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Abstract '

In this article we prove local well-posedness of the system of equations d;h; = Z’jzl 32h it
3ch)? + & on the circle where 1 < i < N and £ is a space-time white noise. We attempt to
generalize the renormalization procedure which gives the Hopf-Cole solution for the single
layer equation and our /1 (solution to the first layer) coincides with this solution. However,
we observe that cancellation of logarithmic divergences that occurs at the first layer does not
hold at higher layers and develop explicit combinatorial formulae for them.
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1 Introduction

The aim of this paper is to introduce a system of equations called the multi-layer KPZ
equation, formally given by

i
ohi =) 9h; + @Oxhi)> +§ i€ {1.2,.... N}, (1.1
j=1
where £ is a space-time white noise, starting from initial condition (h(lo) Yy hg\(,)) ). We study

the local well-posedness and renormalization of this system on the circle. This system is
interesting for several reasons.
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First, there has been increasing interest recently in the study of coupled KPZ systems. In
[4], the local solution to the following coupled system is studied

1 1 n n
Ot = SOThT + 2 Y0 T, 0chPouh? +3 gl ae{l,2, N} (1)
py=1 p=1

Here {£7 }gzl are space-time white noises. This is an R” vector valued KPZ system driven by
n independent space-time white noises, with constant coefficients I'§. and o . Whenn = 1,
this then becomes the KPZ equation. In [ 7], Hairer studied the equation describing the random
motion of a string in an n dimensional manifold driven by m independent space-time white
noises, written as

N m
Oh* =0Ih" + Y Tg (MahPoh’ +) of (e ae{l,2,...,N}, (13
B.y=1 i=1

where I‘gy (h) are the Christoffel symbols for the Levi-Civita connection, and {o;(h)} is
a collection of vector fields on the manifold. In these works, the coupling between the
equations in the system arises from the nonlinearities. In the present article, we investigate a
new situation, that is, one has a matrix in front of the diffusive term. In particular, the matrix
is the lower triangle matrix with all the lower triangular entries being 1. Moreover, the whole
system is driven by only one single white noise £. The system is thus such that the first m
equations evolve independently of the m’th equation for all m’ > m. As a matter of fact,
one could also think of the ith equation as a usual KPZ equation driven by & together with
“noises” E)fhl, A afhi_l.

Another motivation of studying the present problem, especially the particular choice of the
lower triangular diffusive matrix, is the following. In the paper [10] the authors introduced
a system of (continuum) multi-layer partition functions Zy for N € N in order to better
understand the integrability structure behind the discrete or semi-discrete polymer models,
and their connection with quantum Toda lattice and geometric RSK correspondence:

Zy(t,x,y) =p(r,x,y)N<1+Z/R,';(<n,x1>,...,(zk,xk»s@k(dn,...,dxk))
k=1

where p(t, x, y) denotes the heat kernel (we will wrote p(¢, x) := p(t, 0, x) below), and
R} is the k-point correlation for a collection of n non-intersecting Brownian bridges starting
at x at time 0 and ending at y at time ¢, and the integrals are stochastic iterated integrals
against the white noise & over (x1,...,x;) € RFand 0 < ff < -+ < tr < t. It was
shown in [10] that this series representation for each Z, is L? convergent. In particular,
when N = 1, Ry is the transition density of the Brownian motion passing through the
points (#1, x1), ..., (t, xx), and the above series becomes the chaos series solution to the
stochastic heat equation Z = %8)2,2 + Z& with Dirac initial data. The processes Zy are
related with a system of stochastic PDEs in the following way. Define u = u; = Z; and for
n > 2 define u, = Z,/Z,—1. Then pretending that £ is smooth, [10] derived via a Karlin-
McGregor formula and Darboux transformation a coupled system of stochastic (nonlinear)
heat equations for u,,:'

1
Outty = 502 + (& + 02 10g(Zy1 /p"™)) (1.4)

U In [10] the processes depend on two spatial parameters x and y, but here we set x to be zero and write x for
y for notational simplicity.
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1082 A.Chandra et al.

with initial conditions u, (0, x) = §(x). Then in [10, Proof of Prop. 3.3 and Prop. 3.7], the
authors introduced h,, = log u,, which formally satisfy

oth, = 71 82/’1 —i-fl (8 h )2+$+82lo (Z / n 1)
tin 5 %x n ) xn ' 10g(ZLp—1/p .
A direct computation shows that

2 2
82log(1/p(t, x)") = —nd>log p(t, x) = —n - W —n/t

So we arrive at the equation 9,4, = %8%%1,1 + %(axhn)2 + &+ Z;’;} afhj + % Of course,
the system (1.1) we study in this article is slightly different from the setting in [10]; for
instance we are on a finite interval with periodic boundary condition instead of the full line,
and we will not consider Dirac initial data, and we also drop the term # (which arises from
the Dirac initial condition).

Before we formulate our main result we fix an even, smooth, compactly supported function

o: R? > R, integrating to one and we set for ¢ € (0, 1],
0s(t,x) =& 20(e 21,67 'x), and & =& 0. (15)

Let ! be the unit circle and C# (S!) be the space of B-Hélder continuous functions on the
circle S'. We also denote by C"((0, T'] x S') the space of n-Hélder continuous functions on
space-time, defined by a parabolic scaling as in [6]. Our main result is the following.

Theorem 1.1 Fix N € Nand (h\”,...,h’) € (P(S")®N with B € (0,1). For each
i e{l,2,..., N}, there exists a sequence of constants (C¢; : 1 <i < N) tending to infinity
as ¢ tends to zero, such that the solutions (he 1, ..., he N) to the sequence of systems of N
equations

i
Ohei =Y 07he j+ (rhe i) + & — Ce (1.6)
j=1

starting from initial condition (h(o), ceey hg\(,))) converge in probability to N random fields
(hi, ..., hy) in C((0, T] x SH®N forany n € (0,8 A %). Here, each of the constants
(Ce,i : 1 <i < N) is given by a sum of three terms whose precise expressions are described
by Proposition 4.4 and they are such that

Cet 26‘_1C1 + ¢
Cei=¢'Ci+Ciloge+¢; (2<i<N)

for finite constants C;, c;, C’j (1 <i <N,2<j < N).Moreover, if Cy is chosen to suitably
depend on ¢ (defined in (1.5)) then the limit (hy, ..., hy) does not depend on the choice
of the mollifier ¢ and h| agrees with the Hole-Copf solution of the KPZ equation driven by
space-time white noise.

Recall that for the standard KPZ equation [5], and the manifold-valued KPZ type equation
(1.3) in the geometric setting, and the vector valued KPZ system (1.2) under the so called
“trilinear” condition therein, the logarithmic renormalization constants cancel out. In our
case, we expect that C j in general do not vanish for j > 2, but we have not found a general
argument to prove this (however, see Remark 5.2 for the first several layers.) For the standard
KPZ equation, the cancellation of logarithmic renormalization is “expected” because the
1t6 term appearing from the Itd calculus for the Cole-Hopf transform behaves as 1/¢, and
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Local Solution to the Multi-layer KPZ Equation 1083

the linear stochastic heat equation is defined in It6 sense. For the multi-layer KPZ however,
there is no Cole-Hopf transform that linearizes the system, and the corresponding nonlinear
multi-layer stochastic heat equation can not be simply defined in the Itd sense. Requiring
non-vanishing logarithmic renormalizations seems not surprising in our case.

We think that it may be of interest to study a general type of KPZ system

1 o 1 n n
ahY = 5 > vgain? + 5 > Ty, 0hPoh” +) ofEf  wefl2,... N} (L7)
p=1 B.y=I p=1

where vy > 0and ug = Owhen 8 > «. In particular, finding the condition for the coefficients
under which the logarithmic renormalizations cancel would be very interesting.

2 Notation and Formulation

Notation We will denote by ({ ) the binomial coefficients, with convention ({ ) = (0 when

i,j >0and j < i. We sometimes also need the case that i or j is —1: we have (fl) = 0 for
n > 0and (:i) = (8) = 1. Also, for N € Z,, we write [N] = {1, 2, ..., N}. Moreover we
introduce the distance ||(z, x)|ls = +/Tf] + |x| on R2.

We start by rewriting (1.6) in a mild formulation. Let

def 1 _k2
GeoZ Y mexp[—(x o ) }

ke2nZ

fort > 0and G (¢, x) = 0 for t < 0 be the heat kernel on S'. For each i € N, we recursively
define kernels G; by setting G E Gandfori >0 setting G; £Gx* BfGi_l, so that

Gi =G (326"

where * stands for convolution over space and time variables, and for any function H over
space-time H*' stands for the convolution of i copies of H. We also define for j > 1,

j .
o 4 —1
GiZGxRGx(E+0;6)V V=3 <J. )Gi @1
P i—1

where § is the Dirac distribution, and for any function F it is understood that F 0 — 5.
The last equality of (2.1) follows by a binomial identity. Moreover we define Gy = G. For
e € (0, 1] and g, as in (1.5), we introduce the shorthands

Gi,£=Gi*Q£! 6i,£=6i*05~

Furthermore, if 4 is a function only defined in space, then with a slight abuse of notation we
also write

(Gjxh)(t,x) = /Ej(r, x —Yh(y)dy. (2.2)

We then have the following lemma, where the term unrenormalized refers to Eq. (1.6) with
all the constants C,; set to zero.
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1084 A.Chandra et al.

Lemma 2.1 For any N € N the mild formulation of the (unrenormalized) system (1.6) is
given by

j
hey =3 Gy [(axhg,if FE A+ hfo)] forl <j<N. (2.3)
i=1

Proof We proceed by induction in j. The case j = 1 is immediate since Gy = G. Suppose
that the Eq. (2.3) holds for all j < k. Then by the induction assumption we have

k
hekrt = G [@uhern)? + & +h0 |+ G+ 02he s
j=1

ko J
* I:(axhe,k+l)2 +& + h](gzl:l Z Z iji * I:(axhai)z +& + h,(O):I
:] i=1
k

* [(axhs,k+l)2 +E+ h}fil] + i (Z * aﬁéj,,-) % [(a,chg,,-)2 tE 4 h,@] .

i=1 Jj=i

Note that for 1 <i <k, one has by Go = G and (2.1)

K k
Z G*0;Gji =G *3;G+ Z G * (02G)? % (8 + 02G)*U~=1
J=i j=i+l

=G #02G + G #02G x (0 + 926 —5)
= Giyi—i

where we used the following identity

m—1
(H=8)xY HY=H"—3§
j=0
with H = 8 + 392G and m = k — i. Therefore the statement holds for k + 1. O

We fix for the remainder of the entire paper the number of layers N € N in the statement of
Theorem 1.1.

3 Applying the Theory of Regularity Structures
In this section we describe how we recast our problem in the language of the theory of
regularity structures [6]. We will invoke the machinery of [1,3] to define a regularity structure

and renormalization group rich enough to solve (2.3) and show convergence of appropriately
renormalized models.

3.1 Construction of the Multi-layer KPZ Regularity Structure
We fix a parabolic space-time scaling s on R? by setting 5 = (2, 1).

We introduce two finite, abstract, sets £ o {tj,h: 1 <i<j=<N}and£_ = {[} which,
respectively, index the regularizing kernels and driving noises [ appearing in our problem.

@ Springer



Local Solution to the Multi-layer KPZ Equation 1085

Here, [ represents an occurrence of the driving noise £ and t; ;) represents an occurrence
of (a truncation of) the kernel G;_;. Clearly there is some redundancy in our labeling of
kernels in the sense that if j —i = j' —i’ = k € N then t(; ;) and t(j ;- both represent an
occurrence of the same kernel G.. However, for fixed k, the kernel G, can appear in many
different equations. Keeping track of these separate occurrences is convenient when defining
our regularity structure when it comes to describing the set of allowable trees in terms of a
rule, thus we write t(; ;) to represent the specific occurrence of G j—i in the equation for the
Jjth layer equation.

Next, we must specify a homogeneity assignment | - | : £_ LI £y — R. To that end we
set [[]s = —% — x and [t|s £ 2 for any t € £, . In the sequel we will use the abbreviation
£ = £_ugf;.Herex > Oisasufficiently small parameter in the construction of our regularity
structure which is fixed throughout the paper (see for instance the proof of Proposition 3.2
for a necessary bound on «.)

3.1.1 The Multi-layer KPZ Rule and Regularity Structure

Invoking the machinery of [1] The relevant reference for this section is [1, Section 5]. We
define, as in [1, Eq (5.5)], € £ € x N2 to be the set of edge types and N to be the set node
types, namely the set of all multi-sets®

We adopt a shorthand for €, writing Z(; ;) to represent (t(;,i), 0) € €, Iy
(t¢j,i)» (0, 1)) € €, and E to represent (I, 0).

We now define arule R : £ — PN \ {#} as in [1, Definition 5.7], where PPN denotes

the power set of . For any [ € £_ we set R[[] s {O}. For t(; ;) € £4 we set

i) to represent

def

Rlt;.nl = {(I(/[’k)sz-éj’k/)) 1<k kK <i}u {(Iéi,k)) <k <i}u{(®), 0}

This rule is clearly normal and if we define reg : £ — R viareg(l) £ _3/2—2forle g
and reg(t) = —1/2 — 3k for t € £ then we see that R is subcritical in the sense of [1,
Definition 5.13].

Finally, let R be the completion of R as constructed in [1, Proposition 5.20], and .7 =

(T, G) be the associated reduced regularity structure truncated above homogeneity y =
% + 3k.

The trees of our regularity structure For those readers not familiar with [1] we now try
to give some more intuition for what our regularity structure looks like. Recall that a key
ingredient of a regularity structure is a graded vector space and in most applications to SPDEs
(including this paper) this graded vector space is a free vector space generated by a family of
rooted decorated trees. We describe how to think of these trees in a certain formal symbolic
notation where edges are seen as unary operators.

The nodes of these trees correspond to symbols of the form E representing an occur-
rence of the driving noise or to X* for some k € N? which represents a polynomial. Then,
XzI(’lz) [ 5]123,2) [E] is an example of a tree with three nodes (corresponding to X2, the root,
and two nodes of the form &) and two edges (the two instances of 7/ E3,2))' Our “rule” described
above just enforces that if there are Z or Z’ operators inside some of the Iéj,i) [-]or Z; il-]
then they must be of the form I( ik

2 A multi-set is like a set where one allows for multiplicity. Using the notation of [1], one sets N o Up>0[E1"
where [€]" consists of the equivalence classes of elements of " where one identifies tuples in €" which are
related by a permutation.
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1086 A.Chandra et al.

3.2 Graphical Notation

In order to obtain the form of the SPDE that the BPHZ renormalized model satisfies we
need to understand the form of the solution H = (H;) lN: {- This requires explicitly working
with the trees of our regularity structure. Since N is arbitrary the set of these trees can be
arbitrarily large but this is only because £ becomes larger. The shapes of the trees that we
see are always just those of the single layer KPZ equation and we now introduce a graphical
notation that takes advantage of this.

We introduce the symbolic trees

LLVY, YRG0 0 {4 3.1)

These symbols will be used to refer to the shape of trees. The circular nodes represent
occurrences of the noise &, the thicker/zigzagged lines correspond to an occurrence of Z(; ;)
for some (j, i) € £+ and the thinner line to an instance of Iéj i for some (j,i) € £+. We

view some of the trees appearing in (3.1) as being products of other? trees. Graphically, this
product corresponds to joining trees at the root. For example, \(» is the product of { and .
Starting from one of the symbolic trees above, we get a tree in our regularity structure by
assigning the specific labels t(; ;) € £ to the edges of a tree in a way that respects the rule
R that determines our regularity structure.
To lighten notation, we will sometimes denote elements of £ justby (j,i),1 <i < j <
N, rather than t(; ;). We then write expressions like

VI, 1), (2, i2)]

where (i, i1) specifies the line to the left and (j», i2) specifies the line to the right.

We will use this graphical notation only for trees that obey the rule R rather than the larger
class that obey the weaker rule R. The rule R implements a constraint on our indices, that is
for V[(J1, i1), (J2, i2)] to be a tree in our regularity structure we require j; = jo. To avoid
having to write out constraints everywhere we enforce that in our notation a symbol with a
set of indices not allowed by R corresponds to 0.

Note that our notation introduces some redundancy, one has V[(ji,i1), (j2,i2)] =
VI(j2, i2), (J1, i1)]- However, this will turn out to be a feature rather than a bug as it will free
us from keeping track of some symmetry factors in the formulas to follow.

For larger trees we label edges from left to right, going from the top to the bottom. For
instance, we have

G0 - Gos 0] = T i) | T i (Vi B T ey P i BV T i LB
A 10, - U de)] =T ) [Iéja,m[Iéjl,in>[E]Isz.iz>[g]]1€j4,i4)[E]]Iéjs,m)[g]
For the tree (Y the constraint on indices is
B=Ja=le o= j1 =15, j5= 6 -
For the tree %: the constraint on indices is

J1=j2=13, ja=ja=1Is, j5=J6.

3 However we don’t allow for all products, for instance we do not allow for the cube {. This type of constraint
can be seen in the rule we presented earlier.
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Local Solution to the Multi-layer KPZ Equation 1087

We will often just write expressions like “CY[(ji, ik),le] to save space. When we write
(ks ik)i:1 it is understood we are referring to a tuple of pairs (ji,i1), ..., (ji, i;) with
1 <iy <jkx <Nforeachl <k <.

As a final example, for Y1, ik)zzl] the constraint on indices is j; = jr, = i3.

3.3 Models for the Multi-layer KPZ Equation

We fix kernels Ky, ..., Ky—1 mapping R? into R such that each K; (a) is compactly sup-
ported in the ball of radius one around the origin, (b) is symmetric in space, (c) coincides
with G; on the ball of radius 1/2, and (d) for every polynomial of s-degree 2 one has
Jz2 Ki(2)Q(z)dz = 0.

By [6, Lemma 5.5] and Proposition A.1 the K;’s can be additionally chosen such that one
has the identity G; = K; + R;, for a smooth remainder R;.

The assignment of kernels to elements of £, is then given by t(; ;) € £+, Ky, ,, K i

We write .#~,(.7) and .#y(7) for the space of smooth admissible models on .7 and
its closure, respectively. Here, the closure is taken with respect to the family of seminorms
defined in [6, Section 2].
Definition 3.1 Given any stationary 6 (R?)-valued random variable ¢ we denote by Zész
the #0(.7)-valued random variable called the BPHZ lift of ¢, see [1, Theorem 6.17] for
the definition of the BPHZ lift.

The following proposition produces the random admissible model that will allow us to
describe a solution to the multi-layer KPZ equation.

Proposition 3.2 Let & denote space-time white noise. The BPHZ lift admits an extension to
& in the following sense — there exists an .#o(7)-valued random variable ZEPHZ such that
for any smooth compactly supported function ¢ : R* — R with Jr2 0(2)dz = 1 one has that

the random models ZE*QS converges in probability to Z5  on Mo(T) as € | 0 where g is

PHZ BPHZ
defined as in (1.5).

Proof This proposition follows from [3, Theorem 2.15]. In addition to subcriticality [3,
Theorem 2.15] enforces certain assumptions on the homogeneities of t € J with t # E.
In our setting all one must check is that for every such 7 one has |t|s > —|s|/2. The second
is that any such 7 must have |t|s + |E|s + |s| > 0. Both of these conditions guarantee that
none of the random fields in our local expansions will have diverging variances.

One can easily check that the worst such trees are those of the form 7/ E i) [E]? which have
homogeneity —1 — 2x. We see that ¥ € (0, 1/6) suffices to guarantee the two conditions
mentioned above. O

Remark 3.3 Note that the solution we refer to in Theorem 1.1 will be a finite shift of the
solution obtained from the BPHZ model.

3.4 Abstract Fixed Point Problem

In view of Lemma 2.1 the fixed point problem associated to (1.6) can be written as

i =P(2H)?+ &) + Ph©. (3.2)
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1088 A.Chandra et al.

The above fixed point problem should be seen as a vector fixed point problem where the
components of vector are elements of an appropriate DY-"-space, see [6, Section 6] for a
definition of these spaces. It can be compared to [9, Eq (2.12)]. We now make it more precise
by specifying the notation used aboved.

‘P is an N by N matrix of operators on a given DY space. Writing the matrix compo-
nents P = (Pji); ;_; one has P;; = 0 for j < i and for j > i we set P;; to be an
abstract integration operator corresponding to G ; j—i- In particular, we use the decomposition
(Kj—i,Rj_i)to spemfy the local rough part and non-local smooth part of the operator - see

[6, Sectlon 5]. Then H (jH )2 and Pho are N component vectors of elements of D",
Writing H= (H)N ir1» Hi € D" is the modelled distribution describing the ith layer of the
equation. We then set

@02 £ (@H)?),

Finally, one has Ph©® £ (Phl@) N | where h;o) is the initial data for the ith layer as referenced

in Theorem 1.1 and tho) is the result of applying the heat kernel G to this initial data and
lifting it to D" as in [6, Lemma 7.5].
We have the following lemma.

Lemma 3.4 Choose y > 3/2 + k and n > 0 such that each h; o € C". Then, for every
admissible model, there exists T > 0 such that the fixed point problem (3.2) has a unique
solution in H € DV"1([0, T x S1).

Proof We can proceed by induction since P;; = 0 for j < i. The fixed point problem
associated to H; (the first coordinate of H) coincides with the fixed point problem of the
KPZ equation, see also [9, Section 2] and it follows for instance from [6, Theorem 7.8] that,
for every admissible model, there exists 77 > 0 such that the above fixed point problem for
Hj has a unique solution in D¥"71([0, T1] x S 1y With the fixed point problems for Hy, ..., H;
solved, we can then again invoke [6, Theorem 7.8] to show that there is 7; 1 > 0 such that the
fixed point problem for H;1 has a unique solution in D¥""([0, T;4+1] X S 1): this is because
the operator P; ; does enjoy the desired Schauder estimate by Proposition A.1. This finishes
the argument with 7 = min; T;. ]

In order to later derive renormalised equations it will be useful to know what the solution
promised in Lemma 3.4 looks like.
Lemma3.5 Lety € (3/2+x,3/242), n > 0, and H = (H)Y., € DV([0, T] x S') be

the solution to the abstract fixed point problem (3.2) promised by Lemma 3.4. Then His of
the following form: for 1 <1 < N one has

Hi(z) £ Hy 1()1 + Hi x, (X1 + Y H(ji, i)
(1,i1)

Ji=l
+ Y YUk iz 42 Y Kl i)
(@@= (G i)z
J3=l Js=l
+2Hx,@) Y Kk ii=] - (3.3)

(Gri)i—y
Jo=l
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Local Solution to the Multi-layer KPZ Equation 1089

Proof Our choice of y constraints the monomials that are kept in any D" expansion. The
fact that the solution H must be of this form can be verified by observing that it reproduces
itself upon being inserted on the right hand side of (3.2). O

4 Renormalization

If Z¢ = (I1%, I'?) is the canonical lift of &, into a smooth model then the BPHZ lift A
(1%, T¢) of & can be described as a shift of Z* by an element of the renormalization group
fR, a group of linear operators from J to itself that was characterized in [1].

In terms of the algebraic theory of renormalization of regularity structures the situation
here is essentially* the same as those found in previous treatments of the KPZ equation [8,9].
A full specification of the BPHZ model is unnecessary for our purposes, we will only need
to understand its action on certain elements of the regularity structure present so that we can
derive the renormalized equation.

4.1 Definition of Renormalization Constants
We first specify the renormalization constants of the BPHZ model. We set, for collections of
indices compatible with the corresponding symbol,

2
. N def
€, 7LGiks i) 1 = E f( o dz1dz, 1'[1 K i (=2p)Ee(zp)
p=

Ea"\{y[(jk, ik)/?zl] ZE [/(Rz)z dzs dZ6K}5_i5(_ZS)K}G_,'6(_Z6)

2

/
X /(Rz)z dz1dz l_[l ij—i,; (z5 — 2p)&e(z)p)
]’):
4
/
X /(R2)2 dzadzy 1!1 ij—i,, (z6 — 2p)&s(z)p)

AL i1 = E /( o dzs dz6K,_; (—25) K’ (—26)%: (26)

/ /
X /(Rz)z dz3dzaK;,_; (25 — 23) K, _;, (25 — 24)&6(24)

2
/
x f( R ]‘[l K} i (23— 2p)6e(2p) @)
p:
Here, for j > 0, K}(t, x) & 0xKj(t, x) where K is as in Sect. 3.3.
We also define £, 7[(k, ik)z— ], €, eyl i)$_,1, and £ e, i)$_,1 to be defined
analogously as to the constants in (4.1) except every instance of K }, J = 0should be replaced
by G/j.

4 The only difference being the the (j, i) decorations.
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1090 A.Chandra et al.

We again adopt the convention that L, 3 ZS Yy V4 ‘\@, E_a P Zs ¢y ? ‘\@ vanish if given
’ ) e, s s e,

a set of indices that do not satisfy the constraint coming from the rule R.

The constants of (4.1) are those used to define the BPHZ model but this choice is not
completely canonical since what we call the BPHZ model depends on the choice of kernel
truncation K ; made in Sect. 3.3.

Using instead the renormalization constants defined in terms of G j in our renormalised
equation will yield the solution referred to in Theorem 1.1. However, the following lemma
tells us that the discrepancy between the two sets of constants amounts to a finite shift.

Lemma 4.1 One has the convergence
lim €, 371Gk i0i=1] = €, LGk 10711 = el G i< ]
.= .. \6 . . \6 = . . \6
E&)l qu‘\{})’[(/lm i)g=1] — Eg}{y[(jk, ig=1] = C‘i{})’[(/lm i)g=1]
im v LGks 011 = £, 3, [Giks 10711 = 8, [ 003

where the three constants on the right hand sides above are all finite and we restrict the
indices ((ji, ik)%:]) or ((jk, ik))2:] are chosen to be compatible with the corresponding
symbol.

Proof For the discrepancy between the constants fg V[( Jks ik),%zl] and L, V[( Jks ik)izl] one
can show that by scale invariance of G, under parabolic scaling one has

7 .0 1z .
€Ll i)i=i] = gﬁl,v[(Jk, ii=1l -

Then using that the kernels K ;, —;, and K j, ;, are just truncations of Gj, —ips sz—il one can
show

1-
Ce LG iizrl = — 8 ylGie iz 1+

for some finite constant c.

One needs more detailed analysis for the discrepancy for the symbols Y and %: since
these in general produce logarithmic divergences. However, very similar analysis was done
in the context of a single layer KPZ equation in [8, Section 6.3]. There one can show that
appropriate rescalings of the kernels Ko and 9, K(*p always converge to the corresponding
untruncated kernels G * ¢ and 9, Gy * ¢ in semi-normed spaces of kernels that give good
control over convolution on large and small scales—see [8, Lemma 6.8]—and this can be used
to control the error in renormalization constants introduced by choosing the truncation K¢ of
Gy in the integrals defining Z&W[(O’ 0),...,(0,0)] and ES,‘\@[(O, 0),...,(0,0)]—see [8,

Lemma 6.11].

However, it is straightforward to check that one has convergence, under the same rescaling,
of the kernels K ; x o and 9, K j * ¢ to Gj * 0 and 8X(_;j * 0 and this combined with the same
arguments as before gives the desired result. O

4.2 Renormalization of Symbols and Renormalised Equation

In the following lemma the canonical lift of a smooth noise &, refers to the canonical model
constructed in [6, Section 8.2].
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Lemma4.2 Let Z° = (I1°, I'?) be the canonical lift of & into a smooth model and AR
(1%, T'?) be the BPHZ lift of &..
Then one has
151 =I1
TG, i0] =ME [, i1)]
TEVIGiks 071 =TEVIGk i) = €, 31Uk 072 ]

VG i0f21] =N Gk 10f21] = €, 3yl G )R]

M5 0811 =T GGk, i)f—] — € 1, LU ip=11
where all the indices above are chosen to satisfy the constraint of the corresponding symbol.
Proof Starting with the generic formulation of BPHZ renormalization as a starting point, the
key observations needed to justify the simple formulas above are that

e Additional subtractions for symbols of the type (Y or R@ due to the occurrence of ¥/
vanish since our truncated kernel K integrates to 0.

e We are in the Gaussian case, and so symbols with an odd number of noises do not produce
any renormalization.’

e Symbols of the type <» produce vanishing renormalization constants, this is by parity
under the reflection (¢, x) +— (f, —x) (since we imposed that our mollifier is even in
space &, is invariant in law under this reflection).

O
The next lemma presents the renormalized equation obtained by solving the equation driven
by Z°¢.
Lemma 4.3 Let Z¢ be the BPHZIiftof&;. Lety > 3/2—|—K n > 0,and ITIE be the solution to the
abstmctﬁxedpomtproblem (3.2) in the DY ([0, T] x S1) space over 7¢. Let iy = (Ug 1)1 1

be the reconstruction of Hg given by R‘EH where R5 denotes the reconstruction operator
associated to Z¢ which is applied componentwise to H.
Then ii solves, on [0, T] x S!, the initial value problem

3 -1
dyttes = O2ues + e )’ + 8 — Y CO + > ug 4.2)
q=1 j=1
starting from initial condition (h(o) ey h(o)), where

1) def
M E > byl iy
(i)
J1=j2=l
~(2) def P
Ca(,z): Z ZS’W[(Jk,lk)gzl]
Gk i)8
Js=je=l
3) dej .
CHE Y b gl 3)

ks lk)k 1
Js=Jje=l

5 In contrast to the situation in [9].
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Moreover, the (U1, ..., UN.¢) converge in probability to N random fields (uy, ..., uy) €
cn([0, T1, SH®N forany n € (0, B A 5).

Proof Applying RE to both sides of (3.2) gives

J
wej =Y Gjoi* [RUGH + & +h] forl=j=N. @4.4)
i=1

Now, using the identity (7@5 F)(z) = (fIZF(z))(z), see for instance [6, Remark 3.15], one
can verify, using Lemma 4.2,

(RE(ZH)M (@) = (Oxtte)*(2) — Zc@.

g=1

Then after inserting the above into (4.4) one can rewrite the resulting system in the form (4.2)
(just as (2.3) was a rewriting itself of the non-renormalized equation).

The statement of convergence as ¢ |, 0 follows from the convergence of the models Z¢,
the continuity of the abstract solution map for (3.2), and the continuity of reconstruction. O

The above proposition gives a notion of local solution to the multi-layer KPZ equation but
it is not completely canonical since it depends on a truncation of the heat kernel and it will
not give the Hopf-Cole solution for the first layer so it differs from the solution described in
our main theorem but only by a finite shift.

Proof Theorem 1.1 Fori € [N],q = 1, 2, 3, we choose Céqi) to be defined as ééqi) but with

£4[e®] replaced by Zo[e]. Convergence of the h ¢ then follows from that of the i, of (4.2) since
one has

3
hs,i(ta x) — us,i(tv x)=t Z(Céqz) - Cs(i]i))
q=1

and the right hand side above converges to a finite limit by Lemma 4.1.

Identification of &1 with the corresponding Hopf-Cole solution can be performed just as
in the proof of [8, Proposition 7.1] in the simpler setting where one just takes F (i) = u?
there.

The solution 4 constructed there is obtained by taking renormalized solutions where
ZZ: 1 o) ; is replaced by C, (1) +C, (2) +C (31') then the constant ¢ referenced in [8, Proposi-

tion 7.1] corresponds prec1sely to (Cézi) + CSZ.)) - (Cgi) + CSZ.)). O

We now proceed to obtain the promised combinatorial formula for the renormalization con-
stants appearing in Theorem 1.1.

Proposition 4.4 C ) is given by (4 6) below, C ) is given by (5. 5) where g

mz ms,kq,
is given by (5.12)— (5 16), and C ) is given by (5 7) where g therein is given by
(5.18).

, therein
2

ms;ki,k2;sme

Note that although formulae for C, (2) and CG) are very sophisticated, they are all written
in terms of integrals of Hermite polynomlals and heat kernels (with many combinatoric
coefficients).
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We consider the constant Céli) in this section, and will study Cézi) and CS) in the next
section.
Consider C éli). Using the definition (2.1) one has

i—j i—k . .
- — k- ~
Gyl ). G 1= Y ( ml’_l )(’mz | )Ginlg*G’mz,e(())

m1=0my=0

where tilde denotes the reflection, i.e. F (2) := F(—2z).In view of (4.3) we need to sum over
j and k. To this end we perform a re-summing, using

i i—j i—j—1 i—1i-m i—j—1 i—1 i1
22 (L5 -2 (L0 )= X )
=1l m= = m=0
where H,, is a generic quantity which depends on m but not j. We get
o [(i-1\(i—1
| — —
cl="% (m )(m )GmIE*Gm”(O) (4.5)
my,my=0 ! 2

Note that here we have used our convention for binomial constants with entries allowed to
be —1.

Lemma4.5 Fixi € {1,2,..., N}. Define 0> % 0, * 0s. For each k € {0, 1, — 13,
with constant

C(e, k) = (z G)) % 0P (0) ~ 1/e

one has
i—1

Cs(,li) = Z(—Z)kT(i —1,k)C(e, k), (4.6)
k=0

where for each i and each k,
—k
TG k)= Z Z( 2)” <'"1+m2>< )( )("“ +’"2>. @.7)
my=0m =k mi nmz 2
Proof Let tilde denote the reflection, i.e. F(z) := F(—z). Recall (4.5). We claim that

Gl %Gy (0)

mj,&e

< my+my —k\ ~
= —Z(—2>—<'"1+'"2—k+“( )(Gk %0)(0)

k=0 me
2 mi;+m
—Z(—2>—<'"1+"’2—’<+“( P )(ng”)((» (4.8)
mi
k=0

where ng) = 0. * 0. Indeed, let m1, mp > 0, we define

D® =G %G e (4.9)

mip,my mip,e

and by (B.2) we see that Dm1 my = Dy mo *Qéz). Using (B.4) we conclude the proof of (4.8).
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We define
Cle, k) £ (Gr* 0)(0) = (Gy % 0P)(0) (4.10)
where the last equality is a consequence of the fact that ¢ is an even function. Using (4.5)
together with (4.8) gives (4.6). This is done by performing a resummation: we fix the k in
(4.8), and sum m from k to i — 1 (or sum m» from k to i — 1, which yields the same result
by (4.10) and invariance of swapping m and m» - thus we get a factor 2 which cancels a
factor —(—2)~1).

Moreover, integrating for each of the convolutions that follow first over space, making
use of the semi-group property, and then integrating over time we see that

tn—l

G™" = (n—l)!G' (4.11)

Hence, we can then write
Ce, k) = (Gix o)) = 15 (AG™) x02(0)

It now follows immediately that C (¢, k) ~ e~ L. ]
Remark 4.6 One could also derive an alternative formula for C (¢, k). Let

Hy(x) = (=1 2gme™ /2 = (—1)"e* /20" H (x) (4.12)
be the nthe Hermite polynomial where H (x) = ¢=**/2_ Tt then follows that
(=" Hy (/20 G (x, ).

“.13)
(F G x0)(0) where Fy(x, 1) =

n _(_1\n x2 /4t an 13 _1\n
NG, 1) = (=1)"e" MY Hx/V2)(-1)"G(x, 1) = T )"/2

Hence, we can write C (¢, k) = F.G* Q(Z) 0) =

Hoi(x/3/21).

k' (2z)k 2k/<v
5 Logarithmic Renormalization

We derive formulae for the other two constants in Proposition 4.4 and thus complete the
proof of this Proposition.

5.1 Combinatoric Coefficients, and Doing Contractions

Now consider the nth equation. Using (2.1) for G, the first tree in the description of /,,, which
we denote by h,ﬁo), is equal to

n n—i n—1n—¢
ZGn ,H—ZZ( o )Geu— <” ) 161
L=l 1

i=1£=0 0i=
=Z<”_1)i[z] 5.1)
=0 ¢

Note that ZZ;& canbe rewritten as ) . since for £ out of that range the binomial coefficients
are understood (with usual convention) as 0. The next tree in the description of #,,, denoted
by hfll), is equal to
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Local Solution to the Multi-layer KPZ Equation 1095

n n n—i . i—1 . .
Yoo =X X (", o £ (1), Jmom

i=1 i=1 ¢=0 mi,my=0
n—1 n—{ , . .
n—i—1\/i—1\/[/i—-1
= > > Ylmy, ma, £]
) -1 my mo
C,my,my=0 | i=mivmy+1

(5.2)

. 6 n—_t
where we have performed resummation,” and as above Zi:ml\,m ,+1 could be replaced by

2 _i=o since for i out of that range the binomial coefficients are understood as 0.
Turning to the next tree in the description of &, by (5.1) and (5.2)

n
WP =23 Guoi(@ch”d:h(")

i=1

S5 S (P N D S

i=14¢=0 my,ma,m3,ms=0 j=m|Vmy+1
G-I\ [i—1\(i—j—1
X olmi, ma, m3, my]
mj m my m3 — 1

n—1 '\Q
=2 Z cml,m%m},m,[@’[ml,mz,m3,m4,€]

£,my,my,m3,mq=0

where we have performed resummation and

¢ s

my,moy,m3,ma,l
”z“f Zn—i—l G IN(j—IN\[fi—1\(i—j—1
. : -1 mi my my m3 — 1
i=max(my,ma,m3,mg)+1 j>0

So in the expansion of the right hand of the nth layer equation, we have the following term

n—1
4 Z ooy mams.me Gl 1, M2, m3, ma, ms, me) (5.3)
mi,...,meg=0
where
R@‘ def n—i—=I\(G=1\(j=1\(i=1\(i=j=T\(n—1
Cmi,my,m3,m4,ms,mg = Z Z ( )( )(
iel j=0 N M5 T 1 mi my mq m3 — 1 6

6 The coefficient in the parenthesis {- - - } automatically restricts the admissible labels for trees Y[m 1,ma, £].
For example, n = 2 (2nd layer), if £ = 1 then m 1, mp must both be 0, otherwise this coefficient is zero.
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,,,,,

ms me

Now we do contractions for the noises. There are two ways of contraction (see the above
figure): the first way is to contract the pair (m1, me) and the pair (m>, ma); the second way
is to contract the pair (m1, m4) and the pair (m>, mg).

Write

GY = Grxol? .

For the first contraction one has

26 mi +me —k
DY) . =— Z(—z)‘(’"‘“"ﬁ"‘*“( . o )G;(f) +oe
k=0 !
- my +my —k
— — 2 4 — 3
DY) . =— Z(_Z) (m2+my k+1)< s )fo) +...
k=0

For the second contraction one has

ms
mi +mg —k
k=0 m
Ze mo +m k
- - 6 —
k=0 "
Here * - -7 stand for terms with Gy; they are omitted, because they only contribute a finite

constant to the contracted graphs. Indeed, with a reflected Gy, one has a contracted graph
which contains a directed loop, for instance

In this situation since ng) is supported in a region of size of order ¢, and the heat kernel
vanishes at negative time variables, the integral corresponding to the graph is finite as ¢ — 0.
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Putting together these two ways of contractions and (5.3), one has

Ep D oN Uiy (o) [ ([ ([ Gy [ Py

..... me=0iel,j>0
me  my
x Z Z (—2)~(mitmatmatme—ki—k2-+2) my +me — ki) (m2+ms —ky
m my
k1=0 k=0
my +mg —kp\ (m2 +me — ki )
+< mi >( my X s ms o

where

()
sz
(e) def
Imymsdrds = (5.4)
A resummation yields
n—1 n—1 n—1 n—1
4 Z Z Z Z (_2)—(m|+m2+m4+m6—k1—k2+2)
m3,ms,ki,ka=0 | my,my=0ma=ky me¢=k;
> (500000
X
iel,j>0 ms — 1 mi my my ms3 — 1 e
« mi +me — ky my +myg — ko n my +myg —ko\ [my +mg — ki
mi my mi my
X gm3 ms K1k (5.5)
Now we consider the trees Y [my, ..., mgl. By (5.2), in the expansion of the right hand

of the nth layer equation, we have the following term

SR S SN () (Ao [

mp,..., me=0i=m|Vvma+1 j=m3Vvms+1

n—j—N\/j—-1\[(j—-1
(me—l )( ms >< my )W[ml’m’md

where i, j can equivalently sum over i, j > 0.
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There are two ways of contraction (see the above figure for indices): the first is (m1, m4)
and (mo, m3); the other way is (m1, m3) and (my, m4). After contraction

oy (SN

mi,..., me=01i,j>0

mp  mp
x { > (—2)—(m1+mz+m3+m4—k1—kz+2)[(ml T = kl) <m2 +ms = k2>

m m
k1=0 k=0 4 3

my +m3 —ki\ (m2+my — ko (e)
+ ( ms )( ma )j| X gms:k1,k2:m6

ms  m3
+ Z Z (_2)—(m]+m2+m3+m4—k|—k2+2) |:<m1 +myg — kl) (m2 +m3 — kz)

m m
k1=0ko=0 1 2

my +m3 —ky\ (ma +my — ki =(e)
+ ( mi )( mo )] x gms;kl,kz;n%

where we have omitted the terms leading to graphs with “directed loops” which only con-
tribute finite constants, as explained above, and

(&)
G ki

G = (5.6)

ms;ky,ky;me

ms me

Now note that in the parenthesis {- - - } the first sum is equal to the second sum, if we switch
mp < m3,mp < mg,ms < me,i < j, ki < ky. We only consider the second sum

(namely the one with Q_(S) ), which will cause a factor 2. (Of course for k1 # k»,
~(€)

ms:ki,ka;me
swapping k; and k» results in the same graph G ks eyime
identical graphs for now.)
Combining the two sums in the parenthesis {- - - } and re-summing, one has

, but we do not combine these

n—1

2 Z nil nil nil(—2)_(m1+m2+m3+Wl4—kl_k2+2)

ms,me,k1,ka=0 | m1,my=0mz=ky ma=k;
> (50000
P50 ms — 1 mi mo me — 1 ms3 my
mi +myg —k1\ (my +m3 — ko n mip+m3 —ko\ [my+my — ki
mj my mi my
x G (5.7)

ms;ki,ky;me
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5.2 Computation of Contracted Graphs

[S)

X

Recall that the nth Hermite polynomial is H,(x) = (— 1)"e 2 d7e” 7. Let H(x)=e¢ 7.
x2
Note that H (x/~/21) = e~ % and 3" H (x /~/2) = WHW(x/ﬁ)

We have the following formula for derivatives of heat kernel

def ( )

(n) n
G (t,x) =0,G(t,x) = o )n/2H W (x/21)G(t, x) (5.8)
Another general formula:
" " 2n " (2n)
Gu(t,x) = GxG 'x-- - xG" = 9} G*~~~*G=—'G 5.9)
n!
We compute gmg sk ky S defined in (5.4).

Case 1 We first consider the case m3 — ko € {—1, 0}, which means
2m3z + 1 —2ky| = 1.
The two “parallel” edges G;m and GI(;) in (5.4) can be dealt with as follows: by (5.9)

1 tm3+k2

™" k2
G Gi, = — Gem+D _GCh) _ _ 3, <(G(2m3+1>A<2k2>)2>
"3 m3! k! 2 m3'lky!

where the last step used the assumption |2m3 + 1 — 2kp| = 1. Replacing sz G(g)

(&)
gm;,m5,k1 k2 by
l’mﬁkza ((G(2m3+l)A(2k2))2 N (2))
2 malky! G
only causes a finite difference and does not change the logarithmically divergent part of
(&)
gm3 ms,ky,k2"

With an integration by parts, we shift the x-derivative in the above expression to G(S)
(5.4), which produces a negative sign. The pair of edges connected to the bottom vertex in
(5.4) is then Dy, ,. We have

ki
_ _ ms+ky — ¢
DmSykl = — Z(_z) (ms+ki K+1)< s >G[ + ..

:_Z( 2)~(msthi—t+D) ms + ki — ¢ G(243)+
=0 s 4

13

where the terms ” are omitted because they will only contribute finite constants as

explained above. So
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k]
— 71 — Z - — m k — Z
’”€3,m5,k|,k2 [ E (=2) (ms+ky—+ )( + >

fze2 2 =0 ms
t€+k2+m3

x ———— G2 (GEMTINERN grax 4+ 0(1)
Llkolms!

where functions in the integrand depend on (¢, x), and we have replaced mollifiers by a small
scale cutoff in the integral which only causes an O (1) constant. Using (5.8), we have

(ot GO | (GAma+DARK))2

zz+k2+m3

= GntanEmTiram H Y20 Homy e (/Y2076 x)°

Note that the entire power of ¢ does not depend on whether m3 — k; = —1 or 0, i.e., the
powers of ¢ cancel out.

Case 2 Let’s turn to the case of m3 — kp > 1. We first write the two “parallel” edges in
(5.4) as

tm3+k2

! — @m3+1) ~(2k2)
s Glo = i @76

Now the idea is the following: if we integrate by parts w.r.t. the vertex v (see (5.10)), a
derivative will be shifted from G237+ to either G, or G2 The good situations are
that either we have G, (one of these two derivatives can be shifted to Gy,) so that we
can apply the identity for D.. to convolve the bottom vertex (as first term on RHS of
(5.10)), or the two parallel edges represent derivatives of G of orders that only differ by
one (so that it can be written as %8x((- -)%) as in Case 1). To be more precise, starting
from (5.4), and ignoring for the moment all powers of 7, using (5.9) the above leads to the
analysis of

G2k2) Gk [ | gem Gt [ | g@ms

G,

= "
Gons

/
G,

(5.10)
Here and below we omit the mollifiers to make the graphic notation simpler. If m3 — k» €
{—1, 0} we stop at this point because the second term above can be studied as in Case 1,
otherwise we apply another integration by parts to the second term above and we repeat this
process until we can make use of the techniques used in the case m3 — kp € {—1, 0}. In this
way we see that the graph becomes
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G2k 3) Gt =D G2kt 3-1)
le Gk] le
- +
G, G, G,
G2ka+t=1) 3+1-0) G m3+ka) a+ko+1)
my—ky le le
=..= (-t " + (—1ymk ,
; G’"5 Gms
=A+B.
(5.11)
Now for the term A we convolve the origin
al +ki—s\1t
S ms s!
s=0
where “---” are again terms that will only contribute finite constants. For each fixed s we
need to integrate
ts+m3+k2
25) G @m3+1-0) ko +E=1)
slmslky!

Using (5.8) we get

1 1 3
WW /\t|>82 st(x/\/2>t)H2m3+1,g(x/@)H2k2+g,1(x/«/ft)G(t, x)” dtdx
Regarding B, note that G "3tk Gimsthke) = 13 ((GMm3+k2))2) Shifting this dy to Gy,
and integrating out the bottom vertex, we can proceed as before.
Case 3. We can apply the same strategy for the case m3 — k» < —2. Integrate by parts
until one can write the product of the parallel edges as 1/2 times the spacial derivative of a
square.

Below we summarize the formulas we found.

1. If m3 — kp € {—1, 0}. Then the tall tree equals

ki

1 _ _ ms +ky —s 1
2z _ 9y~ (ms+ki—s+1)
> Z(:)( 2) ( s )s!kz!m3!2‘”(2"13“)“2]‘2)
=
x /st(x/«/Z)H(zm3+1)/\(2k2)(x/VZF)ZG(X»T)S- (5.12)
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2. If m3 — ko > 1. In this case the tall tree can be written as A + B with

mh ul ms+ky —s 1
_ YR _y—(mst+ky—s+1) [ 5 1=
A= ;( D g( 2 ( ms >s!m3!k2!2s+ms+kz

x f Hos (x/~20) Homy +1-0) (X /N 20) Hokg10-1)(x /V20) G (x, 0)° (5.13)

and

1

ki
1 ms+ky —s
_ (_1ym3—ka _ _—(ms5+ki—s+1) 5 1
B= (DM LD ( >s!m3!k2!2s+m3+kz

s=0 s
x / Hoy (6 /N/20) Hyy 4 (6 [N 202G (x, 1), (5.14)

3. If maz — ko < —2 we should get that the tall tree is again of the form A + B with

ko—m3—1 ki ms +k1 _ 1
A= Z (_1)Z+1 Z(_Z)f(m5+klfs+l)< )
s=0

= ms slm3lky 128 +m3+ka
x f Hog (x /N20) Homy 0y (x /N 20) Holy— ) (x /20 G (x, 1)? (5.15)

and

1 k1 ms+ky —s 1
B = (— kp—m3—1 _ § _ A= (ms+k;—s+1) s
=D 2 0( 2 < ms )s!m3!k2!2s+m3+kz
5=l

x / Hog (X /~/20) Hypy iy (X /202G (x, 1), (5.16)

Let’s describe a general formula for the logarithmic constant from the trees . Recall
G® defined in (5.6).

ms;ki,ka;me
The two edges pointing to the bottom vertex carry the kernels G,,, and G, . This is

precisely our kernel Dy, . One has

ms
- _ _ ms +meg — S

Dipsmg = — Y _(=2)~ st S*“( > m6" )Gs+~-~, (5.17)
s=0

where - - - is the part that only contribute finite constants. Fix s. Then, we need to evaluate
GGy, Gy,. Recall that G (x, 1) = %G(Zk)(x, 1 = ﬁsz(x/@)G(x, 1). Thus, we get

ms

5(e) — _A\—(me+ms—s+1) me +ms — s ;

I ims = Z( ? ( me ky ey s 12k1Hho+s
s=0

x/ Hor, (x/~2t) Hopy (x /¥ 20) Hog (x /N20) G (x, 1) dtdx.  (5.18)
|1]=€?

It is possible to explicitly carry out the integrals of the type

3
/ < 1_[ Hy, (x/«/Z))G(t, x)3 dxdt
Jj=1
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Indeed, one has the following lemma. However, having the values of these integrals does not
seem to lead us to more instructive formulae. On the other hand, with the following lemma
we may compute the logarithmic constants on a computer, see Remark 5.2.

Lemma 5.1 Define, for ny, na, n3 € Zxg
3
Awwwﬁ/ﬁ%Ilmxwéﬁymwﬁ
j=1

Then Ay, ny.ny = 0ifny + na + n3 is odd and otherwise one has

2—(n1+nz+n3)/2 3 oarin n;!
- _Nirini/2 T
Ammns = =340 2 (1_[( R rilnj — 2rj)!)

r1,r2,1r3
ri+ra+r3<(n1+na+n3)/2

" (Z?:] n; —2}”]')!
(Zﬁzln,»/z—rj)!

Proof This is a straightforward computation using a change of variable \/;x — y and an
expansion for a triple product of scaled Hermite polynomials [2] . O

Remark 5.2 With Mathematica we found that the logarithmic renormalization constants do

sum to a non-zero constant for the second, third and fourth layer. In fact, with help of
2 _ 1 1 3 _1_1

Matbematica we have Ch = 2373 loge and C| = 13750 log & (consistent with [9,
Section 3.2]), which cancel out; we have
) 85 1 3 4
CH=—— 1 CHh=— 1
227 88 4vAn o0 82T Tadgin B
) 995 1 @ 445
Ci=——= 1 = 1
23T T 601243 B0 83T 3456430 o0
c® 5129851 1 ] c® 1018585 1 i
=————————1loge =———————loge
&t 53747712 430 © 24 = 13436928 4/ ©
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Appendix A: A Short Analysis of G;

Let ¢ € R. We say that a kernel G defined on R4 \ {0} or on a subset thereof is of order ¢ if

for all multiindizes k there exists a constant C > 0 such that
—|kl|s
sup |DXG)| < Clxf)§ e

lxlls <1

(A.1)
Proposition A.1 The kernel G; is of order —1 for every i > Q.
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Proof The result is well known for the usual heat kernel, see for instance [6, Lemma 7.4]. If
i = 1, then note that after a partial integration we have the identity

Gi = 3,G  9,G, (A.2)

and both kernels on the right hand side are of order —2. The claim therefore follows from [6,
Lemma 10.14]. Note that in that result the kernels are supposed to be compactly supported.
However, since the heat kernel decays superexponentially fast at infinity it is possible to adapt
this result to the present setting. For i > 1 we can write G; = G;_1 * 8§G so that we can
conclude as in the case i = 1. ]

Appendix B: Useful Identity

The identity _ _
2G'xG' =G+G B.1)

was used in [8, Sect. 6] where the tilde is the reflection, i.e. F (z) = F(—z), and the
derivative above is with respect to the spatial variable. Iteratively applying this identity
we can get useful identities for convolutions of (derivatives of) G,,. For instance we have

4G, * 671 =2G; — Gy — Gy, since
4G %G %G =2(G+G)%G"'=2G+G" —2G' G =2G+G"' —G -G
where we used integration by parts to shift a derivative 2G * G” = —2G’ * G’ in the second

step. When the indices are large this calculation can get more involved, for instance, we have
4G« Gy = -G — G1 + Go + Gy, because

4G" %G %G’ xG" =2G" % (G+G)xG" =2G"+*G*G" +2G" G % G"
=-2G"%G' %G —2G'xG' xG"'=—-G"*(G+G)— (G+G)*G"
=-GxG' —-GxG"'—G"'xG-GxG'=-G*G" —G*G" +2G %G’
= G+xG' —-G+xG'+G+G .

In order to obtain a general set of identities we define kernels D; ;, for (i, j) € A =

{0,1,2,...}% via
def

Di ;£ GG (B.2)

For i, j > 0, one has the recursion relation

1
D; ;= _§<Di71,j + Di,jfl) .

Indeed, making use of (B.1), we can write
Di; = (32G)* % G' % G' % (32G)*™

1 . ~ . L~ ~ .
= E((agc)*’ %G (02G) + (02G) % G * (afc)*-')
((afc;)*" £ G *92G % (92G)*U7D 4 (026)" 7D x 92G % G * (a)%é)*f)
(B.3)

1
T2

and by shifting a derivative the above recursion relation follows.
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Wheni =0, j > 0 one has the recursion

1 1
Dy,j = _EDO’j_l + EG]'.

Sinceajz Dj; we get, when j =0andi > 0

Dio = —%Di—l.o + %le
Finally, Do .o = 3[Go + Gol.

We now use these recursions to find formula for D; ;. A lattice path is a sequence of
nearest neighbor edges (steps) of A which satisfy the natural adjacency relation.

Let B = {(x,y) € A,i =0or j = 0} be the boundary of the discrete first quadrant. We
denote by W (i, j) the set of all lattice paths y which

e Startat (7, j)

e Only move down or to the left

e Terminate at a site of B (note, paths are allowed to travel along B for some time, but they
always end at a site of B, they can’t go negative.)

For a lattice path y we denote by /(y) the number of steps in y. One then has the following
formula

Dij= Y (-27YF(yena)
yeW(,j)

where yenq is the final site visited by y and F is a map from the sites of B to kernels given
as follows: F(0,0) = %(G + G) and

1 1~
FQ,j) = EGj and F(i,0) = EGi'

For fixed (i, j) € A let B(i, j) be the set of sites of B one can reach via walks in W (i, j).
We then get

D= Y (- (l +i—x - y)F(L N

. i—Xx
(x,y)€B(.,J)

where (H_Jl: :i_y ) counts the number of paths from (i, j) to (x, y). Equivalently,

i S J _

(it i+j—k\~ . i+j—k

Dij == (=7 "*”( : )Gk =2 (=)~ k*”( . )G
k=0 J k=0 !

(B.4)
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