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ABSTRACT

Condition-based maintenance (CBM) is an effective maintenance strategy to im-

prove system performance while lowering operating and maintenance costs. Real-

world systems typically consist of a large number of components with various in-

teractions between components. However, existing studies on CBM focus on single-

component systems. Multi-component condition-based maintenance, which joins the

components’ stochastic degradation processes and the combinatorial maintenance

grouping problem, remains an open issue in the literature. In this paper, we study

the CBM optimization problem for multi-component systems. We first develop a

multi-stage stochastic integer model with the objective of minimizing the total

maintenance cost over a finite planning horizon. We then investigate the structural

properties of a two-stage model. Based on the structural properties, two efficient al-

gorithms are designed to solve the two-stage model. Algorithm 1 solves the problem

to its optimality and Algorithm 2 heuristically searches for high-quality solutions

based on Algorithm 1. Our computational studies show that Algorithm 1 obtains

optimal solutions in a reasonable amount of time and Algorithm 2 can find high-

quality solutions quickly. The multi-stage problem is solved using a rolling horizon

approach based on the algorithms for the two-stage problem.
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1. Introduction

Reliability is the central concern of many mission-critical systems, such as

aerospace systems, electric power systems, and nuclear systems. Investigations show

that many accidents are caused by equipment failures, which were attributed to the

lack of effective maintenance methods. For example, the space shuttle Challenger ac-

cident [1] and the Deepwater Horizon drilling rig explosion [2] occur in part because of

inadequate maintenance. As the complexity of modern engineering systems increases,

it is imperative to develop cost-effective maintenance plans for complex systems.

Maintenance strategies can be generally classified into two categories: time-based

maintenance (TBM) and condition-based maintenance (CBM). The literature on TBM

and CBM for single-component systems is abundant [3, 4]. However, much less atten-

tion has been paid on multi-component systems. Existing studies on multi-component

systems are mainly time-based [5–7]. Despite the fact that CBM can be more cost-

effective compared to TBM [4, 8, 9], CBM for multi-component systems is underex-

plored.

A multi-component system is usually subject to various interactions among com-

ponents, such as stochastic dependence, structural dependence, and economic depen-

dence [5, 7]. Stochastic dependence means the state of one component influences the

lifetime distributions of other components. Structural dependence applies if compo-

nents structurally form a part, so that maintenance of a failed component implies

maintenance of other components as well. Economic dependence occurs if any mainte-

nance action incurs a fixed system-dependent cost, often referred to as setup cost, due

to mobilizing repair crew, disassembling machines, and downtime loss [10]. This setup

cost can be significant in many capital-intensive industries. For example, the produc-

tion losses during the shutdown ranges from $500 to $100,000 per hour in a chemical

plant and millions of dollars per day in offshore drilling refineries [11]. Therefore, signif-

icant cost savings can be achieved by maintaining multiple components jointly instead

of separately.

In this paper, we study the CBM optimization problem for multi-component

systems with economic dependence over a finite planning horizon using a stochas-
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tic programming approach. The objective is to minimize total maintenance cost by

selecting components for maintenance at each decision period. This problem is chal-

lenging because it joins the components’ stochastic degradation processes and the

combinatorial maintenance grouping problem [5, 12, 13]. In addition, the component

state transition probability depends on the maintenance decision, making the prob-

lem decision-dependent, which is different from the standard approach to formulating

stochastic programs based on the assumption that the stochastic process is indepen-

dent of the optimization decisions. This endogenous uncertainty can make the stochas-

tic programs more computationally challenging. There is a lack of general methods

to efficiently solve this type of problem. Existing studies on multi-component main-

tenance planning often use simplified assumptions [9, 14, 15] or resort to simulation

methods [16,17] to reduce mathematical difficulties in modeling and solving this prob-

lem.

We develop a general multi-stage stochastic maintenance model and do not re-

strict any grouping opportunities. Due to the complexity of the multi-stage stochastic

maintenance model with integer decision variables, we first consider a two-stage model

and investigate its structural properties. Based on the structural properties, we design

two efficient algorithms to solve the two-stage model. The multi-stage model is solved

using a rolling horizon approach based on the algorithms for the two-stage model. The

main contribution of this paper is threefold.

(1)Develop an analytical CBM model for multi-component systems using a

stochastic programming approach. This model is among the very first efforts that

provide analytical expressions for the cost function and maintenance decisions of multi-

component CBM. The proposed model is general with no restrictions for grouping as

opposed to exiting one that only allow grouping at PM or CM.

(2)Establish structural properties for the two-stage model. These theoretical

properties provide the conditions and search directions of improving any feasible so-

lution, and lead to significant reduction of the search space of the problem.

(3) Design efficient algorithms to find high-quality solutions. We develop algo-

rithms for the two-stage problem based on its structural properties, which are then

implemented on a rolling-horizon to solve the multi-stage problem. Computational
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studies show that our algorithms can provide satisfactory solutions within a reason-

able amount of time, particularly for large-scale problems.

The remainder of this paper is organized as follows. Section 2 reviews the related

studies on multi-component maintenance and stochastic programming methods. In

Section 3, we develop a CBM model for multi-component systems over multiple deci-

sion periods. Section 4 investigates structural properties for the two-stage model. In

Section 5, we design two algorithms for the two-stage problem and use rolling horizon

technique to approximate the multi-stage model. Computational studies are presented

in Section 6. Section 7 concludes this research and discusses the future research direc-

tions.

2. Literature review

We model the CBM optimization problem for multi-component systems using

stochastic programming. We first examine the existing literature on multi-component

maintenance, and then review the solution techniques for stochastic programming.

2.1. Multi-component maintenance

Most studies on multi-component maintenance are focused on TBM, which can be

further divided into direct-grouping [18, 19] and indirect-grouping approaches [20–23]

. Direct-grouping approach partitions the components into several fixed groups and

always maintains the components in a group jointly. By using this approach, the

problem becomes a set-partitioning problem, which is NP-complete. Indirect-grouping

groups preventive maintenance (PM) activities by making the PM interval a multiple of

a basis interval, so that the maintenance of different components can coincide [20,21],

or performs major PM on all component jointly at the end of a common interval

and allows minor or major PM within this interval [22,23]. Unlike the fixed structure

under direct-grouping, there is no fixed group structure under indirect-grouping. Some

researchers formulate an indirect-grouping model as a mixed integer programming

(MIP) problem [22–24]. Because of the simplified policy structure, the MIP model can

be separated by components, which greatly reduces the computational complexity.
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However, both direct- and indirect-grouping approaches only group PM activities and

ignore the grouping opportunities provided by CM. Patriksson et al. [25] use stochastic

programming to model a time-based multi-component replacement problem. However,

CM and PM have the same cost and are not distinguished in their paper.

Much less attention has been paid to CBM for multi-component systems [4].

Opportunistic maintenance (OM) has been considered for multi-component CBM

[14, 15, 26]. OM takes advantage of CM by performing PM on functioning compo-

nents when any failure happens. Castanier et al. [15] consider both PM and CM as

opportunities for maintaining other functioning components and formulate the prob-

lem as a semi-regenerative process. However, they only consider a two-component

system because of the exponential growth of problem size. Some studies have used

Markov decision process (MDP) to solve the multi-component maintenance optimiza-

tion problem. However, due to the state space grows exponentially as the number of

components and/or the number of states increase, this method is limited to small

scale problems. For example, Jia [27] models the OM problem as an MDP and in-

vestigate the structural property of the optimal policy. A two-component system is

studied in [27]. Several studies use simulation methods to find optimal opportunistic

CBM policies [16,17], which also suffers from curse of dimensionality.

Proportional hazard model (PHM) incorporates both event data and CM data

by modeling the lifetime of a component as a hazard rate process [4, 28]. Tian et al.

extends the PHM from single-component CBM to multi-component CBM [9]. They

study two practical cases with systems of two components and three components.

2.2. Stochastic programming

Various methods and techniques have been developed to solve a stochastic pro-

gramming problem. For a two-stage stochastic linear program, Benders decomposi-

tion [29, 30] and progressive hedging algorithm (PHA) [31, 32] are two major decom-

position methods. Benders decomposition is a vertical decomposition approach that

decomposes the problem into a master problem that consists of the first-stage deci-

sions and the subproblems that consist of second-stage decisions of all scenarios. PHA

is a horizontal decomposition approach that decomposes the problem by scenarios.
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It first independently solves all subproblems at each iteration and then forces the

non-anticipatively constraints converge.

Multi-stage stochastic programming extends two-stage stochastic programming

by allowing revised decisions at each stage based on uncertainty realizations observed

so far [33]. For a multi-stage stochastic linear program, nested Benders decomposi-

tion [34, 35] that extended from Benders decomposition and PHA are also two com-

mon solution approaches. However, because the size of the scenario tree grows ex-

ponentially as the number of stages increases, both approaches are computationally

intractable. Stochastic dual dynamic programming (SDDP) [36,37] overcomes the ex-

ploding scenario tree size problem in nested Benders decomposition by combining

scenario tree nodes. The drawback of the SDDP approach is that it relies on spe-

cial problem structure such as stage-wise independence [38]. Rolling horizon provides

a heuristic approach to approximating a multi-stage stochastic program by solving

the two-stage problem on a rolling basis and utilizing the first-stage solution [39–41].

This approximation approach requires the two-stage problem to be computationally

tractable. Recently, rule-based method has attracted some interests in addressing the

intractability issue in multi-stage stochastic programming [38, 42–44]. This method

restricts the solution to have some specific function forms, such as linear [38], piece-

wise linear [44], and polynomial [43]. Because the optimal decision rules of arbitrary

multi-stage stochastic programs do not have general forms, rule-based methods cannot

guarantee the solution quality in general [42].

A stochastic integer program further combines the difficulty of stochastic pro-

gramming and integer programming and is challenging to solve. Nested Benders de-

composition and SDDP that utilize Benders cuts become prohibited to this problem

because strong duality does not hold due to integrality constraints. Moreover, PHA

does not perform well for this problem in general because the non-anciticipativity con-

straints may converge slowly due to the integrality constraints and the intractability

of solving each integer subproblem. Integer L-shaped method is another approach in

solving stochastic integer program by using integer L-shaped cuts within the Benders

decomposition framework [29,45]. However, this method is typically inefficient because

it needs to generate an integer L-shaped cut for every feasible solution in the worst
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case scenario.

Stochastic programming with endogenous uncertainty draws some attentions

recently because this type of uncertainty presents in a large number of applica-

tions [46–48]. Endogenous uncertainty implies that the underlying stochastic process

is influenced by the decisions. Therefore, the probabilities of scenarios are decision-

dependent and usually nonlinear [47, 48]. There is a lack of efficient method to solve

this type of problem.

Our review shows that there is no general method to solve the proposed multi-

stage stochastic maintenance model with integer decision variables and endogenous

uncertainty. Efficient algorithms are needed to find high-quality solutions.

3. Model development

Notation.

n : number of components

N : component set, N = {1, 2, ..., n}

T : number of decision stages

T : decision-stage set, T = {1, 2, ..., T}

Ωt : node set at stage t ∈ T

ωt : index of node at stage t ∈ T , i.e., ωt ∈ Ωt

a(ωt) : ancestor node of ωt ∈ Ωt, t ∈ T \{1}

Ω(ωt) : child nodes of ωt ∈ Ωt, t ∈ T \{T}

git : state of component i at stage t

gωt

it : state of component i in scenario ωt ∈ Ωt at stage t ∈ T

Qi(g, g
′) : state transition probability from state g to g′ for component i ∈ N

ci,pm : PM cost of component i

ci,cm : CM cost of component i

cs : setup cost

x̃it : maintenance decision of component i at stage t without considering economic

dependence

x̃∗it : optimal maintenance decision of component i ∈ N at stage t ∈ T without con-
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sidering economic dependence

xit : equals to 1 if any maintenance is performed on component i ∈ N at stage t ∈ T

and 0 otherwise

xωt

it : xit in scenario ωt ∈ Ωt

xt : vector of xit for all i ∈ N at stage t ∈ T : (x1,t, x2,t, ..., xn,t)

xωt

t : vector of xωt

it for all i ∈ N at stage t ∈ T in scenario ωt ∈ Ωt: (xωt

1,t, x
ωt

2,t, ..., x
ωt

n,t)

yit : equals to 1 if CM is performed on component i ∈ N at stage t ∈ T and 0 otherwise

yωt

it : yit in scenario ωt ∈ Ωt

zt : equals to 1 when any maintenance is performed at stage t ∈ T and 0 otherwise

zωt

t : zt in scenario ωt ∈ Ωt

N0 : do-nothing set at the first stage, N0 = {i|xi,1 = 0, i ∈ N}

N1 : maintenancce set at the first stage, N1 = {i|xi,1 = 1, i ∈ N}

We consider condition-based maintenance optimization for multi-component sys-

tems. The system consists of multiple components with economic dependence. Signif-

icant cost savings can be achieved by maintaining multiple components jointly rather

than separately. We focus on systems with hidden failure which can only be revealed

through inspection. For example, a production system may have failed but still op-

erates, producing non-conforming products, and the failure can only be detected by

inspection [49]. We assume components deteriorate independently. Such an assumption

is common for systems where components are not subject to common cause failures or

the deterioration dependence among components is weak [9, 17–19]. Each component

has {1, 2, ...,m − 1,m} condition states, where a larger state represents a worse yet

functioning condition and state m is the failure state. All components are subject to

stochastic degradation. Without maintenance intervention, the condition of a com-

ponent cannot return to a better state. Inspection is performed periodically on the

system to reveal the states of all components and each inspection is a decision stage.

In some real-world problems, an inspection schedule is already in place based on ex-

periences or required by regulations. For example, many refinery and chemical plants

conduct annual or biannual turnarounds during which they inspect their equipment. In

cases where the interval length needs to be determined, an optimal interval length can
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be determined using decomposition methods [6, 19] or numerical search methods. At

each decision stage, all failed components need to be correctively maintained and all

functioning ones can be preventively maintained if desired. Both CM and PM restore

a component to an as-good-as-new state, i.e., state 1.

This maintenance optimization problem is naturally a multi-stage stochastic in-

teger program. At each stage t ∈ T , we first observe all components’ states git, ∀i ∈ N .

We then decide whether a component needs to be maintained (xit, i ∈ N , t ∈ T ). All

failed components i are correctively maintained (yit = 1, i ∈ N , t ∈ T ). If there is any

maintenance performed at stage t ∈ T , the setup cost is incurred (zt = 1).

We illustrate the decision process using a scenario tree in Figure 1. In the scenario

tree, we need to make maintenance decisions at each node ωt ∈ Ωt, t ∈ T . Each node

ωt is characterized by a combination of all components’ states, i.e., (gωt

1,t, g
ωt

2,t, ..., g
ωt

n,t),

and Ωt is the set of all nodes at stage t ∈ T . For each node ωt, t ∈ T \{T}, it has a set

of child nodes Ω(ωt) at stage t+1, where Ω(ωt) collects all possible combinations of all

components’ states. For each node ωt, t ∈ T \{1}, it has a unique ancestor node a(ωt)

at stage t − 1. A node path from the root node (ω1) to a last stage node (ωT ∈ ΩT )

is referred to as a scenario. The total number of scenarios is |ΩT | = mn(T−1), which

grows exponentially as the number of components and/or stages increase.

Figure 1.: Scenario tree
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Our objective is to minimize the total cost over the planning horizon T , where

the total cost includes the first-stage cost and the expected second-stage cost of all

nodes ω2 ∈ Ω2. For the cost at each node ωt ∈ Ωt at stage t ∈ T \{T}, it consists of

current-node cost and the expected cost of all child nodes Ω(ωt). For last stage nodes,

i.e., t = T , the cost concerns the current-node cost only.

Given the component states gωt

it for all components i ∈ N at node ωt ∈ Ωt in

stage t ∈ T \{T}, the probability from node ωt to its child node ωt+1 depends on the

maintenance decision xωt

t . For example, if the prior-maintenance state of a component

in node ωt is g, the post-maintenance transition probability is Q(1, g′) (g′ ∈ G) and

Q(g, g′) (g′ ≥ g) otherwise, and this leads to different node transition probabilities.

Denote p(ωt+1|xωt

t ) as the probability from node ωt, t ∈ T \{T} to its child node

ωt+1 given decision xωt

t , and Qi(g, g
′) as the state transition probability from state g

to g′ for component i ∈ N . Since components deteriorate independently, we have

p(ωt+1|xωt

t ) =
∏
i∈N

[Qi(g
ωt

it , g
ωt+1

i,t+1)(1− xωt

it ) +Qi(1, g
ωt+1

i,t+1)xωt

it ].

Next, we develop the multi-stage stochastic model:

Decision variables (i ∈ N , ωt ∈ Ωt, t ∈ T ):

xωt

it : 1 if component i is maintained at node ωt in stage t, and 0 otherwise.

yωt

it : 1 if component i is correctively maintained at node ωt in stage t, and 0 otherwise.

zωt

t : 1 if there is any maintenance occurs at node ωt in stage t, and 0 otherwise.

Multi-stage stochastic model (P1):

V1 = min
x,y,z

∑
i∈N

ci,pmxi,1 +
∑
i∈N

(ci,cm − ci,pm)yi,1 + csz1 +
∑
ω2∈Ω2

p(ω2|x1)V2(ω2) (1)

s.t.

Vt(ωt) =



min
x,y,z

∑
i∈N

ci,pmx
ωt

it +
∑
i∈N

(ci,cm − ci,pm)yωt

it

+csz
ωt

t +
∑

ωt+1∈Ω(ωt)

p(ωt+1|xωt

t )Vt+1(ωt+1)
, i ∈ N , ωt ∈ Ωt, t ∈ T \{T},

min
x,y,z

∑
i∈N

ci,pmx
ωt

it +
∑
i∈N

(ci,cm − ci,pm)yωt

it

+csz
ωt

t

, i ∈ N , ωt ∈ Ωt, t = T

(2)
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xωt

it ≤ z
ωt

t , i ∈ N , ωt ∈ Ωt, t ∈ T (3)

gωt

it (1− yωt

it ) ≤ m− 1, i ∈ N , ωt ∈ Ωt, t ∈ T (4)

yωt

it ≤ x
ωt

it , i ∈ N , ωt ∈ Ωt, t ∈ T (5)

xωt

it , y
ωt

it ∈ {0, 1}, i ∈ N , ωt ∈ Ωt, t ∈ T (6)

zωt

t ∈ {0, 1}, ωt ∈ Ωt, t ∈ T (7)

Objective function (1) consists of the total cost at the first stage and the expected

total cost at the second stage. The objective function Vt(ωt) for node ωt ∈ Ωt at stage

t ∈ T is given by constraint (2). Constraints (3) ensure setup cost is incurred whenever

a maintenance action is performed. Constraints (4) force CM actions on all failed

components. Constraints (5) guarantee that the indicator of maintenance action (xωt

it )

is set to 1 when CM is performed. Constraints (6) and (7) are integrality constraints

for all decision variables.

As illustrated in Figure 1, the problem size of P1 grows exponentially as the

number of components increases. As discussed in the literature review, there is no

general method to solve this problem due to the lack of structural properties in multi-

stage stochastic integer programs with endogenous uncertainty. Therefore, we first

consider a two-stage problem.

The two-stage problem can be simplified by eliminating the second stage because

the closed-form solutions for all second-stage subproblems can be obtained. Note that

for the ease of notation, we drop the subscripts of ω2, Ω2 and V2 in the two-stage model.

First, for any subproblem ω ∈ Ω, the objective function V (ω) and all constraints are

independent of the first-stage decisions and only depends on the components’ states

in scenario ω. Because the second stage is the last stage of the two-stage problem, to

minimize any subproblem, it is obvious that we only need to correctively maintain all

failed components to satisfy constraints (4) and do nothing on functioning components.

Therefore, the optimal solutions in the second-stage subproblems are

(yωi,2)∗ = b
gωi,2
m
c, i ∈ N , ω ∈ Ω, (8)

(xωi,2)∗ = (yωi,2)∗, i ∈ N , ω ∈ Ω (9)
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and

(zω2 )∗ = min(1,
∑
i∈N

(xωi,2)∗), ω ∈ Ω. (10)

Based on Equations (8) to (10), the two-stage model (P2) is described as follows:

Two-stage stochastic model (P2):

min
∑
i∈N

ci,pmxi,1 +
∑
i∈N

(ci,cm − ci,pm)yi,1 + csz1 + V (11)

s.t.

xi,1 ≤ z1, i ∈ N (12)

gi,1(1− yi,1) ≤ m− 1, i ∈ N (13)

yi,1 ≤ xi,1, i ∈ N (14)

xi,1, yi,1 ∈ {0, 1}, i ∈ N (15)

z1 ∈ {0, 1} (16)where

V =
∑
ω∈Ω

p(ω|x1)V (ω) =
∑
i∈N

(Qi(gi,1,m)(1− xi,1) +Qi(1,m)xi,1))ci,cm

+ (1−
∏
i∈N

(1−Qi(gi,1,m)(1− xi,1)−Qi(1,m)xi,1))cs.
(17)

The two-stage model can be directly used in mission-critical applications where

successfully completing a mission (one-period) is the primary concern.

4. Structural properties of the two-stage model

In this section, we establish three structural properties for P2. The first property

provides an optimal solution to P2 based on the optimal solution without considering

economic dependence. Because the optimal solution without considering economic

dependence can be obtained easily, we can quickly identify the optimal solution to

P2 when the condition in Proposition 1 is satisfied. The second property establishes

the condition when changing the decision(s) of certain component(s) from do-nothing

to PM reduces the total maintenance cost. The third property establishes the condition

when changing the decision(s) of certain component(s) from PM to do-nothing reduces

the total maintenance cost. Propositions 2 and 3 are the theoretical foundation of

Algorithm 1 that solves P2 optimally.
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Proposition 1. If x̃∗i,1 = 1 ∀i ∈ N , then x∗i,1 = 1 ∀i ∈ N .

Proof. See Appendix A.1.

Proposition 1 shows that it is optimal to maintain all components (i.e. x∗i,1 = 1)

if all components need to be maintained when ignoring economic dependence (i.e.

x̃∗i,1 = 1). The optimal maintenance decision without considering economic dependence

x̃∗i,1 of component i ∈ N can be obtained easily as follows:

x̃∗i,1 =


1, when Qi(gi,1,m) >

ci,pm+cs

ci,cm+cs

+Qi(1,m) or gi,1 = m,

0, otherwise.

(18)

Proposition 1 leads to an optimal solution to P2 when x̃∗i,1 = 1 for all components

i ∈ N . However, the condition of x̃∗i,1 = 1 for all i ∈ N is a special scenario. Next, we

explore more general structural properties of the two-stage model.

Definition 1. A partition (N0, N1) of set N , i.e., N0 ∪ N1 = N and N0 ∩ N1 = ∅,

is a solution to P2, where N0 is the do-nothing set that collects all components that

are not maintained at the first stage, i.e., N0 = {i|xi,1 = 0, i ∈ N} and N1 is the

maintenancce set that includes all components that are maintained at the first stage,

i.e., N1 = {i|xi,1 = 1, i ∈ N} .

A partition (N0, N1) of N is feasible if every failed component at the first stage

belongs to N1. Therefore, determining the optimal x∗1 is now equivalent to find out a

feasible and optimal partition (N∗0 , N
∗
1 ) of N that minimizes the total cost. Next, we

give two propositions regarding how to improve a feasible partition (N0, N1).

Proposition 2. Consider two feasible partitions (N0, N1) and (N ′0, N
′
1) of N . Let C

and C ′ be their respective total costs. If N ′1\N1 = N and N 6= ∅, we have C ′ < C if

and only if ∆r(N0, N1, N) < 1, where

∆r(N0, N1, N) =


∑

k∈N ρk

rN
× 1

p(N0, N1)
, when N1 6= ∅,

1 +
∑

k∈N ρk

rN
× 1

p(N0, N1)
, otherwise.
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rN =
∏
i∈N

1−Qi(1,m)

1−Qi(gi,1,m)
− 1,

ρk =
ck,pm − (Qk(gk,1,m)−Qk(1,m))ck,cm

cs
,

and

p(N0, N1) =
∏
i∈N0

(1−Qi(gi,1,m))
∏
i∈N1

(1−Qi(1,m))

Proof. See Appendix A.2.

Proposition 2 helps to quickly identify a set N ⊆ N0 to improve the current

partition (N0, N1) by moving set N from the do-nothing set to the maintenance set.

∆r(N0, N1, N) consists of two parts:

∑
k∈N ρk

rN
and p(N0, N1). The first part is deter-

mined by the components in set N and the second part is the probability that all

components will survive in the second stage given the current decision partition, i.e.,

(N0, N1). The probability p(N0, N1) increases as more components are maintained.

Let us first examine the condition in Proposition 2 when |N | = 1. Suppose N =

{k}, k ∈ N0, Proposition 2 provides the condition of improving the current partition

by maintaining component k. When N1 6= ∅, we have

∆r(N0, N1, {k}) =
(ck,pm − (Qk(gk,1,m)−Qk(1,m))ck,cm)(1−Qk(gk,1,m))

cs(Qk(gk,1,m)−Qk(1,m))p(N0, N1)

≈
(ck,pm −Qk(gk,1,m)ck,cm)(1−Qk(gk,1,m))

csQk(gk,1,m)p(N0, N1)

(19)

because Qk(1,m) is the state transition probability from the perfect state to the failed

state and therefore Qk(1,m) ≈ 0 holds in many scenarios (e.g., when inspection in-

terval is not long). Based on Equation (19), we have several important observations:

(1) ∆r(N0, N1, {k}) increases as ck,pm increases. The increase in ∆r indicates that it

is less likely that we change the decision on k from no maintenance to PM. This is

because a higher PM cost makes it less cost-effective to perform PM at the first stage.

(2) ∆r(N0, N1, {k}) increases as ck,cm decreases. It is less incentive to perform PM on

component k with other components at the first stage when CM cost of component k is

lower. (3) ∆r(N0, N1, {k}) increases as cs decreases, because the decrease of setup cost

makes sharing setup cost at the first stage less cost-effective. And (4) ∆r(N0, N1, {k})
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increases as gk,1 decreases, meaning a better component condition makes it less worthy

to maintain the component at the first stage. Similar patterns can be observed when

|N | ≥ 2. Proposition 2 also provides the maintenance action for a new component.

Specifically, when gk,1 = 1, k ∈ N0, we have ∆r(N0, N1, {k}) = +∞ > 1, which implies

we should never maintain a new component.

Proposition 3. Consider two feasible partitions (N0, N1) and (N ′0, N
′
1) of N . Let C

and C ′ be their respective total costs. If N ′0\N0 = N and N 6= ∅, we have C ′ < C if

and only if ∆s(N0, N1, N) > 1, where

∆s(N0, N1, N) =


∑

k∈N ρk

sN
× 1

p(N0, N1)
, when N1 6= ∅,

1 +
∑

k∈N ρk

sN
× 1

p(N0, N1)
, otherwise.

sN = 1−
∏
i∈N

1−Qi(gi,1,m)

1−Qi(1,m)
,

and values ρk and p(N0, N1) are the defined in Proposition 2.

Proof. See Appendix A.3.

Proposition 3 helps to quickly identify a set N ⊆ N1 to improve the current

partition (N0, N1) by moving set N from the maintenance set to the do-nothing set.

Note that in contrast to considering N ⊆ N0 in Proposition 2, Proposition 3 considers

N ⊆ N1.

We similarly first investigate the condition in Proposition 3 when |N | = 1. Sup-

pose |N | = {k}, k ∈ N1, Proposition 3 establishes the condition of improving the

current partition by not maintaining component k. When N ′1 6= ∅, we have

∆s(N0, N1, {k}) =
(ck,pm − (Qk(gk,1,m)−Qk(1,m))ck,cm)(1−Qk(1,m))

cs(Qk(gk,1,m)−Qk(1,m))p(N0, N1)

≈
ck,pm −Qk(gk,1,m)ck,cm

csQk(gk,1,m)p(N0, N1)

(20)
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because Qk(1,m) ≈ 0 in many scenarios. Examining Equation (20), we observe similar

patterns regarding whether changing a component from PM to do-nothing reduces the

total maintenance costs as the ones we see from Equation (19).

Corollary 1. Let (N0 ∪ Nu, N1) and (N0, N1 ∪ Nu) be two feasible partitions of N .

For any set N ⊆ Nu and N 6= ∅, we have ∆r(N0 ∪Nu, N1, N) ≥ ∆s(N0, N1 ∪Nu, N),

where equality holds when N = Nu.

Proof. See Appendix B.1.

Corollary 1 shows that any set N ⊂ Nu satisfies either Proposition 2 or Proposi-

tion 3 or none. When N = Nu, set N satisfies either Proposition 2 or Proposition 3.

This corollary is needed to prove Proposition 4 in the next section.

5. Solution algorithms

Based on Propositions 2 and 3, we design Algorithm 1 that finds the optimal

partition (N∗0 , N
∗
1 ) for P2. Although the computational studies in the next section

show that Algorithm 1 is fast for most test cases, the time complexity of Algorithm 1

is O(2n) in the worst case scenario. Therefore, we develop Algorithm 2 to heuristically

search a better solution based on the results from the early termination of Algorithm

1. We further use the two-stage model and rolling horizon technique to approximate

the multi-stage problem P1.

5.1. Algorithm 1

Propositions 2 and 3 help to find a better solution given any feasible solution.

However, they do not necessarily lead any feasible solution to an optimal one. Next

we show that if Propositions 2 and 3 are applied following a certain procedure, an

optimal solution can be obtained.

Let Nu be the undetermined set in which all components’ first-stage decisions are

not determined. Constructing an optimal partition (N0, N1) implies optimally moving

all subsets N ⊆ Nu to N0 or N1. The proposed procedure starts from searching all

subsets with |N | = 1 and increases the cardinality of N by 1 until some N is moved
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to N1 based on Proposition 2 or N0 based on Proposition 3. Because the conditions

of Propositions 2 and 3 change after moving N , the search restarts from |N | = 1.

This process is repeated until Nu = ∅. It can be easily verified that 2n sets need to be

examined in the worst case scenario.

Algorithm 1 Determining an optimal partition (N∗0 , N
∗
1 ) for P2

Input: Component set N ;
PM cost ci,pm and CM cost ci,cm ∀i ∈ N and setup cost cs;
Component state gi,1 ∀i ∈ N
State transition probability Qi(1,m) and Qi(gi,1,m) ∀i ∈ N .

Output: Optimal partition (N∗0 , N
∗
1 ) of N

1: Initial N∗0 ← ∅, N∗1 ← ∅, j ← 1, undetermined set Nu ← N ;
2: for i ∈ N do// maintain all failed components
3: if gi,1 = m then
4: N∗1 = N∗1 ∪ {i},Nu = Nu\{i};
5: end if
6: end for
7: while Nu 6= ∅ do // Keep moving N ⊆ Nu to N∗0 and N∗1 until Nu = ∅
8: N0 ← ∅, N1 ← ∅, u← |Nu|;
9: N j ← all subsets of Nu with cardinality j;

10: for each set N ∈ N j do
11: if ∆r(N

∗
0 ∪Nu, N

∗
1 , N) < 1 then

12: N1 ← N1 ∪N ; //N satisfies Proposition 2, move N to N1

13: else if ∆s(N
∗
0 , N

∗
1 ∪Nu, N) ≥ 1 then

14: N0 ← N0 ∪N ; //N satisfies Proposition 3, move N to N0

15: end if
16: end for
17: Nu ← Nu\(N1 ∪N0), N∗0 ← N∗0 ∪N0, N∗1 ← N∗1 ∪N1;
18: if u > |Nu| then // If Nu is reduced
19: j ← 1; //Search N from |N | = 1.
20: else
21: j ← j + 1;//Search N at a higher cardinality.
22: end if
23: end while
24: return (N∗0 , N

∗
1 );

Specifically, we initialize N0 = ∅, N1 to include all failed components to ensure

the feasibility, and Nu = N\N1. If there is any subset N ⊆ Nu with |N | = 1 satisfies

Proposition 2 (Proposition 3), we move N from Nu to N1 (N0) after all subsets with

|N | = 1 are searched. If there is no subset N with |N | = 1 satisfies Propositions 2 or

3, we search the subsets N with |N | = 2, 3, ..., |Nu| in an ascending order until some

N satisfying the condition in Propositions 2 or 3 is obtained and moved out of Nu. We

then update Nu and restart to search the subset N from |N | = 1. The construction of

the optimal partition (N0, N1) terminates when Nu = ∅. The optimality of partition
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(N0, N1) given by Algorithm 1 is proved in Proposition 4.

Proposition 4. The partition (N∗0 , N
∗
1 ) given by Algorithm 1 is an optimal partition.

Proof. See Appendix A.4.

5.2. Algorithm 2

As stated previously, Algorithm 1 requires to examine 2n sets in the worst case

scenario. To ensure that we obtain a high-quality solution in a reasonable amount of

time, we develop Algorithm 2 that heuristically finds a sub-optimal solution based on

Algorithm 1.

Algorithm 2 Heuristic algorithm for P2

Input: N∗0 and N∗1 ← results from Algorithm 1 by setting J as the maximum set
cardinality to search;

Maximum number of partitions M ;
Output: Sub-optimal partition (N ′0, N

′
1) of N .

1: Nu ← N\(N∗0 ∪N∗1 );
2: Randomly generate M partitions (N∗0 ∪N̄0, N

∗
1 ∪N̄1), including (N∗0 ∪Nu, N

∗
1 ) and

(N∗0 , N
∗
1 ∪Nu), where N̄0 ∪ N̄1 = Nu;

3: Select the best partition (N ′0, N
′
1) that has the minimum cost among M partitions;

4: return (N ′0, N
′
1);

Specifically, we first terminate Algorithm 1 after the cardinality of |N | exceeds the

maximum cardinality J specified, which means we only search the component set that

has no more than J components. Based on N∗0 and N∗1 obtained from early termination

of Algorithm 1, we randomly generate M partitions (N̄0, N̄1) of undetermined set

Nu = N\(N∗0 ∪N∗1 ), and select the best partition (N∗0 ∪ N̄0, N
∗
1 ∪ N̄1) of N . Note that

it is suggested to include the options of maintaining all and none of undetermined

components as candidate solutions, because many of our experiments show that it is

likely that the optimal partition is either (N∗0 ∪Nu, N
∗
1 ) or (N∗0 , N

∗
1 ∪Nu).

5.3. Algorithm 3

We further use P2 to approximate the multi-stage model (P1) by utilizing the

rolling horizon technique. At each decision period t, we solve P2 which consists of

periods t and t + 1 using Algorithm 2 and employ the first-stage solutions as the
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decisions for period t. The states components transition to in the next period (i.e.,

period t+ 1) are determined by the decision made in the previous period (i.e., period

t) and the transition probabilities. We then solve a new P2 consisting of decision

periods t+ 1 and t+ 2 and use the first-stage solution as the decisions for period t+ 1.

This process is repeated until the last decision period is reached. This procedure is

summarized in Algorithm 3.

Algorithm 3 Solving multi-stage model using a rolling-horizon approach

Output: A solution over planning horizon T
1: for t ∈ T \{T} do
2: Solve P2 using Algorithm 2, and obtain the first-stage solutions xit, yit and zt

for all components i ∈ N ;
3: end for
4: The last stage solutions xiT , yiT and zT for all components i ∈ N are given by

Equations (8) to (10);
5: return xit, yit and zt for all components i ∈ N at all stages t ∈ T .

In many real applications, when more degradation information becomes available

upon inspection at each decision period, Bayesian updating can be easily performed

to obtain more accurate degradation distributions and better-informed maintenance

decisions can be made.

6. Computational study

In this section, we first linearize P2 so that small-scale problems of P2 can be

solved by commercial solvers such as CPLEX for comparison purposes. We then con-

duct computational studies to examine the performance of Algorithms 1 and 2. The

proposed models and algorithms are then illustrated by two real-world cases.

6.1. Linearization of P2

In Equation (17), the term
∏
i∈N (1−Qi(gi,1,m)(1− xi,1)−Qi(1,m)xi,1) is non-

linear, which is linearized first. The term
∏
i∈N (1−Qi(gi,1,m)(1−xi,1)−Qi(1,m)xi,1)

can be expanded to a polynomial function of xi,1, i ∈ N , with degree of n. After the

expansion, we observe that all non-linear terms are the products of multiple (from

2 to n) binary decision variables xi,1, i ∈ N . Standard linearization method for the

multiplication of multiple binary variables are applied here [50]. After linearization,
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we replace Equation (17) by Equation (21) in model P2,

V =
∑
i∈N

(Qi(gi,1,m)(1− xi,1) +Qi(1,m)xi,1))ci,cm

+ (1−
1∑
j=0

|Nj |∑
k=1

∏
i∈Nj

k

∏
r∈N\Nj

k

aixi,1br −
n∑
j=2

|Nj |∑
k=1

ujk

∏
i∈Nj

k

∏
r∈N\Nj

k

aibr)cs

(21)

where

bi = 1−Qi(gi,1,m), i ∈ N (22)

ai = Qi(gi,1,m)−Qi(1,m), i ∈ N (23)

ukj ≤ xi,1, j ∈ {2, ..., n}, k ∈ {1, ..., |N j |}, i ∈ N j
k (24)

ukj ≥
∑
i∈Nj

k

xi,1 − (j − 1), j ∈ {2, ..., n}, k ∈ {1, ..., |N j |} (25)

ukj ∈ {0, 1}, j ∈ {2, ..., n}, k ∈ {1, ..., |N j |}. (26)

Note that set N j collects all subsets of N that have cardinality j and therefore

|N j | =

(
n

j

)
, j ∈ {0, 1, 2, ..., n}. For each set N j

k ∈ N j , k ∈ {1, ..., |N j |}, we have

N j
k ⊆ N and |N j

k | = j.

6.2. Computational studies

We first compare the computational time of Algorithm 1 with CPLEX for small-

scale problems. We then examine the computational time and cost error of Algorithms

1 and 2 for large-scale problems.

We assume the degradation of all components can be described by gamma pro-

cesses with shape parameter αt and rate parameter γ. The continuous degradation

levels are divided into several intervals to represent different states, and the transition

probabilities can be computed accordingly. Without loss of generality, we assume in-

spection interval is 1. We arbitrarily set M = 100, which is the maximum partitions

generated in Algorithm 2. We consider systems with different number of components

n ∈ {10, 11, ..., 19}. For each n, we consider 100 instances with different combinations

of degradation processes, and costs of PM and CM. The degradation parameters, and
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the costs of PM and CM are drawn from uniform distributions U(·, ·). Therefore, a

total of 10,000 experiments are run. Table 1 summarizes the baseline parameters.

Table 1. Baseline parameters for numerical example

α γ
failure

threshold
m

PM
cost

CM
cost

cs instance M

U(1, 5) U(0.2, 1) 20 11 U(1, 5) U(10, 30) 20 100 100

For each n, we examine the average performance of 100 problem instances. Table

2 presents the computational times of solving P2 by CPLEX and Algorithm 1 for

different numbers of components. NA is reported when the computational time is either

longer than 1 day or out of memory. From Table 2, we can see that the computational

time of using CPLEX grows exponentially as the number of components increases. In

contrast, Algorithm 1 finds the optimal solutions in a short amount of time.

Table 2. Computational time of solving P2 (in seconds)

n solver Algorithm 1 n solver Algorithm 1
10 0.422 0.0002 15 186.171 0.0004
11 1.029 0.0003 16 832.674 0.0004
12 3.064 0.0003 17 5093.700 0.0005
13 11.943 0.0003 18 NA 0.0005
14 46.014 0.0004 19 NA 0.0005

Next, we investigate the performances of Algorithms 1 and 2 for large-scale prob-

lems. For each n, we similarly examine 100 problem instances. Note that CPLEX

cannot solve any large-scale cases tested. Table 3 summarizes the performance of Al-

gorithms 1 and 2 for large-scale problems. For each n in Algorithm 1, we are interested

in the average computational time of the 100 problem instances (avg. time), the max-

imum computational time (max time), the average jm (avg. jm) and the maximum

jm (max jm), where jm is the maximum set cardinality j that Algorithm 1 searched.

From Table 3, we can see that the average time in general increases as the number of

components increases. It is also noted that the maximum search time of Algorithm 1

increases substantially as the number of components increases. This is because the so-

lution space increases significantly as the number of components increases. As a result,

Algorithm 1 may have to search more sets at higher cardinalities of |N | before reaching
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the optimality criterion (i.e., undetermined set is empty). This is evidenced by the in-

crease of jm. A higher cardinality generates more sets to be examined in Propositions

2 and 3, and this consumes more computational time. For Algorithm 2, we examine

the computational time and cost error for different stopping criteria J , which is the

maximum set cardinality that Algorithm 1 allowed to search. We note that cost errors

are all zero compared with the true objective value obtained by Algorithm 1, which

shows Algorithm 2 can find high-quality solutions within a reasonable amount of time.

We similarly observe that computational time increases as J increases.
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We further examine the performance the two-stage rolling horizon approach (Al-

gorithm 3) in approximating the multi-stage model by comparing results from our

approach with optimal results on small-scale problems where exact solutions can be

obtained. We arbitrarily use one problem setting by taking a sample of parameters

based on Table 1 and replicate the problem 1000 times to obtain the average cost

using Algorithm 3. Enumeration approach is used to obtain the exact solutions, since

the problem size is small. Table 4 summarizes the computational results of differ-

ent instances that can be solved within one day. From Table 4, we can see that cost

percentage errors are below 20% for all cases considered, which shows that the two-

stage rolling horizon approach provides an acceptable approximation to the multi-stage

problem.

Table 4. Performance of two-stage rolling horizon
in approximating multi-stage model

multi-stage two-stage rolling horizon

n T cost avg. cost error %

2
3 24.49 24.85 1.47%
4 31.37 34.83 11.03%
5 37.09 40.33 8.74%

3
3 30.34 35.72 17.73%
4 40.67 47.92 17.83%
5 53.78 63.50 18.07%

6.3. Case 1: degradation of wind turbine blades

Offshore wind farms are rapidly [26] developing in recent years to provide the

renewable energy for sustainable development. An offshore wind farm is usually built

thousand meters away from the coastline and typically has hundreds of wind turbines.

A wind turbine consists of multiple components, such as blade, main bearing, gear-

box, and generator. If a maintenance team is sent to maintain a wind turbine, it is

economically beneficial to jointly maintain other wind turbines [9].

Due to the tensile mechanical loading and corrosive marine environment, stress

corrosion cracking (SCC) is one of the major contributors to blades’ degradation.

Shafiee et al. [26] model the monthly propagation of SCC as a stationary gamma
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process with an estimated shape parameter α̂ = 0.542 and rate parameter γ̂ = 1.147.

We consider a three-blade wind turbine system in this case study. Consider a

planning horizon T = 10 and an inspection interval of 12 months. Based on some pilot

studies, we discretize the condition of a blade into 11 states, because this number of

states provides us an acceptable decision accuracy while ensuring that the discretized

states are robust to measurement errors. The PM cost is 200,000 Monetary Unit (MU).

We consider two levels of CM costs: 600,000 MU and 1,000,000 MU.The setup cost is

130,000 MU and the failure threshold is 20 cm [26].

Table 5. Results of multi-stage approximation (CM cost = 600,000)

t\i 1 2 3
ξ̃∗

state decision state decision state decision
1 6 no action 5 no action 8 no action

8
2 10 PM 7 no action 11 CM
3 4 no action 10 PM 4 no action
4 5 no action 4 no action 8 no action
5 6 no action 9 PM 11 CM
6 8 no action 2 no action 2 no action
7 10 PM 5 no action 5 no action
8 6 no action 8 no action 10 PM
9 8 PM 10 PM 4 no action
10 4 no action 4 no action 6 no action
Note: the decisions that are different from the decisions without
economic dependence are shown in boldface

Table 6. Results of multi-stage approximation (CM cost = 1,000,000)

t\i 1 2 3
ξ̃∗

state decision state decision state decision
1 6 no action 5 no action 8 PM

8
2 10 PM 7 no action 5 no action
3 4 no action 10 PM 8 PM
4 5 no action 4 no action 5 no action
5 6 no action 9 PM 8 PM
6 8 PM 2 no action 2 no action
7 3 no action 5 no action 5 no action
8 8 PM 7 PM 9 PM
9 3 no action 3 no action 4 no action
10 6 no action 5 no action 6 no action
Note: the decisions that are different from the decisions without
economic dependence are shown in boldface

We use Algorithm 3 to solve this maintenance planning problem. We compare
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the decisions with and without considering economic dependence. Denote the PM

threshold for each component in the two-stage model without considering economic

dependence by ξ̃∗: If the component state is below ξ̃∗, no maintenance is performed,

and if the component is functioning and the state exceeds or equals to ξ̃∗, PM is

performed.

Tables 5 and 6 summarize the results when CM cost is 600,000 MU and 1,000,000

MU respectively. The threshold ξ̃∗ is 8 in both cases. From Tables 5 and 6, we can

observe that maintenance decisions with and without consideration of economic de-

pendence are different. For example, at the first decision stage (t = 1) in Table 5,

we can see that component 3 is not preventively maintained as it would be without

considering economic dependence, so it can share the setup cost with component 1 at

decision stage 2. From Table 6, we can see that component 2 is preventively maintained

at decision period 8 when it is in state 7, which is below the optimal PM threshold

when ignoring economic dependence.

6.4. Case 2: degradation of crude-oil pipelines

The reliability of crude-oil pipelines are critical to the safety of liquid energy

supply in modern industries. Due to the corrosion, crack and mechanical damage,

pipelines gradually deteriorate, which result in the decrease of pipeline wall thickness.

Based on the degradation data of six pipelines provided by a local chemical plant,

we model the degradation process as a gamma process with random effects, where the

shape parameter is αt and the rate parameter is γ. Random effects is used to capture

the heterogeneities among all pipelines by assuming the rate parameter γ follows a

gamma distribution with shape parameter κ and rate parameter λ. We regard the γ

as unknown for all pipelines, and use the expectation-maximization algorithm [51] to

estimate the parameters of α, κ and λ. Based on the data, we obtain the estimated

parameters α̂ = 1.0824, κ̂ = 8.556 and λ̂ = 7.654.

We consider 17 pipelines located in a small region and all pipes are shutdown

when any pipe is maintained. For each pipeline, the wall thickness is 10mm when it

is new, and the retirement thickness (failure threshold) 8mm. The number of decision

stages is 5. Suppose the costs of PM and CM are 5 and 20, and setup cost is 200.

We solve this multi-stage pipeline maintenance problem by Algorithm 3. We

similarly compare the decisions with and without economic dependence. In this case,
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Table 7. Components’ states and maintenance decisions

i\t 1 2 3 4 5
1 4 no action 6 no action 9 PM 5 no action 9 no action
2 8 PM 4 no action 5 no action 10 no action 11 CM
3 10 PM 4 no action 7 PM 5 no action 9 no action
4 5 no action 10 no action 11 CM 3 no action 5 no action
5 4 no action 5 no action 9 PM 5 no action 7 no action
6 9 PM 3 no action 6 PM 4 no action 6 no action
7 2 no action 3 no action 5 no action 7 no action 9 no action
8 10 PM 4 no action 7 PM 4 no action 6 no action
9 9 PM 3 no action 6 PM 3 no action 6 no action
10 9 PM 3 no action 4 no action 7 no action 8 no action
11 10 PM 3 no action 5 no action 6 no action 9 no action
12 7 PM 5 no action 8 PM 3 no action 4 no action
13 9 PM 2 no action 5 no action 7 no action 10 no action
14 1 no action 5 no action 9 PM 3 no action 4 no action
15 5 no action 6 no action 8 PM 4 no action 6 no action
16 10 PM 3 no action 8 PM 2 no action 5 no action
17 2 no action 3 no action 4 no action 7 no action 10 no action

the optimal PM threshold without considering economic dependence is ξ̃∗ = 10. Table

7 presents the state and maintenance action for each component i at stage t. The

decisions different from those without considering economic dependence are shown in

boldface. Because setup cost is much higher than the CM cost, from Table 7, we can

see that there is a large number of different decisions, which shows the necessity of

considering economic dependence when it exists.

We further investigate the impacts of parameter estimation uncertainty by con-

sidering estimated parameters as random variables. Let Θ = (α, κ, λ) be the vector

of parameters to be estimated. Given a parameter estimation Θ̂ the conditional cost

is denoted by C(Θ̂) and the PDF value of Θ̂ is denoted by f(Θ̂). Based on the esti-

mations, the unconditional cost is C =
∫
C(Θ̂)f(Θ̂)d(Θ̂). The form of PDF f(Θ̂) is

typically complicated, and therefore it is difficult to derive the closed-form of C. We

use the method in [52] to approximate the unconditional cost. Specifically, we first use

the bootstrap method to generate 500 samples of parameters. We then use the average

conditional costs based on these samples to approximate the unconditional cost C. Our

result shows that the mean and standard deviation of conditional costs are 770.57 and

260.5. Compared with the total maintenance cost 740 when parameter uncertainty is

not considered, the impact of parameter estimation uncertainty is acceptable.
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7. Conclusion and future research

In this paper, we study CBM optimization problem for multi-component systems

over a finite planning horizon. We formulate the problem as a multi-stage stochas-

tic integer program, providing analytical expressions for total cost and maintenance

decisions. The proposed multi-stage stochastic maintenance optimization model has

integer decision variables and non-linear transition probability due to the endogenous

uncertainty, and is computationally intractable. We first investigate structural prop-

erties of the two-stage problem and design efficient algorithms to obtain high-quality

solutions based on the structural properties. The multi-stage model is then approxi-

mated by the two-stage model using a rolling horizon approach. Computational studies

show that Algorithm 1 can solve many cases to optimality quickly and Algorithm 2

can find high-quality solutions within a very short amount of time.

This work provides a new modeling approach in modeling multi-component

condition-based maintenance. Future research will consider other practical assump-

tions, such as the limit of maintenance budget, the requirement of system’s reliability

and availability, state-dependent PM cost, and state-dependent operational cost. In

this paper, we mainly consider economic dependence, it is worth to further consider

stochastic and structure dependences. It will also be interesting to address situations

when we do not know the exact transition probabilities. A robust optimization ap-

proach may be applicable.
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Appendix

A.1. Proof of Proposition 1

Proof. (1) We first consider the case where there is no failed component in the first

stage.

We need to compare the total costs among three cases for partition (N0, N1): (a)

N0 = ∅, (b) N0 6= ∅ and N1 6= ∅ and (c) N0 = N . Denote C1, C2 and C3 by the total

costs for the three cases respectively, we show that C1 is minimum.

Denote the total cost for component i ∈ N without considering economic depen-

dence by


TC1

i = ci,pm + cs +Qi(1,m)(ci,cm + cs), x̃i,1 = 1,

TC0
i = Qi(gi,1,m)(ci,cm + cs), x̃i,1 = 0,

Because x̃∗i,1 = 1, we have TC1
i < TC0

i , ∀i ∈ N .

Thus, we have

C1 =
∑
i∈N

TC1
i − (n− 1)cs − cs

∑
i∈N

Qi(1,m) + cs(1−
∏
i∈N

(1−Qi(1,m)),

C2 =
∑
i∈N0

TC0
i +

∑
i∈N1

TC1
i − (|N1| − 1)cs − cs(

∑
i∈N0

Qi(gi,1,m) +
∑
i∈N1

Qi(1,m))

+ cs(1−
∏
i∈N0

(1−Qi(gi,1,m))
∏
i∈N1

(1−Qi(1,m))) and

C3 =
∑
i∈N

TC0
i − cs

∑
i∈N

Qi(gi,1,m) + cs(1−
∏
i∈N

(1−Qi(gi,1,m)).

(1a) Prove C1 < C2.

Because



TC0
i > TC1

i

(|N1| − 1) cs + cs

(∑
i∈N0

Qi(gi,1,m) +
∑

i∈N1
Qi(1,m)

)
< (n− 1)cs + cs

∑
i∈N Qi(1,m)

cs(1−
∏
i∈N0

(1−Qi(gi,1,m))
∏
i∈N1

(1−Qi(1,m))) > cs(1−
∏
i∈N (1−Qi(1,m))

we have C1 < C2.

(1b) Prove C1 < C3
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It is easy to show that function f(v1, v2, ..., vn) =
∑

i∈N vi +
∏
i∈N (1 − vi) has

∂f
∂vi
≥ 0 for all 0 ≤ vi ≤ 1, i ∈ N . Therefore, we have

max(C1) = C1|Qi(1,m)=0,∀i∈N =
∑
i∈N

TC1
i − (n− 1)cs

and

min(C3) = C3|Qi(gi,1,m)=1,∀i∈N =
∑
i∈N

TC0
i − (n− 1)cs.

Because TC0
i > TC1

i for all i ∈ N , we have C1 ≤ max(C1) < min(C3) ≤ C3.

Therefore, C1 is minimum.

(2) Consider the case where there exists at least one component failed at the first

stage.

Let set N ⊆ N collect all failed components and N 6= ∅. Following proof (1), we

only need to compare case (a) and feasible case (b) because case (c) is not feasible.

The cost of case (a) and feasible case (b) are denoted by C ′1 and C ′2 respectively,

where

C ′1 = C1 +
∑
i∈N

(ci,cm − ci,pm)

and

C ′2 = C2 +
∑
i∈N

(ci,cm − ci,pm).

From C1 < C2 in proof (1a), we have C ′1 < C ′2.

A.2. Proof of Proposition 2

Proof. Denote the total cost for component i ∈ N without considering economic
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dependence by


TC1

i = ci,pm + cs +Qi(1,m)(ci,cm + cs), x̃i,1 = 1,

TC0
i = Qi(gi,1,m)(ci,cm + cs). x̃i,1 = 0,

and let Qi(1,m) = Qi(1) and Qi(gi,1,m) = Qi(g) ∀i ∈ N , then we have

C =
∑
i∈N0

TC0
i +

∑
i∈N1

TC1
i − (max(|N1| − 1, 0))cs − cs(

∑
i∈N0

Qi(g) +
∑
i∈N1

Qi(1))

+ cs(1−
∏
i∈N0

(1−Qi(g))
∏
i∈N1

(1−Qi(1)))

C ′ =
∑
i∈N ′

0

TC0
i +

∑
i∈N ′

1

TC1
i − (max(|N ′1| − 1, 0))cs

− cs(
∑
i∈N ′

0

Qi(g) +
∑
i∈N ′

1

Qi(1)) + cs(1−
∏
i∈N ′

0

(1−Qi(g))
∏
i∈N ′

1

(1−Qi(1)))

If N1 = ∅, we have

C ′ − C =
∑
k∈N

(TC1
k − TC0

k) + cs

∑
k∈N

(Qk(g)−Qk(1))

+ cs(
∏
i∈N0

(1−Qi(g))
∏
i∈N1

(1−Qi(1))−
∏
i∈N ′

0

(1−Qi(g))
∏
i∈N ′

1

(1−Qi(1)))

=
∑
k∈N

(ck,pm − (Qk(g)−Qk(1)) ck,cm)︸ ︷︷ ︸
ρkcs

+cs

− cs

∏
i∈N0

(1−Qi(g))
∏
i∈N1

(1−Qi(1))︸ ︷︷ ︸
p(N0,N1)

(∏
k∈N

1−Qk(1)

1−Qk(g)
− 1

)
︸ ︷︷ ︸

rN

=
∑
k∈N

ρkcs + cs − csp(N0, N1)rN

Therefore, from C ′ < C, we have

∑
k∈N ρkcs + cs

csrNp(N0, N1)
=

1 +
∑

k∈N ρk

rNp(N0, N1)
= ∆r(N0, N1, N) < 1.

From ∆r(N0, N1, N) < 1, we have C ′ < C.
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Similarly, if N1 6= ∅,

C ′ − C =
∑
k∈N

(TC1
k − TC0

k)− |N |cs + cs

∑
k∈N

(Qk(g)−Qk(1))

+ cs(
∏
i∈N0

(1−Qi(g))
∏
i∈N1

(1−Qi(1))−
∏
i∈N ′

0

(1−Qi(g))
∏
i∈N ′

1

(1−Qi(1)))

=
∑
k∈N

(ck,pm − (Qk(g)−Qk(1)) ck,cm)︸ ︷︷ ︸
ρkcs

− cs

∏
i∈N0

(1−Qi(g))
∏
i∈N1

(1−Qi(1))︸ ︷︷ ︸
p(N0,N1)

(∏
k∈N

1−Qk(1)

1−Qk(g)
− 1

)
︸ ︷︷ ︸

rN

=
∑
k∈N

ρkcs − csp(N0, N1)rN

Therefore, from C ′ < C, we have

∑
k∈N ρkcs

csrNp(N0, N1)
=

∑
k∈N ρk

rNp(N0, N1)
= ∆r(N0, N1, N) < 1.

From ∆r(N0, N1, N) < 1, we have C ′ < C.

A.3. Proof of Proposition 3

Proof. Denote the total cost for component i ∈ N without considering economic

dependence by


TC1

i = ci,pm + cs +Qi(1,m)(ci,cm + cs), x̃i,1 = 1,

TC0
i = Qi(gi,1,m)(ci,cm + cs). x̃i,1 = 0,

and let Qi(1,m) = Qi(1) and Qi(gi,1,m) = Qi(g) ∀i ∈ N , then we have

C =
∑
i∈N0

TC0
i +

∑
i∈N1

TC1
i − (max(|N1| − 1, 0))cs − cs(

∑
i∈N0

Qi(g) +
∑
i∈N1

Qi(1))

+ cs(1−
∏
i∈N0

(1−Qi(g))
∏
i∈N1

(1−Qi(1)))
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C ′ =
∑
i∈N ′

0

TC0
i +

∑
i∈N ′

1

TC1
i − (max(|N ′1| − 1, 0))cs − cs(

∑
i∈N ′

0

Qi(g) +
∑
i∈N ′

1

Qi(1))

+ cs(1−
∏
i∈N ′

0

(1−Qi(g))
∏
i∈N ′

1

(1−Qi(1)))

If N ′1 = ∅, we have

C − C ′ =
∑
k∈N

(TC1
k − TC0

k) + cs

∑
k∈N

(Qk(g)−Qk(1))

+ cs(
∏
i∈N ′

0

(1−Qi(g))
∏
i∈N ′

1

(1−Qi(1))−
∏
i∈N0

(1−Qi(g))
∏
i∈N1

(1−Qi(1)))

=
∑
k∈N

(ck,pm − (Qk(g)−Qk(1)) ck,cm)︸ ︷︷ ︸
ρkcs

+cs

− cs

∏
i∈N0

(1−Qi(g))
∏
i∈N1

(1−Qi(1))︸ ︷︷ ︸
p(N0,N1)

(
1−

∏
k∈N

1−Qk(g)

1−Qk(1)

)
︸ ︷︷ ︸

sN

=
∑
k∈N

ρkcs + cs − csp(N0, N1)sN

From C > C ′, we have
∑

k∈N ρkcs + cs − csp(N0, N1)sN > 0. Therefore,

∑
k∈N ρkcs + cs

cssNp(N0, N1)
=

1 +
∑

k∈N ρk

sNp(N0, N1)
= ∆s(N0, N1, N) > 1,

From ∆s(N0, N1, N) > 1, we have C > C ′.

Similarly, if N ′1 6= ∅,

C − C ′ =
∑
k∈N

(TC1
k − TC0

k)− |N |cs + cs

∑
k∈N

(Qk(g)−Qk(1))

+ cs(
∏
i∈N ′

0

(1−Qi(g))
∏
i∈N ′

1

(1−Qi(1))−
∏
i∈N0

(1−Qi(g))
∏
i∈N1

(1−Qi(1)))

=
∑
k∈N

(ck,pm − (Qk(g)−Qk(1)) ck,cm)︸ ︷︷ ︸
ρkcs

− cs

∏
i∈N0

(1−Qi(g))
∏
i∈N1

(1−Qi(1))︸ ︷︷ ︸
p(N0,N1)

(
1−

∏
k∈N

1−Qk(g)

1−Qk(1)

)
︸ ︷︷ ︸

sN

=
∑
k∈N

ρkcs − csp(N0, N1)sN
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From C > C ′, we have

∑
k∈N ρkcs

cssNp(N0, N1)
=

∑
k∈N ρk

sNp(N0, N1)
= ∆s(N0, N1, N) > 1,

From ∆s(N0, N1, N) > 1, we have C > C ′

A.4. Proof of Proposition 4

Proof. We prove this proposition by showing that the cost of partition (N∗0 , N
∗
1 ) is

no worse than that of any other feasible partitions.

For any other feasible partition (N ′0, N
′
1) and the partition (N∗0 , N

∗
1 ) that is

obtained by Algorithm 1, we always rewrite (N ′0, N
′
1) = (N0 ∪ Nb, N1 ∪ Na) and

(N∗0 , N
∗
1 ) = (N0 ∪Na, N1 ∪Nb) respectively, where set N0 = N ′0 ∩N∗0 , N1 = N ′1 ∩N∗1 ,

Nb = N ′0\N0 = N∗1 \N1 and Na = N ′1\N1 = N∗0 \N0. We now show that the cost of par-

tition (N∗0 , N
∗
1 ) is no worse than that of (N ′0, N

′
1) by the following three parts: (1) When

Nb 6= ∅, we have cost relationship (N∗0 , N
∗
1 ) = (N0∪Na, N1∪Nb) < (N0∪Na∪Nb, N1),

(2) when Nb 6= ∅, we have cost relationship (N0∪Na∪Nb, N1) < (N0∪Nb, N1∪Na) =

(N ′0, N
′
1), and (3) we have cost (N ′0, N

′
1) = (N∗0 , N

∗
1 ) if and only if Nb = ∅ and

∆r(N0 ∪Na, N1, Na) = ∆s(N0, N1 ∪Na, Na) = 1.

(1) When Nb 6= ∅, we have cost relationship (N∗0 , N
∗
1 ) = (N0 ∪ Na, N1 ∪ Nb) <

(N0 ∪Na ∪Nb, N1).

This is equivalent to show that given current partition (N0∪Na∪Nb, N1), moving

Nb from the do-nothing set to the maintenance set can reduce cost. We next show

that if we keep moving the component that arrives first in Nb in Algorithm 1 to the

maintenance set, the cost keeps reducing until Nb = ∅, which implies moving the whole

set Nb to the maintenance set reduces cost.

Denote the costs of (N0 ∪ Na, N1 ∪ Nb) and (N0 ∪ Na ∪ Nb, N1) by C and C0

respectively, and initialize C ′ = C0. We prove C < C0 by the following steps:

Step 1: If all components in Nb are moved into N∗1 after set N1 does in Algorithm

1, then C < C0 because the cost reduces if we repeat how Algorithm 1 moves Nb to

N∗1 .

Step 2: In this step, there exists at least one component i ∈ Nb that joins N∗1

no later than some component in N1. Suppose component k ∈ Nb is the earliest one

in Nb that joins N∗1 and suppose k joins N∗1 along with set Sj , i.e., k ∈ Sj , where
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|Sj | = j and Sj ⊆ N∗1 . Therefore, when Sj ⊆ N∗1 joins N∗1 , the current partition is

(N0 ∪ Na ∪ Nb ∪ S,N1\S), where set Sj\{k} ⊆ S, and hence from Proposition 2, we

have

∆r(N0 ∪Na ∪Nb ∪ S,N1\S, Sj) < 1. (27)

Step 3: If j = 1, then Sj = {k}. Denote the costs for partition (N0 ∪ Na ∪

Nb\{k}, N1 ∪{k}) by C1. From Inequation (27), we have ∆r(N0 ∪Na ∪Nb, N1, {k}) <

∆r(N0 ∪ Na ∪ Nb ∪ S,N1\S, {k}) < 1 and therefore C1 < C ′. We then update Nb =

Nb\{k} and C ′ = C1 and go to Step 1.

Step 4: In this step, we have j > 1. From Algorithm 1, we know that any subset

N ⊂ Sj cannot join N∗1 given current partition (N0 ∪ Na ∪ Nb ∪ S,N1\S). From

Proposition 2, we have

∆r(N0 ∪Na ∪Nb ∪ S,N1\S,N) > 1. (28)

Let N + {k} = Sj . We have

rNp(N0 ∪Na ∪Nb ∪ S,N1\S) + ρk <
∑
i∈N

ρi + ρk < rSjp(N0 ∪Na ∪Nb ∪ S,N1\S),

where the first inequality is from Inequation (28) and the second inequality is from

Inequation (27). Therefore, we have ρk < (rSj − rN )p(N0 ∪ Na ∪ Nb ∪ S,N1\S) and

hence

∆r(N0 ∪Na ∪Nb, N1, {k}) =
ρk

r{k}p(N0 ∪Na ∪Nb, N1)

<
(rSj − rN )p(N0 ∪Na ∪Nb ∪ S,N1\S)

r{k}p(N0 ∪Na ∪Nb, N1)

=

∏
i∈N

1−Qi(1,m)
1−Qi(gi,1,m)p(N0 ∪Na ∪Nb ∪ S,N1\S)

p(N0 ∪Na ∪Nb, N1)

=
p(N0 ∪Na ∪Nb ∪ S\N, (N1 ∪N)\S)

p(N0 ∪Na ∪Nb, N1)
≤ 1,

where the last inequality is from N = Sj\{k} ⊆ S. From Proposition 2, by denoting

the cost of partition (N0 ∪ Na ∪ Nb\{k}, N1 ∪ {k}) by C1, we have C1 < C ′ since
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∆r(N0 ∪Na ∪Nb, N1, {k}) < 1. We then update Nb = Nb\{k} and C ′ = C1 and go to

Step 1.

Therefore, we can always lower the cost C ′ by moving one component from Nb

to the maintenance set. When Nb = ∅, we have C ′ = C < C0.

(2) When Nb 6= ∅, we have cost relationship (N0 ∪Na ∪Nb, N1) < (N0 ∪Nb, N1 ∪

Na) = (N ′0, N
′
1).

This is equivalent to show that moving set Na from the maintenance set to the

do-nothing set can lower cost. From Proposition 3, we need to prove ∆s(N0∪Nb, N1∪

Na, Na) > 1.

By using the same method as proof (1), we can also prove the cost relationship

(N0 ∪Na, N1 ∪Nb) < (N0, N1 ∪Na ∪Nb) when Nb 6= ∅. From Proposition 3, we have

∆s(N0, N1 ∪Na ∪Nb, Na) > 1. Therefore,

∆s(N0 ∪Nb, N1 ∪Na, Na) > ∆s(N0, N1 ∪Na ∪Nb, Na) > 1

(3) We have cost (N ′0, N
′
1) = (N∗0 , N

∗
1 ) if and only if Nb = ∅ and ∆r(N0 ∪

Na, N1, Na) = ∆s(N0, N1 ∪Na, Na) = 1.

When (N∗0 , N
∗
1 ) = (N ′0, N

′
1), we have (N0 ∪Na, N1 ∪Nb) = (N0 ∪Na ∪Nb, N1) =

(N0 ∪Nb, N1 ∪Na).

The first equality (N0 ∪ Na, N1 ∪ Nb) = (N0 ∪ Na ∪ Nb, N1) holds if and only if

Nb = ∅. Otherwise, following the steps of proof (1), we can always have (N0∪Na, N1∪

Nb) < (N0 ∪Na ∪Nb, N1).

Given Nb = ∅, the second equality is equivalent to (N0∪Na, N1) = (N0, N1∪Na),

which happens if and only if ∆r(N0 ∪ Na, N1, Na) = ∆s(N0, N1 ∪ Na, Na) = 1 based

on Corollary 1.

B.1. Proof of Corollary 1:
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Proof. We first show p(N0 ∪Nu, N1)rN ≤ p(N0, N1 ∪Nu)sN .

p(N0 ∪Nu, N1)rN

=
∏

i∈N0∪Nu

(1−Qi(gi,1,m))
∏
i∈N1

(1−Qi(1,m))(

∏
i∈N (1−Qi(1,m))−

∏
i∈N (1−Qi(gi,1,m))∏

i∈N (1−Qi(gi,1,m))
)

=
∏

i∈N0∪Nu−N
(1−Qi(gi,1,m))

∏
i∈N1∪N

(1−Qi(1,m))(

∏
i∈N (1−Qi(1,m))−

∏
i∈N (1−Qi(gi,1,m))∏

i∈N (1−Qi(1,m))
)

=p(N0 ∪Nu\N,N1 ∪N)sN ≤ p(N0, N1 ∪Nu)sN ,

where equality holds when N = Nu.

(1) When N1 6= ∅, we have

∆r(N0∪Nu, N1, N) =

∑
k∈N ρk

rNp(N0 ∪Nu, N1)
≥

∑
k∈N ρk

sNp(N0, N1 ∪Nu)
= ∆s(N0, N1∪Nu, N),

where equality holds when N = Nu.

(2) When N1 = ∅ and N 6= Nu, we have

∆r(N0∪Nu, N1, N) =
1 +

∑
k∈N ρk

rNp(N0 ∪Nu, N1)
>

∑
k∈N ρk

sNp(N0, N1 ∪Nu)
= ∆s(N0, N1∪Nu, N).

(3)When N1 = ∅ and N = Nu, we have

∆r(N0∪Nu, N1, N) =
1 +

∑
k∈N ρk

rNp(N0 ∪Nu, N1)
=

1 +
∑

k∈N ρk

sNp(N0, N1 ∪Nu)
= ∆s(N0, N1∪Nu, N).

Therefore, ∆r(N0∪Nu, N1, N) > ∆s(N0, N1∪Nu, N) when N ⊂ Nu and ∆r(N0∪

Nu, N1, N) = ∆s(N0, N1 ∪Nu, N) when N = Nu.
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[14] A. Grall, C. Bérenguer, and L. Dieulle, “A condition-based maintenance policy

for stochastically deteriorating systems,” Reliability Engineering & System Safety,

vol. 76, no. 2, pp. 167–180, 2002.

[15] B. Castanier, A. Grall, and C. Bérenguer, “A condition-based maintenance policy

with non-periodic inspections for a two-unit series system,” Reliability Engineer-

ing & System Safety, vol. 87, no. 1, pp. 109–120, 2005.

[16] J. Barata, C. G. Soares, M. Marseguerra, and E. Zio, “Simulation modelling of

repairable multi-component deteriorating systems for ‘on condition’maintenance

optimisation,” Reliability Engineering & System Safety, vol. 76, no. 3, pp. 255–

264, 2002.

[17] R. Laggoune, A. Chateauneuf, and D. Aissani, “Opportunistic policy for optimal

preventive maintenance of a multi-component system in continuous operating

units,” Computers & Chemical Engineering, vol. 33, no. 9, pp. 1499–1510, 2009.

[18] R. Dekker, R. E. Wildeman, and R. Van Egmond, “Joint replacement in an oper-

ational planning phase,” European Journal of Operational Research, vol. 91, no. 1,

pp. 74–88, 1996.

[19] R. E. Wildeman, R. Dekker, and A. Smit, “A dynamic policy for grouping main-

tenance activities,” European Journal of Operational Research, vol. 99, no. 3,

pp. 530–551, 1997.

[20] S. Goyal and M. Kusy, “Determining economic maintenance frequency for a fam-

ily of machines,” Journal of the Operational Research Society, vol. 36, no. 12,

pp. 1125–1128, 1985.

[21] S. K. Goyal and A. Gunasekaran, “Determining economic maintenance frequency

of a transport fleet,” International Journal of Systems Science, vol. 23, no. 4,

pp. 655–659, 1992.

[22] S. Epstein and Y. Wilamowsky, “Opportunistic replacement in a deterministic

environment,” Computers & operations research, vol. 12, no. 3, pp. 311–322, 1985.

[23] M. Hariga, “A deterministic maintenance-scheduling problem for a group of non-

identical machines,” International Journal of Operations & Production Manage-

39



ment, vol. 14, no. 7, pp. 27–36, 1994.

[24] D. R. Sule and B. Harmon, “Determination of coordinated maintenance schedul-

ing frequencies for a group of machines,” AIIE Transactions, vol. 11, no. 1, pp. 48–

53, 1979.
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