Demo: SLEMI: Finding Simulink Compiler Bugs through
Equivalence Modulo Input (EMI)

Shafiul Azam Chowdhury
Computer Science and Engineering Department
University of Texas at Arlington
Arlington, Texas, USA

Taylor T. Johnson
EECS Department
Vanderbilt University
Nashville, Tennessee, USA

ABSTRACT

This demo presents usage and implementation details of SLEMI.
SLEMI is the first tool to automatically find compiler bugs in the
widely used cyber-physical system development tool Simulink via
Equivalence Modulo Input (EMI). EMI is a recent twist on differ-
ential testing that promises more efficiency. SLEMI implements
several novel mutation techniques that deal with CPS language
features that are not found in procedural languages. This demo also
introduces a new EMI-based mutation strategy that has already
found a new confirmed bug in Simulink version R2018a. To increase
SLEMTI's efficiency further, this paper presents parallel generation of
random, valid Simulink models. A video demo of SLEMI is available
at https://www.youtube.com/watch?v=0liPgOLT6eY.

CCS CONCEPTS

« Software and its engineering — Software testing and de-
bugging; Compilers; Model-driven software engineering; « General
and reference — Reliability; Verification; Performance.

KEYWORDS

Cyber-physical systems, differential testing, equivalence modulo
input, model mutation, Simulink

ACM Reference Format:

Shafiul Azam Chowdhury, Sohil Lal Shrestha, Taylor T. Johnson, and Christoph
Csallner. 2020. Demo: SLEMI: Finding Simulink Compiler Bugs through
Equivalence Modulo Input (EMI). In 42nd International Conference on Soft-
ware Engineering Companion (ICSE °20 Companion), May 23-29, 2020, Seoul,
Republic of Korea. ACM, New York, NY, USA, 4 pages. https://doi.org/10.
1145/3377812.3382147

1 INTRODUCTION

Designing complex cyber-physical systems (CPS) using graphical
block diagrams (e.g., Simulink models [5]) is a standard engineer-
ing practice, which enables simulation and automated code gen-
eration of CPS. Since these automatically generated artifacts are

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE °20 Companion, May 23-29, 2020, Seoul, Republic of Korea

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7122-3/20/05.

https://doi.org/10.1145/3377812.3382147

Sohil Lal Shrestha
Computer Science and Engineering Department
University of Texas at Arlington
Arlington, Texas, USA

Christoph Csallner
Computer Science and Engineering Department
University of Texas at Arlington
Arlington, Texas, USA

commonly deployed in safety-critical embedded hardware (e.g., cars
and planes), it is crucial to eliminate compiler bugs from commercial
CPS development tools (e.g., Simulink).

Ideally, one should formally verify the absence of bugs in an
entire CPS development tool chain, which typically includes com-
pilers, simulators, and code generators. This unfortunately is still
not feasible due to the sheer code-base size of a commercial CPS
development tool. Moreover, complete, updated, and official formal
specifications of commercial CPS tools are not available, which
inhibits their formal verification [2].

Automated differential testing, on the other hand, has been ef-
fective in finding compiler bugs in Simulink and in other textual
programming languages (e.g., C and Java). SLforge, the state-of-the
art Simulink differential testing tool uses an automated Simulink
model generator to continuously produce valid Simulink models [2].
For any such generated model if we observe output divergence
when simulating in varying compiler configurations (e.g., enabling
and disabling optimization), we have likely found a compiler bug.

Although SLforge has discovered several new compiler bugs in
various Simulink releases, the approach is slow, since generating
large Simulink models from scratch is computationally expensive. A
recent variation of differential testing, namely Equivalence Modulo
Input (EMI), instead introduces small changes to an existing valid
Simulink model (i.e., seed) and produces a mutant such that it is
valid and functionally equivalent to the seed w.r.t. some input I
common to both [7].

EMI-based automated testing of compiler tool chains is faster
than differential testing via random generation alone and hence
increases the likelihood of finding bugs within some compute
budget. For example, our open-source and only known tool for
EMI-based automated testing of the Simulink tool chain, SLEMI,
has found 10 bugs confirmed by MathWorks Support in various
Simulink versions, whereas in the same experiment the closely
related tool SLforge found only 2 bugs using similar computational
resources [3].

This demo presents SLEMI, which implements novel EMI-based
mutation techniques for the commercial CPS modeling language
Simulink. SLEMI addresses key differences between procedural
code and CPS modeling, which includes an explicit notion of simu-
lation time and zombie code [3]. This demo also presents a new live
mutation strategy in SLEMI, which has already found a new, con-
firmed bug in Simulink R2018a. We highlight SLEMI components

ICSE ’20 Companion, May 23-29, 2020, Seoul, Republic of Korea

and implementation details that led to increased throughput by par-
allel processing of Simulink models. Lastly, to match SLEMI’s seed
model consumption, we also present our improvement over the
SLforge tool, namely SLFORGE++, which generates random, valid
Simulink models in parallel.

2 BACKGROUND

This section contains necessary background information on key
CPS modeling features, zombie code, and recent approaches for
finding bugs in the Simulink tool via differential testing and EMI-
based model mutation.

2.1 CPS Models & Development Tool Chains

While in-depth descriptions of CPS languages are available else-
where [2, 3, 5, 6], following are the key concepts. In a CPS devel-
opment tool (e.g., Simulink), a user designs a CPS as a model m
that consists of blocks and their connections. A block accepts data
through its input ports, typically performs on the data some opera-
tion, and may pass output through its output ports to other blocks,
along (directed) connection edges.

A model m typically acquires its inputs from sensors, whose
values it samples at a user-defined frequency. To affect its environ-
ment, a model typically has a set of output blocks (aka sinks) such
as Figure 1’s Out1 and Out2 blocks, which can emit model output
values to a display, another model, or a hardware actuator.

liﬁm >0) o
<) else
b1 If Out1

w0 | [P o
) Action 3 Add1] Action 3
Yo > Yo >

ul Gain1 ¥3 [ul Gain2 ¥3
b2 b3

Action2 b4

Out2

Action1

Figure 1: Example valid Simulink model: While Action1 is on
a false-branch when b1 receives non-zero positive input, its
values can still affect the outside world, making it a zombie.

Commercial CPS tools specify the datatypes each port of each
block supports. If the user does not explicitly configure a port’s
datatype, then the CPS tool infers a concrete type (e.g., “double”).
Besides flat models, CPS development tools offer hierarchical mod-
els, where the parent (e.g., ActionI in Figure 1) to child model (e.g.,
Gainl) relation is acyclic.

Commercial CPS tool chain semantics are only defined via their
code base [2]. We call a model valid if it can be compiled by a CPS
tool chain without errors. Tools typically offer different simulation
modes. For example, Simulink Normal mode “only” simulates blocks
and Accelerator mode speeds up simulation by emitting code.

2.2 Zombies: Dead Code in Procedural vs. CPS

In block diagrams such as Simulink models, conditional execution
differs significantly from procedural programming, which compli-
cates the dead vs. live code distinction. For example, the (valid)

Shafiul Azam Chowdhury, Sohil Lal Shrestha, Taylor T. Johnson, and Christoph Csallner

Simulink model of Figure 1 simultaneously returns values from
both its true and false if-then-else branches. In a procedural setting
Actionl would be dynamically dead code and we could delete it for
this execution trace. But in our block diagram setting Action1 is not
dead. We call such a block a zombie (as in live-dead hybrid), as it
has properties of both procedural live code (it has program values)
and procedural dead code (no computations take place). Finally, a
block is live if it has both a path to an output block (or another
side-effect) and gets activated [3].

2.3 Testing Simulink with SLforge and SLEMI

Differential compiler (or CPS tool chain) testing compares two exe-
cution traces that compile and execute a program (or model). By
design these two traces are supposed to be equivalent, i.e., pro-
duce the same result values. If the results differ we have likely
found a compiler bug. In the CPS world, existing approaches for
testing Simulink such as CyFuzz and SLforge have varied compiler
optimization levels, simulation modes, and code generators [1, 2].

Equivalence modulo input (EMI)-based differential testing such as
in SLEMI [3], on the other hand, uses a program m (aka seed) and
one of its mutants n that is expected to be functionally equivalent to
m on the given input I. Again, different results suggest a compiler
bug.

3 SLEMI: TESTING SIMULINK VIA EMI

We consider two CPS models m and n (n obtained by mutating
m) equivalent modulo a common sequence I of input vectors, if
both models are valid, have the same output blocks, and the CPS
tool chain semantics at all time steps prescribe equivalent values
for all blocks b that are common to both models. Since Simulink
supports floating-point datatypes, we compare block outputs via a
configurable tolerance (1076 by default) [3].

Figure 2 outlines our approach. SLEMI takes as input CPS models
and their input values, which can come from a corpus of real-world
models [4] or from a model generator such as SLforge. In a prepro-
cessing phase, we first filter out invalid models and then execute
each seed on its inputs to collect block-level coverage informa-
tion, via Simulink Coverage to find zombie blocks. To achieve better
runtime efficiency, SLEMI then performs several one-time base mu-
tations and stores data in a persistent cache. We then mutate a
model by removing and adding blocks.

3.1 Tools Overview: SLforge++ and SLEMI

Random program generators have significantly improved the bug-
finding capability of differential testing [7]. SLEMI uses SLforge
both to generate random Simulink models and to compare Simulink
model execution traces. For this paper we have adapted SLforge to
the Stampede2 high-performance computing cluster of the Texas
Advanced Computing Centre (TACC)!. The resulting SLFORGE++
tool can leverage TACC’s many-core nodes to generate Simulink
models in parallel and then add them to SLEMI’s seed model corpus.
Our tools run on Stampede2’s SKX node (48 Intel Xeon Platinum
8160 cores; 192 GB RAM). Both SLEMI (6 kLOC) and SLforge++

Ihttps://portal.tacc.utexas.edu/user-guides/stampede2

Demo: SLEMI

ICSE ’20 Companion, May 23-29, 2020, Seoul, Republic of Korea

Base Mutations &
Collect Coverage

)

Store
seed model

, ‘eedback
| I Z KA
m, I\ EMIMutation | ™ | Differential Testing Tool Chain
» Dead, live, If not (m =, m’): » Vendor » bug
¢ | zombie regions m, || Bug candidate

Figure 2: Overview: SLEMI first obtains seed model s with input vector I from a real-world corpus or a random generator (e.g.,
SLforge), performs one-time base mutations to yield model m, and collects m’s coverage ¢ (on I). An EMI-based mutation then
yields a valid equivalent (on I) model m’ (i.e., m =; m’) for finding tool chain bugs via differential testing. [3]

(9 kLOC) are implemented in MATLAB on top of the Parallel Com-
puting Toolbox, and are freely available at GitHub?.

SLEMI has three independent components: (1) First, an Experi-
mentation Framework (3 kLOC) to support general-purpose experi-
ments on Simulink models leveraging parallel computing. We utilize
the framework for both analyzing Simulink models (e.g., to explore
the distribution of zombie blocks in a corpus of Simulink mod-
els) and preprocessing seeds to speed-up overall runtime through
several one-time base mutations.

(2) Second, our EMI component (2 kLOC) consumes the prepro-
cessed seeds and outputs multiple mutants per seed by implement-
ing various novel model mutation strategies. Again, we leverage
parallel computing to both mutate multiple seeds and produce mul-
tiple mutants per seed. Each mutation strategy is implemented as
an individual module such that users can configure which EMI
strategies to perform during an experiment.

(3) Lastly, our differential testing component (1 kKLOC) compares
each of the generated mutants with its (preprocessed) seeds by
simulating them in Simulink with an option to vary user-provided
simulation modes and optimization settings. This is independent
from the rest of the SLEMI components, i.e., it can also be triggered
on an existing corpus of Simulink models, without generating mu-
tants from them beforehand. SLEMI’s differential testing improves
upon SLforge’s differential testing mechanism by (1) being modular
and (2) supporting parallel processing of models, hence increasing
throughput.

3.2 SLEMI’s Experimentation Framework

During our implementation of SLEMI, we observed the absence of
modular experimentation tools to facilitate analysis of Simulink
models at scale. To address this issue, we have released a general-
purpose experimentation framework as part of SLEMI, which ana-
lyzes and edits Simulink models in parallel.

3.2.1 Preprocessing Seed Models. Here, we further highlight our
experimentation framework functionalities using preprocessing of
seed models as example. SLEMI exposes most of the functionalities
through a command line interface and configuration files. For exam-
ple, users can configure a file system location, which SLEMI scans
for Simulink models to use as seeds. Currently SLEMI supports
local and the Lustre? distributed filesystem TACC uses. Users can
filter out seed models by putting constraints on model modification
date or its location in the filesystem.

Zhttps://github.com/shafiul/slemi
3http://lustre.org/

Furthermore, using the framework users are able to design their
own modules to analyze or mutate Simulink models and set de-
pendencies between the modules. For example, we have devel-
oped the following modules and configured their dependencies:
AnalyzeSeeds — CollectCoverage — BaseMutation. Meaning,
for each of the seed models SLEMI first filters out invalid mod-
els through AnalyzeSeeds. CollectCoverage then profiles the valid
seed models using Simulink Coverage and also collects datatype
and sample-time information for each block in the model. Since
AnalyzSeeds is a pre-requisite for CollectCoverage, the later mod-
ule is only invoked when the first module terminates and can pass
analysis results to the next module in its dependency configuration.

3.2.2 Efficiency through Caching. SLEMI's modular implementa-
tion of the experimentation framework and intermediate caching
reduces development waste. For example, after introducing some
changes (e.g., bug fixes) in the BaseMutation module, we only need
to run this module since SLEMI caches output of the other mod-
ules it depends on (i.e., CollectCoverage and AnalyzeSeeds). This
significantly reduces both development time (since running these
dependencies would increase average runtime by about 150% [3])
and wasted computation by skipping resource-heavy modules.

SLEMI also deals efficiently with worker-node crashes, e.g., due
to machine crashes and SLEMI development bugs. Specifically, in
its parallel mode SLEMI processes each seed on its own “MATLAB
worker”, which may crash when running some experimentation
framework module. When we invoke SLEMI next time, it automati-
cally identifies those incomplete experiments and only re-runs the
modules that had failed before completion.

3.3 Debugging and Analyzing Reports

While in production mode SLEMI processes seeds in parallel, in
debug mode it processes models sequentially and can pause after
every mutation operation, highlighting the affected blocks and
then wait for user input to continue. For this visualization SLEMI
uses Simulink’s graphical user interface (GUI). Figure 3 shows an
example.

After analyzing a seed model, SLEMI’s experimentation frame-
work summarizes the results (e.g., the zombie blocks available for
mutation) using MATLAB’s GUI. SLEMI also facilitates analyzing
differential testing results interactively, which upon completion
summarizes all of the likely bugs (i.e., whenever it has logged a
mismatch between the block output of two models that should
be EMI). Users then can choose a likely bug to inspect further by
asking SLEMI to load the preprocessed seed and its mutants in a

ICSE ’20 Companion, May 23-29, 2020, Seoul, Republic of Korea

-2 n1 = Ax, + B
z —» double —»

m = Cx, + Duy,
—»
: cfblk3 cyemi_407 cfblk5 cfblk2
i o e ————— — oo
ro% T

|17 cove]

- Delete block sampleModel7144_pp_1_1/cfblk134/cfblk15/cfblk5
. fx [[A*A]] Pausing due‘to interactive mode...

Figure 3: In interactive mode SLEMI pauses before each mu-
tation operation and highlights the changes in a GUI: Here
block cfblk5 will be deleted upon user input.

GUI, along with all of the block outputs that diverge. SLEMI also in-
tegrates with Simulink’s Simulation Data Inspector tool to visualize
the block output discrepancies.

3.4 Finding Simulink Component Conflicts

Simulink compiles models for various reasons, e.g., to check model
validity, collect inferred block attributes such as datatypes, simulate
a model, and to collect coverage. We observed that these different
compilations sometimes non-intuitively manifest deterministic am-
biguous outcomes for the same seed model. For example, a model
that fails to compile when collecting block attributes may execute
successfully due to Simulink implementation differences in the
compilation and execution phases. To better analyze these Simulink
compile modes and find bugs in these tool chain components, for a
seed model we individually invoke each of these phases (i.e., compil-
ing, executing, and collecting coverage), which helped us discover
a confirmed bug where compilation and execution outcomes were
ambiguous.

3.5 Complex Live Mutations

In addition to SLEMI’s existing mutation techniques [3], SLEMI
now implements novel EMI-based mutation techniques that have
already found a new confirmed bug. This mutation moves a block
from some live model region into a subsystem that should always
get activated, using Simulink If and Action constructs.

To synthesize a conditional expression for the If block that
should always be evaluated to true, SLEMI dynamically collects
some blocks’ signal ranges, using Simulink’s signal-range analysis.
For example, by,in <= b evaluates to true during an entire simula-
tion for some block’s output b where b5, is its minimum output
during that simulation. This novel mutation strategy of moving a
live model region into a new subsystem has already found one new
bug confirmed by MathWorks Support, within Simulink’s signal
range analysis component.

Similarly, SLEMI synthesizes new zombie regions, places abort
constructs within them, and finally places the newly constructed
zombie region within existing live and zombie regions in the seed.

Shafiul Azam Chowdhury, Sohil Lal Shrestha, Taylor T. Johnson, and Christoph Csallner

This mutation is EMI since these new abort constructs should never
get activated (unless due to a Simulink bug).

4 CONCLUSIONS

This demo presented usage and implementation details of SLEML
SLEMI is the first tool to automatically find compiler bugs in the
widely used cyber-physical system development tool Simulink via
Equivalence Modulo Input (EMI). SLEMI implements several novel
mutation techniques that deal with CPS language features that are
not found in procedural languages. This demo also introduced a
new EMI-based mutation strategy that has already found a new
confirmed bug in Simulink version R2018a. To increase SLEMI’s
efficiency further, this paper presented parallel generation of ran-
dom, valid Simulink models. All of our tools are open-source and
freely available.

ACKNOWLEDGMENTS

The authors acknowledge the Texas Advanced Computing Center
(TACC) at The University of Texas at Austin for providing HPC
resources that have contributed to the research results reported
within this paper.

Christoph Csallner has a potential research conflict of interest
due to a financial interest with Microsoft and The Trade Desk.
A management plan has been created to preserve objectivity in
research in accordance with University of Texas at Arlington policy.

The material presented in this paper is based on work supported
by the National Science Foundation (NSF) under grant numbers
1527398, 1736323, 1910017, 1911017, and 1918450, the Air Force Of-
fice of Scientific Research (AFOSR) under contract number FA9550-
18-1-0122, and a gift from MathWorks. The U.S. government is
authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon. Any
opinions, findings, and conclusions or recommendations expressed
in this publication are those of the authors and do not necessarily
reflect the views of AFOSR, NSF, or MathWorks.

REFERENCES

[1] Shafiul Azam Chowdhury, Taylor T. Johnson, and Christoph Csallner. 2016. CyFuzz:
A differential testing framework for cyber-physical systems development environ-
ments. In Proc. 6th Workshop on Design, Modeling and Evaluation of Cyber Physical
Systems (CyPhy). Springer, 46-60. https://doi.org/10.1007/978-3-319-51738-4_4

[2] Shafiul Azam Chowdhury, Soumik Mohian, Sidharth Mehra, Siddhant Gawsane,
Taylor T. Johnson, and Christoph Csallner. 2018. Automatically finding bugs in a
commercial cyber-physical system development tool chain with SLforge. In Proc.
40th ACM/IEEE International Conference on Software Engineering (ICSE). ACM,
981-992.

[3] Shafiul Azam Chowdhury, Sohil Lal Shrestha, Taylor T. Johnson, and Christoph
Csallner. 2020. SLEMI: Equivalence modulo input (EMI) based mutation of CPS
models for finding compiler bugs in Simulink. In Proc. 42nd ACM/IEEE International
Conference on Software Engineering (ICSE). ACM. To appear.

[4] Shafiul Azam Chowdhury, Lina Sera Varghese, Soumik Mohian, Taylor T. Johnson,
and Christoph Csallner. 2018. A curated corpus of Simulink models for model-
based empirical studies. In Proc. 4th International Workshop on Software Engineering
for Smart Cyber-Physical Systems (SEsCPS). ACM, 45-48.

[5] MathWorks Inc. 2020. Simulink Documentation — MATLAB & Simulink. http:
//www.mathworks.com/help/simulink/. Accessed Feb 2020.

[6] Akshay Rajhans, Srinath Avadhanula, Alongkrit Chutinan, Pieter J. Mosterman,
and Fu Zhang. 2018. Graphical modeling of hybrid dynamics with Simulink and
Stateflow. In Proc. 21st International Conference on Hybrid Systems: Computation
and Control (HSCC). ACM, 247-252.

[7] Chengnian Sun, Vu Le, and Zhendong Su. 2016. Finding compiler bugs via live
code mutation. In Proc. ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA). ACM, 849-863.

