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SUMMARY

Reliability analysis of flow meters is an important issue for
process industry companies because of the need to ensure the
production quality and operational safety. In practice, field data
for flow meters failure process can have complicated structure
due to multiple failure modes arising from different electro-
mechanical parts. Besides, incomplete records generally exist.
For example, the installation date is usually not available,
making the failure data left-truncated. There also exist right-
censored cases since many units are still in service when the
data are analyzed. In this paper, we use a nonhomogeneous
Poisson process model with power-law intensity functions to
address multiple failure modes for field data with both left-
truncated and right-censored cases. We apply the maximum
likelihood method to estimate the model parameters. In order to
address the statistical uncertainty, random weighted likelihood
bootstrap procedure is used to estimate the standard errors and
confidence intervals of the parameters. Real-world flow meters
failure data from a process industry company are used in the
case study. Estimated intensity functions and estimation of
mean time to failure are obtained and show that the parametric
model can reasonably fit the failure data well.

1 INTRODUCTION

Measurement of volumetric or mass flow rate of a liquid or
a gas, is commonly used in many industrial processes (e.g.,
material manufacturing) as a critical indicator. Continuously
accurate flow measurements are important to establish baseline
material usage, improve product quality, and ensure safe
operational environments. In particular, Coriolis mass flow
metering has been considered as the most accurate of the
commonly-used industrial flow measurement technology since
its introduction in the mid 1980s [1]. Coriolis meters offer
several advantages, such as better accuracy and ability to
measure both mass flow and density, so that they are widely
accepted in process industry companies [2]. However, Coriolis
meters are typically expensive because of (1) the high
manufacturing quality requirements and (2) the relatively larger
size since flow meters above three or four inches become
exceedingly large and commensurately expensive [3].
Unexpected failures of flow meters will cause a shutdown of
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the production process, resulting in a large amount of economic
losses (i.e., downtime cost) including direct costs (e.g., raw
material, energy, labor, profit lost) as well as hidden costs (e.g.,
decreased company competitiveness and reputation, customer
dissatisfaction), and may also cause safety problems for the
operational environments. Therefore, reliability analysis of
flow meters is of great importance for process industry
companies. It is critical for these companies to have in-depth
understanding of the flow meters failure mechanism and
accurate estimation of mean time to failure so that they can
make better informed decisions on maintenance scheduling and
spare parts provisioning.

In practice, reliability analysis of flow meters is
challenging for the following reasons. First, during the service
life of a flow meter, multiple types of failures can occur and
require different types of repairs. For example, failures of
electronics, loosing coils and cables, and blocked tubes can
make a flow meter unable to function, but it can be repaired by
replacement of electronics, tightening the coils and cables, and
cleaning tubes, which can be considered as minimal repair. A
flow meter may experience several minimal repair events over
its lifetime that are called recurrent events. However, if critical
components (e.g., transmitters body) fail, the whole flow meter
needs to be replaced according to its unique mechanical
structures. Second, incomplete records of flow meters generally
exist. If a flow meter has been installed before the company
began careful archival record keeping, then the data for this
flow meter will be left-truncated since the installation date is
unavailable. Right-censored data are generated from the flow
meters that they are still in service when the data are analyzed.
Therefore, we need to develop an effective strategy for
reliability analysis of flow meters to address multiple failure
modes based on complicated field data.

In this paper, we use the nonhomogeneous Poisson process
(NHPP) model with power-law intensity functions to analyze
the failure mechanism of flow meters. This model is suitable to
model recurrent events data with multiple failure modes and can
also handle the standard right-censored cases [4]. Left-
truncated data will be carefully considered by estimating the
installation date according to the limited history information
such as the manufacturing date [5]. Maximum likelihood
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method is used for model inference. Furthermore, random
weighted likelihood bootstrap procedure [6] is used to address
the statistical uncertainty of estimated parameters.

2 LITERATURE REVIEW

Reliability analysis has been extensively studied for many
industry systems and various statistical models are developed.
For non-repairable systems, lifetime models are commonly
used such as the exponential, Weibull, normal, lognormal, and
gamma distributions [7], which are appropriate for one failure
mode data. For repairable systems, point process theory is the
main tool for modeling failure data. For example, renewal
process (RP) and nonhomogeneous Poisson process (NHPP)
are the two most well-known models, which are strictly
applicable only under perfect repair and minimal repair
assumptions, respectively [4, 8, 9]. Specifically, RP is used to
model a stochastic process in which the different times to
failure of a system are considered independently and identically
distributed random variables, which is consistent with the
perfect repair assumption that the system will be as good as new
after each repair. Applications of RP are limited due to the
strong assumption of perfect repair. The NHPP, on the other
hand, is used to model the failure process of a repairable system
with minimal repairs, i.e., the system is repaired to be as bad as
old for each failure. The assumption is appropriate for many
repairable systems such as automobiles since typically only a
small part (e.g., tire) of an automobile is repaired at a time. Thus,
it is restored back to the condition close to the same as it was
before the failure [10]. Both processes are special cases, to
model the general behavior of the failure process (i.e., imperfect
repair process), Brown and Proschan [11] propose an imperfect
repair model, Kijima [12] introduces two types of virtual age
models by reducing the system age after each repair, and Doyen
and Gaudoin [13] develop two classes of imperfect repair
models with nonhomogeneous Poisson process as a baseline
while the repair effect is expressed by a reduction of failure
intensity or a reduction of the system virtual age. Another class
of general repair models is trend-renewal process (TRP) model,
which includes both NHPP and RP models as special cases [8].

In many studies for reliability analysis, the event of
primary interest is recurrent and thus could occur several times
during the study period, for example, the breakdown of electro-
mechanical systems (e.g., motor vehicles, subsystems in space
stations, computers). Nelson [14] provides many examples and
data analysis methods for recurrent event data. Cook and
Lawless [15] present several examples from medical studies,
which is another useful resource for models and methods. And
a review paper by Pefia [16] gives examples from both medical
and reliability studies. In reliability applications, Xu et al. [17]
extend the TRP model to describe replacement events in a
multi-level repairable system (e.g., system, subsystem, and
component levels) that may experience multiple replacement
events at different levels over time. Hong et al. [18] use an
NHPP model with a bathtub intensity function to describe
window-observed recurrent failures of two failure modes for a
service industry company, which requires a high level of system
availability. To deal with multiple failure modes problem, an

alternative approach is to use proportional hazards model,
utilizing cause-specific hazard functions and time-dependent
covariates for analysis of failure time with competing causes of
failure [19].

In our paper, we use NHPP model to analyze the failure
mechanism of flow meters given limited information about the
failure process and complicated field data structure. NHPP is
shown to have the ability to model recurrent event data with
multiple failure modes and has simple inference procedures
[18].

The remainder of this paper is organized as follows.
Section 3 introduces the failure process of flow meters and
describes the NHPP model including parameter estimation
method. Numerical results for real-world flow meters failure
data are provided in Section 4. Section 5 contains concluding
remarks and areas for future research.

3 MODEL DEVELOPMENT
3.1 System Description

During the service life of a flow meter, an outage (failure)
event is defined as a situation that makes it unavailable for
functioning, e.g., the flow meter is not reading or reading wrong
due to electronic failures, coil loosing, or transmitter failures.
The recorded field data often have a complicated structure.
Different electro-mechanical parts of a flow meter may fail
during its lifetime, resulting in multiple failure modes and
requiring different types of repair. For example, failed
electronics need to be replaced, loosing coils need to be
tightened, and blocked tubes need to be cleaned, which can be
considered as three different failure modes. But all these repairs
can be considered as minimal repair since the state of the flow
meter is almost the same as it was before failure. Moreover,
these failures may occur several times over the lifetime of a
flow meter, called as recurrent events. However, other failure
modes arising from critical parts such as transmitters require
replacement of the entire flow meter due to its unique
mechanical structures. Engineering knowledge suggests that it
is reasonable to assume that these failure modes are
independent. When a flow meter is replaced, it will be
considered as a new unit and experience the same failure
process after installed.

Information of failure times and maintenance records is
available after the company began careful archival record
keeping, which makes the flow meters installed before it be
viewed as the left-truncated cases. An alternative way is to
determine the most likely estimated date for installation date,
either the manufacturing date [5] or the earliest recoded date
that can be found before the archival recode system is built. In
addition, it usually happens that flow meters are still in service
at the “data-freeze” point, which are considered as the right-
censored cases. The NHPP model used in this paper will be
presented to be very suitable for recurrent failure data with
multiple failure modes and be able to handle right-censored
cases.
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3.2 An NHPP Model

To model repairable system with minimal repairs, NHPP is
commonly used in the literature, with the ability to handle
multiple failure modes and recurrent events. An implicit
assumption is that flow meters are repaired or replaced
immediately after failure since we are interested in modeling
and estimation of the probability mechanisms behind failure
occurrences. The well-known power-law intensity function [18]
is used in this paper to model the increasingly deteriorating
process of flow meters, which is
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where is 7 a scale parameter and £ is a shape parameter. The
corresponding cumulative intensity function is defined as
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giving the expected cumulative number of events from time 0
(i.e., the time or estimated time of installation) to time 7.

The failure intensity function for each failure mode will be
modeled separately. Let Ai(¢; B, 77x) denote the intensity function
for failure mode k (k= 1, 2, ..., K, where K is the number of
failure modes). Further, the overall intensity for the flow meters
will be

K
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where @ = (B1, 11, ..., B, k). For the i (i = 1, 2, ..., n) flow

meter, the time scale is from time 0 to a specific ending
timepoint 7;, which is either the replacement time of the flow
meter or the “data-freeze” time since we consider the replaced
flow meter as a new unit. The successive failure events are
recorded by #; and each event is labeled with a failure mode A;
taking values from {1, 2, ..., K },j =1, ..., N(T}), where N«(T))
counts the number of failure events irrespective of the failure
modes for unit i during the observation window (0, 73). We then
use the marked event process (7, Ay), j =1, ..., N(Tp), i =1, 2,
..., n, to represent the failure process.

3.3 Parameter Estimation

Maximum likelihood estimate (MLE) is used for the NHPP
model inference. Given the time-to-event data with multiple
failure modes, the likelihood function can be calculated by [20]

n N(T) T
L(@ | data) = H{ IT 4, @)x exp[—jo' /?,(u)du}}. 4)

i=1 | =1

Here, O is the parameter vector that denotes all parameters in
the model and the MLE @ is obtained by maximizing the
likelihood function in Equation (4). The likelihood function is
valid under the assumption that 7; is a stopping time, which
means its value depends stochastically only on the past history.
Particularly, this property still holds for the right-censored
cases, where T; is independent of the failure process [4].

The estimations of parameters depend heavily on the

collected data and will fluctuate among different sample data,
especially when the sample size 7 is small. To account for the
statistical uncertainty, bootstrap re-sampling methods are
commonly used to provide approximate confidence intervals of
estimated parameters. However, due to complicated data
structure and sparsity of failures, traditional bootstrap re-
sampling method will have poor performance in our case. Thus,
the random weighted likelihood bootstrap procedure [6], which
has been considered to be effective and easy-to-use for
complicated problems, is used in our paper. The procedure
proceeds as follows [5].

1) Simulate random values z;, i = 1, 2, ..., n, independently

from the continuous distribution Gamma(l1, 1).
2) The random weighted likelihood is

n (NAT) T s
L'(O|data) = H{ H /14, (7;)% exp[—jo /l(u)du}} . (5

3) Obtain the MLE o by maximizing L'(@ | data).
4) Repeat steps 1) — 3) M times to get M bootstrap samples
6. ,m=1,2,... M
The distribution of v/n (0" —@) canbe used to approximate the
distribution of ~/n @ —0) if the weights z; are generated from
a continuous distribution with property E(z;) = [Var(z;)]'? [21].
The results are insensitive to the choice of this continuous
distribution and Gamma(1, 1) is used in our paper.
Based on MLE 6, the reliability function can be obtained

as
R(:6) = " ©)

and the mean time to failure (MTTF) can be computed by
MTTF = j: R(t;O)dt. (7

Furthermore, an approximate confidence interval of MTTF can
be obtained from [; R(#; @’ )dt, given bootstrap samples @ .

4 CASE STUDY

Real-world flow meter failure data from a process industry
company are used in our case study. The recorded flow meter
operating history has a complicated structure, so we need to
preprocess the raw data first. Due to sparsity of failures, we
consider two failure modes for flow meters in this paper. Failure
mode 1 (FM1) contains all the small part failures with minimal
repair no matter which part is failed, including replacing the
failed electronics, tightening the loosing coils and cleaning the
tubes. And failure mode 2 (FM2) is used to describe all the
critical part failures such as transmitter, requiring replacement
of the entire flow meter. After taking out the irrelevant
information, all maintenance records will be labeled as
FM1/FM2 according to the repair descriptions, which have
been well kept in the archival record system since 1999. Data
are organized according to the process locations. There are 21
different locations in the dataset and it will be considered as a
new unit once replacement performed. In other words, each unit
may experience several minimal repairs (FM1) or no repairs
until its complete failure (FM2) or the “data-freeze” time. Flow
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meters that are still in service after February 28", 2019 (“data-
freeze” date) are considered as right-censored data and flow
meters that were functioning before the record system is built
are considered as the left-truncated data, in which case, the
earliest recording date or the manufacturing date will be used
as the estimated installation date for analysis purpose. For
example, as illustrated in Figure 1, all records for process
location F42XX (Full information is not shown here to protect
sensitive and proprietary information) will be divided into three
different units because two replacements occurred in this
position. The first unit (red) was functioning before 1999, so the
earliest recording date (January 1%, 1996) provided by the
company is used to estimate the installation date. The second
unit (blue) has exact installation date which is the replacement
time of the first unit. The third unit (green) is right-censored
since it is still in service after “data-freeze” date. Table 1
presents the data details, including the number of process
locations from raw dataset, number of units after preprocessing,
number of failures for each failure mode and numbers of left-
truncated and right-censored cases.

and failure mode 2 are expressed as

5 1313/
1) = _— 8

A0 30.512 ®

- 1.613/°"

t)y=——, 9
A0 89.204 ©)
respectively. The estimated overall intensity function is

A0y =40+ 40, (10)

which are presented in Figure 2. It shows that failures for FM1
are more frequent than FM2 in the early age of a flow meter,
indicating small parts failures are more likely to occur in the
first 15 years. Table 2 shows the MLEs and 95% approximate
confidence intervals (CIs) for the parameters of both failure
modes using random weighted likelihood bootstrap method.
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Figure 2 — Estimated intensity functions

Table 2 — MLEs and 95% Cls for parameters of both failure

Location Date Record Installation
- date
4/19/2010 FM1
6/16/2012 FM1
7/15/2013 FM1
F42XX 01/01/1996
8/26/2013 FM2
3/17/2015 FM1
10/23/2018 FM2
e
Unit 1 (Red): o o o—X
Unit 2 (Blue): b—o—X
Unit 3 (Green): —>
[ Not-truncated o FMI (Minimal repair)
o—  Left-truncated X FM2 (Replacement)
»  Right-censored

modes
95% CI

Failure Parameter MLE Std. Lower | Upper

mode err.
FM1 Bi 1.313 | 0.323 | 1.049 2.165
7 13.508 | 2.279 | 10.563 | 19.322
FM2 Ji5 1.613 | 0.331 1.207 2.483
2 16.187 | 1.583 | 13.169 | 19.242

Figure 1 — Illustration for data preprocessing procedure

Table 1 — Summary of analyzed data

The corresponding cumulative functions, shown in Figure
3, can provide the expected cumulative number of failures
given specific time interval. The estimated cumulative intensity
function for the first failure mode is given by

Procgss Unit | TM1 | V2 Left- Right-

location truncated | censored
21 47 35 28 13 18

As presented previously, two power-law intensity

functions will be used to describe failure mode 1 (i.e., small part
failure with minimal repair) and failure mode 2 (i.e., critical part
failure with replacement), respectively. Preprocessed data are
used to estimate the parameters ©® = (f1, 11, f2, #2). Based on
the MLEs, the estimated intensity functions for failure mode 1

1313
PN t
66,0 )= , 11
A(65.) (13.508) (11)
and for the second failure mode, it is presented as
1.613
PN t
t,B,.n, )= . 12
NN (16'187j (12)

To assess goodness of fit, we compare the observed number of
failures with the estimated expected cumulative number of
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failures. The observed overall number of failures is the total
number of failures for both failure modes that occurred by time
t. There are 47 units in the dataset, having different observation
windows. Therefore, the expected overall cumulative number
of failures for all units from time 0 to time ¢ is adjusted by

E:6)= 33 A (minte.T3: 4., )

i=1 k=1

(13)

where T; is the endpoint of the observation window for unit i.

6

Time since installation (year)

Figure 3 — Estimated cumulative intensity functions

Figure 4 presents the observed overall cumulative number
of failures (black dots) and the estimated expected overall
cumulative number of failures (red solid line) with approximate
95% pointwise Cls (red dashed line), which are derived from
the bootstrap samples. The actual cumulative numbers of
failures are almost within the estimated Cls, which shows that
the parametric model for the overall failures can reasonably fit
the observed failure data.

100

— Fitted values

— = = Approximate 95% pointwise CIs =
-
30 e Data points Phd -
L . |
.,
.
.
R4
60 | ’, ’ ]
. -
s by
’ —
. r
’ L
40 L ’ i ammm- i
. -7
4 =
’ =
. &
20 | e e |
’ ”
o - z
e -7
= Pid
-
0 r3 .-

0 10 15 20 25

Time since installation (year)

Figure 4 — Observed overall cumulative number of failures
(black dots) and estimated expected overall cumulative
number of failures (red solid line) with approximate 95%
pointwise Cls (red dashed line)

In addition, based on MLE 2 , the CDF of flow meter

lifetime can be derived as

F(;0)=1-R(t;0), (14)

presented in the Figure 5. The corresponding MTTF is
computed to be around 8.3 years with approximate 95%
confidence interval [6.57, 10.82]. The estimated MTTF is very
useful for the company to design better inspection and
maintenance scheduling.

0.8 |

0.6 |

MTTF =83

04 |

02 |

0 5 10 15 20 25 30

Time since installation (year)

Figure 5 — CDF of flow meter lifetime
5 CONCLUSION

In this paper, we conduct reliability analysis of flow meters
based on complicated field data using the NHPP model with
power-law intensity functions to address multiple failure
modes. The proposed framework is flexible and can handle left-
truncated and right-censored cases well. Numerical results
provide estimated intensity functions for important failure
modes to help a process industry company have in-depth
understanding of the flow meters failure mechanism. Besides,
the model can quantify the mean time to failure of a flow meter,
providing useful information to design inspection and
maintenance schedules and spares inventory policy. Although
the discuss of this paper is heavily on the basis of flow meters
failure data, for other systems sharing similar data structure, the
presented analysis method can also be applied to achieve the
same goals.

In this paper, we do not consider the changes in operational
conditions, which affects the failure mechanisms of devices
such as flow meters. A natural extension is to incorporate the
effects of operational conditions into the reliability model.
These factors that may be constant over time (e.g., design,
material) or variable over time (e.g., temperature) are modeled
as covariates by means of a proportional intensity process to
modify the baseline intensity functions. It is also critical to
develop effective maintenance and spare parts inventory
policies based on reliability models to achieve better system
performance.
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