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Abstract
In this article we prove local well-posedness of the system of equations ∂t hi =∑i

j=1 ∂2x h j +
(∂xhi )2 + ξ on the circle where 1 ≤ i ≤ N and ξ is a space-time white noise. We attempt to
generalize the renormalization procedure which gives the Hopf-Cole solution for the single
layer equation and our h1 (solution to the first layer) coincides with this solution. However,
we observe that cancellation of logarithmic divergences that occurs at the first layer does not
hold at higher layers and develop explicit combinatorial formulae for them.

Keywords Renormalization · Regularity structures · Stochastic partial differential equations

1 Introduction

The aim of this paper is to introduce a system of equations called the multi-layer KPZ
equation, formally given by

∂t hi =
i∑

j=1

∂2x h j + (∂xhi )
2 + ξ i ∈ {1, 2, . . . , N }, (1.1)

where ξ is a space-time white noise, starting from initial condition (h(0)
1 , . . . , h(0)

N ). We study
the local well-posedness and renormalization of this system on the circle. This system is
interesting for several reasons.
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Local Solution to the Multi-layer KPZ Equation 1081

First, there has been increasing interest recently in the study of coupled KPZ systems. In
[4], the local solution to the following coupled system is studied

∂t h
α = 1

2
∂2x h

α + 1

2

n∑

β,γ=1

�α
βγ ∂xh

β∂xh
γ +

n∑

β=1

σα
β ξβ α ∈ {1, 2, . . . , N } . (1.2)

Here {ξβ}nβ=1 are space-time white noises. This is anR
n vector valued KPZ system driven by

n independent space-time white noises, with constant coefficients �α
βγ and σα

β . When n = 1,
this then becomes theKPZ equation. In [7], Hairer studied the equation describing the random
motion of a string in an n dimensional manifold driven by m independent space-time white
noises, written as

∂t h
α = ∂2x h

α +
N∑

β,γ=1

�α
βγ (h)∂xh

β∂xh
γ +

m∑

i=1

σα
i (h)ξi α ∈ {1, 2, . . . , N }, (1.3)

where �α
βγ (h) are the Christoffel symbols for the Levi-Civita connection, and {σi (h)} is

a collection of vector fields on the manifold. In these works, the coupling between the
equations in the system arises from the nonlinearities. In the present article, we investigate a
new situation, that is, one has a matrix in front of the diffusive term. In particular, the matrix
is the lower triangle matrix with all the lower triangular entries being 1. Moreover, the whole
system is driven by only one single white noise ξ . The system is thus such that the first m
equations evolve independently of the m′th equation for all m′ > m. As a matter of fact,
one could also think of the i th equation as a usual KPZ equation driven by ξ together with
“noises” ∂2x h1, . . . , ∂

2
x hi−1.

Anothermotivation of studying the present problem, especially the particular choice of the
lower triangular diffusive matrix, is the following. In the paper [10] the authors introduced
a system of (continuum) multi-layer partition functions ZN for N ∈ N in order to better
understand the integrability structure behind the discrete or semi-discrete polymer models,
and their connection with quantum Toda lattice and geometric RSK correspondence:

ZN (t, x, y) = p(t, x, y)N
(

1 +
∞∑

k=1

∫

Rn
k ((t1, x1), . . . , (tk, xk))ξ

⊗k(dt1, . . . , dxk)

)

where p(t, x, y) denotes the heat kernel (we will wrote p(t, x) := p(t, 0, x) below), and
Rn
k is the k-point correlation for a collection of n non-intersecting Brownian bridges starting

at x at time 0 and ending at y at time t , and the integrals are stochastic iterated integrals
against the white noise ξ over (x1, . . . , xk) ∈ R

k and 0 < t1 < · · · < tk < t . It was
shown in [10] that this series representation for each Zn is L2 convergent. In particular,
when N = 1, Rk is the transition density of the Brownian motion passing through the
points (t1, x1), . . . , (tk, xk), and the above series becomes the chaos series solution to the
stochastic heat equation Z = 1

2∂
2
y Z + Zξ with Dirac initial data. The processes ZN are

related with a system of stochastic PDEs in the following way. Define u = u1 = Z1 and for
n ≥ 2 define un = Zn/Zn−1. Then pretending that ξ is smooth, [10] derived via a Karlin-
McGregor formula and Darboux transformation a coupled system of stochastic (nonlinear)
heat equations for un :1

∂t un = 1

2
∂2x un +

(
ξ + ∂2x log(Zn−1/p

n−1)
)
un (1.4)

1 In [10] the processes depend on two spatial parameters x and y, but here we set x to be zero and write x for
y for notational simplicity.
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1082 A. Chandra et al.

with initial conditions un(0, x) = δ(x). Then in [10, Proof of Prop. 3.3 and Prop. 3.7], the
authors introduced hn = log un which formally satisfy

∂t hn = 1

2
∂2x hn + 1

2
(∂xhn)

2 + ξ + ∂2x log(Zn−1/p
n−1) .

A direct computation shows that

∂2x log(1/p(t, x)
n) = −n∂2x log p(t, x) = −n · (∂2x p)p − (∂x p)2

p2
= n/t

So we arrive at the equation ∂t hn = 1
2∂

2
x hn + 1

2 (∂xhn)
2 + ξ +∑n−1

j=1 ∂2x h j + n−1
t . Of course,

the system (1.1) we study in this article is slightly different from the setting in [10]; for
instance we are on a finite interval with periodic boundary condition instead of the full line,
and we will not consider Dirac initial data, and we also drop the term n−1

t (which arises from
the Dirac initial condition).

Beforewe formulate ourmain result we fix an even, smooth, compactly supported function

 : R

2 → R, integrating to one and we set for ε ∈ (0, 1],

ε(t, x) = ε−3
(ε−2t, ε−1x), and ξε = ξ ∗ 
ε. (1.5)

Let S1 be the unit circle and Cβ(S1) be the space of β-Hölder continuous functions on the
circle S1. We also denote by Cη((0, T ] × S1) the space of η-Hölder continuous functions on
space-time, defined by a parabolic scaling as in [6]. Our main result is the following.

Theorem 1.1 Fix N ∈ N and (h(0)
1 , . . . , h(0)

N ) ∈ (Cβ(S1))⊗N with β ∈ (0, 1). For each
i ∈ {1, 2, . . . , N }, there exists a sequence of constants (Cε,i : 1 ≤ i ≤ N ) tending to infinity
as ε tends to zero, such that the solutions (hε,1, . . . , hε,N ) to the sequence of systems of N
equations

∂t hε,i =
i∑

j=1

∂2x hε, j + (∂xhε,i )
2 + ξε − Cε,i (1.6)

starting from initial condition (h(0)
1 , . . . , h(0)

N ) converge in probability to N random fields
(h1, . . . , hN ) in Cη((0, T ] × S1)⊗N for any η ∈ (0, β ∧ 1

2 ). Here, each of the constants
(Cε,i : 1 ≤ i ≤ N ) is given by a sum of three terms whose precise expressions are described
by Proposition 4.4 and they are such that

Cε,1 = ε−1C1 + c1

Cε,i = ε−1Ci + C̃i log ε + ci (2 ≤ i ≤ N )

for finite constants Ci , ci , C̃ j (1 ≤ i ≤ N, 2 ≤ j ≤ N). Moreover, if C1 is chosen to suitably
depend on 
 (defined in (1.5)) then the limit (h1, . . . , hN ) does not depend on the choice
of the mollifier 
 and h1 agrees with the Hole-Copf solution of the KPZ equation driven by
space-time white noise.

Recall that for the standard KPZ equation [5], and the manifold-valued KPZ type equation
(1.3) in the geometric setting, and the vector valued KPZ system (1.2) under the so called
“trilinear” condition therein, the logarithmic renormalization constants cancel out. In our
case, we expect that C̃ j in general do not vanish for j ≥ 2, but we have not found a general
argument to prove this (however, see Remark 5.2 for the first several layers.) For the standard
KPZ equation, the cancellation of logarithmic renormalization is “expected” because the
Itô term appearing from the Itô calculus for the Cole-Hopf transform behaves as 1/ε, and
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Local Solution to the Multi-layer KPZ Equation 1083

the linear stochastic heat equation is defined in Itô sense. For the multi-layer KPZ however,
there is no Cole-Hopf transform that linearizes the system, and the corresponding nonlinear
multi-layer stochastic heat equation can not be simply defined in the Itô sense. Requiring
non-vanishing logarithmic renormalizations seems not surprising in our case.

We think that it may be of interest to study a general type of KPZ system

∂t h
α = 1

2

α∑

β=1

να
β ∂2x h

β + 1

2

n∑

β,γ=1

�α
βγ ∂xh

β∂xh
γ +

n∑

β=1

σα
β ξβ α ∈ {1, 2, . . . , N }, (1.7)

where να
α > 0 and να

β = 0whenβ > α. In particular, finding the condition for the coefficients
under which the logarithmic renormalizations cancel would be very interesting.

2 Notation and Formulation

Notation We will denote by
( j
i

)
the binomial coefficients, with convention

( j
i

) = 0 when
i, j ≥ 0 and j < i . We sometimes also need the case that i or j is −1: we have

( n
−1

) = 0 for

n ≥ 0 and
(−1
−1

) = (00
) = 1. Also, for N ∈ Z+, we write [N ] def= {1, 2, . . . , N }. Moreover we

introduce the distance ‖(t, x)‖s = √|t | + |x | on R
2.

We start by rewriting (1.6) in a mild formulation. Let

G(t, x)
def=
∑

k∈2πZ

1√
4π t

exp

[

− (x − k)2

4t

]

for t > 0 and G(t, x) = 0 for t ≤ 0 be the heat kernel on S1. For each i ∈ N, we recursively
define kernels Gi by setting G0

def= G and for i > 0 setting Gi
def= G ∗ ∂2x Gi−1, so that

Gi = G ∗ (∂2x G)∗i

where ∗ stands for convolution over space and time variables, and for any function H over
space-time H∗i stands for the convolution of i copies of H . We also define for j ≥ 1,

G j
def= G ∗ ∂2x G ∗ (δ + ∂2x G)∗( j−1) =

j∑

i=1

(
j − 1

i − 1

)

Gi (2.1)

where δ is the Dirac distribution, and for any function F it is understood that F∗0 = δ.
The last equality of (2.1) follows by a binomial identity. Moreover we define G0

def= G. For
ε ∈ (0, 1] and 
ε as in (1.5), we introduce the shorthands

Gi,ε = Gi ∗ 
ε, Gi,ε = Gi ∗ 
ε .

Furthermore, if h is a function only defined in space, then with a slight abuse of notation we
also write

(G j ∗ h)(t, x) =
∫

G j (t, x − y)h(y) dy. (2.2)

We then have the following lemma, where the term unrenormalized refers to Eq. (1.6) with
all the constants Cε,i set to zero.
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1084 A. Chandra et al.

Lemma 2.1 For any N ∈ N the mild formulation of the (unrenormalized) system (1.6) is
given by

hε, j =
j∑

i=1

G j−i ∗
[
(∂xhε,i )

2 + ξε + h(0)
i

]
for 1 ≤ j ≤ N . (2.3)

Proof We proceed by induction in j . The case j = 1 is immediate since G0 = G. Suppose
that the Eq. (2.3) holds for all j ≤ k. Then by the induction assumption we have

hε,k+1 = G ∗
[
(∂x hε,k+1)

2 + ξε + h(0)
k+1

]
+ G ∗

k∑

j=1

∂2x hε, j

= G ∗
[
(∂x hε,k+1)

2 + ξε + h(0)
k+1

]
+ G ∗

k∑

j=1

j∑

i=1

∂2x G j−i ∗
[
(∂x hε,i )

2 + ξε + h(0)
i

]

= G ∗
[
(∂x hε,k+1)

2 + ξε + h(0)
k+1

]
+

k∑

i=1

( k∑

j=i

G ∗ ∂2x G j−i

)
∗
[
(∂x hε,i )

2 + ξε + h(0)
i

]
.

Note that for 1 ≤ i ≤ k, one has by G0 = G and (2.1)

k∑

j=i

G ∗ ∂2x G j−i = G ∗ ∂2x G +
k∑

j=i+1

G ∗ (∂2x G)∗2 ∗ (δ + ∂2x G)∗( j−i−1)

= G ∗ ∂2x G + G ∗ ∂2x G ∗
(
(δ + ∂2x G)∗(k−i) − δ

)

= Gk+1−i

where we used the following identity

(H − δ) ∗
m−1∑

j=0

H∗ j = H∗m − δ

with H = δ + ∂2x G and m = k − i . Therefore the statement holds for k + 1. 
�
We fix for the remainder of the entire paper the number of layers N ∈ N in the statement of
Theorem 1.1.

3 Applying the Theory of Regularity Structures

In this section we describe how we recast our problem in the language of the theory of
regularity structures [6].Wewill invoke the machinery of [1,3] to define a regularity structure
and renormalization group rich enough to solve (2.3) and show convergence of appropriately
renormalized models.

3.1 Construction of theMulti-layer KPZ Regularity Structure

We fix a parabolic space-time scaling s on R
2 by setting s = (2, 1).

We introduce twofinite, abstract, setsL+
def= {t( j,i) : 1 ≤ i ≤ j ≤ N } andL− = {l}which,

respectively, index the regularizing kernels and driving noises l appearing in our problem.
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Local Solution to the Multi-layer KPZ Equation 1085

Here, l represents an occurrence of the driving noise ξ and t( j,i) represents an occurrence
of (a truncation of) the kernel G j−i . Clearly there is some redundancy in our labeling of
kernels in the sense that if j − i = j ′ − i ′ = k ∈ N then t( j,i) and t( j ′,i ′) both represent an
occurrence of the same kernel Gk . However, for fixed k, the kernel Gk can appear in many
different equations. Keeping track of these separate occurrences is convenient when defining
our regularity structure when it comes to describing the set of allowable trees in terms of a
rule, thus we write t( j,i) to represent the specific occurrence of G j−i in the equation for the
j th layer equation.

Next, we must specify a homogeneity assignment | · |s : L− � L+ → R. To that end we
set |l|s def= − 3

2 − κ and |t|s def= 2 for any t ∈ L+. In the sequel we will use the abbreviation
L = L−�L+. Here κ > 0 is a sufficiently small parameter in the construction of our regularity
structure which is fixed throughout the paper (see for instance the proof of Proposition 3.2
for a necessary bound on κ .)

3.1.1 The Multi-layer KPZ Rule and Regularity Structure

Invoking the machinery of [1] The relevant reference for this section is [1, Section 5]. We
define, as in [1, Eq (5.5)], E

def= L × N
2 to be the set of edge types and N to be the set node

types, namely the set of all multi-sets2

We adopt a shorthand for E, writing I( j,i) to represent (t( j,i), 0) ∈ E, I ′
( j,i) to represent

(t( j,i), (0, 1)) ∈ E, and � to represent (l, 0).
We now define a rule R : L → PN\ {∅} as in [1, Definition 5.7], where PN denotes

the power set ofN. For any l ∈ L− we set R[l] def= {()}. For t( j,i) ∈ L+ we set

R[t( j,i)] def= {(I ′
(i,k), I ′

(i,k′)) : 1 ≤ k, k′ ≤ i} � {(I ′
(i,k)) : 1 ≤ k ≤ i} � {(�), ()}

This rule is clearly normal and if we define reg : L → R via reg(l)
def= −3/2− 2κ for l ∈ L−

and reg(t)
def= −1/2 − 3κ for t ∈ L+ then we see that R is subcritical in the sense of [1,

Definition 5.13].
Finally, let R̄ be the completion of R as constructed in [1, Proposition 5.20], and T =

(T,G) be the associated reduced regularity structure truncated above homogeneity γ
def=

3
2 + 3κ .
The trees of our regularity structure For those readers not familiar with [1] we now try
to give some more intuition for what our regularity structure looks like. Recall that a key
ingredient of a regularity structure is a graded vector space and inmost applications to SPDEs
(including this paper) this graded vector space is a free vector space generated by a family of
rooted decorated trees. We describe how to think of these trees in a certain formal symbolic
notation where edges are seen as unary operators.

The nodes of these trees correspond to symbols of the form � representing an occur-
rence of the driving noise or to Xk for some k ∈ N

d which represents a polynomial. Then,
X2I ′

(3,2)[�]I ′
(3,2)[�] is an example of a tree with three nodes (corresponding toX2, the root,

and two nodes of the form�) and two edges (the two instances of I ′
(3,2)). Our “rule” described

above just enforces that if there are I or I ′ operators inside some of the I ′
( j,i)[·] or I( j,i)[·]

then they must be of the form I ′
(i,k).

2 Amulti-set is like a set where one allows for multiplicity. Using the notation of [1], one setsN
def= �n≥0[E]n

where [E]n consists of the equivalence classes of elements of En where one identifies tuples in En which are
related by a permutation.
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1086 A. Chandra et al.

3.2 Graphical Notation

In order to obtain the form of the SPDE that the BPHZ renormalized model satisfies we
need to understand the form of the solution H = (Hi )

N
i=1. This requires explicitly working

with the trees of our regularity structure. Since N is arbitrary the set of these trees can be
arbitrarily large but this is only because L+ becomes larger. The shapes of the trees that we
see are always just those of the single layer KPZ equation and we now introduce a graphical
notation that takes advantage of this.

We introduce the symbolic trees

{ , , , , , , , , , , , , } . (3.1)

These symbols will be used to refer to the shape of trees. The circular nodes represent
occurrences of the noise �, the thicker/zigzagged lines correspond to an occurrence of I( j,i)

for some ( j, i) ∈ L+ and the thinner line to an instance of I ′
( j,i) for some ( j, i) ∈ L+. We

view some of the trees appearing in (3.1) as being products of other3 trees. Graphically, this
product corresponds to joining trees at the root. For example, is the product of and .

Starting from one of the symbolic trees above, we get a tree in our regularity structure by
assigning the specific labels t( j,i) ∈ L+ to the edges of a tree in a way that respects the rule
R̄ that determines our regularity structure.

To lighten notation, we will sometimes denote elements of L+ just by ( j, i), 1 ≤ i ≤ j ≤
N , rather than t( j,i). We then write expressions like

[( j1, i1), ( j2, i2)]
where ( j1, i1) specifies the line to the left and ( j2, i2) specifies the line to the right.

We will use this graphical notation only for trees that obey the rule R rather than the larger
class that obey the weaker rule R̄. The rule R implements a constraint on our indices, that is
for [( j1, i1), ( j2, i2)] to be a tree in our regularity structure we require j1 = j2. To avoid
having to write out constraints everywhere we enforce that in our notation a symbol with a
set of indices not allowed by R corresponds to 0.

Note that our notation introduces some redundancy, one has [( j1, i1), ( j2, i2)] =
[( j2, i2), ( j1, i1)]. However, this will turn out to be a feature rather than a bug as it will free

us from keeping track of some symmetry factors in the formulas to follow.
For larger trees we label edges from left to right, going from the top to the bottom. For

instance, we have

[( j1, i1), . . . , ( j6, i6)] = I ′
( j5,i5)

[
I ′

( j1,i1)[�]I ′
( j2,i2)[�]

]
I ′

( j6,i6)

[
I ′

( j3,i3)[�]I ′
( j4,i4)[�]

]

[( j1, i1), . . . , ( j6, i6)] = I ′
( j5,i5)

[
I ′

( j3,i3)

[I ′
( j1,i1)[�]I ′

( j2,i2)[�]]I ′
( j4,i4)[�]

]
I ′

( j6,i6)[�]

For the tree the constraint on indices is

j3 = j4 = i6, j2 = j1 = i5, j5 = j6 .

For the tree the constraint on indices is

j1 = j2 = i3, j3 = j4 = i5, j5 = j6 .

3 However we don’t allow for all products, for instance we do not allow for the cube . This type of constraint
can be seen in the rule we presented earlier.
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Local Solution to the Multi-layer KPZ Equation 1087

We will often just write expressions like [( jk, ik)6k=1] to save space. When we write
( jk, ik)lk=1 it is understood we are referring to a tuple of pairs ( j1, i1), . . . , ( jl , il) with
1 ≤ ik ≤ jk ≤ N for each 1 ≤ k ≤ l.

As a final example, for [( jk, ik)3k=1] the constraint on indices is j1 = j2 = i3.

3.3 Models for the Multi-layer KPZ Equation

We fix kernels K0, . . . , KN−1 mapping R
2 into R such that each Ki (a) is compactly sup-

ported in the ball of radius one around the origin, (b) is symmetric in space, (c) coincides
with Gi on the ball of radius 1/2, and (d) for every polynomial of s-degree 2 one has∫
R2 Ki (z)Q(z) dz = 0.
By [6, Lemma 5.5] and Proposition A.1 the Ki ’s can be additionally chosen such that one

has the identity Gi = Ki + Ri , for a smooth remainder Ri .
The assignment of kernels to elements of L+ is then given by t( j,i) ∈ L+, Kt( j,i)

def= K j−i .
We write M∞(T ) and M0(T ) for the space of smooth admissible models on T and

its closure, respectively. Here, the closure is taken with respect to the family of seminorms
defined in [6, Section 2].

Definition 3.1 Given any stationary C(R2)-valued random variable ζ we denote by Z ζ

bphz
the M∞(T )-valued random variable called the BPHZ lift of ζ , see [1, Theorem 6.17] for
the definition of the BPHZ lift.

The following proposition produces the random admissible model that will allow us to
describe a solution to the multi-layer KPZ equation.

Proposition 3.2 Let ξ denote space-time white noise. The BPHZ lift admits an extension to
ξ in the following sense – there exists an M0(T )-valued random variable Z ξ

bphz such that

for any smooth compactly supported function 
 : R
2 → R with

∫
R2 
(z)dz = 1 one has that

the random models Z ξ∗
ε

bphz converges in probability to Z ξ

bphz onM0(T ) as ε ↓ 0 where 
ε is
defined as in (1.5).

Proof This proposition follows from [3, Theorem 2.15]. In addition to subcriticality [3,
Theorem 2.15] enforces certain assumptions on the homogeneities of τ ∈ Twith τ �= �.
In our setting all one must check is that for every such τ one has |τ |s > −|s|/2. The second
is that any such τ must have |τ |s + |�|s + |s| > 0. Both of these conditions guarantee that
none of the random fields in our local expansions will have diverging variances.

One can easily check that the worst such trees are those of the form I ′
( j,i)[�]2 which have

homogeneity −1 − 2κ . We see that κ ∈ (0, 1/6) suffices to guarantee the two conditions
mentioned above. 
�

Remark 3.3 Note that the solution we refer to in Theorem 1.1 will be a finite shift of the
solution obtained from the BPHZ model.

3.4 Abstract Fixed Point Problem

In view of Lemma 2.1 the fixed point problem associated to (1.6) can be written as

�H = P( �(DH)2 + ��)+ Ph(0). (3.2)
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1088 A. Chandra et al.

The above fixed point problem should be seen as a vector fixed point problem where the
components of vector are elements of an appropriate Dγ,η-space, see [6, Section 6] for a
definition of these spaces. It can be compared to [9, Eq (2.12)]. We nowmake it more precise
by specifying the notation used aboved.

P is an N by N matrix of operators on a given Dγ,η space. Writing the matrix compo-
nents P = (P j,i )

n
i, j=1 one has P j,i = 0 for j < i and for j ≥ i we set P j,i to be an

abstract integration operator corresponding to G j−i . In particular, we use the decomposition
(K j−i , R j−i ) to specify the local rough part and non-local smooth part of the operator - see

[6, Section 5]. Then �H , �(DH)2 and P �h0 are N component vectors of elements of Dγ,η.
Writing �H = (Hi )

N
i=1, Hi ∈ Dγ,η is the modelled distribution describing the i th layer of the

equation. We then set

�(DH)2
def=
(
(DHi )

2
)N

i=1

Finally, one has Ph(0) def= (Ph(0)
i )Ni=1 where h

(0)
i is the initial data for the i th layer as referenced

in Theorem 1.1 and Ph(0)
i is the result of applying the heat kernel G to this initial data and

lifting it to Dγ,η as in [6, Lemma 7.5].
We have the following lemma.

Lemma 3.4 Choose γ > 3/2 + κ and η > 0 such that each hi,0 ∈ Cη. Then, for every
admissible model, there exists T > 0 such that the fixed point problem (3.2) has a unique
solution in �H ∈ Dγ,η([0, T ] × S1).

Proof We can proceed by induction since P j,i = 0 for j < i . The fixed point problem
associated to H1 (the first coordinate of �H ) coincides with the fixed point problem of the
KPZ equation, see also [9, Section 2] and it follows for instance from [6, Theorem 7.8] that,
for every admissible model, there exists T1 > 0 such that the above fixed point problem for
H1 has a unique solution inDγ,η([0, T1]× S1). With the fixed point problems for H1, . . . , Hi

solved, we can then again invoke [6, Theorem 7.8] to show that there is Ti+1 > 0 such that the
fixed point problem for Hi+1 has a unique solution in Dγ,η([0, Ti+1] × S1); this is because
the operator P j,i does enjoy the desired Schauder estimate by Proposition A.1. This finishes
the argument with T = mini Ti . 
�
In order to later derive renormalised equations it will be useful to know what the solution
promised in Lemma 3.4 looks like.

Lemma 3.5 Let γ ∈ (3/2+ κ, 3/2+ 2κ), η > 0, and �H = (Hl)
N
l=1 ∈ Dγ,η([0, T ] × S1) be

the solution to the abstract fixed point problem (3.2) promised by Lemma 3.4. Then �H is of
the following form: for 1 ≤ l ≤ N one has

Hl(z)
def= Hl,1(z)1 + Hl,X1(z)X1 +

∑

( j1,i1)
j1=l

[( j1, i1)]

+
∑

(( jk ,ik ))3k=1
j3=l

[( jk, ik)3k=1] + 2
∑

(( jk ,ik ))5k=1
j5=l

[( jk, ik)5k=1]

+ 2Hl,X1(z)
∑

(( jk ,ik ))2k=1
j2=l

[( jk, ik)2k=1] . (3.3)
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Proof Our choice of γ constraints the monomials that are kept in any Dγ,η expansion. The
fact that the solution �H must be of this form can be verified by observing that it reproduces
itself upon being inserted on the right hand side of (3.2). 
�

4 Renormalization

If Z ε = (�ε, �ε) is the canonical lift of ξε into a smooth model then the BPHZ lift Ẑ ε def=
(�̂ε, �̂ε) of ξε can be described as a shift of Z ε by an element of the renormalization group
R, a group of linear operators from T to itself that was characterized in [1].

In terms of the algebraic theory of renormalization of regularity structures the situation
here is essentially4 the same as those found in previous treatments of the KPZ equation [8,9].
A full specification of the BPHZ model is unnecessary for our purposes, we will only need
to understand its action on certain elements of the regularity structure present so that we can
derive the renormalized equation.

4.1 Definition of Renormalization Constants

We first specify the renormalization constants of the BPHZ model. We set, for collections of
indices compatible with the corresponding symbol,

�
ε,

[( jk, ik)2k=1] def= E

⎡

⎣
∫

(R2)2
dz1dz2

2∏

p=1

K ′
jp−i p (−z p)ξε(z p)

⎤

⎦

�
ε,

[( jk, ik)6k=1] def= E
[∫

(R2)2
dz5 dz6K

′
j5−i5(−z5)K

′
j6−i6(−z6)

×
⎛

⎝
∫

(R2)2
dz1dz2

2∏

p=1

K ′
jp−i p (z5 − z p)ξε(z p)

⎞

⎠

×
⎛

⎝
∫

(R2)2
dz3dz4

4∏

p=3

K ′
jp−i p (z6 − z p)ξε(z p)

⎞

⎠

⎤

⎦

�
ε,

[( jk, ik)6k=1] def= E

⎡

⎣
∫

(R2)2
dz5 dz6K

′
j5−i5(−z5)K

′
j6−i6(−z6)ξε(z6)

×
∫

(R2)2
dz3dz4K

′
j3−i3(z5 − z3)K

′
j4−i4(z5 − z4)ξε(z4)

×
⎛

⎝
∫

(R2)2
dz1dz2

2∏

p=1

K ′
jp−i p (z3 − z p)ξε(z p)

⎞

⎠

⎤

⎦ (4.1)

Here, for j ≥ 0, K ′
j (t, x)

def= ∂x K j (t, x) where K j is as in Sect. 3.3.

We also define �̄
ε,

[( jk, ik)2k=1], �̄ε,
[( jk, ik)6k=1], and �̄

ε,
[( jk, ik)6k=1] to be defined

analogously as to the constants in (4.1) except every instance of K ′
j , j ≥ 0 should be replaced

by Ḡ ′
j .

4 The only difference being the the ( j, i) decorations.
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We again adopt the convention that �
ε,

, �
ε,

, �
ε,

, �̄
ε,

, �̄
ε,

, �̄
ε,

vanish if given

a set of indices that do not satisfy the constraint coming from the rule R.
The constants of (4.1) are those used to define the BPHZ model but this choice is not

completely canonical since what we call the BPHZ model depends on the choice of kernel
truncation K j made in Sect. 3.3.

Using instead the renormalization constants defined in terms of Ḡ j in our renormalised
equation will yield the solution referred to in Theorem 1.1. However, the following lemma
tells us that the discrepancy between the two sets of constants amounts to a finite shift.

Lemma 4.1 One has the convergence

lim
ε↓0 �̄

ε,
[( jk, ik)2k=1] − �

ε,
[( jk, ik)2k=1] = c̄ [( jk, ik)2k=1]

lim
ε↓0 �̄

ε,
[( jk, ik)6k=1] − �

ε,
[( jk, ik)6k=1] = c̄ [( jk, ik)6k=1]

lim
ε↓0 �̄

ε,
[( jk, ik)6k=1] − �

ε,
[( jk, ik)6k=1] = c̄ [( jk, ik)6k=1],

where the three constants on the right hand sides above are all finite and we restrict the
indices (( jk, ik)2k=1) or (( jk, ik))6k=1 are chosen to be compatible with the corresponding
symbol.

Proof For the discrepancy between the constants �̄
ε,

[( jk, ik)2k=1] and �
ε,

[( jk, ik)2k=1] one
can show that by scale invariance of Ḡm under parabolic scaling one has

�̄
ε,

[( jk, ik)2k=1] = 1

ε
�̄1, [( jk, ik)2k=1] .

Then using that the kernels K j1−i1 and K j2−i2 are just truncations of Ḡ j1−i1 , Ḡ j2−i1 one can
show

�
ε,

[( jk, ik)2k=1] = 1

ε
�̄1, [( jk, ik)2k=1] + c

for some finite constant c.
One needs more detailed analysis for the discrepancy for the symbols and since

these in general produce logarithmic divergences. However, very similar analysis was done
in the context of a single layer KPZ equation in [8, Section 6.3]. There one can show that
appropriate rescalings of the kernels K0∗
 and ∂x K0∗
 always converge to the corresponding
untruncated kernels G0 ∗ 
 and ∂xG0 ∗ 
 in semi-normed spaces of kernels that give good
control over convolution on large and small scales—see [8, Lemma6.8]—and this can be used
to control the error in renormalization constants introduced by choosing the truncation K0 of
G0 in the integrals defining �

ε,
[(0, 0), . . . , (0, 0)] and �

ε,
[(0, 0), . . . , (0, 0)]—see [8,

Lemma 6.11].
However, it is straightforward to check that one has convergence, under the same rescaling,

of the kernels K j ∗ 
 and ∂x K j ∗ 
 to Ḡ j ∗ 
 and ∂x Ḡ j ∗ 
 and this combined with the same
arguments as before gives the desired result. 
�

4.2 Renormalization of Symbols and Renormalised Equation

In the following lemma the canonical lift of a smooth noise ξε refers to the canonical model
constructed in [6, Section 8.2].
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Lemma 4.2 Let Z ε = (�ε, �ε) be the canonical lift of ξε into a smooth model and Ẑ ε def=
(�̂ε, �̂ε) be the BPHZ lift of ξε .

Then one has

�̂ε
z1 =�ε

z1

�̂ε
z [( j1, i1)] =�ε

z [( j1, i1)]
�̂ε

z [( jk, ik)2k=1] =�ε
z [( jk, ik)2k=1] − �

ε,
[( jk, ik)2k=1]

�̂ε
z [( jk, ik)6k=1] =�ε

z [( jk, ik)6k=1] − �
ε,

[( jk, ik)6k=1]
�̂ε

z [( jk, ik)6k=1] =�ε
z [( jk, ik)6k=1] − �

ε,
[( jk, ik)6k=1] ,

where all the indices above are chosen to satisfy the constraint of the corresponding symbol.

Proof Starting with the generic formulation of BPHZ renormalization as a starting point, the
key observations needed to justify the simple formulas above are that

• Additional subtractions for symbols of the type or due to the occurrence of
vanish since our truncated kernel K integrates to 0.

• We are in the Gaussian case, and so symbols with an odd number of noises do not produce
any renormalization.5

• Symbols of the type produce vanishing renormalization constants, this is by parity
under the reflection (t, x) �→ (t,−x) (since we imposed that our mollifier is even in
space ξε is invariant in law under this reflection).


�
The next lemma presents the renormalized equation obtained by solving the equation driven
by Ẑ ε.

Lemma 4.3 Let Ẑ ε be theBPHZ lift of ξε . Letγ > 3/2+κ ,η > 0, and �Hε be the solution to the
abstract fixed point problem (3.2) in theDγ,η([0, T ]× S1) space over Ẑ ε . Let �uε = (uε,l)

N
l=1

be the reconstruction of �Hε given by R̂ε �H, where R̂ε denotes the reconstruction operator
associated to Ẑ ε which is applied componentwise to �H.

Then �uε solves, on [0, T ] × S1, the initial value problem

∂t uε,l = ∂2x uε,l + (∂xuε,l)
2 + ξε −

3∑

q=1

C̃ (q)
ε,l +

l−1∑

j=1

∂2x uε, j (4.2)

starting from initial condition (h(0)
1 , . . . , h(0)

N ), where

C̃ (1)
ε,l

def=
∑

( jk ,ik )2k=1
j1= j2=l

�
ε,

[( jk, ik)2k=1]

C̃ (2)
ε,l

def=
∑

( jk ,ik )6k=1
j5= j6=l

�
ε,

[( jk, ik)6k=1]

C̃ (3)
ε,l

def= 4
∑

( jk ,ik )6k=1
j5= j6=l

�
ε,

[( jk, ik)6k=1] . (4.3)

5 In contrast to the situation in [9].
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Moreover, the (u1,ε, . . . , uN ,ε) converge in probability to N random fields (u1, . . . , uN ) ∈
Cη([0, T ], S1)⊗N for any η ∈ (0, β ∧ 1

2 ).

Proof Applying R̂ε to both sides of (3.2) gives

uε, j =
j∑

i=1

G j−i ∗
[
R̂ε[(DHi )

2] + ξε + h(0)
i

]
for 1 ≤ j ≤ N . (4.4)

Now, using the identity (R̂εF)(z) = (�̂z F(z))(z), see for instance [6, Remark 3.15], one
can verify, using Lemma 4.2,

(R̂ε(DHi )
2)(z) = (∂xuε,i )

2(z) −
3∑

q=1

C̃ (q)
ε,i .

Then after inserting the above into (4.4) one can rewrite the resulting system in the form (4.2)
(just as (2.3) was a rewriting itself of the non-renormalized equation).

The statement of convergence as ε ↓ 0 follows from the convergence of the models Ẑ ε,
the continuity of the abstract solution map for (3.2), and the continuity of reconstruction. 
�
The above proposition gives a notion of local solution to the multi-layer KPZ equation but
it is not completely canonical since it depends on a truncation of the heat kernel and it will
not give the Hopf-Cole solution for the first layer so it differs from the solution described in
our main theorem but only by a finite shift.

Proof Theorem 1.1 For i ∈ [N ], q = 1, 2, 3, we choose C (q)
ε,i to be defined as C̃ (q)

ε,i but with

�•[•] replaced by �̄•[•]. Convergence of the �hε then follows from that of the �uε of (4.2) since
one has

hε,i (t, x) − uε,i (t, x) = t
3∑

q=1

(C̃ (q)
ε,i − C (q)

ε,i )

and the right hand side above converges to a finite limit by Lemma 4.1.
Identification of h1 with the corresponding Hopf-Cole solution can be performed just as

in the proof of [8, Proposition 7.1] in the simpler setting where one just takes F(u) = u2

there.
The solution h constructed there is obtained by taking renormalized solutions where

∑3
q=1 C̃

(q)
ε,1 is replaced by C (1)

ε,1 + C̃ (2)
ε,i + C̃ (3)

ε,i , then the constant c referenced in [8, Proposi-

tion 7.1] corresponds precisely to (C̃ (2)
ε,i + C̃ (3)

ε,i ) − (C (2)
ε,i + C (3)

ε,i ). 
�
We now proceed to obtain the promised combinatorial formula for the renormalization con-
stants appearing in Theorem 1.1.

Proposition 4.4 C (1)
ε,i is given by (4.6) below, C

(2)
ε,i is given by (5.5)where G

(ε)
m3,m5,k1,k2

therein

is given by (5.12)–(5.16), and C (3)
ε,i is given by (5.7) where Ḡ(ε)

m5;k1,k2;m6
therein is given by

(5.18).

Note that although formulae for C (2)
ε,i and C

(3)
ε,i are very sophisticated, they are all written

in terms of integrals of Hermite polynomials and heat kernels (with many combinatoric
coefficients).
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We consider the constant C (1)
ε,i in this section, and will study C (2)

ε,i and C (3)
ε,i in the next

section.
Consider C (1)

ε,i . Using the definition (2.1) one has

�̄
ε,

[(i, j), (i, k)] =
i− j∑

m1=0

i−k∑

m2=0

(
i − j − 1

m1 − 1

)(
i − k − 1

m2 − 1

)

G ′
m1,ε

∗ G̃ ′
m2,ε(0)

where tilde denotes the reflection, i.e. F̃(z) := F(−z). In view of (4.3) we need to sum over
j and k. To this end we perform a re-summing, using

i∑

j=1

i− j∑

m=0

(
i − j − 1

m − 1

)

Hm =
i−1∑

m=0

i−m∑

j=1

(
i − j − 1

m − 1

)

Hm =
i−1∑

m=0

(
i − 1

m

)

Hm

where Hm is a generic quantity which depends on m but not j . We get

C (1)
ε,i =

i−1∑

m1,m2=0

(
i − 1

m1

)(
i − 1

m2

)

G ′
m1,ε

∗ G̃ ′
m2,ε(0) (4.5)

Note that here we have used our convention for binomial constants with entries allowed to
be −1.

Lemma 4.5 Fix i ∈ {1, 2, . . . , N }. Define 

(2)
ε

def= 
ε ∗ 
ε . For each k ∈ {0, 1, . . . , i − 1},
with constant

C(ε, k) = 1

k!
(
tkG(2k)) ∗ 
(2)

ε (0) � 1/ε

one has

C (1)
ε,i =

i−1∑

k=0

(−2)kT (i − 1, k)C(ε, k), (4.6)

where for each i and each k,

T (i, k) =
i∑

m2=0

i∑

m1=k

(−2)−(m1+m2)

(
i

m1

)(
i

m2

)(
m1 − k + m2

m2

)

. (4.7)

Proof Let tilde denote the reflection, i.e. F̃(z) := F(−z). Recall (4.5). We claim that

G ′
m1,ε

∗ G̃ ′
m2,ε(0)

= −
m1∑

k=0

(−2)−(m1+m2−k+1)
(
m1 + m2 − k

m2

)

(G̃k ∗ 
(2)
ε )(0)

−
m2∑

k=0

(−2)−(m1+m2−k+1)
(
m1 + m2 − k

m1

)

(Gk ∗ 
(2)
ε )(0), (4.8)

where 

(2)
ε = 
ε ∗ 
ε . Indeed, let m1,m2 ≥ 0, we define

D(ε)
m1,m2

= G ′
m1,ε

∗ G̃ ′
m2,ε, (4.9)

and by (B.2) we see that D(ε)
m1,m2 = Dm1,m2 ∗


(2)
ε . Using (B.4) we conclude the proof of (4.8).
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We define
C(ε, k)

def= (Gk ∗ 
(2)
ε )(0) = (G̃k ∗ 
(2)

ε )(0) (4.10)

where the last equality is a consequence of the fact that 
 is an even function. Using (4.5)
together with (4.8) gives (4.6). This is done by performing a resummation: we fix the k in
(4.8), and sum m1 from k to i − 1 (or sum m2 from k to i − 1, which yields the same result
by (4.10) and invariance of swapping m1 and m2 - thus we get a factor 2 which cancels a
factor −(−2)−1).

Moreover, integrating for each of the convolutions that follow first over space, making
use of the semi-group property, and then integrating over time we see that

G∗n = tn−1

(n − 1)!G. (4.11)

Hence, we can then write

C(ε, k) = (Gk ∗ 
(2)
ε )(0) = 1

k!
(
tkG(2k)

)
∗ 
(2)

ε (0) .

It now follows immediately that C(ε, k) ∼ ε−1. 
�
Remark 4.6 One could also derive an alternative formula for C(ε, k). Let

Hn(x) = (−1)nex
2/2∂nx e

−x2/2 =: (−1)nex
2/2∂nx H̃(x) (4.12)

be the nthe Hermite polynomial where H̃(x) = e−x2/2. It then follows that

∂nx G(x, t) = (−1)nex
2/4t∂nx H̃(x/

√
2t)(−1)nG(x, t) = 1

(2t)n/2 (−1)nHn(x/
√
2t)G(x, t).

(4.13)
Hence, we canwriteC(ε, k) = tk

k!
1

(2t)k
FkG∗


(2)
ε (0) = 1

2kk! (FkG∗

(2)
ε )(0)where Fk(x, t) =

H2k(x/
√
2t).

5 Logarithmic Renormalization

We derive formulae for the other two constants in Proposition 4.4 and thus complete the
proof of this Proposition.

5.1 Combinatoric Coefficients, and Doing Contractions

Now consider the nth equation. Using (2.1) for Ḡ, the first tree in the description of hn , which
we denote by h(0)

n , is equal to

n∑

i=1

Ḡn−i� =
n∑

i=1

n−i∑

�=0

(
n − i − 1

� − 1

)

G�� =
n−1∑

�=0

n−�∑

i=1

(
n − i − 1

� − 1

)

[�]

=
n−1∑

�=0

(
n − 1

�

)

[�] (5.1)

Note that
∑n−1

�=0 can be rewritten as
∑

�≥0 since for � out of that range the binomial coefficients
are understood (with usual convention) as 0. The next tree in the description of hn , denoted
by h(1)

n , is equal to

123



Local Solution to the Multi-layer KPZ Equation 1095

n∑

i=1

Ḡn−i (∂xh
(0)
i )2 =

n∑

i=1

n−i∑

�=0

(
n − i − 1

� − 1

)

G�

i−1∑

m1,m2=0

(
i − 1

m1

)(
i − 1

m2

)

[m1,m2]

=
n−1∑

�,m1,m2=0

⎧
⎨

⎩

n−�∑

i=m1∨m2+1

(
n − i − 1

� − 1

)(
i − 1

m1

)(
i − 1

m2

)
⎫
⎬

⎭
[m1,m2, �]

(5.2)

where we have performed resummation,6 and as above
∑n−�

i=m1∨m2+1 could be replaced by∑
i≥0 since for i out of that range the binomial coefficients are understood as 0.
Turning to the next tree in the description of hn , by (5.1) and (5.2)

h(2)
n = 2

n∑

i=1

Ḡn−i (∂xh
(0)
i ∂xh

(1)
i )

= 2
n∑

i=1

n−i∑

�=0

(
n − i − 1

� − 1

)

G�

i−1∑

m1,m2,m3,m4=0

i−m3∑

j=m1∨m2+1

×
(
j − 1

m1

)(
j − 1

m2

)(
i − 1

m4

)(
i − j − 1

m3 − 1

)

[m1,m2,m3,m4]

= 2
n−1∑

�,m1,m2,m3,m4=0

cm1,m2,m3,m4,�
[m1,m2,m3,m4, �]

where we have performed resummation and

cm1,m2,m3,m4,�

def=
n−�∑

i=max(m1,m2,m3,m4)+1

∑

j≥0

(
n − i − 1

� − 1

)(
j − 1

m1

)(
j − 1

m2

)(
i − 1

m4

)(
i − j − 1

m3 − 1

)

So in the expansion of the right hand of the nth layer equation, we have the following term

4
n−1∑

m1,...,m6=0

cm1,m2,m3,m4,m5,m6 [m1,m2,m3,m4,m5,m6] (5.3)

where

cm1,m2,m3,m4,m5,m6

def=
∑

i∈I

∑

j≥0

(
n − i − 1

m5 − 1

)(
j − 1

m1

)(
j − 1

m2

)(
i − 1

m4

)(
i − j − 1

m3 − 1

)(
n − 1

m6

)

6 The coefficient in the parenthesis {· · · } automatically restricts the admissible labels for trees [m1,m2, �].
For example, n = 2 (2nd layer), if � = 1 then m1,m2 must both be 0, otherwise this coefficient is zero.
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where I
def= [max(m1,m2,m3,m4)+1, n−m5]∩Z. In particular when n = 1, c0,0,0,0,0,0 = 1

which is consistent with the expansion for single-layer KPZ equation.

m1

m3

m5 m6

m4

m2

Now we do contractions for the noises. There are two ways of contraction (see the above
figure): the first way is to contract the pair (m1,m6) and the pair (m2,m4); the second way
is to contract the pair (m1,m4) and the pair (m2,m6).

Write

G(ε)
k

def= Gk ∗ 
(2)
ε .

For the first contraction one has

D(ε)
m1,m6

= −
m6∑

k=0

(−2)−(m1+m6−k+1)
(
m1 + m6 − k

m1

)

G(ε)
k + · · ·

D(ε)
m2,m4

= −
m4∑

k=0

(−2)−(m2+m4−k+1)
(
m2 + m4 − k

m2

)

G(ε)
k + · · ·

For the second contraction one has

D(ε)
m1,m4

= −
m4∑

k=0

(−2)−(m1+m4−k+1)
(
m1 + m4 − k

m1

)

G(ε)
k + · · ·

D(ε)
m2,m6

= −
m6∑

k=0

(−2)−(m2+m6−k+1)
(
m2 + m6 − k

m2

)

G(ε)
k + · · ·

Here “· · · ” stand for terms with G̃k ; they are omitted, because they only contribute a finite
constant to the contracted graphs. Indeed, with a reflected Gk , one has a contracted graph
which contains a directed loop, for instance

Gk2 ∗ 

(2)
ε

G ′
m5

G ′
m3 Gk1 ∗ 


(2)
ε

In this situation since 

(2)
ε is supported in a region of size of order ε, and the heat kernel

vanishes at negative time variables, the integral corresponding to the graph is finite as ε → 0.
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Local Solution to the Multi-layer KPZ Equation 1097

Putting together these two ways of contractions and (5.3), one has

4
n−1∑

m1,...,m6=0

∑

i∈I , j≥0

(
n − i − 1

m5 − 1

)(
j − 1

m1

)(
j − 1

m2

)(
i − 1

m4

)(
i − j − 1

m3 − 1

)(
n − 1

m6

)

×
m6∑

k1=0

m4∑

k2=0

(−2)−(m1+m2+m4+m6−k1−k2+2)
[(

m1 + m6 − k1
m1

)(
m2 + m4 − k2

m2

)

+
(
m1 + m4 − k2

m1

)(
m2 + m6 − k1

m2

)]

× G(ε)
m3,m5,k1,k2

where

G(ε)
m3,m5,k1,k2

def=

G(ε)
k2

G ′
m5

G ′
m3 G(ε)

k1

(5.4)

A resummation yields

4
n−1∑

m3,m5,k1,k2=0

⎧
⎨

⎩

n−1∑

m1,m2=0

n−1∑

m4=k2

n−1∑

m6=k1

(−2)−(m1+m2+m4+m6−k1−k2+2)

×
∑

i∈I , j≥0

(
n − i − 1

m5 − 1

)(
j − 1

m1

)(
j − 1

m2

)(
i − 1

m4

)(
i − j − 1

m3 − 1

)(
n − 1

m6

)

×
[(

m1 + m6 − k1
m1

)(
m2 + m4 − k2

m2

)

+
(
m1 + m4 − k2

m1

)(
m2 + m6 − k1

m2

)]
⎫
⎬

⎭

× G(ε)
m3,m5,k1,k2

(5.5)

Now we consider the trees [m1, . . . ,m6]. By (5.2), in the expansion of the right hand
of the nth layer equation, we have the following term

n−1∑

m1,...,m6=0

n−m5∑

i=m1∨m2+1

n−m6∑

j=m3∨m4+1

(
n − i − 1

m5 − 1

)(
i − 1

m1

)(
i − 1

m2

)

(
n − j − 1

m6 − 1

)(
j − 1

m3

)(
j − 1

m4

)

[m1, . . . ,m6]

where i, j can equivalently sum over i, j ≥ 0.

m1 m2 m3 m4

m5 m6
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1098 A. Chandra et al.

There are two ways of contraction (see the above figure for indices): the first is (m1,m4)

and (m2,m3); the other way is (m1,m3) and (m2,m4). After contraction

n−1∑

m1,...,m6=0

∑

i, j≥0

(
n − i − 1

m5 − 1

)(
i − 1

m1

)(
i − 1

m2

)(
n − j − 1

m6 − 1

)(
j − 1

m3

)(
j − 1

m4

)

×
{ m1∑

k1=0

m2∑

k2=0

(−2)−(m1+m2+m3+m4−k1−k2+2)
[(

m1 + m4 − k1
m4

)(
m2 + m3 − k2

m3

)

+
(
m1 + m3 − k1

m3

)(
m2 + m4 − k2

m4

)]

× ¯̄G(ε)
m5;k1,k2;m6

+
m4∑

k1=0

m3∑

k2=0

(−2)−(m1+m2+m3+m4−k1−k2+2)
[(

m1 + m4 − k1
m1

)(
m2 + m3 − k2

m2

)

+
(
m1 + m3 − k2

m1

)(
m2 + m4 − k1

m2

)]

× Ḡ(ε)
m5;k1,k2;m6

}

where we have omitted the terms leading to graphs with “directed loops” which only con-
tribute finite constants, as explained above, and

Ḡ(ε)
m5;k1,k2;m6

def=

G(ε)
k1

G(ε)
k2

G ′
m5

G ′
m6

¯̄G(ε)
m5;k1,k2;m6

def=

G(ε)
k1

G(ε)
k2

G ′
m5

G ′
m6

(5.6)

Now note that in the parenthesis {· · · } the first sum is equal to the second sum, if we switch
m1 ↔ m3,m2 ↔ m4,m5 ↔ m6, i ↔ j, k1 ↔ k2. We only consider the second sum
(namely the one with Ḡ(ε)

m5;k1,k2;m6
), which will cause a factor 2. (Of course for k1 �= k2,

swapping k1 and k2 results in the same graph Ḡ(ε)
m5;k1,k2;m6

, but we do not combine these
identical graphs for now.)

Combining the two sums in the parenthesis {· · · } and re-summing, one has

2
n−1∑

m5,m6,k1,k2=0

⎧
⎨

⎩

n−1∑

m1,m2=0

n−1∑

m3=k2

n−1∑

m4=k1

(−2)−(m1+m2+m3+m4−k1−k2+2)

∑

i, j≥0

(
n − i − 1

m5 − 1

)(
i − 1

m1

)(
i − 1

m2

)(
n − j − 1

m6 − 1

)(
j − 1

m3

)(
j − 1

m4

)

[(
m1 + m4 − k1

m1

)(
m2 + m3 − k2

m2

)

+
(
m1 + m3 − k2

m1

)(
m2 + m4 − k1

m2

)]
⎫
⎬

⎭

× Ḡ(ε)
m5;k1,k2;m6

(5.7)
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5.2 Computation of Contracted Graphs

Recall that the nth Hermite polynomial is Hn(x) = (−1)ne
x2
2 ∂nx e

− x2
2 . Let H̃(x) = e− x2

2 .

Note that H̃(x/
√
2t) = e− x2

4t and ∂nx H̃(x/
√
2t) = 1

(2t)n/2 H
(n)(x/

√
2t)

We have the following formula for derivatives of heat kernel

G(n)(t, x)
def= ∂nx G(t, x) = (−1)n

(2t)n/2 Hn(x/
√
2t)G(t, x) (5.8)

Another general formula:

Gn(t, x) = G�G ′′� · · · �G ′′ = ∂2nx G� · · · �G = tn

n!G
(2n) (5.9)

We compute G(ε)
m3,m5,k1,k2

as defined in (5.4).
Case 1We first consider the case m3 − k2 ∈ {−1, 0}, which means

|2m3 + 1 − 2k2| = 1.

The two “parallel” edges G ′
m3

and G(ε)
k2

in (5.4) can be dealt with as follows: by (5.9)

G ′
m3

Gk2 = tm3

m3!G
(2m3+1) t

k2

k2!G
(2k2) = 1

2

tm3+k2

m3!k2!∂x
(
(G(2m3+1)∧(2k2))2

)

where the last step used the assumption |2m3 + 1 − 2k2| = 1. Replacing G ′
m3

· G(ε)
k2

in

G(ε)
m3,m5,k1,k2

by

1

2

tm3+k2

m3!k2!∂x
(
(G(2m3+1)∧(2k2))2 ∗ 
(2)

ε

)

only causes a finite difference and does not change the logarithmically divergent part of
G(ε)
m3,m5,k1,k2

.

With an integration by parts, we shift the x-derivative in the above expression to G(ε)
k1

in
(5.4), which produces a negative sign. The pair of edges connected to the bottom vertex in
(5.4) is then Dm5,k1 . We have

Dm5,k1 = −
k1∑

�=0

(−2)−(m5+k1−�+1)
(
m5 + k1 − �

m5

)

G� + · · ·

= −
k1∑

�=0

(−2)−(m5+k1−�+1)
(
m5 + k1 − �

m5

)
t�

�!G
(2�) + · · ·

where the terms “· · · ” are omitted because they will only contribute finite constants as
explained above. So
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1100 A. Chandra et al.

G(ε)
m3,m5,k1,k2

=
∫

|t |≥ε2

1

2

k1∑

�=0

(−2)−(m5+k1−�+1)
(
m5 + k1 − �

m5

)

× t�+k2+m3

�!k2!m3! G
(2�) · (G(2m3+1)∧(2k2))2 dtdx + O(1)

where functions in the integrand depend on (t, x), and we have replaced mollifiers by a small
scale cutoff in the integral which only causes an O(1) constant. Using (5.8), we have

t�+k2+m3G(2�) · (G(2m3+1)∧(2k2))2

= t�+k2+m3

(2t)�(2t)(2m3+1)∧(2k2)
H2�(x/

√
2t)H(2m3+1)∧(2k2)(x/

√
2t)2G(t, x)3 .

Note that the entire power of t does not depend on whether m3 − k2 = −1 or 0, i.e., the
powers of t cancel out.

Case 2 Let’s turn to the case of m3 − k2 ≥ 1. We first write the two “parallel” edges in
(5.4) as

G ′
m3

Gk2 = tm3+k2

m3!k2!G
(2m3+1)G(2k2)

Now the idea is the following: if we integrate by parts w.r.t. the vertex v (see (5.10)), a
derivative will be shifted from G(2m3+1) to either G ′

m5
or G(2k2). The good situations are

that either we have G ′′
m5

(one of these two derivatives can be shifted to Gk1 ) so that we
can apply the identity for D·,· to convolve the bottom vertex (as first term on RHS of
(5.10)), or the two parallel edges represent derivatives of G of orders that only differ by
one (so that it can be written as 1

2∂x ((· · · )2) as in Case 1). To be more precise, starting
from (5.4), and ignoring for the moment all powers of t , using (5.9) the above leads to the
analysis of

v

G(2k2)

G ′
m5

G(2m3+1)
Gk1

=

G(2k2)

G ′′
m5

G(2m3)

Gk1

−

G(2k2+1)

G ′
m5

G(2m3)

Gk1

(5.10)
Here and below we omit the mollifiers to make the graphic notation simpler. If m3 − k2 ∈
{−1, 0} we stop at this point because the second term above can be studied as in Case 1,
otherwise we apply another integration by parts to the second term above and we repeat this
process until we can make use of the techniques used in the case m3 − k2 ∈ {−1, 0}. In this
way we see that the graph becomes
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Local Solution to the Multi-layer KPZ Equation 1101

G(2k2)

G ′′
m5

G(2m3)

Gk1

−

G(2k2+1)

G ′′
m5

G(2m3−1)

Gk1

+

G(2k2+2)

G ′
m5

G(2m3−1)

Gk1

= . . . =
m3−k2∑

�=1

(−1)�−1

G(2k2+�−1)

G ′′
m5

G(2m3+1−�)

Gk1

+ (−1)m3−k2

G(m3+k2)

G ′
m5

G(m3+k2+1)

Gk1

:= A + B.

(5.11)
Now for the term A we convolve the origin

Dm5,k1 = −
k1∑

s=0

(−2)−(m5+k1−s+1)
(
m5 + k1 − s

m5

)
t s

s!G
(2s) + · · ·

where “· · · ” are again terms that will only contribute finite constants. For each fixed s we
need to integrate

t s+m3+k2

s!m3!k2! G
(2s)G(2m3+1−�)G(2k2+�−1)

Using (5.8) we get

1

s!m3!k2!
1

2s+m3+k2

∫

|t |≥ε2
H2s(x/

√
2t)H2m3+1−�(x/

√
2t)H2k2+�−1(x/

√
2t)G(t, x)3 dtdx

Regarding B, note that G(m3+k2+1)G(m3+k2) = 1
2∂x ((G

(m3+k2))2). Shifting this ∂x to Gk1
and integrating out the bottom vertex, we can proceed as before.

Case 3. We can apply the same strategy for the case m3 − k2 ≤ −2. Integrate by parts
until one can write the product of the parallel edges as 1/2 times the spacial derivative of a
square.

Below we summarize the formulas we found.

1. If m3 − k2 ∈ {−1, 0}. Then the tall tree equals

1

2

k1∑

s=0

(−2)−(m5+k1−s+1)
(
m5 + k1 − s

m5

)
1

s!k2!m3!2s+(2m3+1)∧(2k2)

×
∫

H2s(x/
√
2t)H(2m3+1)∧(2k2)(x/

√
2t)2G(x, t)3. (5.12)
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2. If m3 − k2 ≥ 1. In this case the tall tree can be written as A + B with

A =
m3−k2∑

�=1

(−1)�+1
k1∑

s=0

(−2)−(m5+k1−s+1)
(
m5 + k1 − s

m5

)
1

s!m3!k2!2s+m3+k2

×
∫

H2s(x/
√
2t)H(2m3+1−�)(x/

√
2t)H(2k2+�−1)(x/

√
2t)G(x, t)3 (5.13)

and

B = (−1)m3−k2 1

2

k1∑

s=0

(−2)−(m5+k1−s+1)
(
m5 + k1 − s

m5

)
1

s!m3!k2!2s+m3+k2

×
∫

H2s(x/
√
2t)Hm3+k2(x/

√
2t)2G(x, t)3. (5.14)

3. If m3 − k2 ≤ −2 we should get that the tall tree is again of the form A + B with

A =
k2−m3−1∑

�=1

(−1)�+1
k1∑

s=0

(−2)−(m5+k1−s+1)
(
m5 + k1 − s

m5

)
1

s!m3!k2!2s+m3+k2

×
∫

H2s(x/
√
2t)H(2m3+�)(x/

√
2t)H(2k2−�)(x/

√
2t)G(x, t)3 (5.15)

and

B = (−1)k2−m3−1 1

2

k1∑

s=0

(−2)−(m5+k1−s+1)
(
m5 + k1 − s

m5

)
1

s!m3!k2!2s+m3+k2

×
∫

H2s(x/
√
2t)Hm3+k2(x/

√
2t)2G(x, t)3. (5.16)

Let’s describe a general formula for the logarithmic constant from the trees . Recall
Ḡ(ε)
m5;k1,k2;m6

defined in (5.6).
The two edges pointing to the bottom vertex carry the kernels G ′

m5
and G ′

m6
. This is

precisely our kernel Dm5,m6 . One has

Dm5,m6 = −
m5∑

s=0

(−2)−(m5+m6−s+1)
(
m5 + m6 − s

m6

)

Gs + · · · , (5.17)

where · · · is the part that only contribute finite constants. Fix s. Then, we need to evaluate

GsGk1Gk2 . Recall thatGk(x, t) = tk
k!G

(2k)(x, t) = tk

k!(2t)k H2k(x/
√
2t)G(x, t). Thus, we get

Ḡ(ε)
m5;k1,k2;m6

= −
m5∑

s=0

(−2)−(m6+m5−s+1)
(
m6 + m5 − s

m6

)
1

k1!k2!s!2k1+k2+s

×
∫

|t |≥ε2
H2k1(x/

√
2t)H2k2(x/

√
2t)H2s(x/

√
2t)G(x, t)3 dtdx . (5.18)

It is possible to explicitly carry out the integrals of the type

∫ ( 3∏

j=1

Hn j (x/
√
2t)
)
G(t, x)3 dxdt
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Indeed, one has the following lemma. However, having the values of these integrals does not
seem to lead us to more instructive formulae. On the other hand, with the following lemma
we may compute the logarithmic constants on a computer, see Remark 5.2.

Lemma 5.1 Define, for n1, n2, n3 ∈ Z≥0

An1,n2,n3
def=
∫

dx
( 3∏

j=1

Hn j (x/
√
2t)
)
G(t, x)3

Then An1,n2,n3 = 0 if n1 + n2 + n3 is odd and otherwise one has

An1,n2,n3 = 2−(n1+n2+n3)/2

31/24π t

∑

r1,r2,r3
r1+r2+r3≤(n1+n2+n3)/2

( 3∏

j=1

(−1)r j 3r j−n j /2
n j !

r j !(n j − 2r j )!
)

×
(∑3

j=1 n j − 2r j
)
!

(∑3
j=1 n j/2 − r j

)
!

Proof This is a straightforward computation using a change of variable
√

3
2t x �→ y and an

expansion for a triple product of scaled Hermite polynomials [2] . 
�
Remark 5.2 With Mathematica we found that the logarithmic renormalization constants do
sum to a non-zero constant for the second, third and fourth layer. In fact, with help of
Mathematica we have C (2)

ε,1 = − 1
2

1
4
√
3π

log ε and C (3)
ε,1 = 1

2
1

4
√
3π

log ε (consistent with [9,
Section 3.2]), which cancel out; we have

C (2)
ε,2 = − 85

288

1

4
√
3π

log ε C (3)
ε,2 = 47

144

1

4
√
3π

log ε

C (2)
ε,3 = − 995

6912

1

4
√
3π

log ε C (3)
ε,3 = 445

3456

1

4
√
3π

log ε

C (2)
ε,4 = − 5129851

53747712

1

4
√
3π

log ε C (3)
ε,4 = 1018585

13436928

1

4
√
3π

log ε
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Appendix A: A Short Analysis ofGi

Let ζ ∈ R. We say that a kernel G defined on R
d \ {0} or on a subset thereof is of order ζ if

for all multiindizes k there exists a constant C > 0 such that

sup
‖x‖s≤1

|DkG(x)| ≤ C‖x‖ζ−|k|s
s . (A.1)

Proposition A.1 The kernel Gi is of order −1 for every i ≥ 0.

123



1104 A. Chandra et al.

Proof The result is well known for the usual heat kernel, see for instance [6, Lemma 7.4]. If
i = 1, then note that after a partial integration we have the identity

G1 = ∂xG ∗ ∂xG, (A.2)

and both kernels on the right hand side are of order −2. The claim therefore follows from [6,
Lemma 10.14]. Note that in that result the kernels are supposed to be compactly supported.
However, since the heat kernel decays superexponentially fast at infinity it is possible to adapt
this result to the present setting. For i > 1 we can write Gi = Gi−1 ∗ ∂2x G so that we can
conclude as in the case i = 1. 
�

Appendix B: Useful Identity

The identity
2G ′ ∗ G̃ ′ = G + G̃ (B.1)

was used in [8, Sect. 6] where the tilde is the reflection, i.e. F̃(z) := F(−z), and the
derivative above is with respect to the spatial variable. Iteratively applying this identity
we can get useful identities for convolutions of (derivatives of) Gm . For instance we have

4G ′
0 ∗ G̃ ′

1 = 2G̃1 − G0 − G̃0, since

4G ′ ∗ G̃ ′ ∗ G̃ ′′ = 2(G + G̃) ∗ G̃ ′′ = 2G̃ ∗ G̃ ′′ − 2G ′ ∗ G̃ ′ = 2G̃ ∗ G̃ ′′ − G − G̃

where we used integration by parts to shift a derivative 2G ∗ G̃ ′′ = −2G ′ ∗ G̃ ′ in the second
step. When the indices are large this calculation can get more involved, for instance, we have

4G ′
1 ∗ G̃ ′

1 = −G1 − G̃1 + G0 + G̃0, because

4G ′′ ∗ G ′ ∗ G̃ ′ ∗ G̃ ′′ = 2G ′′ ∗ (G + G̃) ∗ G̃ ′′ = 2G ′′ ∗ G ∗ G̃ ′′ + 2G ′′ ∗ G̃ ∗ G̃ ′′

= −2G ′′ ∗ G ′ ∗ G̃ ′ − 2G ′ ∗ G̃ ′ ∗ G̃ ′′ = −G ′′ ∗ (G + G̃) − (G + G̃) ∗ G̃ ′′

= −G ∗ G ′′ − G̃ ∗ G̃ ′′ − G ′′ ∗ G̃ − G ∗ G̃ ′′ = −G ∗ G ′′ − G̃ ∗ G̃ ′′ + 2G ′ ∗ G̃ ′

= −G ∗ G ′′ − G̃ ∗ G̃ ′′ + G + G̃ .

In order to obtain a general set of identities we define kernels Di, j , for (i, j) ∈ �
def=

{0, 1, 2, . . . }2 via
Di, j

def= G ′
i ∗ G̃ ′

j . (B.2)

For i, j > 0, one has the recursion relation

Di, j = −1

2

(
Di−1, j + Di, j−1

)
.

Indeed, making use of (B.1), we can write

Di, j = (∂2x G)∗i ∗ G ′ ∗ G̃ ′ ∗ (∂2x G̃)∗ j

= 1

2

(
(∂2x G)∗i ∗ G ∗ (∂2x G̃)∗ j + (∂2x G)∗i ∗ G̃ ∗ (∂2x G̃)∗ j

)

= −1

2

(
(∂2x G)∗i ∗ G ∗ ∂2x G̃ ∗ (∂2x G̃)∗( j−1) + (∂2x G)∗(i−1) ∗ ∂2x G ∗ G̃ ∗ (∂2x G̃)∗ j

)

(B.3)
and by shifting a derivative the above recursion relation follows.
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When i = 0, j > 0 one has the recursion

D0, j = −1

2
D0, j−1 + 1

2
G j .

Since D̃i, j = Dj,i we get, when j = 0 and i > 0

Di,0 = −1

2
Di−1,0 + 1

2
G̃i .

Finally, D0,0 = 1
2 [G0 + G̃0].

We now use these recursions to find formula for Di, j . A lattice path is a sequence of
nearest neighbor edges (steps) of � which satisfy the natural adjacency relation.

Let B
def= {(x, y) ∈ �, i = 0 or j = 0} be the boundary of the discrete first quadrant. We

denote by W (i, j) the set of all lattice paths γ which

• Start at (i, j)
• Only move down or to the left
• Terminate at a site of B (note, paths are allowed to travel along B for some time, but they

always end at a site of B, they can’t go negative.)

For a lattice path γ we denote by l(γ ) the number of steps in γ . One then has the following
formula

Di, j =
∑

γ∈W (i, j)

(−2)−l(γ )F(γend)

where γend is the final site visited by γ and F is a map from the sites of B to kernels given
as follows: F(0, 0) = 1

2 (G + G̃) and

F(0, j) = 1

2
G j and F(i, 0) = 1

2
G̃i .

For fixed (i, j) ∈ � let B(i, j) be the set of sites of B one can reach via walks inW (i, j).
We then get

Di, j =
∑

(x,y)∈B(i, j)

(−2)−(i+ j−x−y)
(
i + j − x − y

i − x

)

F(x, y),

where
(i+ j−x−y

i−x

)
counts the number of paths from (i, j) to (x, y). Equivalently,

Di, j = −
i∑

k=0

(−2)−(i+ j−k+1)
(
i + j − k

j

)

G̃k −
j∑

k=0

(−2)−(i+ j−k+1)
(
i + j − k

i

)

Gk .

(B.4)
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