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ABSTRACT: Virtual screenings can accelerate and reduce the

cost of discovering metal—organic frameworks (MOFs) for their P P 'y 4 e e G
applications in gas storage, separation, and sensing. In molecular )'%\f =) O m e® m) Oy %[(
simulations of gas adsorption/diffusion in MOFs, the adsorbate— b d q S ¢ % q
MOF electrostatic interaction is typically modeled by placing

partial point charges on the atoms of the MOF. For the virtual

screening of large libraries of MOFs, it is critical to develop computationally inexpensive methods to assign atomic partial charges to
MOFs that accurately reproduce the electrostatic potential in their pores. Herein, we design and train a message passing neural
network (MPNN) to predict the atomic partial charges on MOFs under a charge neutral constraint. A set of ca. 2250 MOFs labeled
with high-fidelity partial charges, derived from periodic electronic structure calculations, serves as training examples. In an end-to-
end manner, from charge-labeled crystal graphs representing MOFs, our MPNN machine-learns features of the local bonding
environments of the atoms and, from these features, learns to predict partial atomic charges. Our trained MPNN assigns high-fidelity
partial point charges to MOFs with orders of magnitude lower computational cost (runtime: ~3 s) than electronic structure
calculations. To enhance the accuracy of virtual screenings of large libraries of MOFs for their adsorption-based applications, we
make our trained MPNN model and MPNN-charge-assigned computation-ready, experimental MOF structures publicly available.

8,19
" and uncover struc-

Bl INTRODUCTION

. 1
anomalous adsorption phenomena,

. . 2021
ture—property relationships.

Metal—organic frameworks (MOFs) are nanolporous materials
that often exhibit large internal surface areas.” Because MOFs
selectively adsorb gas into their pores/on their internal surface,
MOFs can be used to store, separate/purify,3 and sense”
gases. Moreover, MOF structures are highly adjustable and
therefore can be tuned to optimize a target adsorption property
for a given adsorption-based engineering application.” The
adjustability of MOFs stems from their modular synthesis:
metals/metal clusters and organic linker molecules self-
assemble into a crystalline structure." By changing the
molecular building blocks, many MOFs with diverse pore
shapes and internal surface chemistries can be synthesized; on
the order of 10000 porous MOFs®” have been reported to
date.

Molecular models and simulations play an important role in
the discovery and deployment of MOFs for adsorption-based
applications.” " Instead of an Edisonian approach to find
MOFs that meet a target adsorption property, classical
molecular models and simulations can quickly and cost-
effectively predict the adsorption properties of thousands of
MOFs and shortlist the most promising subset for
experimental investigation. High-throughput computational
screenings of MOFs have directly led to the discovery of
high-performing MOFs for carbon dioxide capture,' "> xenon/
krypton separations,’ oxygen storage,'* hydrogen storage,'”
and mustard gas capture.1 In addition to virtual screening,
molecular simulations of gas adsorption in MOFs can elucidate
the most favorable adsorption sites in a MOF,'*"” explain
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The molecular mechanics description of adsorbate—MOF
interactions®® used in a molecular simulation typically consists
of the sum of a van der Waals and an electrostatic
contribution.'” The electrostatic interaction is particularly
important for adsorbates with polar bonds, such as CO, and
H,0.”*7** To model the adsorbate—MOF electrostatic
interaction, we must model the electrostatic potential in the
pores of the MOF, created by the atoms of the MOF.
Typically, the MOF-hosted electrostatic potential is described
by placing (fixed) partial (i.e., noninteger) point charges at the
centers of the atoms of the MOF.”> Molecular models for
adsorbate molecules, such as CO, and N,,*° also possess
partial point charges, which, in a molecular simulation, interact
with the point charges on the MOF via Coulomb’s law to
comprise the adsorbate—MOF electrostatic potential energy of
interaction.””*” There are several methods to assign partial
charges to the atoms of a MOF,” which are nonobservable.
Choosing a charge assignment method for the virtual screening
of a large library of MOFs often involves a trade-off between
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computational cost and accuracy of the representations of the
electrostatic potential in the pores of the MOFs. Notably, the
simulated adsorption properties and thus ranking of MOFs in
virtual screenings could be highly dependent on the (accuracy
of the) charge assignment method.”>*"~>'

Broadly, methods to assign partial point charges to a MOF*®
take two different approaches: (1) use an electronic structure
calculation (e.g., a density functional theory (DFT) calcu-
lation) to obtain the electrostatic potential/electron density
(a) in the pores of the (periodic) MOF or (b) surrounding a
nonperiodic cluster representation of the MOF, then derive
charges that are consistent with this electrostatic potential/
electron density; (2) assign charges using a (semi)empirical
model whose parameters were fit to experimental data or to
charges assigned by approach 1. Approach 1 includes the
commonly used methods, Re}z)eating Electrostatic Potential
Extracted ATomic (REPEAT)>* and Density Derived Electro-
static and Chemical (DDEC)* charges. In molecular building
block-based charge assignment, MOFs inherit the charges of
their molecular building blocks,** so that molecular charges,
derived from electronic structure calculations, on a set of linker
molecules and a set of metal clusters provide charges for a
combinatorial number of MOFs. Approach 2 includes charge
equilibration methods (Q_Eq),ss’36 statistical machine learning
models,”” ™ and nearest-neighbor-like approaches based on
the chemical element and bonding environment of the
atom.”'~** Generally, approach 1 produces a more accurate
electrostatic potential in the pores of the MOF but incurs a
computational cost orders of magnitude greater than the cost
of approach 2. Often, with the aim of predicting gas adsorption
in a given MOF, charge assignment using electronic structure
calculations (approach 1) is more time-consuming than the
Monte Carlo simulation of adsorption.

Thankfully, Nazarian et al.** performed periodic DFT
calculations to obtain the electron densities in ca. 2900
experimentally synthesized MOFs*® and assigned chemically
meaningful, high-quality partial point charges to each MOF via
the DDEC method.>® Still, a large number of MOFs lack high-
quality charges: (i) the majority of the second version (v2) of
the computation-ready, experimental (CoRE) MOF data set’
of ca. 14 000 structures; (ii) newly synthesized MOFs that are
continually reported;® and (iii) libraries of hypothetical/
predicted MOF crystal structure models constructed with the
aim of discoverin§ new MOFs that have not been synthesized
in the laboratory.”’ ~* Screening these MOFs for gas storage,
separations, and sensing via molecular simulations demands a
computationally cheap and high-fidelity method for MOF
charge assignment.

In this work, we develop and train a message passing neural
network (MPNN)***" architecture to assign partial point
charges to each atom of a MOF structure under a charge-
neutral (hard) constraint. To enable our machine-learning of
high-fidelity charges on MOFs, we leverage the database of
DFT-derived partial point charges on ca. 2900 experimental
MOFs by Nazarian et al.*® as training examples. Our
fundamental hypothesis, supported by refs 42 and 44, is that
the charge of any given atom in a MOF is primarily determined
by its chemical identity and local bonding environment. As
opposed to manually engineering a feature to represent the
local bonding environments of atoms,”>>* our MPNN machine
learns vector representations of local bonding environments of
atoms within MOFs and then, from these features, predicts
their partial point charges. We train the MPNN to do this in an

end-to-end manner, enriching the machine-learned features of
the local bonding environments of atoms with information
predictive of partial charge. The MOF crystal structures,
represented as undirected graphs (nodes: atoms, edges: bonds)
with node features encoding their chemical identities, are the
direct inputs to the MPNN. Edges (bonds) across the unit cell
boundary are included to account for periodicity. Our MPNN
begins with a node embedding layer that learns a dense
representation of the chemical elements, encoding their typical
charge. The MPNN then sequentially passes information along
the edges of the graph to learn/construct the vector
representations of the local bonding environments. The final
layers use these features to assign a charge to each node under
a charge neutral constraint. To achieve this, we model the
probabilistic distribution of charge on an atom within its local
bonding environment and invoke the maximum likelihood
principle under the charge neutral constraint. This allows the
MPNN to give more slack to the charge of atoms with high
variance when enforcing charge neutrality.

Our trained MPNN assigns high-fidelity (treating the DFT-
derived DDEC charges45 as ground truth) charges to MOF
atoms (mean absolute deviation on test MOFs, 0.025),
outperforming a suite of charge equilibration methods>®
(minimum mean absolute deviation, 0.118, by I-QEq’*),
while incurring orders of magnitude lower computational cost
than electronic structure calculations. To enable accurate
virtual screenings of large libraries of MOFs for their
adsorption-based applications, we make our trained MPNN
model available to the molecular simulation community for
MOF charge assignment and provide .cif files of MPNN-
charge-assigned v2 computation-ready, experimental MOFs.”

B REVIEW OF PREVIOUS WORK

References 25 and 27 review methods for assigning atomic
partial charges to MOFs to enable molecular simulation of gas
adsorption and diffusion. The most accurate, but computa-
tionally costly, approach is to use an electronic structure
calculation (e.g, DFT) to obtain the periodic electrostatic
potential/electron density in the pores of the MOF and then
derive point charges that are consistent with this (e.g,
REPEAT’” and DDEC™).*® The less accurate, but computa-
tionally cheap, approach is to use a (semi)empirical model to
assign charges to MOF atoms, whose parameters were fit to
experimental data or charges assigned with electronic structure
calculations as input. Semiempirical charge equilibration
(QEq) methods™ are commonly used to assign point charges
to MOFs owing to their low computational cost. Ongari et al.*®
review and compare several QEq variants and assess their
correlation with the DFT-derived DDEC charges of ca. 2 900
MOFs by Nazarian et al.*® The ionizing I-QEq>* variant
produced charges closest to the DDEC charges (mean absolute
deviation 0.118), but there were significant deviations, which
then propagate onto, e.g, carbon dioxide adsorption in a
molecular simulation.

Along the direction of this work, a few authors trained
supervised machine learning models to assign partial charges to
atoms of molecules (not periodic MOFs), using feature vectors
of the local environment of an atom that are either (i)
manually engineered®’>*> or (ii) learned end-to-end by a
message passing neural network.*”*® An interesting subpro-
blem is that, when a supervised model predicts the charge of
each atom in the molecule pseudoindependently, based on its
local environment, charge neutrality of the molecule is not
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guaranteed. To enforce charge neutrality, directly after the
model assigns (before-constraint) charges to the atoms, refs 37
and 38 distributed the negative of the excess charge of the
molecule among its atoms, not uniformly, but based on the
variances of the charges on the atoms predicted by an
ensemble of decision tree regressors. Atoms associated with
more (less) variance received more (less) of the excess charge.
Reference 44 distributed excess charge based on the magnitude
of the predicted charge. Reference 40 enforced charge
neutrality by, instead of directly predicting charges, predicting
the electronegativity and hardness of each atom in its local
bonding environment, then minimizing the potential energy of
the atoms of the molecule (dependent the electronegativities
and hardnesses of the atoms) under a charge neutrality
constraint.

Using the molecular graph as direct input, MPNNs have
recently been employed to predict several different properties
of molecules®*”~% and crystals,”” " including antibacterial
efficacy, electronic properties, solubility, photovoltaic effi-
ciency, odor, and drug efficacy. In addition, MPNNs have
been used to predict chemical reactions.”””" The key
advantage/novelty of MPNNs is that, instead of manually
engineering molecular descriptors,””*® the MPNN automati-
cally learns a (task-specific) descriptor of the molecule and its
set of local bonding environments from the molecular graph in
an end-to-end manner, while being trained to perform a
prediction task.”” In contrast to mapping a molecule or crystal
(represented as a graph) to a single property, our MPNN
architecture is unique in that it maps a crystal (represented as
an undirected, node-labeled graph with edges across the
periodic boundary included) to targets (partial charges) on
each node (atom) under a graph-level (charge neutrality)
constraint.

B PROBLEM FORMULATION

Here, we mathematically formulate the partial charge assign-
ment problem. The notation is listed in Table 1. We use bold
lowercase letters for vectors and bold uppercase letters for
matrices.

We represent the crystal structure of each MOF as an
undirected graph with node features, G = (V, &, X), where V
is the set of n = IV| nodes or vertices, representing atoms, & is
the set of edges, representing bonds, and X € R™" is the node
feature matrix. The feature vector of node (atom) v in the
graph (MOF), x, € RY, is a one-hot encoding of its chemical
element and is column v of X. Let ¢,, = {u, v} € & denote an
edge (bond) between nodes (atoms) u and v. Let the
adjacency matrix of the graph be A € R™", where A,, = 1 if
nodes u and v are connected by an edge and A,, = 0 otherwise.
Together, the adjacency matrix A and node feature matrix X
characterize the crystal graph of a MOF.

Our goal is to learn a function f that takes the crystal graph
G as input and outputs a predicted charge on each node:

(X; A) |- f(X: A) =q (1)

while satisfying the charge neutrality constraint:
29,50
v=1 (2)

Here, g, is the charge on node v and element v of the charge
vector q € R" of the graph. The function f will be equivariant

Table 1. Notation and Definitions

symbol description
G graph
Vv set of nodes in graph
& set of edges in graph
n number of nodes in graph
[ edge between nodes i and j
A e R™" adjacency matrix of graph
x, € R? feature vector of node v (one-hot encoding of element)
X € R™>" feature matrix of graph
x, €R’ element embedding of node v
X‘ e R™" node embedding matrix of graph
t message passing time
hff) eRF hidden representation of node v after t messages
H® € R®™"  hidden node feature matrix of graph after t messages
q, partial charge on node v (units: electron charge)
q, predicted partial charge on node v (units: electron charge)
qER" charge vector of graph
N(v) neighbors of node v
P (Bo) vector (matrix) of weights
[a, b] concatenation of vectors a and b

(ie., f(XP, PAPT) = Pq where P is a permutation matrix that
permutes the nodes) so that the ordering of the atoms is
immaterial.

B MACHINE-LEARNING PARTIAL CHARGES

Converting a MOF Crystal Structure to a Graph. We
first describe how we convert a MOF crystal structure stored in
a .cif file into an undirected graph G = (V, &, X) (nodes/
atoms: V, edges/bonds: &, node features encoding chemical
elements: X). A .cif file of a MOF provides its unit cell vectors,
a list of its atoms, and the coordinates of its atoms.

Nodes and Edges. We first construct a set of nodes to
represent the atoms of the MOF (a bijection). To determine
the edges between the nodes (i.e., the adjacency matrix, A), we
must automatically infer which atoms are bonded based on
their identities and atomic coordinates. We used a bond
assignment algorithm from refs 68 and 72 that considers both
typical bond lengths and the arrangements of nearby atoms.
We assign an edge (bond) between nodes u and v if (1) the
periodic Euclidean distance between them is less than the sum
of their covalent radii’® plus a 0.25 A tolerance and (2) they
share a Voronoi face. By applying the minimum image
convention when computing the distance, we include edges
between atoms bonded across the periodic boundary. To
determine which atoms share a Voronoi face with atom u, we
used Scipy’* to compute the Voronoi diagram of all atoms
within a 6 A radius of atom u, periodic images included. To
ensure bonds were properly formed with metal atoms
commonly found in MOFs, we increased the covalent radius
for 10 metals (see section S2).

Node Features. For each node v, we construct its feature

vector, x, € [Rd, as a one-hot encoding of its chemical element.
i.e, entry i of x, is one if atom v in the MOF is chemical
element i and zero otherwise. Among the charge-labeled
MOFs," there were 74 unique chemical elements (see Table
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Figure 1. Architecture of our message passing neural network (MPNN) to assign partial charges to the atoms of a MOF atoms under a MOF-level
charge neutral constraint. (Top: node-level computations) First, the one-hot encoding of the atomic species of node v, x,, is mapped to an
information-dense chemical element embedding x; by a fully connected layer. The hidden node feature is initialized as h(" using x;. Next is the
message passing phase, where, in each time step, every node shares information with its neighbors and updates its hidden representation. With
more time steps, the hidden representation of the node, hst), captures a broader view of its local bonding environment. Modeling the probabilistic
distribution of the charge on each node (within its local bonding environment) as Gaussian, a fully connected layer outputs the mean @, and
variance 6,? from the final, learned hidden representation h{"”. (Bottom: graph-level computations) The molecular graph G representing the MOF
crystal structure is input to the MPNN. Each node is processed independently, as depicted on the top, culminating in the predicted means (bold @)
and variances ¢>. Subsequently, a maximum likelihood estimation under the charge neutral constraint gives the predicted charges §.

S6); so, d = 74. The node feature vectors comprise the
columns of the node feature matrix X of the MOF.

Target Vector. We construct the charge vector q for the
DFT-derived, DDEC charge-labeled MOFs* whose .cif files
also contain the partial atomic charge on each atom.

Ordering, Equivariance, and Rotation- and Translation-
Invariance. Of course, element v of the target (charge) vector
g, column v of the node feature matrix X, and row/column v of
the adjacency matrix A all represent the same atom in the
MOFEF. However, the ordering of atoms in the crystal structure
file is immaterial, as the function f in eq 1 learned by the
MPNN is equivariant™® to permutations of the nodes. Notably,
the graph representation of the MOF is also rotation- and
translation-invariant.

Neural Architecture. Figure 1 shows the architecture of
our message passing neural network (MPNN)SO to assign
partial point charges to each node of a graph, representing a
MOF crystal structure, under a charge neutral constraint. This
MPNN, described in detail below, constitutes the function f in
eq 1 that obeys the constraint in eq 2. Our MPNN architecture
is composed of, sequentially, (1) an element embedding layer
to map the node features (the one-hot encodings of chemical

elements) into information-dense chemical element represen-
tations for initializing hidden node features, (2) a gated graph
neural network’® that passes messages between neighboring
nodes, along the edges of the graph, to learn/construct hidden
node representations that encode the local bonding environ-
ment of each node, and (3) node-level charge prediction under
the graph-level charge neutrality constraint.

Chemical Element Embedding. First, we map each node
feature vector x, to a compressed representation, x; € R’ (r <

d):
x; = sigmoid.(B,x,) (3)

The learned matrix of weights B, is shared across all nodes.
Because each node feature x, is a one-hot encoding of a
chemical element, the embedding of chemical element i is
column i of the matrix B, passed through a sigmoid activation
function (. for element-wise) to limit the range. Thus, the
element embedding layer in eq 3 maps each chemical element,
one-hot encoded in x,, to a low-dimensional, dense feature
vector that, as we will find, encodes its typical charge. The
hidden feature vector of node v is initialized using its element

https://dx.doi.org/10.1021/acs.jpcc.0c04903
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embedding x; to facilitate training in the message passing
phase, which we describe next.

Message Passing. In the message passing phase,” a gated
graph neural network (GGNN)” iteratively updates the
hidden features (representations) of the nodes by passing
information between neighboring nodes, along the edges of the
graph. The message received by a node is a conglomeration of
the information received from its neighbors. The GGNN
employs a gated recurrent unit (GRU)”® to, at each time step,
update the hidden representation of each node using its
current hidden representation and the message from its
neighbors. Messages are passed for T time steps, after which
each hidden node feature encodes the local bonding
environment, which we define more precisely below, of the
atom it represents.

The initial hidden representation of node v, h§°) € [Rk, is set
as its chemical element embedding concatenated with a zero
vector:

h'? = [x¢, 0] (4)

We concatenate with the zero vector of dimensionality k — r to
allow the hidden representation to be higher-dimensional than
the element embedding; conceptually, this is to account for the
higher information content in the hidden node representation
than in the element embedding of the node, as the former
encapsulates both the atomic species of the node (as does the
element embedding) and the surrounding bonding environ-
ment of the node (which the element embedding does not).

In taking a message passing time step from time f to t + 1,
each node collects, sums, and transforms the hidden
representations of its neighbors, summarizing the information
received into a message m{*). Specifically, the message
received by node v is constructed as

m5t+1) =B, Z hit)
ueN(v) (5)

where B,, is a learned k X k matrix shared across all nodes and

N (v) is the neighborhood of node v:
Nw)={ue Vle, € &}

The hidden representation of node v is then updated by a
GRU® (shared across all nodes) based on its message received
and its current hidden representation:

b+ = GRU(LY, m(*+Y) 6)

See section S4 for GRU details. The message passing phase is
comprised of T such time steps.

At the end of the message passing phase, each node has a
hidden representation h{") that encodes both its atomic species
and its local bonding environment. Precisely, the local bondin%
environment of node v encoded in the hidden node feature h{"
is the induced subgraph of G containing all nodes with
geodesic distance less than or equal to T from node v. See
Figure 2.

Charge Prediction. Next, we use the learned representations
of the local bonding environments of the nodes to predict their
partial charges.

As opposed to directly predicting the charge on node v from
hET), we instead view g, as a random variable and model its
conditional probability density as a Gaussian with mean @, =
?,(h{") and variance 5,% = 6,2(h{"):

Figure 2. Illustration of the local bonding environment of node v after ¢
message passing time steps (top), encoded in its hidden
representation, h'”. Focal node v, representing a carbon atom in
IRMOF-1, is circled in orange. Edges across the unit cell boundary
(%ray square) are included to account for periodicity. As t increases,
h,,') contains a broader view of the bonding environment of the atom.

qv |h1(/T) ~ N( ) 0;2) (7)

i.e, we aim to learn and predict not only the typical charge of
an atom within a given local bonding environment, but also its
variance. The variance will be useful for adjusting the charges
to enforce charge neutrality; charges of atoms with higher
variance will be given more slack. We use the archaic, Greek
symbol @, thought to be the source of the Latin “Q” often used
to denote charge, to denote the mean of the Gaussian
distribution in eq 7 to encourage interpretation of @, as a
before-constraint charge prediction for atom v.

We use a fully connected layer comprised of two neurons,
with weights o and f, shared across all nodes, to predict 9,
and o0, respectively, from the learned representation of the

local bonding environment of node v, h{":

9, = B ", 1] (8)

o;z = softplus(ﬂgT [hET), 1]) 9)

The softplus activation function ensures ¢,* > 0.

Finally, to arrive at the predicted charges q on a given MOF,
under the charge neutral constraint in eq 2, we invoke the
maximum likelihood principle. Assuming g, is conditionally
independent given its local bonding environment and
distributed according to eq 7, the log-likelihood L of observing
charges q on a given MOF is

i @ -4)
OEDY log(gjﬁ]— 263”

v=1 v (10)

Maximizing £ under the charge neutral constraint Y, /', §, =
0, we find (see SS):

https://dx.doi.org/10.1021/acs.jpcc.0c04903
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Figure 3. Distribution of partial charges, grouped by element, in the 2266 charge-labeled MOFs*® comprising our train, validation, and test set,
visualized by violins. The number on the bottom is the total number of atoms in the data set, grouped by element.

2 n
O,
qv = QV - n - Z Qu
Zu=lo;42 u=1 (11)

Interpreting the mean of the Gaussian in eq 7, @,, as a before-
constraint charge assignment for node v lends a useful
interpretation of eq 11. To enforce charge neutrality, eq 11
adjusts the before-constraint charges by distributing the
negative of the net before-constraint charge Y. ,9, to each
atom in proportion to its variance 6,% The idea is that, if the
charge of an atom within its local bonding environment
exhibits high variance among MOFs, then it should be given
more slack when adjusting it to achieve charge neutrality. If all
local bonding environments exhibit the same variance, eq 11
reduces to uniformly distributing the before-constraint excess
charge among the atoms. Eq 11, the last layer of our MPNN
architecture, can be viewed as the charge-correction layer. By
jointly learning fo and f,, our network learns not only the
typical charge of an atom within its given local bonding
environment (@,) but also the slack we should give the atom
(6,%) when adjusting its charge to achieve graph-level charge
neutrality.

Interestingly, there is a direct analogy between the variance
0,” of the charge on a given atom in its given local bonding
environment and the hardness (the second derivative of energy
with respect to charge) used to enforce charge neutrality in ref
40 (compare eq 14 in ref 40 with eq 11); indeed, a soft atom
will be given more slack for adjusting its charge to enforce
charge neutrality.

We remark that our MPNN assigns charges g, that are
invariant to uniform scaling of the variances o,, seen by eq 11;
i.e,, the variance of the charge on an atom within its local
bonding environment relative to other atoms in the MOF affects
its predicted charge, but the scale of the variances globally does
not.

Training of the MPNN. We define the loss function / to
train (i.e., identify the parameters of) our network as

M

1
I==> 14, -q,l
N mgl (12)

where N is the total number of nodes among all of the MOFs,
M is the total number of MOFs, q,,, is the vector of charges on

atoms of MOF m predicted by the MPNN by eq 11, q,, is the
vector of (taken as ground-truth) DFT-derived, DDEC
charges,* and IIll; is the L1 norm. The loss / in eq 12 is
equivalent to the mean (over all nodes) absolute deviation
(MAD) performance metric.

B RESULTS

Here, we train the MPNN in Figure 1 and evaluate its
performance. All computer codes (Python, Julia) to reproduce
our work are available on Github at github.com/
SimonEnsemble/mpn_ charges.

The Train, Test, and Validation Data Sets. Nazarian et
al.*® provide 2932 MOF crystal structures with DFT-derived
(PBE functional, DDEC method®®) partial point charges
assigned to each atom. We removed 607 duplicate MOFs
(identified in ref 45) and nine invalid MOFs (identified
manually). Furthermore, we automatically discarded MOF
structures that, via our bonding algorithm, produced invalid
bonding motifs (carbon atoms bonded to >4 atoms, hydrogen
atoms bonded to >1 atom). See section S3. Remaining are
2266 charge-labeled MOFs. Figure 3 shows the distribution of
the partial charges, grouped by chemical element; many
elements exhibit a high variance in charge, hinting that
assigning charges to each atom solely based on its chemical
element, without consideration of its bonding environment,
will not give satisfactory charges. Figure S1 shows the
prevalence of chemical elements among the MOFs.

We randomly partitioned these 2266 charge-labeled MOFs*
into training, validation, and test sets (70/10/20%). The
training set is used to directly tune the model parameters
(weights and biases) by minimizing the loss in eq 12 over
training examples via stochastic gradient descent. The
validation set is used for hyper-parameter selection to avoid
overfitting. The test set provides an unbiased evaluation of the
performance of a final model whose parameters were fit using
the training data set. We randomly partitioned the set of MOFs
into training, validation, and test sets as opposed to the set of
atoms (within their local bonding environments) because
charge neutrality, a graph-level constraint, is enforced internal
to the architecture of the MPNN; consequently, the MPNN
must receive the entire crystal graph as input. We also note
that chemical elements {Se, Hf, Cs, Pu, Ir} appear in only one
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MOF. Instead of discarding these MOFs containing these rare
elements, we elected to place them in our training set, with the
justification that we can learn about charges on other atoms
from these MOFs.

Training and Hyper-parameter Tuning. We used the
open source PyTorch’” machine learning library to construct
and train our MPNN.

To minimize the loss / (see eq 12) during training, we use
stochastic gradient descent (the Adam optimizer with a
learning rate of 0.005) and a batch size of 32 graphs. We
use the validation set for early stopping to avoid overtraining.
This is achieved by, while training, continuously monitoring
the model performance on the validation set. Once no
improvement is observed for 100 epochs, we stop the training
and output the model with the best performance on the
validation set. See Figure S3 for an example learning curve.

The dimension of the element embeddings, r, dimension of
the hidden node features, k, and number of message passing
time steps, T, are hyper-parameters of our MPNN. The
dimension of the message in eq S is also a hyper-parameter, but
we fixed it to be equal to k by specifying B,, as a square matrix.
We explored hyper-parameter space by changing one while
holding the others fixed. See section S6. We found the
performance of the MPNN to be largely insensitive to k and r
for, respectively, k > 30 and r > 8 (for fixed r = 10 and k = 30,
respectively, and T = 4; see Figure S2). On the other hand, we
found the MPNN performance to be sensitive to T, which we
discuss later. Based on our empirical hyper-parameter
exploration, we select T = 4, r = 10, and k = 30 since these
hyperparameters led to the best performance on the validation
data set. See Table S1.

Performance. We evaluate the performance of our MPNN
using the mean absolute deviation (MAD) over all nodes,
equal to the loss in eq 12. For comparison, we consider the
following benchmark models: (i) all charges are zero (g, = 0,
V), (ii) the charge of each atom is equal to the mean charge of
atoms of that chemical element, with charge neutrality
enforced by distributing excess charge among the atoms (a)
uniformly or (b) proportional to the variance of charges of that
chemical element in the training set, much like in eq 11, and
(iii) the I-QEq™* charge equilibration method (MAD reported
in ref 36). Table 2 summarizes the performance of our trained

Table 2. Performance Benchmarks®

method (charge neutrality enforcement) MAD mean (std)

4 = 0, Yvev 0.324 (7e=3)
element-mean (uniform distn of excess charge) 0.154 (2e-3)
element-mean (variance-based distn of excess charge) 0.153 (2e-3)

-QEq**** 0.118”

MPNN (uniform distn of excess charge) 0.026 (8e—4)
MPNN (variance-based distn of excess charge) 0.025 (Se—4)
“The mean absolute deviation (MAD) on the test set (see eq 12) for
different charge assignment models/strategies. 214 MOFs were
excluded in this analysis by Ongari et al,* and this is for the entire

test, train, and validation set.

MPNN and these benchmark models. Results are the average
of 10 training/testing sessions with different (random)
training, validation, and test splits. Our MPNN outperforms
all baseline models, including the charge equilibration variant
I-QEq,>* which was the most consistent with DFT-derived,
DDEC charges in the study by Ongari et al.** The MAD of our

MPNN-assigned charges from the DFT-derived, DDEC (taken
as ground truth) charges45 is 0.025, a factor of 4 lower than the
MAD associated with I-QEq The parity plot in Figure 4
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Figure 4. Parity plot showing a 2D histogram of the predicted charge
q, against the DFT-derived, DDEC charge g, (treated as ground
truth) for atoms in MOFs belonging to the test set. Color indicates
the number of atoms that fall in that bin. Diagonal line shows equality.

visualizes the joint distribution of the predicted charge g, by
our MPNN and the DFT-derived DDEC charge g,; the density
hugs the diagonal line. We investigated the outlier in Figure 4
(center right) and found it to be a Cu atom with an outlying
charge among Cu atoms in the DFT-derived, DDEC charge-
assigned MOFs (see section S11).

Next, we measured the runtime of MOF charge assignment
by our MPNN model to place it in the broader scope of partial
charge assignment methods. This included reading the .cif file,
inferring/constructing the crystal graph, passing the graph
through the MPNN, and writing a new .cif file with MPNN-
assigned charges—but not including precompilation in Julia—
MPNN charge assignment to a single MOF is expected to take
~3 s. The runtime of MPNN-charge assignment is the same
order of magnitude as charge equilibration (e.g, EQeq’®) but
orders of magnitude smaller than DFT calculations. See
section S12 for details.

We further judge the quality of our MPNN charges by
comparing simulated carbon dioxide adsorption in MOFs with
(1) MPNN charges, (2) DFT-derived, DDEC charges,” (3) I-
Qeq charges,54 and (4) zero charges (g, = 0, YveV).
Importantly, (a) the molecular model we used for CO,
contains point charges®® (not assigned by our MPNN) so
that CO,-MOF electrostatic interactions contribute to
simulated adsorption, and (b) we included in this analysis
only MOFs that belong to the test set of the MPNN training
session so as to judge generalization error. We found that
simulated CO, Henry coefficients (298 K) in the MPNN-
charge-assigned MOFs are (1) well-correlated (Spearman’s
rank correlation coefficient, p, = 0.96) with the Henry
coefficients in the DFT-derived, DDEC charge-assigned
MOFs and (2) more correlated with those in the MOFs
with DFT-derived, DDEC-charges than when I-QEq is used
(p, = 0.81). See Figure S10. Moreover, emphasizing the
importance of accurate charge assignment for predicting
adsorption in MOFs via molecular simulations, the CO,
Henry coeflicients in MOFs without charges were poorly
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correlated (p, = 0.53) with those in the DFT-derived, DDEC-
charge-assigned MOFs. See section S13 for details.

Effect of the Number of Message Passing Time Steps,
T. We investigate the effect of the number of message passing
time steps, T, on the MPNN performance because, as Figure 2
shows, T determines the scope of the local bonding
environment of node v encoded in h{” and used to predict
the charge on node v.

Figure S shows the performance of our MPNN as T changes
(with r = 10, k = 30 fixed). Without a message passing layer (T
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Figure S. Performance of the MPNN (MAD on test set) as the
number of message passing time steps, T, changes (r = 10, k = 30
fixed). As T increases, a broader view of the local bonding
environment of each atom is used to predict its charge.

= 0), information is not passed between neighboring nodes,
and the neural network learns to assign charge based only on
the chemical element of the atom, irrespective of the atoms to
which it is bonded. The MAD for T = 0 is 0.15, larger than the
I-QEq method. Introducing a single message passing iteration
(T = 1) to bring in information from immediate neighbors
significantly improves the prediction (T = 1 MAD is 0.06). As
we increase T, each node receives information from a longer
geodesic distance; h{”) encodes a broader scope of the bonding
environment of the node; and, until T = 4, the predictions
improve, albeit with diminishing returns. Increasing T beyond
4 slightly diminishes the performance, suggesting that the most
useful information for charge prediction can be somewhat
localized. Specifically, all nodes within a geodesic distance of T
= 4 of a node appear sufficient for producing a quality
prediction of the charge, albeit we fixed r and k for this
analysis. Using overly large T can potentially lead to too much
focus on the global structure of the MOF, diluting the useful
local information. Figure 5 supports our underlying hypothesis
that the charge of any given atom in a MOF is largely dictated
by its identity and local bonding environment.

Latent Space of Chemical Elements. The chemical
element embedding in eq 3 maps each chemical element into a
low-dimensional, dense, information-rich representation of the
chemical elements for initializing the hidden node features. To
verify the MPNN has learned a meaningful element
embedding, we visualize these r = 10-dimensional element

embeddings x; via the Uniform Manifold Approximation and
Projection (UMAP)” (hyper-parameters; number of neigh-
bors, 8; minimum distance, 0.05). UMAP is a dimension
reduction technique that aims to keep local and global
structures exhibited by the data (in the high-dimensional
space) intact in the low-dimensional representation. Figure 6
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Figure 6. Visualization of the embeddings of the chemical elements
learned by our MPNN and how they encode the mean charge of the
element. We used UMAP”’ to reduce the dimension of the r = 10-
dimensional embeddings x; to the two dimensions shown here. Each
point, representing the embedding of a chemical element, is colored
according to the mean partial charge of that element in the training
set. Nearby chemical elements tend to have similar charges.

visualizes the 2D embedding of each of the 74 chemical
elements in the MOFs, colored by the average charge on that
element in the DFT-derived, DDEC charge-assigned MOFs.*
Judging from how nearby chemical elements tend to have a
similar mean charge, it appears that the learned element
embeddings indeed are encoding information predictive of
partial charge. Interestingly, although the clustering according
to the family in the periodic table to which the elements belong
(see Figure S5) is not as prominent, as according to the mean
partial charge, some clusters are recovered. For example, the
alkali earth metals {Mg, Ca, Sr}, the alkali metals {Li, Na, K,
Rb, Cs}, halogens {Br, Cl, F, I}, and many lanthanoids are
clustered together, while the other periodic table families are
more scattered.

Enforcement of Charge Neutrality. We enforced charge
neutrality on a given MOF through the design of our MPNN,
by treating the charge on each atom within its local bonding
environment as a conditionally independent random variable
(eq 7), predicting the mean and variance of this distribution
(egs 8 and 9), and using maximum likelihood to estimate the
charges on the atoms of the MOF while satisfying charge
neutrality (eq 11). A simpler strategy to enforce charge
neutrality is to use a single (shared) neuron to directly predict
a before-constraint charge on each atom from the learned node
representation h{”, then uniformly distribute the excess
before-constraint charge on the MOF (see section S7). The
strategy to uniformly distribute excess before-constraint charge
does not account for the tendency of some atoms within
certain local bonding environments to vary in their charge
more than others; still, interestingly, this crude method of
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enforcing charge neutrality in the MPNN suffered in
performance only marginally, with a MAD of 0.026.

Figure S4 shows the distribution of the excess preliminary
charge per atom, i 2., 9, among the MOFs for both strategies
of enforcing charge neutrality. The standard deviation of
izv @, among the MOFs, with @, computed using eq 8, is
only ~0.02. This shows that relatively little charge neutrality
correction of the before-constraint charges @, is needed
(compare 0.02 with the MADs in Table 2); ie, despite
predicting charges based on the local bonding environment of
the atoms, the MPNN outputs before-constraint charges @,
that are “close” to satisfying the graph-level (global) charge
neutrality constraint.

Deployment. For deployment, we retrained our MPNN
(with fixed hyper-parameters) using more training examples
(2040 MOFs plus 226 MOFs used for validation) to maximize
its accuracy (setting aside a test set was necessary only for
unbiased performance evaluation against different models).
Note our MPNN (i) cannot predict charges for MOFs that
contain chemical elements outside the set of 74 elements
included in the DFT-derived, DDEC-charge assigned MOFs*
we used for training and (ii) refrains from predicting charges
on the elements {Se, Hf, Cs, Pu, Ir} since training examples
were too scarce to have confidence in predictions for these
elements. See Table S6 for the list of viable chemical elements.

Public Availability. Our deployment-ready MPNN model
and our code to convert MOF crystal structures to graphs are
available on Github (github.com/SimonEnsemble/mpn_
charges) so the computational MOF community can assign
high-quality charges to MOFs without performing computa-
tionally expensive electronic structure calculations. Moreover,
our MPNN can easily handle MOFs with a large number of
atoms, in contrast to periodic electronic structure calculations.
To streamline and facilitate MPNN-charge assignment to a
new MOF, we provide: (i) a single script that (a) reads in a .cif
file of a MOF, (b) constructs the crystal graph (i.e., infers the
bonds between atoms) and node feature matrix representing
the MOF, (c) passes the crystal graph and node feature matrix
to our trained MPNN model, which then assigns charges to the
atoms of the MOF, and finally, (d) writes a MPNN-charge-
assigned .cif file of the MOF for input to molecular simulation
software and (ii) a Docker image with the required source
code, libraries, and dependencies to execute this script in an
isolated Docker container without the hassle of installing many
libraries under dependency constraints.

MPNN-Charge-Assigned CoRE MOFs. The updated com-
putation-ready, experimental (CoRE) MOF data set’ contains
ca. 14 000 structures, the majority of which are not present in
the DDEC-charge-assigned set of Nazarian et al.*> We used
our deployment-ready MPNN to assign charges to each MOF
in the v2 CoRE MOF database. To facilitate the use of these
MPNN-assigned charges in molecular simulation studies, we
provide .cif files on Github of the MPNN-charge-assigned v2
CoRE MOF structures.

As a caveat, the v2 CoRE MOF data set is partitioned into
two separate subsets based on the extent of solvent removal:
(1) both bound and free solvent molecules removed and (2)
only free solvent removed. The charge-assigned MOFs of
Nazarian et al.,** upon which we trained our MPNN, are based
on structures in the v1 CoRE MOF data set,*® where both free
and bound solvent molecules were removed. Consequently,
the charge predictions by the MPNN may be less accurate on

the subset of the v2 CoRE MOFs where only free solvent
molecules were removed.

B DISCUSSION

Remarks on the MPNN Charge Assignment Model.
We emphasize that our MPNN is trained to assign a Gaussian
distribution (with a mean and variance) to the charge of an
atom given its atomic species and its specific local bonding
environment. Notably, two atoms of the same species could
have very different charge distributions if they appear in
substantially different local bonding environments. Conversely,
atoms of different species, if placed in similar local environ-
ments, could have a similar charge distribution. For this reason,
knowledge could be transferred from one atomic species to
another if their local environments are similar.

We remark that, given two atoms in the unit cell of a given
MOF that are (i) the same chemical element and (ii)
symmetrically equivalent, our MPNN will assign identical
charges to them, as desired. The reason is that these two atoms
will possess identical local bonding environments, and thus,
our MPNN will output the same (9,, 5,*) and then the same
charge g, on each.

Charge Neutrality as a Soft Constraint. We enforced
charge neutrality as a graph-level, hard constraint through the
design of our MPNN architecture in Figure 1. Alternatively,
charge-neutrality of a MOF could be encouraged as a soft
constraint by adding a penalty term to the loss function in eq
12 (inside the sum) that increases monotonically with the
absolute value of the net predicted charge on MOF m. A
weight on the penalty term then balances the contributions to
the loss from a constraint violation and from the mean absolute
deviation. If the weight is too small, the constraint is ignored. If
the weight is too large, the constraint is (more) satisfied, at the
expense of the mean absolute deviation. However, such a soft
constraint does not guarantee exact charge neutrality of each
MOF, where as our hard constraint does (well, to numerical
precision).

Limitations and Future Directions. Notably, machine
learning models can perform differently when employed on
data drawn from a different distribution than the training data
set. The training MOFs used for this MPNN are
experimentally synthesized MOFs.**® Consequently, we are
confident that our MPNN will perform well on experimentally
synthesized MOFs. However, caution is warranted when using
the MPNN on hypothetical MOFs sampled from a
dramatically different distribution over MOF-space. For
example, if hypothetical MOFs are constructed from elements
in atomic environments that are rare in our training set of
MOFs, then the accuracy of our MPNN could be reduced
from what we report here.

Because we convert each MOF crystal structure to an
undirected graph (with node features but not edge features),
our MPNN will assign the same charges to (a) all
conformations of the same MOF and (b) all interpenetrated
isomers® of a MOF. To expand on part a, consider MOFs
whose structures are flexible and adopt different conformations
depending on the temperature, imgposed mechanical stress, and
presence of adsorbed molecules.”' ™ To expand on part b,
some MOFs form interpenetrated networks, and the level of
interpenetration can be controlled.*”** Conceivably, the partial
point charges that reproduce the electrostatic potential in the
pores could differ depending on the conformation that the
MOF adopts and its level of interpenetration. Our MPNN,
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however, would assign the same charges to the atoms of a
MOF regardless of its conformation or level of inter-
penetration, since the graph representations of local bonding
environments are invariant to flexing and interpenetration. To
instead learn charges dependent on the conformation of and
level of interpenetration in a MOF, we can represent the MOF
as a complete graph with pairwise atomic (periodic) distances
as edge features, as described further below. Information about
the atomic coordinates of the atoms in the MOF, up to a
translation and rotation, would then be input to the MPNN.

We mention a few ways to include more information about
the structure of a MOF in its representation that is input to the
MPNN in order to, potentially, improve the predictions. First,
while we elected to label each node of the crystal graph
representing the MOF with the atomic species it represents,
instead, we could supply more detailed node labels that, e.g,,
distinguish between aliphatic and aromatic carbon atoms.
However, given T is sufficiently large, the MPNN can infer
from the crystal graph, e.g, if a carbon atom is a member of an
aromatic ring. Second, we could include edge features in our
representation of the MOF. MPNNs can use edge features in
the message passing phase.”’ As examples, the edge feature for
edge ¢,, could include (i) the order of the bond between atom
u and v** and/or (ii) the periodic distance between atom u and
v. Expanding on the latter, we could encode the 3D
coordinates of the MOF atoms, up to a rigid transformation,
by including the pairwise atomic distance matrix in the
representation of the MOF.*> In this view, the MOF is a
complete graph with each edge e, labeled with the periodic
distance between atom u and v. Perhaps, there could be two
classes of edges: one for bonded atoms; another for
nonbonded atoms.

B CONCLUSIONS

We developed and trained a message passing neural network
(MPNN)>' to, in an end-to-end manner, learn representations
of the local bonding environments of atoms within MOFs and,
from these representations, predict the partial charges on the
atoms of a MOF under a charge neutral constraint. The
crystalline structure of the MOF, represented as an undirected
graph with node features encoding the chemical elements, is
directly input to the MPNN. The MPNN constructs features
of the local bonding environments by sequentially passing
information between bonded atoms. We trained and evaluated
the performance of our MPNN by leveraging 2266 DFT-
derived DDEC charge-labeled MOFs.** Our MPNN accurately
predicts the partial charges on MOFs (mean absolute deviation
from DDEC charges on test set, 0.025) while incurring orders
of magnitude lower computational cost (runtime of MPNN
charge assignment: ~3 s) than performing electronic structure
calculations and deriving charges from the electron density/
electrostatic potential. We make our code and trained MPNN
model openly available to enable more accurate virtual
screenings of thousands of MOFs, via molecular simulations
using atomistic force fields,® for their adsorption-based
applications in gas storage, separation/purification, and
sensing. For convenience, we provide MPNN-charge-labeled
v2 computation-ready, experimental MOF structures’ in the
widely used .cif format.
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