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ABSTRACT

Condition-based maintenance (CBM) is an effective maintenance strategy to im-
prove system performance while lowering operating and maintenance costs. Real-
world systems typically consist of a large number of components with various in-
teractions between components. However, existing studies on CBM focus on single-
component systems. Multi-component condition-based maintenance, which joins the
components’ stochastic degradation processes and the combinatorial maintenance
grouping problem, remains an open issue in the literature. In this paper, we study
the CBM optimization problem for multi-component systems. We first develop a
multi-stage stochastic integer model with the objective of minimizing the total
maintenance cost over a finite planning horizon. We then investigate the structural
properties of a two-stage model. Based on the structural properties, two efficient al-
gorithms are designed to solve the two-stage model. Algorithm 1 solves the problem
to its optimality and Algorithm 2 heuristically searches for high-quality solutions
based on Algorithm 1. Our computational studies show that Algorithm 1 obtains
optimal solutions in a reasonable amount of time and Algorithm 2 can find high-
quality solutions quickly. The multi-stage problem is solved using a rolling horizon

approach based on the algorithms for the two-stage problem.
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1. Introduction

Reliability is the central concern of many mission-critical systems, such as
aerospace systems, electric power systems, and nuclear systems. Investigations show
that many accidents are caused by equipment failures, which were attributed to the
lack of effective maintenance methods. For example, the space shuttle Challenger ac-
cident [1] and the Deepwater Horizon drilling rig explosion [2] occur in part because of
inadequate maintenance. As the complexity of modern engineering systems increases,
it is imperative to develop cost-effective maintenance plans for complex systems.

Maintenance strategies can be generally classified into two categories: time-based
maintenance (TBM) and condition-based maintenance (CBM). The literature on TBM
and CBM for single-component systems is abundant [3,4]. However, much less atten-
tion has been paid on multi-component systems. Existing studies on multi-component
systems are mainly time-based [5-7]. Despite the fact that CBM can be more cost-
effective compared to TBM [4,8,9], CBM for multi-component systems is underex-
plored.

A multi-component system is usually subject to various interactions among com-
ponents, such as stochastic dependence, structural dependence, and economic depen-
dence [5,7]. Stochastic dependence means the state of one component influences the
lifetime distributions of other components. Structural dependence applies if compo-
nents structurally form a part, so that maintenance of a failed component implies
maintenance of other components as well. Economic dependence occurs if any mainte-
nance action incurs a fixed system-dependent cost, often referred to as setup cost, due
to mobilizing repair crew, disassembling machines, and downtime loss [10]. This setup
cost can be significant in many capital-intensive industries. For example, the produc-
tion losses during the shutdown ranges from $500 to $100,000 per hour in a chemical
plant and millions of dollars per day in offshore drilling refineries [11]. Therefore, signif-
icant cost savings can be achieved by maintaining multiple components jointly instead
of separately.

In this paper, we study the CBM optimization problem for multi-component

systems with economic dependence over a finite planning horizon using a stochas-



tic programming approach. The objective is to minimize total maintenance cost by
selecting components for maintenance at each decision period. This problem is chal-
lenging because it joins the components’ stochastic degradation processes and the
combinatorial maintenance grouping problem [5,12,13]. In addition, the component
state transition probability depends on the maintenance decision, making the prob-
lem decision-dependent, which is different from the standard approach to formulating
stochastic programs based on the assumption that the stochastic process is indepen-
dent of the optimization decisions. This endogenous uncertainty can make the stochas-
tic programs more computationally challenging. There is a lack of general methods
to efficiently solve this type of problem. Existing studies on multi-component main-
tenance planning often use simplified assumptions [9, 14, 15] or resort to simulation
methods [16,17] to reduce mathematical difficulties in modeling and solving this prob-
lem.

We develop a general multi-stage stochastic maintenance model and do not re-
strict any grouping opportunities. Due to the complexity of the multi-stage stochastic
maintenance model with integer decision variables, we first consider a two-stage model
and investigate its structural properties. Based on the structural properties, we design
two efficient algorithms to solve the two-stage model. The multi-stage model is solved
using a rolling horizon approach based on the algorithms for the two-stage model. The
main contribution of this paper is threefold.

(1)Develop an analytical CBM model for multi-component systems using a
stochastic programming approach. This model is among the very first efforts that
provide analytical expressions for the cost function and maintenance decisions of multi-
component CBM. The proposed model is general with no restrictions for grouping as
opposed to exiting one that only allow grouping at PM or CM.

(2)Establish structural properties for the two-stage model. These theoretical
properties provide the conditions and search directions of improving any feasible so-
lution, and lead to significant reduction of the search space of the problem.

(3) Design efficient algorithms to find high-quality solutions. We develop algo-
rithms for the two-stage problem based on its structural properties, which are then

implemented on a rolling-horizon to solve the multi-stage problem. Computational



studies show that our algorithms can provide satisfactory solutions within a reason-
able amount of time, particularly for large-scale problems.

The remainder of this paper is organized as follows. Section 2 reviews the related
studies on multi-component maintenance and stochastic programming methods. In
Section 3, we develop a CBM model for multi-component systems over multiple deci-
sion periods. Section 4 investigates structural properties for the two-stage model. In
Section 5, we design two algorithms for the two-stage problem and use rolling horizon
technique to approximate the multi-stage model. Computational studies are presented
in Section 6. Section 7 concludes this research and discusses the future research direc-

tions.

2. Literature review

We model the CBM optimization problem for multi-component systems using
stochastic programming. We first examine the existing literature on multi-component

maintenance, and then review the solution techniques for stochastic programming.

2.1. Multi-component maintenance

Most studies on multi-component maintenance are focused on TBM, which can be
further divided into direct-grouping [18,19] and indirect-grouping approaches [20-23]
. Direct-grouping approach partitions the components into several fixed groups and
always maintains the components in a group jointly. By using this approach, the
problem becomes a set-partitioning problem, which is NP-complete. Indirect-grouping
groups preventive maintenance (PM) activities by making the PM interval a multiple of
a basis interval, so that the maintenance of different components can coincide [20,21],
or performs major PM on all component jointly at the end of a common interval
and allows minor or major PM within this interval [22,23]. Unlike the fixed structure
under direct-grouping, there is no fixed group structure under indirect-grouping. Some
researchers formulate an indirect-grouping model as a mixed integer programming
(MIP) problem [22-24]. Because of the simplified policy structure, the MIP model can

be separated by components, which greatly reduces the computational complexity.



However, both direct- and indirect-grouping approaches only group PM activities and
ignore the grouping opportunities provided by CM. Patriksson et al. [25] use stochastic
programming to model a time-based multi-component replacement problem. However,
CM and PM have the same cost and are not distinguished in their paper.

Much less attention has been paid to CBM for multi-component systems [4].
Opportunistic maintenance (OM) has been considered for multi-component CBM
[14,15,26]. OM takes advantage of CM by performing PM on functioning compo-
nents when any failure happens. Castanier et al. [15] consider both PM and CM as
opportunities for maintaining other functioning components and formulate the prob-
lem as a semi-regenerative process. However, they only consider a two-component
system because of the exponential growth of problem size. Some studies have used
Markov decision process (MDP) to solve the multi-component maintenance optimiza-
tion problem. However, due to the state space grows exponentially as the number of
components and/or the number of states increase, this method is limited to small
scale problems. For example, Jia [27] models the OM problem as an MDP and in-
vestigate the structural property of the optimal policy. A two-component system is
studied in [27]. Several studies use simulation methods to find optimal opportunistic
CBM policies [16,17], which also suffers from curse of dimensionality.

Proportional hazard model (PHM) incorporates both event data and CM data
by modeling the lifetime of a component as a hazard rate process [4,28]. Tian et al.
extends the PHM from single-component CBM to multi-component CBM [9]. They

study two practical cases with systems of two components and three components.

2.2. Stochastic programming

Various methods and techniques have been developed to solve a stochastic pro-
gramming problem. For a two-stage stochastic linear program, Benders decomposi-
tion [29,30] and progressive hedging algorithm (PHA) [31,32] are two major decom-
position methods. Benders decomposition is a vertical decomposition approach that
decomposes the problem into a master problem that consists of the first-stage deci-
sions and the subproblems that consist of second-stage decisions of all scenarios. PHA

is a horizontal decomposition approach that decomposes the problem by scenarios.



It first independently solves all subproblems at each iteration and then forces the
non-anticipatively constraints converge.

Multi-stage stochastic programming extends two-stage stochastic programming
by allowing revised decisions at each stage based on uncertainty realizations observed
so far [33]. For a multi-stage stochastic linear program, nested Benders decomposi-
tion [34,35] that extended from Benders decomposition and PHA are also two com-
mon solution approaches. However, because the size of the scenario tree grows ex-
ponentially as the number of stages increases, both approaches are computationally
intractable. Stochastic dual dynamic programming (SDDP) [36,37] overcomes the ex-
ploding scenario tree size problem in nested Benders decomposition by combining
scenario tree nodes. The drawback of the SDDP approach is that it relies on spe-
cial problem structure such as stage-wise independence [38]. Rolling horizon provides
a heuristic approach to approximating a multi-stage stochastic program by solving
the two-stage problem on a rolling basis and utilizing the first-stage solution [39—41].
This approximation approach requires the two-stage problem to be computationally
tractable. Recently, rule-based method has attracted some interests in addressing the
intractability issue in multi-stage stochastic programming [38,42-44]. This method
restricts the solution to have some specific function forms, such as linear [38], piece-
wise linear [44], and polynomial [43]. Because the optimal decision rules of arbitrary
multi-stage stochastic programs do not have general forms, rule-based methods cannot
guarantee the solution quality in general [42].

A stochastic integer program further combines the difficulty of stochastic pro-
gramming and integer programming and is challenging to solve. Nested Benders de-
composition and SDDP that utilize Benders cuts become prohibited to this problem
because strong duality does not hold due to integrality constraints. Moreover, PHA
does not perform well for this problem in general because the non-anciticipativity con-
straints may converge slowly due to the integrality constraints and the intractability
of solving each integer subproblem. Integer L-shaped method is another approach in
solving stochastic integer program by using integer L-shaped cuts within the Benders
decomposition framework [29,45]. However, this method is typically inefficient because

it needs to generate an integer L-shaped cut for every feasible solution in the worst



case scenario.

Stochastic programming with endogenous uncertainty draws some attentions
recently because this type of uncertainty presents in a large number of applica-
tions [46-48]. Endogenous uncertainty implies that the underlying stochastic process
is influenced by the decisions. Therefore, the probabilities of scenarios are decision-
dependent and usually nonlinear [47,48]. There is a lack of efficient method to solve
this type of problem.

Our review shows that there is no general method to solve the proposed multi-
stage stochastic maintenance model with integer decision variables and endogenous

uncertainty. Efficient algorithms are needed to find high-quality solutions.

3. Model development

Notation.

n : number of components

N : component set, N' = {1,2,....n}

T : number of decision stages

T : decision-stage set, T = {1,2,....,T}

Q; : node set at stage t € T

wy : index of node at stage t € T, i.e., w; €

a(wy) : ancestor node of w; € Q, t € T\{1}

Q(wy) : child nodes of wy € O, t € T\{T'}

git - state of component i at stage ¢

gi‘zt : state of component 7 in scenario w; € €); at stage t € T

Qi(g,g') : state transition probability from state g to ¢’ for component i € N

Cipm : PM cost of component ¢

Ciem : CM cost of component i

Cs © setup cost

Z;+ : maintenance decision of component i at stage ¢t without considering economic
dependence

Z}, : optimal maintenance decision of component ¢ € N at stage t € 7 without con-



sidering economic dependence

x; : equals to 1 if any maintenance is performed on component i € N at stage t € T

and 0 otherwise
: X in scenario wy €
xy @ vector of x; for all i € N at stage t € T: (z14, T2ty .o, Trt)
: vector of z3 for all i € NV at stage t € T in scenario wy € Qu: (27, 255, .., 7))
yit 1 equals to 1 if CM is performed on component i € N at stage t € T and 0 otherwise
Y+ Yy in scenario wy € Oy
2+ equals to 1 when any maintenance is performed at stage ¢ € 7 and 0 otherwise
“t . 2z in scenario w; €

Np : do-nothing set at the first stage, No = {i|z;1 = 0,7 € N'}

N; : maintenancce set at the first stage, Ny = {i|z;; = 1,1 € N'}

We consider condition-based maintenance optimization for multi-component sys-
tems. The system consists of multiple components with economic dependence. Signif-
icant cost savings can be achieved by maintaining multiple components jointly rather
than separately. We focus on systems with hidden failure which can only be revealed
through inspection. For example, a production system may have failed but still op-
erates, producing non-conforming products, and the failure can only be detected by
inspection [49]. We assume components deteriorate independently. Such an assumption
is common for systems where components are not subject to common cause failures or
the deterioration dependence among components is weak [9,17-19]. Each component
has {1,2,...,m — 1,m} condition states, where a larger state represents a worse yet
functioning condition and state m is the failure state. All components are subject to
stochastic degradation. Without maintenance intervention, the condition of a com-
ponent cannot return to a better state. Inspection is performed periodically on the
system to reveal the states of all components and each inspection is a decision stage.
In some real-world problems, an inspection schedule is already in place based on ex-
periences or required by regulations. For example, many refinery and chemical plants
conduct annual or biannual turnarounds during which they inspect their equipment. In

cases where the interval length needs to be determined, an optimal interval length can



be determined using decomposition methods [6,19] or numerical search methods. At
each decision stage, all failed components need to be correctively maintained and all
functioning ones can be preventively maintained if desired. Both CM and PM restore
a component to an as-good-as-new state, i.e., state 1.

This maintenance optimization problem is naturally a multi-stage stochastic in-
teger program. At each stage t € T, we first observe all components’ states g;;, Vi € N.
We then decide whether a component needs to be maintained (z,7 € N,t € T). All
failed components i are correctively maintained (y;; = 1,4 € N, t € T). If there is any
maintenance performed at stage ¢ € T, the setup cost is incurred (z; = 1).

We illustrate the decision process using a scenario tree in Figure 1. In the scenario
tree, we need to make maintenance decisions at each node w; € Q;,t € 7. Each node
wy is characterized by a combination of all components’ states, i.e., ( g‘f’;, g;;, o Init)s
and €2 is the set of all nodes at stage ¢ € 7. For each node wy, t € T\{T'}, it has a set
of child nodes Q(w:) at stage t+ 1, where Q(w;) collects all possible combinations of all
components’ states. For each node wy, t € T\{1}, it has a unique ancestor node a(w)
at stage ¢ — 1. A node path from the root node (w1) to a last stage node (wr € Qr)
is referred to as a scenario. The total number of scenarios is [Q7| = m™T 1 which

grows exponentially as the number of components and/or stages increase.

QUwe) € Qpyq

stage 1 stage 2 stage 1 O

Figure 1.: Scenario tree



Our objective is to minimize the total cost over the planning horizon 7, where
the total cost includes the first-stage cost and the expected second-stage cost of all
nodes wy € Q. For the cost at each node w; € € at stage t € T\{T'}, it consists of
current-node cost and the expected cost of all child nodes Q(w;). For last stage nodes,
i.e., t =T, the cost concerns the current-node cost only.

Given the component states g;;* for all components i € A at node wy € € in
stage t € T\{T'}, the probability from node w; to its child node w;;1 depends on the
maintenance decision z}"*. For example, if the prior-maintenance state of a component
in node w; is g, the post-maintenance transition probability is Q(1,¢') (¢’ € G) and
Q(g,9") (¢ > g) otherwise, and this leads to different node transition probabilities.

Denote p(wit1|x;*) as the probability from node wy,t € T\{T'} to its child node
wi+1 given decision v, and Q;(g,g’) as the state transition probability from state g

to ¢’ for component i € N. Since components deteriorate independently, we have

p(wt+1|$f”) = H [Qz(gn 79ﬁ111)(1 - 5'3 )+ Qz( g :erl)xwt]
eN
Next, we develop the multi-stage stochastic model:
Decision variables (i € N w; € Qp, t € T):
xy': 1 if component 4 is maintained at node w; in stage t, and 0 otherwise.
'+ 1 if component i is correctively maintained at node w; in stage t, and 0 otherwise.
z¢*: 1 if there is any maintenance occurs at node wy in stage ¢, and 0 otherwise.

Multi-stage stochastic model (P1):

1 = n};g Z Ci,pmTs, 1 + Z Cz cm Cz,pm)yz 1+ ¢sz1 + Z <J~)2|x1)vv2(w2) (1)

ieN w2 €Y
s.t.
gﬂyln Z &) pmivlt + Z Cicm — G pm)y;‘?
) i N .
" i€ Nyw € Uyt € T\{T},
tez + Y plwr o) Vis (W)
Vt(wt) = wip1 €Q(we)
mlnzcz pme't + Z Ci,em — G pm)yt
R Z iEN ' ,iEN,thQt,t:T
—i—cs e
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z <zftieN,w e QuteT (3)

gr(l—yiy)<m—-1lieNwe,teT (4)
yor <ari e Now € Ut €T (5)
ity €{0,1}i e Nyw € Qu,t €T (6)
7' €{0,1}w €Yt €T (7)

Objective function (1) consists of the total cost at the first stage and the expected
total cost at the second stage. The objective function V;(w;) for node w; € € at stage
t € T is given by constraint (2). Constraints (3) ensure setup cost is incurred whenever
a maintenance action is performed. Constraints (4) force CM actions on all failed
components. Constraints (5) guarantee that the indicator of maintenance action (z};")
is set to 1 when CM is performed. Constraints (6) and (7) are integrality constraints
for all decision variables.

As illustrated in Figure 1, the problem size of P1 grows exponentially as the
number of components increases. As discussed in the literature review, there is no
general method to solve this problem due to the lack of structural properties in multi-
stage stochastic integer programs with endogenous uncertainty. Therefore, we first
consider a two-stage problem.

The two-stage problem can be simplified by eliminating the second stage because
the closed-form solutions for all second-stage subproblems can be obtained. Note that
for the ease of notation, we drop the subscripts of wa, 29 and V5 in the two-stage model.
First, for any subproblem w € ), the objective function V(w) and all constraints are
independent of the first-stage decisions and only depends on the components’ states
in scenario w. Because the second stage is the last stage of the two-stage problem, to
minimize any subproblem, it is obvious that we only need to correctively maintain all
failed components to satisfy constraints (4) and do nothing on functioning components.

Therefore, the optimal solutions in the second-stage subproblems are

() = |22 ieNwen, (%)
(#2)" = (sa)" i € Nyw € Q )
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and

(25)" =min(1, > (a¥y)*),w € Q. (10)
ieN
Based on Equations (8) to (10), the two-stage model (P2) is described as follows:

Two-stage stochastic model (P2):

min Z Ci,pmTi1 + Z(Ci,cm — Cipm)¥in1 + 21+ V (11)
iEN iEN

s.t.
zi1 <z,ieN (12)
gii(l—yi1)<m-—-1,ieN (13)
yi1 < i, €N (14)
i1, Y1 €{0,1},i € N (15)
where 21 €{0,1} (16)

V=> plwlz)V(w) =) (Qi(gir,m)(1 — i) + Qi(1,m)Ti1))Cicm
WEQ ’LEN (17)
+ (1= J]0 = Qilgia, m)(A = zi1) — Qi(1,m)ain))es.
ieN

The two-stage model can be directly used in mission-critical applications where

successfully completing a mission (one-period) is the primary concern.

4. Structural properties of the two-stage model

In this section, we establish three structural properties for P2. The first property
provides an optimal solution to P2 based on the optimal solution without considering
economic dependence. Because the optimal solution without considering economic
dependence can be obtained easily, we can quickly identify the optimal solution to
P2 when the condition in Proposition 1 is satisfied. The second property establishes
the condition when changing the decision(s) of certain component(s) from do-nothing
to PM reduces the total maintenance cost. The third property establishes the condition
when changing the decision(s) of certain component(s) from PM to do-nothing reduces
the total maintenance cost. Propositions 2 and 3 are the theoretical foundation of

Algorithm 1 that solves P2 optimally.
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Proposition 1. Ifif, =1Vi €N, thenzj; =1Vie N. [
Proof. See Appendix A.1. O

Proposition 1 shows that it is optimal to maintain all components (i.e. z}; = 1)
if all components need to be maintained when ignoring economic dependence (i.e.

z}, = 1). The optimal maintenance decision without considering economic dependence

z;, of component ¢ € N can be obtained easily as follows:

C; .
1, when Q;(gi1,m) > —2% L Qi(1,m) or g;1 = m,

s Ci,cm+-c,

0, otherwise.

Proposition 1 leads to an optimal solution to P2 when 27, = 1 for all components
i € N. However, the condition of 7, =1 for all i € N is a special scenario. Next, we

explore more general structural properties of the two-stage model.

Definition 1. A partition (Ng, N1) of set N, i.e., NoU Ny = N and Ny N Ny = 0,
is a solution to P2, where Ny is the do-nothing set that collects all components that
are not maintained at the first stage, i.e., No = {i|z;; = 0,7 € N} and N; is the
maintenancce set that includes all components that are maintained at the first stage,

ie.,, Ny = {z’]azi,l =1,i € N} . g

A partition (Ng, N1) of N is feasible if every failed component at the first stage
belongs to Ni. Therefore, determining the optimal z] is now equivalent to find out a
feasible and optimal partition (N, Ny) of A that minimizes the total cost. Next, we

give two propositions regarding how to improve a feasible partition (N, Ny).

Proposition 2. Consider two feasible partitions (No, N1) and (N, Ni) of N. Let C
and C'" be their respective total costs. If N{\N1 = N and N # (), we have C' < C if
and only if Ap(No, N1, N) < 1, where

> keN Pk y 1

, when Ny # (),
TN p(N07 Nl) ! #
Ay(No, N1, N) = iy X
+ 2 keN Pk .
X , otherwise.
TN p(No, N1)

13



_qr - @tm)
= Z.l;IV 1 —Qi(gin,m) L

— Ck,pm — (Qk(gk,la m) - Qk(L m))ck,cm
Cs

)

and

p(No, N1) = J] (1 = Qi(gin,m)) J] (0 — Qi(1,m)) O

€Ny 1€Ny

Proof. See Appendix A.2. O

Proposition 2 helps to quickly identify a set N C Ny to improve the current
partition (Ng, N1) by moving set N from the do-nothing set to the maintenance set.

A;(No, N1, N) consists of two parts: M
r

and p(Ng, N1). The first part is deter-
mined by the components in set N and the second part is the probability that all
components will survive in the second stage given the current decision partition, i.e.,
(No, N1). The probability p(NNg, N1) increases as more components are maintained.
Let us first examine the condition in Proposition 2 when |N| = 1. Suppose N =

{k}, k € Ny, Proposition 2 provides the condition of improving the current partition

by maintaining component k. When Nj # (), we have

— (Qr(gr,1,m) — Q(1,m))ck em) (1 — Qr(gr,1,m))
cs(Qr(gr,1,m) — Qr(1,m))p(No, N1)

(et pm — Qr(gr1, M)k em)(1 — Qr(gr,1,m))

- csQr(gx,1, m)p(No, N1)

A, (Ng, Ny, {k}) :(Ck,pm

(19)

because Q(1,m) is the state transition probability from the perfect state to the failed
state and therefore Qx(1,m) ~ 0 holds in many scenarios (e.g., when inspection in-
terval is not long). Based on Equation (19), we have several important observations:
(1) Ar(No, N1, {k}) increases as cppm increases. The increase in A, indicates that it
is less likely that we change the decision on k& from no maintenance to PM. This is
because a higher PM cost makes it less cost-effective to perform PM at the first stage.
(2) Ar(No, N1, {k}) increases as cicm decreases. It is less incentive to perform PM on
component k with other components at the first stage when CM cost of component k is
lower. (3) Ay (No, N1, {k}) increases as cs decreases, because the decrease of setup cost

makes sharing setup cost at the first stage less cost-effective. And (4) A, (No, N1, {k})

14



increases as gy 1 decreases, meaning a better component condition makes it less worthy
to maintain the component at the first stage. Similar patterns can be observed when
|N| > 2. Proposition 2 also provides the maintenance action for a new component.
Specifically, when gi 1 = 1, k € Ny, we have A, (No, N1, {k}) = +00 > 1, which implies

we should never maintain a new component.

Proposition 3. Consider two feasible partitions (No, N1) and (N}, Ni) of N'. Let C
and C' be their respective total costs. If N)\\Ng = N and N # (), we have C' < C if
and only if As(No, N1, N) > 1, where

> keN Pk o 1

, when Ny # 0,
SN p(No, N1) 17
Ay(No,N1,N) = Ly .
heN Pk X , otherwise.
SN p(No, N1)

1 —Qi(gi1,m)
H 1—Qi(1,m) ’

SN:1—
1EN

and values py, and p(No, N1) are the defined in Proposition 2. [J
Proof. See Appendix A.3. O

Proposition 3 helps to quickly identify a set N C N; to improve the current
partition (No, N1) by moving set N from the maintenance set to the do-nothing set.
Note that in contrast to considering N C Ny in Proposition 2, Proposition 3 considers
N C Ny.

We similarly first investigate the condition in Proposition 3 when |N| = 1. Sup-
pose |N| = {k}, k € Ni, Proposition 3 establishes the condition of improving the

current partition by not maintaining component k. When N7 # (), we have

o (Ck,pm - (Qk‘(gk:,lv m) - Qk(lv m))ck,cm)(l - Qk(la m))
Ba(No. 1, {3) = (@1, 1) — Qu(L, m))p(No, V)
%ck,pm - Qk(gk,la m)ck,cm
csQr(gr,1, m)p(No, N1)

15



because Qr (1, m) ~ 0 in many scenarios. Examining Equation (20), we observe similar
patterns regarding whether changing a component from PM to do-nothing reduces the

total maintenance costs as the ones we see from Equation (19).

Corollary 1. Let (Ng U Ny, N1) and (No, N1 U Ny) be two feasible partitions of N .
For any set N C Ny and N # (), we have A (NgU Ny, N1, N) > Ag(Ng, N1 U Ny, N),
where equality holds when N = Ny. [

Proof. See Appendix B.1. O

Corollary 1 shows that any set N C N, satisfies either Proposition 2 or Proposi-
tion 3 or none. When N = N, set N satisfies either Proposition 2 or Proposition 3.

This corollary is needed to prove Proposition 4 in the next section.

5. Solution algorithms

Based on Propositions 2 and 3, we design Algorithm 1 that finds the optimal
partition (Ng, Ny) for P2. Although the computational studies in the next section
show that Algorithm 1 is fast for most test cases, the time complexity of Algorithm 1
is O(2™) in the worst case scenario. Therefore, we develop Algorithm 2 to heuristically
search a better solution based on the results from the early termination of Algorithm
1. We further use the two-stage model and rolling horizon technique to approximate

the multi-stage problem P1.

5.1. Algorithm 1

Propositions 2 and 3 help to find a better solution given any feasible solution.
However, they do not necessarily lead any feasible solution to an optimal one. Next
we show that if Propositions 2 and 3 are applied following a certain procedure, an
optimal solution can be obtained.

Let NV, be the undetermined set in which all components’ first-stage decisions are
not determined. Constructing an optimal partition (Np, N1) implies optimally moving
all subsets N C N, to Ny or Ny. The proposed procedure starts from searching all

subsets with |N| = 1 and increases the cardinality of N by 1 until some N is moved
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to N1 based on Proposition 2 or Ny based on Proposition 3. Because the conditions
of Propositions 2 and 3 change after moving N, the search restarts from |[N| = 1.
This process is repeated until N, = (). It can be easily verified that 2" sets need to be

examined in the worst case scenario.

Algorithm 1 Determining an optimal partition (Ng, N{) for P2

Input: Component set N;
PM cost ¢; pm and CM cost ¢; om Vi € N and setup cost cg;
Component state g; 1 Vi € N/
State transition probability Q;(1,m) and Q;(gi1,m) Vi € N.
Output: Optimal partition (Nj, Ny) of N
1: Initial Nj < 0, Ny < 0, j < 1, undetermined set Ny < N
2: for i € N do// maintain all failed components

3: if g;1 = m then

4: N{ = Ny U{i},Ny = Ny\{i};

5: end if

6: end for

7. while N, # (0 do // Keep moving N C Ny to N and N until Ny =0
8: No < 0, N1<_®au<_|Nu’§

9: NJ < all subsets of N, with cardinality j;

10: for each set N € N7 do

11: if A.(NgU Ny, N{,N) <1 then

12: Ny <~ Ny UN; //N satisfies Proposition 2, move N to N;
13: else if Ag(Nj, Ny UNy, N) > 1 then

14: No <~ NoU N; //N satisfies Proposition 3, move N to Ny
15: end if

16: end for

17: Ny <= Ny\(N1 U Ny), N§ <= Nj U Ny, Ny < N{ U Ny;

18: if w > |Ny| then // If Ny is reduced

19: j <« 1; //Search N from |N|=1.

20: else

21: j < j+1;//Search N at a higher cardinality.

22: end if

23: end while
24: return (Nj, NJ);

Specifically, we initialize Ng = (), N1 to include all failed components to ensure
the feasibility, and N, = A\ Np. If there is any subset N C N, with |N| = 1 satisfies
Proposition 2 (Proposition 3), we move N from N, to Ny (Ny) after all subsets with
|N| =1 are searched. If there is no subset N with |N| = 1 satisfies Propositions 2 or
3, we search the subsets N with |N| = 2,3, ...,|Ny| in an ascending order until some
N satisfying the condition in Propositions 2 or 3 is obtained and moved out of N,. We
then update NV, and restart to search the subset N from |N| = 1. The construction of
the optimal partition (Ng, N1) terminates when N, = (). The optimality of partition
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(No, N1) given by Algorithm 1 is proved in Proposition 4.

Proposition 4. The partition (N§, N{) given by Algorithm 1 is an optimal partition.
O

Proof. See Appendix A.4. O

5.2. Algorithm 2

As stated previously, Algorithm 1 requires to examine 2™ sets in the worst case
scenario. To ensure that we obtain a high-quality solution in a reasonable amount of
time, we develop Algorithm 2 that heuristically finds a sub-optimal solution based on

Algorithm 1.

Algorithm 2 Heuristic algorithm for P2

Input: Nj and N{ < results from Algorithm 1 by setting J as the maximum set
cardinality to search;
Maximum number of partitions M
Output: Sub-optimal partition (N§, N7) of N.
2: Randomly generate M partitions (N§U No, N7 UNy), including (NG U Ny, Nj) and
(NG, Ni U Ny), where No U Ny = Ny;
3: Select the best partition (N, Ni) that has the minimum cost among M partitions;
4: return (N}, N7);

Specifically, we first terminate Algorithm 1 after the cardinality of | N| exceeds the
maximum cardinality J specified, which means we only search the component set that
has no more than J components. Based on /Nj and N obtained from early termination
of Algorithm 1, we randomly generate M partitions (Ng, N1) of undetermined set
Ny = N\ (N§ UN7), and select the best partition (Ng U No, Ny UN;p) of N. Note that
it is suggested to include the options of maintaining all and none of undetermined
components as candidate solutions, because many of our experiments show that it is

likely that the optimal partition is either (Ng U Ny, Nf) or (Ng, Nf U Ny).

5.3. Algorithm 3

We further use P2 to approximate the multi-stage model (P1) by utilizing the
rolling horizon technique. At each decision period ¢, we solve P2 which consists of

periods ¢t and ¢ + 1 using Algorithm 2 and employ the first-stage solutions as the
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decisions for period ¢. The states components transition to in the next period (i.e.,
period t + 1) are determined by the decision made in the previous period (i.e., period
t) and the transition probabilities. We then solve a new P2 consisting of decision
periods t+ 1 and t+ 2 and use the first-stage solution as the decisions for period t+ 1.
This process is repeated until the last decision period is reached. This procedure is

summarized in Algorithm 3.

Algorithm 3 Solving multi-stage model using a rolling-horizon approach

Output: A solution over planning horizon T

1: for t € T\{T'} do

2: Solve P2 using Algorithm 2, and obtain the first-stage solutions z;, y;; and z;
for all components i € N;

3: end for

4: The last stage solutions x;7,y;r and zr for all components i € N are given by
Equations (8) to (10);

5. return x;, y; and 2; for all components ¢ € A at all stages t € T.

In many real applications, when more degradation information becomes available
upon inspection at each decision period, Bayesian updating can be easily performed
to obtain more accurate degradation distributions and better-informed maintenance

decisions can be made.

6. Computational study

In this section, we first linearize P2 so that small-scale problems of P2 can be
solved by commercial solvers such as CPLEX for comparison purposes. We then con-
duct computational studies to examine the performance of Algorithms 1 and 2. The

proposed models and algorithms are then illustrated by two real-world cases.

6.1. Linearization of P2

In Equation (17), the term [[,c (1 — Qs(gs,1,m)(1 —241) — Qi(1,m)x;1) is non-
linear, which is linearized first. The term [[;c (1 —Qs(gi1, m)(1 —41) — Qi(1,m) x4 1)
can be expanded to a polynomial function of z;1,¢ € N, with degree of n. After the
expansion, we observe that all non-linear terms are the products of multiple (from
2 to n) binary decision variables z;1,i € N. Standard linearization method for the

multiplication of multiple binary variables are applied here [50]. After linearization,
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we replace Equation (17) by Equation (21) in model P2,

V= Z(Qi(gi,la m)(1 —zi1) + Qi(1,m)xi1))¢icm

iEN
1IN n NI (21)
+@=> > IT IT wmiabe =3 3w [T I ab)e
7=0 k=1 j N7 reN\N/ 7=2k=1 N/ reN\N;}
where
bi=1-Qi(gi1,m),i e N (22)
a; = Qi(gm,m) — Qi(l,m),i enN (23)
ub <ai1,jef2,.n} ke {l,.,|N|},ie N} (24)
uf > zi1—(j—1),5€{2,...,n}, ke {l,..,|N|} (25)
iEN]
uf €{0,1},j €{2,...n}, k€ {1,...,IN|}. (26)

Note that set N7 collects all subsets of A/ that have cardinality j and therefore
|INT| = <7;>, Jj € {0,1,2,...,n}. For each set N,z € NJ,k € {1,...,|N7|}, we have
N} C N and |N}| = j.

6.2. Computational studies

We first compare the computational time of Algorithm 1 with CPLEX for small-
scale problems. We then examine the computational time and cost error of Algorithms
1 and 2 for large-scale problems.

We assume the degradation of all components can be described by gamma pro-
cesses with shape parameter at and rate parameter . The continuous degradation
levels are divided into several intervals to represent different states, and the transition
probabilities can be computed accordingly. Without loss of generality, we assume in-
spection interval is 1. We arbitrarily set M = 100, which is the maximum partitions
generated in Algorithm 2. We consider systems with different number of components
n € {10,11,...,19}. For each n, we consider 100 instances with different combinations

of degradation processes, and costs of PM and CM. The degradation parameters, and
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the costs of PM and CM are drawn from uniform distributions U(-,-). Therefore, a

total of 10,000 experiments are run. Table 1 summarizes the baseline parameters.

Table 1. Baseline parameters for numerical example

failure PM CM

i M
“ " threshold ™ cost cost ¢s instance

U(1,5) U(0.2,1) 20 11 U(1,5) U(10,30) 20 100 100

For each n, we examine the average performance of 100 problem instances. Table
2 presents the computational times of solving P2 by CPLEX and Algorithm 1 for
different numbers of components. NA is reported when the computational time is either
longer than 1 day or out of memory. From Table 2, we can see that the computational
time of using CPLEX grows exponentially as the number of components increases. In

contrast, Algorithm 1 finds the optimal solutions in a short amount of time.

Table 2. Computational time of solving P2 (in seconds)

n  solver Algorithm 1 | n solver  Algorithm 1
10 0.422 0.0002 15 186.171 0.0004
11 1.029 0.0003 16 832.674 0.0004
12 3.064 0.0003 17 5093.700 0.0005
13 11.943 0.0003 18 NA 0.0005
14 46.014 0.0004 19 NA 0.0005

Next, we investigate the performances of Algorithms 1 and 2 for large-scale prob-
lems. For each n, we similarly examine 100 problem instances. Note that CPLEX
cannot solve any large-scale cases tested. Table 3 summarizes the performance of Al-
gorithms 1 and 2 for large-scale problems. For each n in Algorithm 1, we are interested
in the average computational time of the 100 problem instances (avg. time), the max-
imum computational time (max time), the average j, (avg. jm) and the maximum
Jm (max jpn), where jy, is the maximum set cardinality j that Algorithm 1 searched.
From Table 3, we can see that the average time in general increases as the number of
components increases. It is also noted that the maximum search time of Algorithm 1
increases substantially as the number of components increases. This is because the so-
lution space increases significantly as the number of components increases. As a result,

Algorithm 1 may have to search more sets at higher cardinalities of |N| before reaching
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the optimality criterion (i.e., undetermined set is empty). This is evidenced by the in-
crease of jn,. A higher cardinality generates more sets to be examined in Propositions
2 and 3, and this consumes more computational time. For Algorithm 2, we examine
the computational time and cost error for different stopping criteria J, which is the
maximum set cardinality that Algorithm 1 allowed to search. We note that cost errors
are all zero compared with the true objective value obtained by Algorithm 1, which
shows Algorithm 2 can find high-quality solutions within a reasonable amount of time.

We similarly observe that computational time increases as J increases.
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We further examine the performance the two-stage rolling horizon approach (Al-
gorithm 3) in approximating the multi-stage model by comparing results from our
approach with optimal results on small-scale problems where exact solutions can be
obtained. We arbitrarily use one problem setting by taking a sample of parameters
based on Table 1 and replicate the problem 1000 times to obtain the average cost
using Algorithm 3. Enumeration approach is used to obtain the exact solutions, since
the problem size is small. Table 4 summarizes the computational results of differ-
ent instances that can be solved within one day. From Table 4, we can see that cost
percentage errors are below 20% for all cases considered, which shows that the two-
stage rolling horizon approach provides an acceptable approximation to the multi-stage

problem.

Table 4. Performance of two-stage rolling horizon
in approximating multi-stage model

multi-stage two-stage rolling horizon

n T cost avg. cost error %
3 24.49 24.85 1.47%
2 4 31.37 34.83 11.03%
5 37.09 40.33 8.74%
3 30.34 35.72 17.73%
3 4 40.67 47.92 17.83%
) 93.78 63.50 18.07%

6.3. Case 1: degradation of wind turbine blades

Offshore wind farms are rapidly [26] developing in recent years to provide the
renewable energy for sustainable development. An offshore wind farm is usually built
thousand meters away from the coastline and typically has hundreds of wind turbines.
A wind turbine consists of multiple components, such as blade, main bearing, gear-
box, and generator. If a maintenance team is sent to maintain a wind turbine, it is
economically beneficial to jointly maintain other wind turbines [9].

Due to the tensile mechanical loading and corrosive marine environment, stress
corrosion cracking (SCC) is one of the major contributors to blades’ degradation.

Shafiee et al. [26] model the monthly propagation of SCC as a stationary gamma
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process with an estimated shape parameter & = 0.542 and rate parameter 4 = 1.147.

We consider a three-blade wind turbine system in this case study. Consider a
planning horizon 7" = 10 and an inspection interval of 12 months. Based on some pilot
studies, we discretize the condition of a blade into 11 states, because this number of
states provides us an acceptable decision accuracy while ensuring that the discretized
states are robust to measurement errors. The PM cost is 200,000 Monetary Unit (MU).
We consider two levels of CM costs: 600,000 MU and 1,000,000 MU.The setup cost is

130,000 MU and the failure threshold is 20 cm [26].

Table 5. Results of multi-stage approximation (CM cost = 600,000)

t\i 1 2 3 =
state decision state decision state decision 3

1 6 no action 5 no action 8 no action

2 10 PM 7 no action 11 CM

3 4 no action 10 PM 4 no action | 8

4 5 no action 4 no action 8 no action

5 6 no action 9 PM 11 CM

6 8 no action 2 no action 2 no action

7 10 PM 5 no action 5 no action

8 6 no action 8 no action 10 PM

9 8 PM 10 PM 4 no action

10 4 no action 4 no action 6 no action

Note: the decisions that are different from the decisions without
economic dependence are shown in boldface

Table 6. Results of multi-stage approximation (CM cost = 1,000,000)

t\i 1 2 3 e
state  decision | state decision | state decision §

1 6 no action 5 no action 8 PM

2 10 PM 7 no action 5 no action

3 4 no action 10 PM 8 PM 8

4 5 no action 4 no action 5 no action

5 6 no action 9 PM 8 PM

6 8 PM 2 no action 2 no action

7 3 no action 5 no action 5 no action

8 8 PM 7 PM 9 PM

9 3 no action 3 no action 4 no action

10 6 no action 5 no action 6 no action

Note: the decisions that are different from the decisions without
economic dependence are shown in boldface

We use Algorithm 3 to solve this maintenance planning problem. We compare
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the decisions with and without considering economic dependence. Denote the PM
threshold for each component in the two-stage model without considering economic
dependence by 5*: If the component state is below é *, no maintenance is performed,
and if the component is functioning and the state exceeds or equals to §~*, PM is
performed.

Tables 5 and 6 summarize the results when CM cost is 600,000 MU and 1,000,000
MU respectively. The threshold é* is 8 in both cases. From Tables 5 and 6, we can
observe that maintenance decisions with and without consideration of economic de-
pendence are different. For example, at the first decision stage (¢t = 1) in Table 5,
we can see that component 3 is not preventively maintained as it would be without
considering economic dependence, so it can share the setup cost with component 1 at
decision stage 2. From Table 6, we can see that component 2 is preventively maintained
at decision period 8 when it is in state 7, which is below the optimal PM threshold

when ignoring economic dependence.

6.4. Case 2: degradation of crude-oil pipelines

The reliability of crude-oil pipelines are critical to the safety of liquid energy
supply in modern industries. Due to the corrosion, crack and mechanical damage,
pipelines gradually deteriorate, which result in the decrease of pipeline wall thickness.

Based on the degradation data of six pipelines provided by a local chemical plant,
we model the degradation process as a gamma process with random effects, where the
shape parameter is at and the rate parameter is v. Random effects is used to capture
the heterogeneities among all pipelines by assuming the rate parameter ~ follows a
gamma distribution with shape parameter x and rate parameter A. We regard the ~
as unknown for all pipelines, and use the expectation-maximization algorithm [51] to
estimate the parameters of a, x and A. Based on the data, we obtain the estimated
parameters & = 1.0824, & = 8.556 and A = 7.654.

We consider 17 pipelines located in a small region and all pipes are shutdown
when any pipe is maintained. For each pipeline, the wall thickness is 10mm when it
is new, and the retirement thickness (failure threshold) 8mm. The number of decision
stages is 5. Suppose the costs of PM and CM are 5 and 20, and setup cost is 200.

We solve this multi-stage pipeline maintenance problem by Algorithm 3. We

similarly compare the decisions with and without economic dependence. In this case,
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Table 7. Components’ states and maintenance decisions

i\t 1 2 3 4 5

1 4 no action | 6 no action | 9 PM 5 no action 9 no action
2 8 PM 4 no action 5 no action | 10 no action | 11 CM

3 | 10 PM 4 no action 7 PM 5 no action 9 no action
4 5 no action | 10 no action | 11 CM 3 no action 5 mno action
5 4 no action | 5 no action | 9 PM 5 no action 7 mno action
6 9 PM 3 no action | 6 PM 4 no action 6 no action
7 2 no action | 3 no action 5 mno action | 7 no action 9 no action
8 | 10 PM 4 no action 7 PM 4 no action 6 no action
9 9 PM 3 no action | 6 PM 3 no action 6 no action
101 9 PM 3 no action 4 o action | 7 no action 8 no action
11 | 10 PM 3 no action 5 no action | 6 no action 9 no action
12 | 7 PM 5 no action | 8 PM 3 no action 4 o action
1319 PM 2 no action 5 mnoaction | 7 no action | 10 no action
14 | 1 noaction | 5 no action | 9 PM 3 no action 4 o action
15| 5 noaction | 6 no action | 8 PM 4 no action 6 no action
16 | 10 PM 3 no action | 8 PM 2 no action 5 no action
17 | 2 no action | 3 no action 4 o action | 7 no action | 10 no action

the optimal PM threshold without considering economic dependence is §~* = 10. Table

7 presents the state and maintenance action for each component i at stage t. The
decisions different from those without considering economic dependence are shown in
boldface. Because setup cost is much higher than the CM cost, from Table 7, we can
see that there is a large number of different decisions, which shows the necessity of
considering economic dependence when it exists.

We further investigate the impacts of parameter estimation uncertainty by con-
sidering estimated parameters as random variables. Let © = («a, k,\) be the vector
of parameters to be estimated. Given a parameter estimation © the conditional cost
is denoted by C(©) and the PDF value of © is denoted by f(©). Based on the esti-
mations, the unconditional cost is C' = fC(@)f(@)d(@) The form of PDF f(0) is
typically complicated, and therefore it is difficult to derive the closed-form of C. We
use the method in [52] to approximate the unconditional cost. Specifically, we first use
the bootstrap method to generate 500 samples of parameters. We then use the average
conditional costs based on these samples to approximate the unconditional cost C'. Our
result shows that the mean and standard deviation of conditional costs are 770.57 and
260.5. Compared with the total maintenance cost 740 when parameter uncertainty is

not considered, the impact of parameter estimation uncertainty is acceptable.
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7. Conclusion and future research

In this paper, we study CBM optimization problem for multi-component systems
over a finite planning horizon. We formulate the problem as a multi-stage stochas-
tic integer program, providing analytical expressions for total cost and maintenance
decisions. The proposed multi-stage stochastic maintenance optimization model has
integer decision variables and non-linear transition probability due to the endogenous
uncertainty, and is computationally intractable. We first investigate structural prop-
erties of the two-stage problem and design efficient algorithms to obtain high-quality
solutions based on the structural properties. The multi-stage model is then approxi-
mated by the two-stage model using a rolling horizon approach. Computational studies
show that Algorithm 1 can solve many cases to optimality quickly and Algorithm 2
can find high-quality solutions within a very short amount of time.

This work provides a new modeling approach in modeling multi-component
condition-based maintenance. Future research will consider other practical assump-
tions, such as the limit of maintenance budget, the requirement of system’s reliability
and availability, state-dependent PM cost, and state-dependent operational cost. In
this paper, we mainly consider economic dependence, it is worth to further consider
stochastic and structure dependences. It will also be interesting to address situations
when we do not know the exact transition probabilities. A robust optimization ap-

proach may be applicable.
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Appendix

A.1. Proof of Proposition 1

Proof. (1) We first consider the case where there is no failed component in the first
stage.

We need to compare the total costs among three cases for partition (Np, N1): (a)
No =10, (b) Ny # 0 and Ny # 0 and (¢) Ng = N. Denote C1, Co and C3 by the total
costs for the three cases respectively, we show that Cy is minimum.

Denote the total cost for component i € N without considering economic depen-

dence by

TCZI = Cipm T Cs + QZ(L m)(ci7cm + CS)’ '%ivl =1,

TC? = Qi(gi,la m)(ci,cm + CS)7 ii,l =0,

Because 7, = 1, we have TC! <TCY, VieN.

Thus, we have

C1=» TC! —(n—1)cs—cs > Qi(1,m) + (1 - JJ(1 - Qi(1,m)),

ieN ieN ieN
Cy=> TC)+ > TC} —(INi| - Des — es( Y Qilgin,m) + Y Qi(1,m))
1€ Ny 1€EN, 1€ Ny 1€EN,
+e(1= [] (1= Qilgir,m) [[ (1= Qi(1,m))) and
1€ENy S
Cy=> TCP—c Y Qilgin,m) +cs(1 = JJ(1 = Qilgin, m)).
ieN ieN ieN

(1a) Prove C1 < Cj.

Because
TC? > TC}
(N = 1) es + es (ien, Qil9i1,m) + Xien, Qi(1,m)) < (n—1)es + e Xoien Qil1,m)
¢s(1 = Tlien, (1 = Qi(gi1,m)) [Lien, (1 = Qi(1,m))) > ¢s(1 = [Tienr (1 — Qi(1,m))

we have C7 < Cs.
(1b) Prove C7 < C3
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It is easy to show that function f(vi,va,...,vn) = > ;cnr Vi + [Liear(1 — i) has
% >0 for all 0 < wv; <1, i € N. Therefore, we have

max(C’l) - Cl‘Qi(l,m)ZO,ViEN’ = Z Tczl - (n - l)Cs
ieN

and

min(C3) = =1,VieN = Z TCO (n—1)cs

ieEN

Because TCY > T'C} for all i € N, we have C; < max(C}) < min(C3) < Cj.
Therefore, C7 is minimum.
(2) Consider the case where there exists at least one component failed at the first
stage.
Let set N C N collect all failed components and N # (). Following proof (1), we
only need to compare case (a) and feasible case (b) because case (c) is not feasible.
The cost of case (a) and feasible case (b) are denoted by C] and CY respectively,

where

Ci = C’1 + Z(Ci,cm - Ci,pm)
iEN

and

Cé =Cy+ Z(Ci,cm - Ci,pm)-
1IEN

From C; < Cs in proof (1a), we have C] < CY.

A.2. Proof of Proposition 2

Proof. Denote the total cost for component i € N without considering economic
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dependence by

TCil = Cipm + s + Qi(1, m)(Ciom + ¢s5), Tin =1,
TC? — Qi(gi,la m)(ci,cm + CS). ji,l = 07

and let Q;(1,m) = Q;(1) and Q;(gi.1,m) = Qi(g9) Vi € N, then we have

C=> TC)+ > TC!— (max(INi| —1,0))es — es( Y Qilg) + > Qi(1))
i€ Ny i€EN, i€ Ny 1EN,
(- J]A-Qig) J] (- @i(1)

1€ Ny i€N,

C'=) TC)+ > TC! — (max(INj| - 1,0))cs

iEN; iEN]
_CS(Z Qz + ZQz +Cs 1_ H(I_Qz(g» H(l_Ql<1)>)

i€N, iEN] €Ny iEN]

If Ny =0, we have

C'=C=) (TC; —TCY) + e ) (Qilg) — Q1)

keN keN
([T -@io) JT - - [T -@ie) T - @)
1€ N 1EN, 1EN) 1EN]
= Z Ck,pm — Qk( )) Ck,cm) +cs
keN e
e _ 0. _ 0. 1- Q)
00w [To-eo (IT=&0 1)
p(No,N1) TN
= Z prcs + ¢s — csp(No, N1)rn
kEN

Therefore, from C’ < C, we have

Yoken PrCs +Cs LD oy Pk
- — A(No, Ny, N) < 1.
cstNp(No, N1)  rnp(No, N1) (No, N1, N)

From A;(Ng, N1,N) < 1, we have C' < C.
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Similarly, if Ny # 0,

C'—C=> (TC, —TCY) — Nles+ ¢ > _(Qulg) — Qi(1))

kEN kEN
+ cs( H (1-Qi(g)) H (1—-Q4(1)) — H (1-Qi(g)) H (1—-Qq(1)))
€N, ieN, ieN; ieN]
—Z Ckpm — (Qk(9) — Qr(1)) ck.cm)
kEN ~
. _ 0 iy 1-Qx(1)
0-ew [To-ao (=& 1)
p(No,N1) TN
= Z prcs — csp(No, N1)rn
keN

Therefore, from C’ < C, we have

ZkeNkas _ ZkeNpk
cstnp(No, N1)  rvp(No, N1)

= Ar(No,Nl,N) < 1.

From A,;(Ng, N1,N) < 1, we have C' < C. O

A.3. Proof of Proposition 3

Proof. Denote the total cost for component i € N without considering economic

dependence by

Tc’zl = Cipm T Cs + Qz(la m)(ci,cm + Cs)a ji,l =1,

TCZO = Qi(gi,la m)(ci,cm + Cs)- i‘i,l = 07

and let Q;(1,m) = Q;(1) and Qi(gi1,m) = Qi(g) Vi € N, then we have

C=> TC)+ > TC!— (max(|N| —1,0))es — es( D Qilg) + > Qi(1))
i€Ny i€EN, i€ Ny 1€ENy
+e(l— J]-Qig) J] (1 —@i(1)

1€ Ny 1€EN;
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=) TC)+ > TC! — (max(|Nj| - (D Qilg) + > Q1))

€N i€N] €N ieN]
(- J]A-Qig) J] - Qi)
iENY, iEN]

If N| =0, we have

C—C' =Y (TCL-TCH + ¢ > (Qulg) — Qr(1))

keEN keN
fe(TT 0 - Qo) TLO - @) - L0 - @uto) TL (- @)
€N 1EN] 1€Ny 1EN;
- Z Ck,pm — Qk( )) Ck,cm) +cs
kEN ~
e _ 0. A B 1—Qx(g)
sigfl Qz<g>>igl<1 Qi(1)) (1 ]L[V - Qk(1)>
p(No,N1) ’ SN
= Z PkCs + Cs — Csp(No, Nl)SN
keN

From C' > C’, we have ), - prcs + ¢s — csp(No, N1)sn > 0. Therefore,

Y ke PkCs + Cs _ L+ hen Pk
cssnp(No, N) snp(No, N1)

= As(No,Nl,N) > 1,

From Ag(Ng, N1, N) > 1, we have C > C".
Similarly, if N{ # 0,

C—C'=> (TC, —TCY) — Nles+ ¢ > _(Qrlg) — Qr(1))

keEN keN
+o([J-Qile) [T -@im) - [T -@ite) [T 1 —@i(1))
€N 1EN] 1€Ny 1EN;
= Z Ck ,pm Qk( )) Ck,cm)
keN orce
| Y A — Q(9)
Cs i g)) H (1 Qz(l)) H 1_ Qk( )
i€ Ny 1€Ny keN
p(No,N1) SN
=" prcs — csp(No, N1)s
keN
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From C' > C’, we have

ZkeNPk:Cs . EkeNﬂkz

_ — A(No. N N) > 1,
cssNp(No, N1)  snp(No, N1) «(No, N, )

From Ag(Ng, N1, N) > 1, we have C' > C’ O

A.4. Proof of Proposition 4

Proof. We prove this proposition by showing that the cost of partition (Nj,NY) is
no worse than that of any other feasible partitions.

For any other feasible partition (Nj, Ni) and the partition (Ng,Ny) that is
obtained by Algorithm 1, we always rewrite (Nj, N7) = (No U Ny, N; U N,) and
(Ng, NT) = (No U Ny, N1 U Ny) respectively, where set No = NjN N§, Ni = N{ NNy,
Ny = N)\No = Nf\N; and N, = N{\N; = Nj\Ny. We now show that the cost of par-
tition (NG, Ny) is no worse than that of (N, N7) by the following three parts: (1) When
Ny, # 0, we have cost relationship (Ng, Ny) = (NoUNg, N1UNp) < (NoUN,UNy, Ny),
(2) when Ny, # 0, we have cost relationship (NoU N, U Ny, N1) < (NgU Ny, NyUN,) =
(N§, N7), and (3) we have cost (N},Nj) = (N§,Ny) if and only if N, = @ and
Ay (No U Ny, N1, Ng) = Ag(No, N1 U Ny, Ng) = 1.

(1) When N, # ), we have cost relationship (N§, N7) = (No U Ny, N1 U V) <
(No U Ny U Ny, Nq).

This is equivalent to show that given current partition (NogUN,U Ny, N1), moving
Np from the do-nothing set to the maintenance set can reduce cost. We next show
that if we keep moving the component that arrives first in N, in Algorithm 1 to the
maintenance set, the cost keeps reducing until N, = (), which implies moving the whole
set IV, to the maintenance set reduces cost.

Denote the costs of (Ng U Ny, N1 U Ny) and (Ng U N, U Ny, N1) by C and Cy
respectively, and initialize C' = Cy. We prove C' < Cy by the following steps:

Step 1: If all components in IV, are moved into Ny after set N1 does in Algorithm
1, then C' < Cy because the cost reduces if we repeat how Algorithm 1 moves N to
Ny.

Step 2: In this step, there exists at least one component ¢ € NV}, that joins N
no later than some component in Ny. Suppose component k& € N, is the earliest one

in N, that joins N{* and suppose k joins N along with set SS9 ie., k € S, where
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|S7| = j and S C Nj. Therefore, when S/ C N joins Ny, the current partition is
(No U N, U N, U S, N1\S), where set S7\{k} C S, and hence from Proposition 2, we

have
A (NgUN,UN,US,N;\S,5) < 1. (27)

Step 3: If j = 1, then S7 = {k}. Denote the costs for partition (Ng U N, U
Ny\{k}, Ny U{k}) by C1. From Inequation (27), we have A,(NgU N, U Ny, N1,{k}) <
Ay (Nog U N, UNyU S, Ni\S,{k}) < 1 and therefore C; < C’. We then update N, =
Ny\{k} and C’ = C; and go to Step 1.

Step 4: In this step, we have j > 1. From Algorithm 1, we know that any subset
N C S7 cannot join Ni given current partition (No U N, U Ny U S, N1\S). From

Proposition 2, we have
A (NoUNg,UN,US, Ni\S,N) > 1. (28)
Let N + {k} = S7. We have

rnvp(No U N, UNyUS, N1\S) + pi < Zpi + pr < 1r5ip(No U Ny U Ny U S, N1\5),
iEN

where the first inequality is from Inequation (28) and the second inequality is from
Inequation (27). Therefore, we have pr < (rsi — rn)p(No U No U Ny U S, N1\S) and

hence

Pk
71kyP(No U No U Ny, N1)
< (rgi —rn)p(No U Ny U Ny U S, N1\S)

71kyP(No U No U Ny, N1)
[Tien Toote™sp(No U N, U N, U S, N1\ )

B p(No U N, U Ny, Ny)
_ p(No U N, U Ny US\N, (N1 UN)\S) <1

p(No U N, U Ny, Np) -

A (No U Ny U Ny, Ny, {k}) =

where the last inequality is from N = S7\{k} C S. From Proposition 2, by denoting
the cost of partition (No U N, U Ny\{k}, N1 U {k}) by C1, we have C; < C’ since
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Ay (NoU N, U Ny, N1, {k}) < 1. We then update N, = Ny\{k} and C" = C; and go to
Step 1.

Therefore, we can always lower the cost C’ by moving one component from N,
to the maintenance set. When N, = (), we have ¢’ = C < ().

(2) When N, # (), we have cost relationship (NoU N, U Ny, N1) < (No U Np, Ny U
Na) = (N(I)vN{)

This is equivalent to show that moving set N, from the maintenance set to the
do-nothing set can lower cost. From Proposition 3, we need to prove Ag(NoU Ny, N1 U
Ny, N,) > 1.

By using the same method as proof (1), we can also prove the cost relationship
(No U Ny, N7y U Np) < (Ng, N7y U N, U Np) when Np, # (. From Proposition 3, we have
Ag(No, N1 U N, U Ny, N,) > 1. Therefore,

AS(NO U Ny, N1 U Na,Na) > AS(No,Nl UN, U Nb,Na) >1

(3) We have cost (N, Ni) = (Ng,Ny) if and only if Ny, = 0 and A (No U
Ny, N1, N,) = Ay(No, N U Ny, N,) = 1.

When (N, N¥) = (N}, N1), we have (No U Ny, Ny UN,) = (NoU N, UN,, Np) =
(No U Ny, N1 U N,).

The first equality (No U Ng, N1 U Ny) = (Ng U N, U Ny, N1) holds if and only if
Ny, = ). Otherwise, following the steps of proof (1), we can always have (NoU N, Ny U
Np) < (Nog U Ng U Ny, Np).

Given Np, = (), the second equality is equivalent to (NgUN,, N1) = (No, NqUN,),
which happens if and only if Ay(No U Ny, N1, N,) = Ag(No, N1 U Ny, Ny) = 1 based
on Corollary 1.

O]

B.1. Proof of Corollary 1:
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Proof. We first show p(Ng U Ny, N1)ry < p(No, N1 U Ny)sn.

p(NO U Nu,Nl)TN
HieN(l —Qi(1,m)) — HieN(l — Qi(gi1,m))

= (1= Qilgia,m)) || (1 —Qu(1,m))( )
ie]%HJNu il_NII [Lien (1 = Qi(gi1,m))
[Lien (1 —Qi(1,m)) — [Lien (I — Qilgin, m))
i€NoUN,—N ieN,UN iEeN A
:p(NO U Nu\N, N1 U N)SN < p(No,Nl U Nu)SN,
where equality holds when N = N,.
(1) When N # 0, we have
>_keN Pk >_keN Pk
A (NgUNy, N1, N) = S > S = Ay(Ng, N{UN,, N),
(No L) rNp(No U Nu, N1) — snp(No, N1 U Ny) (No, M1 )
where equality holds when N = Nj.
(2) When Ny = ) and N # Ny, we have
1
Av(NoU N, Ny, N) = —— DreNPh_ 2keNPk Ay(No, Ny U Ny, N).

rnp(No U Ny, N1) = syp(No, N1 U Ny)
(3)When Ny = () and N = N,, we have

1+ ZkeN Pk _ 1+ ZkeN Pk
rnp(No U Ny, Ni)  snp(No, N1 U Ny)

Ar(NgUN,, N, N) = = Ay(No, NyUNy, N).

Therefore, A;(NoU Ny, N1, N) > Ag(No, NyUNy, N) when N C Ny and A, (NoU
Nu, Ni, N) = Ay(No, N1 U Ny, N) when N = Ny. 0
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