

(j)\| 22),

which combined with Lemma 4 proves (3.13a).

We now aim to prove (3.13b). Toward this goal, let ŷ(j) := H - 1
\rho (j)

(u
(j)
0  - \rho (j)g) and

ȳ(j) := H - 1
0 u

(j)
0 . Then, by Assumption 2, it follows that

\| ŷ(j)\| 2 \leq (\kappa 0 + \rho (j)\| g\| 2)/\lambda \rho (j)
\leq (\kappa 0 + \rho (0)\| g\| 2)/\lambda .

In addition, it follows that

\rho (j)g = u
(j)
0  - (u

(j)
0  - \rho (j)g) = H0ȳ

(j)  - H\rho (j)
ŷ(j) = H0(ȳ

(j)  - ŷ(j)) - \rho (j)Hf ŷ
(j),

which implies that, for all j \in N,

(3.14)

\| ȳ(j)  - ŷ(j)\| 2 = \| \rho (j)H
 - 1
0 (Hf ŷ

(j) + g)\| 2

\leq \rho (j)\| H
 - 1
0 \| 2\| Hf ŷ

(j) + g\| 2

\leq \rho (j)\| H
 - 1
0 \| 2

\biggl( 

\| Hf\| 2
\kappa 0 + \rho (0)\| g\| 2

\lambda 
+ \| g\| 2

\biggr) 

.
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The difference between the dual values is then given by

| D(u(j), \rho (j)) - D(u(j), 0)| 

= |  - 1
2 \langle u

(j)
0  - \rho (j)g,H

 - 1
\rho (j)

(u
(j)
0  - \rho (j)g)\rangle +

1
2 \langle u

(j)
0 , H - 1

0 u
(j)
0 \rangle | 

= | 12 \langle ȳ
(j)  - ŷ(j), u

(j)
0 \rangle +

1
2\rho (j)\langle g, ŷ

(j)\rangle | 

\leq 1
2\| ȳ

(j)  - ŷ(j)\| 2\| u
(j)
0 \| 2 +

1
2\rho (j)\| g\| 2\| ŷ

(j)\| 2

\leq \rho (j)

\biggl( 

1
2\| H

 - 1
0 \| 2

\biggl( 

\| Hf\| 2
\kappa 0 + \rho (0)\| g\| 2

\lambda 
+ \| g\| 2

\biggr) 

\kappa 0 +
1
2\| g\| 2

\kappa 0 + \rho (0)\| g\| 2

\lambda 

\biggr) 

= \rho (j)

\biggl( 

\kappa 0 + \rho (0)\| g\| 2

2\lambda 

\bigl( 

\kappa 0\| H
 - 1
0 \| 2\| Hf\| 2 + \| g\| 2

\bigr) 

+ 1
2\kappa 0\| H

 - 1
0 \| 2\| g\| 2

\biggr) 

,

where the last inequality follows by (3.14) and Assumption 2.

Let us now define

\scrU = \{ j : (d(j),u(j)) satisfies (Rphi) and (Rc) but not (Rv)\} ,

meaning that \scrU is the set of subproblem iterations in which (3.10) is triggered. Now
we are ready to prove our main result in this section.

Theorem 6. Suppose Assumptions 1 and 2 hold. Let

\kappa 4 := inf
j\in \scrU 
\{ J (0)  - J(d(j), \rho (j))\} \geq 0 and \kappa 5 := inf

j\in \scrU 
\{ J (0)  - D(u(j), 0)\} \geq 0.

Then, for \rho (j) \in (0, \rho ], where

(3.15) \rho :=
\omega +min\{ \kappa 4, \kappa 5\} 

max\{ \kappa 2, \kappa 3\} 

\biggl( 

1 - 
\sqrt{} 

\beta v/\beta \phi 

\biggr) 

if (d(j),u(j)) satisfies (Rphi) and (Rc), then (d(j),w(j)) satisfies (Rv). In other words,

for any \rho (j) \in (0, \rho ], the update (3.10) is never triggered by (DUST).

Proof. In order to derive a contradiction, suppose that \scrU is infinite, meaning that
the subproblem solver is never terminated and \rho (j) \rightarrow 0. We have from (3.13a) that

 - \kappa 2\rho (j) \leq J(d
(j), \rho (j)) - J(d

(j), 0) \leq \kappa 2\rho (j) for any j \in \scrU ,

which, after adding and dividing through by J
(0)
\omega  - J(d(j), \rho (j)), yields for j \in \scrU that

(3.16) 1 - 
\kappa 2\rho (j)

J
(0)
\omega  - J(d(j), \rho (j))

\leq 
J
(0)
\omega  - J(d(j), 0)

J
(0)
\omega  - J(d(j), \rho (j))

\leq 1 +
\kappa 2\rho (j)

J
(0)
\omega  - J(d(j), \rho (j))

.

Thus, for any

\rho (j) \leq 
\omega + \kappa 4
\kappa 2

\Biggl( 

1 - 

\sqrt{} 

\beta v
\beta \phi 

\Biggr) 

\leq 
J
(0)
\omega  - J(d(j), \rho (j))

\kappa 2

\Biggl( 

1 - 

\sqrt{} 

\beta v
\beta \phi 

\Biggr) 

,

it follows from the first inequality of (3.16) that

(3.17)
J0
\omega  - J(d

(j), 0)

J0
\omega  - J(d

(j), \rho (j))
\geq 

\sqrt{} 

\beta v
\beta \phi 
.
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Following an argument similar to that for (3.13b), we have that for any

\rho (j) \leq 
\omega + \kappa 5
\kappa 3

\Biggl( 

1 - 

\sqrt{} 

\beta v
\beta \phi 

\Biggr) 

\leq 
J
(0)
\omega  - D(u(j), 0)

\kappa 3

\Biggl( 

1 - 

\sqrt{} 

\beta v
\beta \phi 

\Biggr) 

,

one finds that

(3.18)
J0
\omega  - D(u(j), \rho (j))

J0
\omega  - D(u(j), 0)

\geq 

\sqrt{} 

\beta v
\beta \phi 
.

Overall, we have shown that for any \rho (j) \leq \rho with \rho defined in (3.15), it follows that

(3.17) and (3.18) both hold true and, since D(w(j), 0) \geq D(u(j), 0), that

(3.19)
J0
\omega  - D(u(j), \rho (j))

J0
\omega  - D(w(j), 0)

\geq 
J0
\omega  - D(u(j), \rho (j))

J0
\omega  - D(u(j), 0)

>

\sqrt{} 

\beta v
\beta \phi 
.

Since our supposition that \scrU is infinite implies that \rho (j) \rightarrow 0, we may now proceed
under the assumption that j \in \scrU with \rho (j) \in (0, \rho ]. Let us now define the ratios

r̂(j)v :=
J
(0)
\omega  - J(d(j), 0)

J
(0)
\omega  - (D(w(j), 0))+

and r̄(j)v :=
J
(0)
\omega  - J(d(j), 0)

J
(0)
\omega  - D(w(j), 0)

,

where, since J(d(j), 0) = l(d(j), 0) + 1
2 \langle d

(j), H0d
(j)\rangle \geq l(d(j), 0) and by the definition

of the operator (\cdot )+, it follows that r
(j)
v \geq r̂

(j)
v \geq r̄

(j)
v . From (3.17) and (3.19),

r̄
(j)
v

r
(j)
\phi 

=
J0
\omega  - J(d

(j), 0)

J0
\omega  - J(d

(j), \rho (j))

J0
\omega  - D(u(j), \rho (j))

J0
\omega  - D(w(j), 0)

\geq 
\beta v
\beta \phi 
,

yielding

r(j)v \geq r̄(j)v \geq 
\beta v
\beta \phi 
r
(j)
\phi \geq \beta v.

However, this contradicts the fact that j \in \scrU . Overall, since we have reached a
contradiction, we may conclude that \scrU is finite.

4. A complete penalty-SQP algorithm. In the previous section, a dynamic
penalty parameter updating strategy was proposed to guarantee that the computed
search direction simultaneously offers progress toward reducing the penalty function
and reducing infeasibility. In this section, a complete algorithm for solving (NLP)
that employs this strategy is proposed and analyzed. It follows the general strategy
in Algorithm 1, but includes additional details.

Our complete algorithm involves an additional check of the penalty parameter
after the search direction has been computed as is similarly done in various algorithms
that employ a penalty function as a merit function. Let \rho k be the value of the penalty
parameter obtained by applying (DUST) within the kth subproblem solve. Then,
given a constant \beta l \in (0, \beta \phi (1 - \beta v)], we require \rho k \in (0, \rho k] so that

(4.1) ∆l(dk, \rho k;x
k) + \omega k \geq \beta l(∆l(d

k, 0;xk) + \omega k),

where the right-hand side of this inequality is guaranteed to be positive due to (Rv).
More precisely, we employ the following Posterior Subproblem ST rategy:

(PSST) \rho k \leftarrow 

\left\{ 

 

 

 

 

\rho k if this yields (4.1)

(1 - \beta l)(∆l(d
k, 0;xk) + \omega k)

\langle \nabla f(xk), dk\rangle + 1
2 \langle d

k, H(\rho k;xk, \eta k)dk\rangle 
otherwise.
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Observe that if the choice \rho k = \rho k does not yield (4.1), then, by setting \rho k according
to the latter formula in (PSST), it follows (since H(\rho k;x

k, \eta k) \succeq 0) that

\rho k\langle \nabla f(x
k), dk\rangle \leq (1 - \beta l)(∆l(d

k, 0;xk) + \omega k),

which means that

∆l(dk, \rho k;x
k) + \omega k = ∆l(dk, 0;xk) - \rho k\langle \nabla f(x

k), dk\rangle + \omega k \geq \beta l(∆l(d
k, 0;xk) + \omega k),

implying that (4.1) holds.
The intuition of this posterior updating strategy is to detect whether the iterate

may be near an infeasible stationary point. If a step has achieved improvement on
optimality but not very much on feasibility, then the algorithm should decrease \rho to
reduce the effect of the objective in the penalty function. This is the typical approach
used by penalty methods that update the penalty parameter in hindsight at the end
of an iteration. This idea is similar to the updating strategy in [3]. A novel aspect
of (PSST), however, is that this model reduction condition is imposed inexactly (due
to the presence of \omega k > 0). In fact, for a relatively large \omega k, the model reduction in
l(\cdot , \rho k;x

k) is not necessarily at least a fraction of that in l(\cdot , 0;xk). This difference
makes (PSST) more suitable for an inexact penalty-SQP framework.

Our complete algorithm employing (DUST) and (PSST) is given as Algorithm 2.
While we do not complicate the notation by making the dependence explicit on k \in N,
it should be clear that in the inner loop (over j) one is solving a subproblem with
quantities dependent on the kth iterate; see (3.1). Also, while our analysis does not
depend on this choice, we remark that a reasonable choice for \eta k+1 for all k \in N

are the QP multipliers, i.e., \eta k+1 = \zeta (u(j)), where \zeta (u) is defined prior to (3.2).
We do not specify this choice since one might also consider using, e.g., least squares
multipliers [12]. Our analysis, which focuses on primal convergence, works with any
such choice as long as the sequence of dual estimates remains bounded (see below).

In the remainder of this section, we show that if (DUST) and (PSST) are em-
ployed within a penalty-SQP algorithm for solving (NLP), then, under reasonable as-
sumptions, the algorithm converges from any starting point. Specifically, if (DUST)
and (PSST) are only triggered a finite number of times, then every limit point of the
iterates is either infeasible stationary or first-order stationary for (NLP). Otherwise,
if (DUST) and (PSST) are triggered an infinite number of times, driving the pen-
alty parameter to zero, then every limit point of the iterates is either an infeasible
stationary point or a feasible point at which a constraint qualification fails to hold.

For our analysis in this section, we extend our use of the sub/superscript k to
denote the value of quantities associated with iteration k \in N. For example, \scrU k

denotes the set \scrU defined in section 3.3 while solving the kth subproblem and \kappa 0,k is
the constant \kappa 0 in Assumption 2 for the kth subproblem.

We make the following assumption throughout this analysis.

Assumption 7. The compact convex set X \subset R
n with 0 \in int (X) is used in

defining all subproblems, and there exist positive scalar constants Λ,Λ and K0 with

Λ \leq Λ such that the following hold true.

(i) f and ci for all i \in \{ 1, . . . ,m\} , and their first- and second-order derivatives,

are all bounded in an open convex set containing \{ xk\} and \{ xk + dk\} .
(ii) For all k \in N and any \rho \in [0, \rho 0],

0 < Λ \leq \lambda 0,k \leq \lambda 0,k \leq Λ and 0 < Λ \leq \lambda \rho ,k \leq \lambda \rho ,k \leq Λ.
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Algorithm 2 Penalty-SQP with a Dynamic Penalty Parameter Updating Strategy

Require: (\gamma , \theta \rho , \theta \alpha , \theta \omega , \beta v, \beta \phi ) \in (0, 1), \beta l \in (0, \beta \phi (1 - \beta v)), and (\rho  - 1, \omega 0) \in (0,\infty )
1: Choose (x0, \eta 0) \in R

n \times R
m.

2: for k \in N do

3: Set \rho (0) \leftarrow \rho k - 1

4: for j \in N do

5: Generate a primal-dual feasible solution estimate (d(j),u(j),w(j))
6: Set \rho (j+1) by applying (DUST)

7: Set dk \leftarrow d(j) and \rho k \leftarrow \rho (j).
8: Set \rho k by applying (PSST)
9: Let \alpha k be the largest value in \{ \gamma 0, \gamma 1, \gamma 2, . . . \} such that

(4.2) \phi (xk + \alpha kd
k, \rho k) - \phi (x

k, \rho k) \leq  - \theta \alpha \alpha k∆l(d
k, \rho k;x

k).

10: Choose \omega k+1 \in (0, \theta \omega \omega k].
11: Set xk+1 \leftarrow xk + \alpha kd

k and choose \eta \in R
m.

(iii) \kappa 0,k \leq K0 for all k \in N.

(iv) \| \nabla ci(x
k)\| 2 > 0 for all k \in N and i \in \{ 1, . . . ,m\} .

(v) \{ \eta k\} is bounded.

Recalling Lemmas 4 and 5, it follows under Assumption 1, 2, and 7 that there
exist positive scalar constants K1, K2, and K3 such that

(4.3) 0 < \kappa 1,k \leq K1, 0 < \kappa 2,k \leq K2, and 0 < \kappa 3,k \leq K3 for all k \in N.

Let us define the index set

\scrD := \{ k \in N : \scrU k \not = \emptyset \} .

Moreover, for every k \in \scrD , let jk be the subproblem iteration number corresponding
to the value of the smallest ratio rv, i.e., such that

r(jk)v \leq r(ik)v for any ik \in \scrU 
k.

Let us also define the index set

\scrT := \{ k \in N : \rho k is reduced by (PSST)\} .

It follows from these definitions that \rho k < \rho k - 1 if and only if k \in \scrD \cup \scrT .
Before analyzing the behavior of the iterates of our algorithm, we first provide

a couple results related to our subproblem and its solutions. For this result and the
remainder of this section, let d\ast (\rho ;x, \eta ) denote a minimizer of J(d, \rho ;x, \eta ). From [3,
Lemma 4.2, 4.3, and 4.4], we have the properties stated in the following lemma.

Lemma 8. Under Assumption 7, the following hold at any (xk, \eta k).
(i) The minimizer of J(\cdot , \rho ;xk, \eta k) is unique for any \rho \geq 0.
(ii) ∆l(d\ast (0, xk, \eta k);xk) \geq 0, where equality holds if and only if d\ast (0;xk, \eta k) = 0.
(iii) d\ast (0;xk, \eta k) = 0 if and only if xk is stationary for v.
(iv) If d\ast (\rho ;xk, \eta k) = 0 for \rho > 0 and v(xk) = 0, then xk is stationary for (NLP).

We also have the following fact about the subproblem solutions.
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Lemma 9. Under Assumption 7, \{ d\ast (0;xk, \eta k)\} and \{ d\ast (\rho k;x
k, \eta k)\} are bounded.

Proof. The proof follows the same line of argument for bounding each primal step
in norm as is used in the proof of Lemma 4, where the facts that

J(d\ast (0;xk, \eta k), 0;xk, \eta k) \leq J(0, 0;xk, \eta k)

and J(d\ast (\rho k;x
k, \eta k), \rho k;x

k, \eta k) \leq J(0, 0;xk, \eta k)

follow from the definitions of d\ast (0;xk, \eta k) and d\ast (\rho k;x
k, \eta k).

We now prove a useful lower bound for the stepsize in each iteration.

Lemma 10. Under Assumption 7, it follows that, for all k \in N, the stepsize

satisfies \alpha k \geq C∆l(d
k, \rho k;x

k) for some constant C > 0 independent of k.

Proof. If dk = 0, then (4.2) holds with \alpha k = \gamma 0 = 1. Hence, for the remainder of
the proof, let us assume that dk \not = 0. Under Assumption 7, applying Taylor’s theorem
and [3, Lemma 4.2], we have that for all positive \alpha that are sufficiently small, there
exists \tau > 0 such that

\phi (xk + \alpha dk, \rho k) - \phi (x
k, \rho k) \leq  - \alpha ∆l(d

k, \rho k;x
k) + \tau \alpha 2\| dk\| 22.

Thus, for any \alpha \in [0, (1 - \theta \alpha )∆l(d
k, \rho k;x

k)/(\tau \| dk\| 22)], it follows that

 - \alpha ∆l(dk, \rho k;x
k) + \tau \alpha 2\| dk\| 22 \leq  - \alpha \theta \alpha ∆l(d

k, \rho k;x
k),

meaning that the sufficient decrease condition (4.2) holds. During the line search, the
stepsize is multiplied by \gamma until (4.2) holds, so we know by the above inequality that
the backtracking procedure terminates with

\alpha k \geq \gamma (1 - \theta \alpha )∆l(d
k, \rho k;x

k)/(\tau \| dk\| 22).

The result follows from this inequality since \{ \| dk\| 2\} is bounded above by K1.

Next we show that the reductions in the models of the constraint violation and
the penalty function both vanish in the limit. For this purpose, it will be convenient
to work with the shifted penalty function

\varphi (x, \rho ) := \rho (f(x) - f) + v(x) \geq 0,

where f is the infimum of f over the smallest convex set containing \{ xk\} . The
existence of f follows from Assumption 7(i). The function \varphi possesses a useful mono-
tonicity property proved in the following lemma.

Lemma 11. Under Assumption 7, it holds that, for all k \in N,

\varphi (xk+1, \rho k+1) \leq \varphi (x
k, \rho k) - \theta \alpha \alpha k∆l(d

k, \rho k;x
k).

Proof. By the line search condition (4.2), it follows that

\varphi (xk+1, \rho k) \leq \varphi (x
k, \rho k) - \theta \alpha \alpha k∆l(d

k, \rho k;x
k),

which implies

\varphi (xk+1, \rho k+1) \leq \varphi (x
k, \rho k) - (\rho k  - \rho k+1)(f(x

k+1) - f) - \theta \alpha \alpha k∆l(d
k, \rho k;x

k).

The result then follows from this inequality, the fact that \{ \rho k\} is monotonically de-
creasing, and since f(xk+1) \geq f for all k \in N.

D
o

w
n
lo

ad
ed

 0
8
/2

8
/2

0
 t

o
 1

2
8
.9

5
.1

0
4
.1

0
9
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

INEXACT SQP WITH DYNAMIC PENALTY PARAMETER UPDATES 1839

We now show that the model reductions and duality gap all vanish asymptotically.

Lemma 12. Under Assumption 7, the following limits hold.

(i) 0 = limk\rightarrow \infty ∆l(dk, \rho k;x
k) = limk\rightarrow \infty ∆J(dk, \rho k;x

k, \eta k),
(ii) 0 = limk\rightarrow \infty ∆l(dk, 0;xk) = limk\rightarrow \infty ∆J(dk, 0;xk, \eta k),
(iii) 0 = limk\rightarrow \infty ∆J(d\ast (0;xk, \eta k), 0;xk, \eta k) = limk\rightarrow \infty ∆J(d\ast (\rho k;x

k, \eta k), \rho k;x
k, \eta k),

(iv) 0 = limk\rightarrow \infty [J(0, \rho k;x
k, \eta k) - D(uk, \rho k;x

k, \eta k)],
(v) 0 = limk\rightarrow \infty [J(0, 0;xk, \eta k) - D(wk, 0;xk, \eta k)].

Proof. Let us first prove (i) by contradiction. Suppose that ∆l(dk, \rho k;x
k) does

not converge to 0. Then, there exists a constant \epsilon > 0 and an infinite \scrK \subseteq N such
that ∆l(dk, \rho k;x

k) \geq \epsilon for all k \in \scrK . It then follows from Lemmas 10 and 11 that
\varphi (xk; \rho k) \rightarrow  - \infty , which contradicts the fact that \{ \varphi (xk, \rho k)\} is bounded below by
zero. Therefore, ∆l(dk, \rho k;x

k)\rightarrow 0. The second limit in (i) then follows from the first
limit, the fact that H(\rho k;x

k, \eta k) \succeq 0 for all k \in N, and the fact that

(4.4)
∆l(dk, \rho k;x

k) = ∆J(dk, \rho k;x
k, \eta k) + 1

2 \langle d
k, H(\rho k;x

k, \eta k)dk\rangle 

\geq ∆J(dk, \rho k;x
k, \eta k).

Next, from (4.1) and (4.4), it follows that

∆l(dk, \rho k;x
k) + \omega k \geq \beta l(∆l(d

k, 0;xk) + \omega k) \geq \beta l(∆J(d
k, 0;xk, \eta k) + \omega k).

The limits in (ii) follow from these inequalities, the first limit in (i), and the fact that
\{ \omega k\} \rightarrow 0. Finally, the limits in (iii), (iv), and (v) follow from the limits in parts (i)
and (ii) along with the inequalities in (3.7) and (3.8).

We now show that the primal steps and the exact subproblem solutions vanish.

Lemma 13. Suppose Assumption 7 holds and \{ \rho k\} \rightarrow \rho \ast . Then, \{ dk\} \rightarrow 0, and
for any limit point x\ast of \{ xk\} it follows that d\ast (0;x\ast , \cdot ) = 0 and d\ast (\rho \ast ;x

\ast , \cdot ) = 0.

Proof. From Lemma 12(ii), it follows that

0 = lim
k\rightarrow \infty 

 - ∆J(dk, 0;xk, \eta k) = lim
k\rightarrow \infty 

 - ∆l(dk, 0;xk) + 1
2 \langle d

k, H(0;xk, \eta k)dk\rangle 

= lim
k\rightarrow \infty 

1
2 \langle d

k, H(0;xk, \eta k)dk\rangle \geq lim
k\rightarrow \infty 

1
2Λ\| d

k\| 22.

This implies that \{ dk\} \rightarrow 0, as desired. Next, from Lemma 12(iii) and continuity, it
follows that ∆J(d\ast (0;x\ast , \cdot ), 0;x\ast , \cdot ) = 0, from which it follows that

J(d\ast (0;x\ast , \cdot ), 0;x\ast , \cdot ) = J(0, 0;x\ast , \cdot ).

From the strong convexity of J(\cdot , 0;x\ast , \cdot ) and the fact that d\ast (0;x\ast , \cdot ) is its minimizer,
it follows that d\ast (0;x\ast , \cdot ) = 0. Using a similar argument and Lemma 12(iii) again, it
follows that d\ast (\rho \ast ;x

\ast , \cdot ) = 0, completing the proof.

Our first global convergence theorem follows.

Theorem 14. Under Assumption 7, the following statements hold.

(i) Any limit point of \{ xk\} is first-order stationary for v, i.e., it is feasible or an

infeasible stationary point for (NLP).
(ii) If \rho k \rightarrow \rho \ast for some \rho \ast > 0 and v(xk) \rightarrow 0, then any limit point x\ast of \{ xk\} 

with v(x\ast ) = 0 is a KKT point for (NLP).
(iii) If \rho k \rightarrow 0, then either all limit points of \{ xk\} are feasible for (NLP) or all

are infeasible.
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Proof. Part (i) follows by combining Lemma 13 with Lemma 8(iii). Similarly,
part (ii)follows by combining Lemma 13 with Lemma 8(iv).

We prove (iii) by contradiction. Suppose there exist infinite \scrK \ast \subseteq N and \scrK \times \subseteq N

such that \{ xk\} k\in \scrK ∗ \rightarrow x\ast with v(x\ast ) = 0 and \{ xk\} k\in \scrK × \rightarrow x\times with v(x\times ) = \epsilon > 0.
Since \rho k \rightarrow 0, there exists k\ast \geq 0 such that for all k \in \scrK \ast and k \geq k\ast one has that
\rho k+1(f(x

k) - f) < \epsilon /4 and v(xk) < \epsilon /4, meaning that \varphi (xk, \rho k+1) < \epsilon /2. On the other

hand, it follows that \rho k+1(f(x
k) - f) \geq 0 for all k \in N and there exists k\times \in N such

that v(xk) \geq \epsilon /2 for all k \geq k\times with k \in \scrK \times , meaning that \varphi (xk, \rho k+1) \geq \epsilon /2. This
contradicts Lemma 11, which shows that \varphi (xk, \rho k+1) is monotonically decreasing.
Thus, the set of limit points of \{ xk\} must be all feasible or all infeasible.

Theorem 14 is satisfactory in the case when \rho k \rightarrow \rho \ast > 0, since it shows that any
limit point of the primal sequence is a KKT point for (NLP). But more needs to be
said when \rho k \rightarrow 0. We now address this case, showing that it only occurs if a limit
point of the algorithm is either an infeasible stationary point or a feasible point at
which a constraint qualification fails to hold. We begin with the following lemma.

Lemma 15. Suppose Assumption 7 holds and \rho k \rightarrow 0. Let x\ast be a limit point of

\{ xk\} k\in \scrD \cup \scrT that is feasible for (NLP) with infinite \scrS \subseteq \scrD \cup \scrT such that \{ xk\} k\in \scrS \rightarrow x\ast .
Then, the following hold true:

(i) | \scrS \cap \scrD | is finite or \{ ∆J(d(jk), \rho (jk);x
k, \eta k)\} k\in \scrS \cap \scrD \rightarrow 0;

(ii) | \scrS \cap \scrD | is finite or \{ d(jk)\} k\in \scrS \cap \scrD \rightarrow 0;
(iii) any limit point of \{ u(jk)\} k\in \scrS \cap \scrD \cup \{ u

k\} k\in \scrS \cap \scrT is optimal for D(\cdot , 0;x\ast , \cdot );
(iv) \{ u(jk)\} k\in \scrS \cap \scrD \cup \{ u

k\} k\in \scrS \cap \scrT has a nonzero limit point.

Proof. For part (i), if | \scrS \cap \scrD | is finite, then there is nothing left to prove. Hence,
let us assume that | \scrS \cap \scrD | =\infty . Observe that, for all k \in N, it holds that

0 \leq ∆J(d(jk), \rho (jk);x
k, \eta k)

= v(xk) - \rho (jk)\langle \nabla f(x
k), d(jk)\rangle  - 

\rho (jk)

2 \langle d
(jk), Hf (x

k)d(jk)\rangle  - J(d(jk), 0;xk, \eta k)

\leq v(xk) - \rho (jk)\langle \nabla f(x
k), d(jk)\rangle  - 

\rho (jk)

2 \langle d
(jk), Hf (x

k)d(jk)\rangle ,

where the first inequality follows from (3.4) and the second inequality follows from
the definition of J , which ensures that J(d(jk), 0;xk, \eta k) \geq 0. In addition, \{ d(jk)\} is
bounded due to Lemma 4 and Assumption 7(ii)–(iii). Consequently, since | \scrS \cap \scrD | =\infty 
and \{ v(xk)\} k\in \scrS \cap \scrD \rightarrow 0 with \rho (jk) \rightarrow 0, the limit in part (i) holds.

For part (ii), again, if | \scrS \cap \scrD | is finite, then there is nothing left to prove. Oth-
erwise, since \{ J(0, 0;xk, \eta k)\} k\in \scrS \cap \scrD = \{ v(xk)\} k\in \scrS \cap \scrD \rightarrow 0 and \rho (jk) \rightarrow 0, the limit in
part (ii) holds due to Lemma 4 and Assumption 7(ii)–(iii).

Now consider part (iii). If | \scrS \cap \scrD | is infinite, then for a limit point u\ast there must
exist an infinite \scrS \scrD \subseteq \scrS \cap \scrD such that \{ u(jk)\} k\in \scrS D

\rightarrow u\ast . Then, it follows that

(4.5)

0 \leq J(0, 0;x\ast , \cdot ) - D(u\ast , 0;x\ast , \cdot )

= lim
k∈SD
k→∞

J(0, \rho (jk);x
k, \cdot ) - D(u(jk), \rho (jk);x

k, \cdot )

\leq lim
k∈SD
k→∞

\beta \phi [J(0, \rho (jk);x
k, \cdot ) - J(d(jk), \rho (jk);x

k, \cdot )]

= lim
k∈SD
k→∞

\beta \phi [J(0, 0;x
k, \cdot ) - J(d(jk), 0;xk, \cdot )] \leq lim

k∈SD
k→∞

\beta \phi J(0, 0;x
k, \cdot ) = 0,

where the second inequality is by (Rphi) and the third inequality is by the fact that
J(d(jk), 0;xk, \cdot ) \geq 0. This means that u\ast is optimal for D(\cdot , 0;x\ast , \cdot ). On the other
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hand, if | \scrS \cap \scrD | is finite, then | \scrS \cap \scrT | must be infinite, in which case for a limit point
u\ast there must exist an infinite \scrS \scrT \subseteq \scrS \cap \scrT such that \{ uk\} k\in \scrS T

\rightarrow u\ast . Then, again
from Lemma 12 and (4.5), it follows that u\ast is optimal for D(\cdot , 0;x\ast , \cdot ).

For part (iv), first observe that

l(d, 0;xk) =
\sum 

i\in \scrE +(d)\cup \scrE −(d)\cup \scrI +(d)

\| \nabla ci(x
k)\| 2dist

\bigl( 

d
\bigm| 

\bigm| Ck
i

\bigr) 

,

and that \chi (d,u;xk) can be viewed as a weighted variant of this sum with weights

1 - \zeta i(u) for all i \in \scrE +(d) \cup \scrI +(d) and 1 + \zeta i(u) for all i \in \scrE  - (d).

Also observe that (Rc) holds at any primal-dual point

(d,u) \in \{ (d(jk),u(jk))\} k\in \scrS \cap \scrD \cup \{ (d
k,uk)\} k\in \scrS \cap \scrT 

due to the facts that

\chi (d(jk),u(jk);xk) \leq (1 - \beta v)
2(v(xk) + \omega k) for all k \in \scrS \cap \scrD and(4.6)

\chi (dk,uk;xk) \leq (1 - \beta v)
2(v(xk) + \omega k) for all k \in \scrS \cap \scrT .(4.7)

We now consider three cases.
Case (a): Assume there exists an infinite \scrS \scrD \subseteq \scrS \cap \scrD such that

(4.8) l(d(jk), 0;xk) > (1 - \beta v)(v(x
k) + \omega k) for all k \in \scrS D.

Then, \| \zeta (u(jk))\| \infty \geq \beta v for all k \in \scrS \scrD ; indeed, if this were not the case, then
for some k \in \scrS \scrD one would find from the definition of \chi and (4.8) that

\chi (d(jk),u(jk);xk) \geq (1 - \beta v)l(d
(jk), 0;xk) > (1 - \beta v)

2(v(xk) + \omega k),

contradicting (4.6). In this case, combining Lemma 3, Assumption 7(iv), and
the fact that \| \zeta (u(jk))\| \infty \geq \beta v for all k \in \scrS \scrD shows that \{ u(jk)\} k\in \scrS \cap \scrD has a
nonzero limit point, proving part (iv), as desired.

Case (b): Assume there exists an infinite \scrS \scrT \subseteq \scrS \cap \scrT such that

(4.9) l(dk, 0;xk) > (1 - \beta v)(v(x
k) + \omega k) for all k \in \scrS \scrT .

Then, \| \zeta (uk)\| \infty \geq \beta v for all k \in \scrS \scrT ; indeed, if this were not the case, then
for some k \in \scrS \scrT one would find from the definition of \chi and (4.8) that

\chi (dk,uk;xk) \geq (1 - \beta v)l(d
k, 0;xk) > (1 - \beta v)

2(v(xk) + \omega k),

contradicting (4.7). In this case, combining Lemma 3, Assumption 7(iv), and
the fact that \| \zeta (uk)\| \infty \geq \beta v for all k \in \scrS \scrT shows that \{ uk\} k\in \scrS \cap \scrT has a
nonzero limit point, proving part (iv), as desired.

Case (c): Suppose that (4.8) and (4.9) only hold for finite subsets of \scrS \cap \scrD and \scrS \cap \scrT .
In this case, there exists a sufficiently large k̄ \in N such that

l(d(jk), 0;xk) \leq (1 - \beta v)(v(x
k) + \omega k) for all k \in \scrS \cap \scrD with k \geq k̄;(4.10)

l(dk, 0;xk) \leq (1 - \beta v)(v(x
k) + \omega k) for all k \in \scrS \cap \scrT with k \geq k̄.(4.11)
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We can further assume that

\| \zeta (u(jk))\| \infty < \beta v for all k \in \scrS \cap \scrD with k \geq k̄ and

\| \zeta (uk)\| \infty < \beta v for all k \in \scrS \cap \scrT with k \geq k̄;

since, otherwise, as in Cases (a) and (b), respectively, part (iv) would hold.
Now, for k \geq k̄ with k \in \scrS \cap \scrD , it follows from (4.10) that

J(0, 0;xk, \eta k) + \omega k  - l(d
(jk), 0;xk)

\geq v(xk) + \omega k  - (1 - \beta v)(v(x
k) + \omega k)

= \beta v(v(x
k) + \omega k)

\geq \beta v[v(x
k) + \omega k  - (D(w(jk), 0;xk, \eta k))+],

from which it follows that

r(jk)v =
J(0, 0;xk, \eta k) + \omega k  - l(d

(jk), 0;xk)

v(xk) + \omega k  - (D(w(jk), 0;xk, \eta k))+
\geq \beta v.

This indicates that (DUST) is not triggered at any iteration k \geq k̄ with
k \in \scrS \cap \scrD . By the definition of \scrD , this implies that \scrS \cap \scrD is finite. On the
other hand, for k \in \scrS \cap \scrT with k \geq k̄, it holds that

(4.12)

J(0, 0;xk, \eta k) - D(uk, \rho k;x
k, \eta k)

\geq v(xk) +

m
\sum 

i=1

\| \nabla ci(x
k)\| 2\delta 

\ast (uki | C
k
i )

=

m̄
\sum 

i=1

| ci(x
k)| +

m
\sum 

i=m̄+1

(ci(x
k))+  - 

m
\sum 

i=1

\| \nabla ci(x
k)\| 2\zeta 

i(uk)
ci(x

k)

\| \nabla ci(xk)\| 2

=

m̄
\sum 

i=1

| ci(x
k)| +

m
\sum 

i=m̄+1

(ci(x
k))+  - 

m
\sum 

i=1

\zeta i(uk)ci(x
k)

=

m̄
\sum 

i=1

[| ci(x
k)|  - \zeta i(uk)ci(x

k)] +

m
\sum 

i=m̄+1

[(ci(x
k))+  - \zeta 

i(uk)ci(x
k)]

\geq 
m̄
\sum 

i=1

(1 - | \zeta i(uk)| )| ci(x
k)| +

m
\sum 

i=m̄+1

(1 - | \zeta i(uk)| )(ci(x
k))+

\geq (1 - \beta v)
m̄
\sum 

i=1

| ci(x
k)| + (1 - \beta v)

m
\sum 

i=m̄+1

(ci(x
k))+ = (1 - \beta v)v(x

k),

where the first inequality is from the positive definiteness of H(0, xk, \eta k) and
\delta \ast (ukm+1| X) = supd\in X\langle u

k
m+1, d\rangle \geq 0, and the first equality is from (3.2).

Since (Rphi) is satisfied, the first inequality in (3.8) and (4.12) imply

∆J(dk, \rho k;x
k, \eta k) + \omega k = J(0, 0;xk, \eta k) - J(dk, \rho k;x

k, \eta k) + \omega k

\geq \beta \phi [J(0, 0;x
k, \eta k) - D(uk, \rho k;x

k, \eta k) + \omega k]

\geq \beta \phi [(1 - \beta v)v(x
k) + \omega k] \geq \beta \phi (1 - \beta v)(v(x

k) + \omega k)

\geq \beta l(v(x
k) + \omega k) \geq \beta l(∆l(d

k, 0;xk) + \omega k),
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which, together with (4.4), yields

∆l(dk, \rho k;x
k) + \omega k \geq ∆J(dk, \rho k;x

k, \eta k) + \omega k \geq \beta l(∆l(d
k, 0;xk) + \omega k).

Therefore, (PSST) is not triggered in any iteration k \in \scrS \cap \scrT with k \geq k̄. By
the definition of \scrT , this means that \scrS \cap \scrT is finite. Overall, we have shown
in this case that \scrS \cap \scrD and \scrS \cap \scrT are finite, meaning \scrS is finite. However,
this contradicts the statement of the lemma, which defines \scrS to be infinite.

Overall, since Case (c) leads to a contradiction, it follows that either Case (a) or (b)
must occur, which proves part (iv).

We are now prepared to prove a theorem about the behavior of the algorithm
when the penalty parameter is driven to zero. The theorem involves a statement
about points satisfying the well-known Mangasarian–Fromovitz constraint qualifica-
tioin (MFCQ). Defining \scrE = \{ 1, . . . , m̄\} , \scrI = \{ m+ 1, . . . ,m\} ,

\scrA (x) = \{ i \in \{ m̄+ 1, . . . ,m\} : ci(x) = 0\} ,

and \scrN (x) = \{ i \in \{ m̄+ 1, . . . ,m\} : ci(x) < 0\} ,

we now recall this qualification then state and prove our theorem.

Definition 16. A point x satisfies the MFCQ for problem (NLP) if v(x) = 0,
\{ \nabla ci(x) : i \in \scrE \} are linearly independent, and there exists d \in R

n such that

ci(x) + \langle \nabla ci(x), d\rangle = 0 for all i \in \scrE 

and ci(x) + \langle \nabla ci(x), d\rangle < 0 for all i \in \scrI ,

or, equivalently,

\langle \nabla ci(x), d\rangle = 0 for all i \in \scrE and \langle \nabla ci(x), d\rangle < 0 for all i \in \scrA (x).

The dual form [14] of MFCQ states that \zeta i = 0, i \in \scrE \cup \scrA (x) is the unique solution
of the linear system

\sum 

i\in \scrE \cup \scrA (x)

\zeta i\nabla ci(x) = 0, \zeta i \geq 0, i \in \scrA (x).

Theorem 17. Suppose Assumption 7 holds and \rho k \rightarrow 0. Then, every limit point

of \{ xk\} k\in \scrD \cup \scrT is either an infeasible stationary point or a feasible point where the

MFCQ does not hold.

Proof. By Theorem 14(i), any limit point of \{ xk\} k\in \scrD \cup \scrT is either feasible or an
infeasible stationary point. If any such point is infeasible, then there is nothing left
to prove. We may thus proceed by letting x\ast represent a feasible limit point of
\{ xk\} k\in \scrD \cup \scrT . Our goal is to show that the MFCQ fails to hold at x\ast .

Let \scrS \subseteq \scrD \cup \scrT be an infinite set such that \{ xk\} k\in \scrS \rightarrow x\ast . By Theorem 15(iv),
it follows that there exists a nonzero limit point u\ast of \{ u(jk)\} k\in \scrS \cap \scrD \cup \{ u

k\} k\in \scrS \cap \scrT .
In addition, from Lemma 13, it follows that (d,u) = (0,u\ast ) is stationary for the
feasibility subproblem at x\ast . Therefore, it follows from (3.2) and the fact under
Assumption 7 that d = 0 lies in the interior of X that u\ast m+1 = 0 and

u\ast i =

\Biggl\{ 

\zeta i\ast 
\nabla ci(x

∗)
\| \nabla ci(x∗)\| 2

with \zeta i\ast \in [ - 1, 1] for all i \in \scrE ,

\zeta i\ast 
\nabla ci(x

∗)
\| \nabla ci(x∗)\| 2

with \zeta i\ast \in [0, 1] for all i \in \scrI ,

meaning that \delta \ast (u\ast i | C
\ast 
i ) =  - \zeta 

i
\ast 

ci(x
∗)

\| \nabla ci(x∗)\| 2
for all i \in \scrE \cup \scrI .
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It follows that

0 = v(x\ast ) = J(0, 0;x\ast , \cdot ) = D(u\ast , 0;x\ast , \cdot )

=  - 1
2 \langle u

\ast 
0, H(0;x\ast , \cdot ) - 1u\ast 0\rangle  - 

\sum 

i\in \scrE \cup \scrI 

\| \nabla ci(x
\ast )\| 2\delta 

\ast (u\ast i | Ci) - \delta 
\ast (u\ast m+1| X)

=  - 1
2 \langle u

\ast 
0, H(0;x\ast , \cdot ) - 1u\ast 0\rangle +

\sum 

i\in \scrE \cup \scrI 

\zeta i\ast ci(x
\ast )

=  - 1
2 \langle u

\ast 
0, H(0;x\ast , \cdot ) - 1u\ast 0\rangle +

\sum 

i\in \scrN (x∗)

\zeta i\ast ci(x
\ast ).

.

Since H(0;x\ast , \cdot ) is positive definite and
\sum 

i\in \scrN (x∗) \zeta 
i
\ast ci(x

\ast ) \leq 0, it follows that

1
2 \langle u

\ast 
0, H(0;x\ast , \cdot ) - 1u\ast 0\rangle = 0 and

\sum 

i\in \scrN (x∗)

\zeta i\ast ci(x
\ast ) = 0,

yielding u\ast 0 = 0 and \zeta i\ast = 0 for all i \in \scrN (x\ast ). Overall, we have shown that the
constraints of (DQPrho) imply that

(4.13)
\sum 

i\in \scrE \cup \scrA (x∗)

\zeta i\ast \nabla ci(x
\ast ) = 0.

Therefore, x\ast violates the dual form of the MFCQ because \zeta i\ast , i \in \scrE \cup \scrA (x
\ast ) are not

all zero. Since we have reached a contradiction, it follows that the MFCQ cannot hold
at x\ast , as desired.

We summarize the results of all of our theorems in the following corollary.

Corollary 18. Suppose Assumption 7 holds. Then, one of the following occurs.

(i) \rho k \rightarrow \rho \ast for some constant \rho \ast > 0 and each limit point of \{ xk\} either corre-

sponds to a KKT point or an infeasible stationary point for problem (NLP).
(ii) \rho k \rightarrow 0 and all limit points of \{ xk\} are infeasible stationary points for (NLP).
(iii) \rho k \rightarrow 0, all limit points of \{ xk\} are feasible for (NLP), and the MFCQ fails

to hold at all limit points of \{ xk\} k\in \scrD \cup \scrT .

5. Numerical experiments. We present numerical experiments that illustrate
the impact of the central contribution of this paper, namely, our dynamic penalty
parameter updating strategy. With this in mind, the choice of the QP subproblem
solver only requires that it generate both primal and dual solution estimates. For
this purpose, a coordinate descent algorithm is used to generate the primal and dual
variables to solve the subproblem [4]. Experimental results are given for both feasible
and infeasible test sets. Our code is implemented using Python and tested on a 2014
MacBook Air with 4 GB memory and a 1.4 GHz Intel Core i5 processor.

5.1. Feasible test. First, we tested on 126 CUTEr Hock–Schittkowski (hs)
problems [11] which are all feasible. We set the parameters stated in Algorithm
2 as \gamma = 0.5, \rho ( - 1) = 1, \beta \phi = 0.7, \beta v = 0.1, \beta l = 0.6\beta \phi (1  - \beta v), \omega 0 = 10 - 2,
\theta \rho = 0.9, \theta \omega = 0.7, \theta \alpha = 10 - 4, and \eta 0 = 000m with x0 set as defined for each CUTEr
problem. The maximum iteration limit for the subproblem solver was set as 106,
while a maximum iteration limit for Algorithm 2 was set to be 200. We defined the
maximum constraint violation v\infty (x) and the optimality KKT error \epsilon opt(x) as

v\infty (x) := max\{ | ci(x)| i = 1, . . . , m̄, (ci(x))+ i = m̄+ 1, . . . ,m\} ,

D
o

w
n
lo

ad
ed

 0
8
/2

8
/2

0
 t

o
 1

2
8
.9

5
.1

0
4
.1

0
9
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

INEXACT SQP WITH DYNAMIC PENALTY PARAMETER UPDATES 1845

\epsilon opt(x) := max

\Biggl\{ 
\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\nabla f(x) +
m
\sum 

i=1

\eta i\nabla ci(x)

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\infty 

, \| \eta \circ c(x)\| \infty 

\Biggr\} 

,

where \circ denotes elementwise product. We terminate the algorithm if v\infty (x) \leq 10 - 5

and \epsilon opt(x) \leq 10 - 4, or the maximum iteration number 200 is reached. These 126
problems are of small size; hence we use the exact Hessian in our implementation. If
the Hessian, call itH, is not positive definite, then we apply the following modification
to adjust its negative eigenvalues. Let H = UΛUT be the eigendecomposition of H,
where Λ = diag\{ \lambda 1, . . . , \lambda n\} . For a prescribed constant \tau > 0 (e.g., we use \tau = 10 - 4

in these experiments), we reset \lambda i \leftarrow max\{ \lambda i, \tau \} and replace H with U Λ̃UT where Λ̃
is the corresponding modification of Λ. We also perform the following modification
to control the condition number of the Hessian (approximation) employed in the
algorithm: If cond(H) > tc > 0 (e.g., we use tc = 106 in these experiments), then
we replace H by \alpha H + (1  - \alpha )I where \alpha is the largest value in [0, 1] such that the
resulting matrix has a condition number less than or equal to tc.

Table 1

Performance comparison of SQuID and the proposed algorithm on feasible problems.

Problem type Algorithm Succeed Fail Infeasible Total
Feasible hs

problems
SQuID 110 (90.16%) 11 (9.02%) 1 (0.82%) 122

Proposed 115 (91.20%) 11 (8.80%) 0 126

For these experiments, we have the following observations.
\bullet Out of 126 CUTEr hs problems, our algorithm successfully solved 115, which
is a success rate of about 91% \approx 115/126.1 Our proposed method outperforms
the SQuID algorithm proposed in [3], which is also a penalty-SQP method
with automatic infeasibility detection, although it requires two exact QP
solves per iteration. The comparison statistics2 are shown in Table 1. For
the complete set of numerical test results, see [4].

\bullet Our (DUST) updating strategy works very well in these experiments, and
does not cause \rho to become excessively small for most cases. To illustrate the
behavior of the penalty parameter updates, we plot \rho values for three sample
problems—hs11, hs43, and hs61—in Figure 1.

\bullet The parameter \omega did not require much tuning. We used \omega 0 = 10 - 2 across
all problems and achieved our 91% success rate. We also ran the experiment
with \omega 0 = 10 - 1 and saw the same set of 115 problems solved successfully.

\bullet We test the sensitivity of our algorithm with respect to the parameter \beta \phi .
We ran the same experiments with \beta \phi = 0.5 and \beta \phi = 0.99. We have 113
successful cases for \beta \phi = 0.5, and 111 successful cases for \beta \phi = 0.99 . The
additional failure cases in \beta \phi = 0.5 and \beta \phi = 0.99 compared to \beta \phi = 0.7 are
all due to the subproblem exceeding the maximum iteration number.

\bullet Coordinate descent performs poorly on ill-conditioned subproblems. We ob-
served that some subproblems require more than 5 \times 105 steps to reach the
specified accuracy. Since the focus of this paper is on the \rho update strat-
egy, we did not explore other subproblem solvers that might have performed
better. Instead, we used a large iteration limit for the subproblem solver.

1The termination criterion of SQuID in [3] is based on the relative KKT residual scaled by ρ.
2The performance statistics for SQuID is obtained from [3], where the overall number of hs

problems is 122 due to compiling errors.
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\bullet In a few cases, the Hessian modification strategy described above did not
work well. For example, for problems hs72 and hs75, we had to reduce the
modification constant to 10 - 8 to achieve convergence, since the scale of the
Hessian for both problems is around 10 - 4. For problem hs93, convergence is
observed with modification constant 10 - 2.

HS11 HS43 HS61

l l

l

l

l

l

l l l

l l l l l

l

l

l

l l l l l l l

l l l l

l

l

l

l l l l l l l

0.2

0.4

0.6

0.8

1.0

4 8 12 4 8 12 4 8 12

Iteration number

R
h
o

Fig. 1. ρ values for problems hs11, hs43, and hs61.

5.2. Infeasible test. As in [3], we modified the 126 CUTEr hs problems by
adding bound constraints x1 \leq 0 and x1 \geq 1 to make all hs problems infeasible;
we refer to these problems as hs inf. All of the parameters used for this infeasible
test set are the same as mentioned for the feasible test set, except we increase the
maximum iteration limit for the subproblem solver to 20000. Defining the feasibility
KKT error \epsilon fea(x) as

\epsilon fea(x) := max

\Biggl\{ 
\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

m
\sum 

i=1

\eta i\nabla ci(x)

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\infty 

,
\bigm\| 

\bigm\| (e - \eta \scrE ) \circ (c\scrE (x))+
\bigm\| 

\bigm\| 

\infty 
,
\bigm\| 

\bigm\| (e+ \eta \scrE ) \circ (c\scrE (x)) - 
\bigm\| 

\bigm\| 

\infty 
,

\bigm\| 

\bigm\| (e - \eta \scrI ) \circ (c\scrI (x))+
\bigm\| 

\bigm\| 

\infty 
,
\bigm\| 

\bigm\| \eta \scrI \circ (c\scrI (x)) - 
\bigm\| 

\bigm\| 

\infty 

\bigr\} 

,

we use the same stopping criteria as in [3], except that we do not necessarily need to
drive \rho to 0; hence we drop “\rho \leq 10 - 8” from the stopping criteria used in [3].

Table 2

Performance comparison of SQuID and the proposed algorithm on infeasible problems.

Problem type Algorithm Succeed Fail Total
Infeasible hs

problems (hs inf)
SQuID 111 (90.24%) 12 (9.76%) 123

Proposed 116 (92.10%) 10 (7.90%) 126

For these experiments, we have the following observations.
\bullet Out of 126 hs inf problems, our algorithm successfully solved 116, which is
a success rate of about 92% \approx 116/126. Our proposed method also outper-
forms SQuID on infeasible problems. The comparison statistics3 are shown
in Table 2.

3The performance statistics for SQuID is obtained from [3], where the overall number of hs

problems is 123 due to compiling errors.
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\bullet In a few cases, the Hessian modification strategy described above did not work
well. For example, for problems hs104 inf, hs114 inf, hs8 inf, hs23 inf,
and hs93 inf, convergence is observed when we increase the modification
constant from 10 - 4 to 10 - 2.

Table 3

CUTEr 13 large scale problems.

Problem # constraints # variables # equalities

DTOC1NA 3996 5998 3996
DTOC1NB 3996 5998 3996
DTOC1ND 3996 5998 3996
EG3 20000 10001 1
GILBERT 1 5000 1
JANNSON4 2 10000 0
LUKVLE1 9998 10000 9998
LUKVLE10 9998 10000 9998
LUKVLE3 2 10000 2
LUKVLE6 4999 9999 4999
LUKVLI13 6664 9998 0
LUKVLI3 2 10000 0
LUKVLI6 4999 9999 0

5.3. Large scale test. We also applied our implementation to solve some large
scale problems from the CUTEr test set; see Table 3. The parameter settings used
were the same as those in section 5.1, except that we set the iteration limit for the
subproblem solver to be 2000. We used L-BFGS for the Hessian approximations which
pairs well with the coordinate descent algorithm giving a O(n + \ell ) total complexity
for each coordinate update. Table 4 presents the results for successful runs. For the
remaining problems not shown, the coordinate descent QP algorithm could not reach
the desired accuracy within the maximum number of subproblem iterations. We leave
further investigation into the most effective iterative QP solver for these problems to
future work since this is beyond the scope of this paper.

Table 4

Test results on CUTEr 13 large scale problems.

Problem # iter # f f(x∗) v(x∗) KKT Final ρ CPU (s)

DTOC1NA 13 13 4.138866e+00 2.2154e−06 1.8787e−05 0.751447 1.7
DTOC1NB 13 13 7.138849e+00 4.8350e−07 3.5507e−05 0.849347 1.3
DTOC1ND 14 19 4.760303e+01 1.7999e−07 4.8070e−05 0.815373 1.5
EG3 10 10 8.048306e−06 0.0000e+00 7.3171e−05 0.479603 49.9
GILBERT 74 74 2.459468e+03 2.1702e−08 4.0472e−06 0.024360 2.6
JANNSON4 79 80 9.801970e+03 6.9569e−08 1.8301e−05 0.009923 24.7
LUKVLE1 13 25 4.821043e−14 3.0876e−08 5.3643e−05 0.960000 1.9
LUKVLE10 191 191 3.534934e+03 2.2246e−09 9.7836e−05 0.282103 64.2
LUKVLE3 41 49 2.758658e+01 9.7477e−14 4.9497e−05 0.318856 1.7
LUKVLE6 39 68 6.286441e+05 1.4360e−12 6.9166e−05 0.360397 3.6
LUKVLI13 65 76 1.321855e+02 3.2121e−09 7.0523e−05 0.293858 9.0
LUKVLI3 70 78 1.157754e+01 9.0105e−13 6.6447e−05 0.442002 3.1
LUKVLI6 43 63 6.286441e+05 1.3907e−11 6.7668e−05 0.195366 28.6

To recognize the benefits of our proposed algorithm compared to an alternative
approach, let us consider the CPU times required to run the experiments whose
results are shown in Table 4 compared to the CPU times that would be required
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by SQuID from [3]. The aforementioned implementation of SQuID was not able to
terminate successfully on any of the problems in Table 3 within ten minutes. The
primary expense is solving the QP subproblems to high accuracy in each iteration.
By contrast, the result shown in Table 4 that required the most CPU time was the
run for problem LUKVLE10, where the entire run terminated in 64 seconds. The
benefits of our proposed algorithm are clear when solving large scale problems. (On
a contemporary laptop computer, the state-of-the-art code Ipopt [15] solves problem
LUKVLE10 in only a couple of seconds, but that code benefits from two decades of
software development.)

6. Conclusion. In this paper, we have proposed a penalty-SQP framework for
solving nonlinear optimization problems. The novelty of this work is a dynamic pen-
alty parameter updating strategy that is carried out within the QP subproblem solver,
so that at the end of the QP solve, a search direction and a new penalty parameter
are both obtained. The key idea is to force improvement toward feasibility whenever
optimality and complementarity are sufficiently improved. This enables the SQP al-
gorithm to finish penalty parameter updating and infeasibility detection via inexact

solves for only one subproblem in each iteration, a feature which is not shared with
most contemporary solvers which require two subproblem solves per iteration.

The convergence properties that we have proved for our algorithm guarantee the
effectiveness of our updating strategy under reasonable assumptions. The empirical
effects of our strategy are demonstrated in numerical results on small CUTEr exam-
ples. We remark, however, that the performance could be further enhanced with the
development of a more efficient QP subproblem solver and a more robust approach
to addressing ill-conditioning of the Hessian approximation.
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