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SUMMARY 

Reliability analysis of flow meters is an important issue for 
process industry companies because of the need to ensure the 
production quality and operational safety. In practice, field data 
for flow meters failure process can have complicated structure 
due to multiple failure modes arising from different electro-
mechanical parts. Besides, incomplete records generally exist. 
For example, the installation date is usually not available, 
making the failure data left-truncated. There also exist right-
censored cases since many units are still in service when the 
data are analyzed. In this paper, we use a nonhomogeneous 
Poisson process model with power-law intensity functions to 
address multiple failure modes for field data with both left-
truncated and right-censored cases. We apply the maximum 
likelihood method to estimate the model parameters. In order to 
address the statistical uncertainty,  random weighted likelihood 
bootstrap procedure is used to estimate the standard errors and 
confidence intervals of the parameters. Real-world flow meters 
failure data from a process industry company are used in the 
case study. Estimated intensity functions and estimation of 
mean time to failure are obtained and show that the parametric 
model can reasonably fit the failure data well. 

1 INTRODUCTION 

Measurement of volumetric or mass flow rate of a liquid or 
a gas, is commonly used in many industrial processes (e.g., 
material manufacturing) as a critical indicator. Continuously 
accurate flow measurements are important to establish baseline 
material usage, improve product quality, and ensure safe 
operational environments. In particular, Coriolis mass flow 
metering has been considered as the most accurate of the 
commonly-used industrial flow measurement technology since 
its introduction in the mid 1980s [1]. Coriolis meters offer 
several advantages, such as better accuracy and ability to 
measure both mass flow and density, so that they are widely 
accepted in process industry companies [2]. However, Coriolis 
meters are typically expensive because of (1) the high 
manufacturing quality requirements and (2) the relatively larger 
size since flow meters above three or four inches become 
exceedingly large and commensurately expensive [3]. 
Unexpected failures of flow meters will cause a shutdown of 

the production process, resulting in a large amount of economic 
losses (i.e., downtime cost) including direct costs (e.g., raw 
material, energy, labor, profit lost) as well as hidden costs (e.g., 
decreased company competitiveness and reputation, customer 
dissatisfaction), and may also cause safety problems for the 
operational environments. Therefore, reliability analysis of 
flow meters is of great importance for process industry 
companies. It is critical for these companies to have in-depth 
understanding of the flow meters failure mechanism and 
accurate estimation of mean time to failure so that they can  
make better informed decisions on maintenance scheduling and 
spare parts provisioning. 

In practice, reliability analysis of flow meters is 
challenging for the following reasons.  First, during the service 
life of a flow meter, multiple types of failures can occur and 
require different types of repairs. For example, failures of 
electronics, loosing coils and cables, and blocked tubes can 
make a flow meter unable to function, but it can be repaired by 
replacement of electronics, tightening the coils and cables, and 
cleaning tubes, which can be considered as minimal repair. A 
flow meter may experience several minimal repair events over 
its lifetime that are called recurrent events. However, if critical 
components (e.g., transmitters body) fail, the whole flow meter 
needs to be replaced according to its unique mechanical 
structures. Second, incomplete records of flow meters generally 
exist. If a flow meter has been installed before the company 
began careful archival record keeping, then the data for this 
flow meter will be left-truncated since the installation date is 
unavailable. Right-censored data are generated from the flow 
meters that they are still in service when the data are analyzed. 
Therefore, we need to develop an effective strategy for 
reliability analysis of flow meters to address multiple failure 
modes based on complicated field data. 

In this paper, we use the nonhomogeneous Poisson process 
(NHPP) model with power-law intensity functions to analyze 
the failure mechanism of flow meters. This model is suitable to  
model recurrent events data with multiple failure modes and can 
also handle the standard right-censored cases [4]. Left-
truncated data will be carefully considered by estimating the 
installation date according to the limited history information 
such as the manufacturing date [5]. Maximum likelihood 
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method is used for model inference. Furthermore, random 
weighted likelihood bootstrap procedure [6] is used to address 
the statistical uncertainty of estimated parameters. 

2 LITERATURE REVIEW 

Reliability analysis has been extensively studied for many 
industry systems and various statistical models are developed. 
For non-repairable systems, lifetime models are commonly 
used such as the exponential, Weibull, normal, lognormal, and 
gamma distributions [7], which are appropriate for one failure 
mode data. For repairable systems, point process theory is the 
main tool for modeling failure data. For example,  renewal 
process (RP) and nonhomogeneous Poisson process (NHPP) 
are the two most well-known models, which are strictly 
applicable only under perfect repair and minimal repair 
assumptions, respectively [4, 8, 9]. Specifically, RP is used to 
model a stochastic process in which the different times to 
failure of a system are considered independently and identically 
distributed random variables, which is consistent with the 
perfect repair assumption that the system will be as good as new 
after each repair. Applications of RP are limited due to the 
strong assumption of perfect repair. The NHPP, on the other 
hand, is used to model the failure process of a repairable system 
with minimal repairs, i.e., the system is repaired to be as bad as 
old for each failure. The assumption is appropriate for many 
repairable systems such as automobiles since typically only a 
small part (e.g., tire) of an automobile is repaired at a time. Thus, 
it is restored back to the condition close to the same as it was 
before the failure [10]. Both processes are special cases, to 
model the general behavior of the failure process (i.e., imperfect 
repair process), Brown and Proschan [11] propose an imperfect 
repair model, Kijima [12] introduces two types of virtual age 
models by reducing the system age after each repair, and  Doyen 
and Gaudoin [13] develop two classes of imperfect repair 
models with nonhomogeneous Poisson process as a baseline 
while the repair effect is expressed by a reduction of failure 
intensity or a reduction of the system virtual age. Another class 
of general repair models is trend-renewal process (TRP) model, 
which includes both NHPP and RP models as special cases [8].  

In many studies for reliability analysis, the event of 
primary interest is recurrent and thus could occur several times 
during the study period, for example, the breakdown of electro-
mechanical systems (e.g., motor vehicles, subsystems in space 
stations, computers). Nelson [14] provides many examples and 
data analysis methods for recurrent event data. Cook and 
Lawless [15] present several examples from medical studies, 
which is another useful resource for models and methods. And 
a review paper by Peña [16] gives examples from both medical 
and reliability studies. In reliability applications, Xu et al. [17] 
extend the TRP model to describe replacement events in a 
multi-level repairable system (e.g., system, subsystem, and 
component levels) that may experience multiple replacement 
events at different levels over time. Hong et al. [18] use an 
NHPP model with a bathtub intensity function to describe 
window-observed recurrent failures of two failure modes for a 
service industry company, which requires a high level of system 
availability. To deal with multiple failure modes problem, an 

alternative approach is to use proportional hazards model, 
utilizing cause-specific hazard functions and time-dependent 
covariates for analysis of failure time with competing causes of 
failure [19]. 

In our paper, we use NHPP model to analyze the failure 
mechanism of flow meters given limited information about the 
failure process and complicated field data structure. NHPP is 
shown to have the ability to model recurrent event data with 
multiple failure modes and has simple inference procedures 
[18]. 

The remainder of this paper is organized as follows. 
Section 3 introduces the failure process of flow meters and 
describes the NHPP model including parameter estimation 
method. Numerical results for real-world flow meters failure 
data are provided in Section 4. Section 5 contains concluding 
remarks and areas for future research. 

3 MODEL DEVELOPMENT 

3.1 System Description 

During the service life of a flow meter, an outage (failure) 
event  is defined as a situation that makes it unavailable for 
functioning, e.g., the flow meter is not reading or reading wrong 
due to electronic failures, coil loosing, or transmitter failures. 
The recorded field data often have a complicated structure. 
Different electro-mechanical parts of a flow meter may fail 
during its lifetime, resulting in multiple failure modes and 
requiring different types of repair. For example, failed 
electronics need to be replaced, loosing coils need to be 
tightened, and blocked tubes need to be cleaned, which can be 
considered as three different failure modes. But all these repairs 
can be considered as minimal repair since the state of the flow 
meter is almost the same as it was before failure. Moreover, 
these failures may occur several times over the lifetime of a 
flow meter, called as recurrent events. However, other failure 
modes arising from critical parts such as transmitters require 
replacement of the entire flow meter due to its unique 
mechanical structures. Engineering knowledge suggests that it 
is reasonable to assume that these failure modes are 
independent. When a flow meter is replaced, it will be 
considered as a new unit and experience the same failure 
process after installed. 

Information of failure times and maintenance records is 
available after the company began careful archival record 
keeping, which makes the flow meters installed before it be 
viewed as the left-truncated cases. An alternative way is to 
determine the most likely estimated date for installation date, 
either the manufacturing date [5] or the earliest recoded date 
that can be found before the archival recode system is built. In 
addition, it usually happens that flow meters are still in service 
at the “data-freeze” point, which are considered as the right-
censored cases. The NHPP model used in this paper will be 
presented to be very suitable for recurrent failure data with 
multiple failure modes and be able to handle right-censored 
cases. 
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3.2 An NHPP Model 

To model repairable system with minimal repairs, NHPP is 
commonly used in the literature, with the ability to handle 
multiple failure modes and recurrent events. An implicit 
assumption is that flow meters are repaired or replaced 
immediately after failure since we are interested in modeling 
and estimation of the probability mechanisms behind failure 
occurrences. The well-known power-law intensity function [18] 
is used in this paper to model the increasingly deteriorating 
process of flow meters, which is 
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where is � a scale parameter and � is a shape parameter. The 
corresponding cumulative intensity function is defined as 
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giving the expected cumulative number of events from time 0 
(i.e., the time or estimated time of installation) to time t. 

The failure intensity function for each failure mode will be 
modeled separately. Let �k(t; �k, �k) denote the intensity function 
for failure mode k (k = 1, 2, …, K, where K is the number of 
failure modes). Further, the overall intensity for the flow meters 
will be 
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where � = (�1, �1, …, �K, �K). For the ith (i = 1, 2,  …, n) flow 
meter, the time scale is from time 0 to a specific ending 
timepoint Ti, which is either the replacement time of the flow 
meter or the “data-freeze” time since we consider the replaced 
flow meter as a new unit. The successive failure events are 
recorded by tij and each event is labeled with a failure mode �ij 

taking values from {1, 2, …, K }, j =1, …, Ni(Ti), where Ni(Ti) 
counts the number of failure events irrespective of the failure 
modes for unit i during the observation window (0, Ti). We then 
use the marked event process (tij���ij), j =1, …, Ni(Ti), i = 1, 2,  
…, n, to represent the failure process. 

3.3 Parameter Estimation 

Maximum likelihood estimate (MLE) is used for the NHPP 
model inference. Given the time-to-event data with multiple 
failure modes, the likelihood function can be calculated by [20] 
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Here, � is the parameter vector that denotes all parameters in 
the model and the MLE �̂  is obtained by maximizing the 
likelihood function in Equation (4). The likelihood function is 
valid under the assumption that Ti is a stopping time, which 
means its value depends stochastically only on the past history. 
Particularly, this property still holds for the right-censored 
cases, where Ti is independent of the failure process [4]. 

The estimations of parameters depend heavily on the 

collected data and will fluctuate among different sample data, 
especially when the sample size n is small. To account for the 
statistical uncertainty, bootstrap re-sampling methods are 
commonly used to provide approximate confidence intervals of 
estimated parameters. However, due to complicated data 
structure and sparsity of failures, traditional bootstrap re-
sampling method will have poor performance in our case. Thus, 
the random weighted likelihood bootstrap procedure [6], which 
has been considered to be effective and easy-to-use for 
complicated problems, is used in our paper. The procedure 
proceeds as follows [5]. 
1) Simulate random values zi, i = 1, 2, …, n, independently 

from the continuous distribution Gamma(1, 1). 
2) The random weighted likelihood is 
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3) Obtain the MLE �̂ "  by maximizing L*(� | data). 
4) Repeat steps 1) � 3) M times to get M bootstrap samples 

ˆ
m�" , m = 1, 2, …, M. 

The distribution of ˆ ˆ( )n � �" �  can be used to approximate the 
distribution of ˆ( )n � ��  if the weights zi are generated from 
a continuous distribution with property E(zi) = [Var(zi)]1/2 [21]. 
The results are insensitive to the choice of this continuous 
distribution and Gamma(1, 1) is used in our paper. 

Based on MLE �̂ , the reliability function can be obtained 
as  

 0
ˆ( ; )ˆ( ; ) ,

t
u du

R t e
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�
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and the mean time to failure (MTTF) can be computed by 

  
0
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#
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Furthermore, an approximate confidence interval of MTTF can 
be obtained from ���

0 R(t; ˆ
m�" )dt, given bootstrap samples ˆ

m�" . 

4 CASE STUDY 

Real-world flow meter failure data from a process industry 
company are used in our case study. The recorded flow meter 
operating history has a complicated structure, so we need to 
preprocess the raw data first. Due to sparsity of failures, we 
consider two failure modes for flow meters in this paper. Failure 
mode 1 (FM1) contains all the small part failures with minimal 
repair no matter which part is failed, including replacing the 
failed electronics, tightening the loosing coils and cleaning the 
tubes. And failure mode 2 (FM2) is used to describe all the 
critical part failures such as transmitter, requiring replacement 
of the entire flow meter. After taking out the irrelevant 
information, all maintenance records will be labeled as 
FM1/FM2 according to the repair descriptions, which have 
been well kept in the archival record system since 1999. Data 
are organized according to the process locations. There are 21 
different locations in the dataset and it will be considered as a 
new unit once replacement performed. In other words, each unit 
may experience several minimal repairs (FM1) or no repairs 
until its complete failure (FM2) or the “data-freeze” time. Flow 
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meters that are still in service after February 28th, 2019 (“data-
freeze” date) are considered as right-censored data and flow 
meters that were functioning before the record system is built 
are considered as the left-truncated data, in which case, the 
earliest recording date or the manufacturing date will be used 
as the estimated installation date for analysis purpose. For 
example, as illustrated in Figure 1, all records for process 
location F42XX (Full information is not shown here to protect 
sensitive and proprietary information) will be divided into three 
different units because two replacements occurred in this 
position. The first unit (red) was functioning before 1999, so the 
earliest recording date (January 1st, 1996) provided by the 
company is used to estimate the installation date. The second 
unit (blue) has exact installation date which is the replacement 
time of the first unit. The third unit (green) is right-censored 
since it is still in service after “data-freeze” date. Table 1 
presents the data details, including the number of process 
locations from raw dataset, number of units after preprocessing, 
number of failures for each failure mode and numbers of left-
truncated and right-censored cases. 

 

Figure 1 – Illustration for data preprocessing procedure 

Table 1 – Summary of analyzed data 

Process 
location 

Unit FM1 FM2 
Left-

truncated 
Right-

censored 
21 47 35 28 13 18 

 
As presented previously, two power-law intensity 

functions will be used to describe failure mode 1 (i.e., small part 
failure with minimal repair) and failure mode 2 (i.e., critical part  
failure with replacement), respectively. Preprocessed data are 
used to estimate the parameters � = (�1, �1, �2, �2). Based on 
the MLEs, the estimated intensity functions for failure mode 1 

and failure mode 2 are expressed as  
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respectively. The estimated overall intensity function is  

 1 2
ˆ ˆ ˆ( ) ( ) ( ),t t t� � �� $  (10) 

which are presented in Figure 2. It shows that failures for FM1 
are more frequent than FM2 in the early age of a flow meter, 
indicating small parts failures are more likely to occur in the 
first 15 years. Table 2 shows the MLEs and 95% approximate 
confidence intervals (CIs) for the parameters of both failure 
modes using random weighted likelihood bootstrap method. 

Figure 2 – Estimated intensity functions 

Table 2 – MLEs and 95% CIs for parameters of both failure 
modes 

 95% CI 
Failure 
mode 

Parameter MLE 
Std. 
err. 

Lower Upper 

FM1 
�1 1.313 0.323 1.049 2.165 
�1 13.508 2.279 10.563 19.322 

FM2 
�2 1.613 0.331 1.207 2.483 
�2 16.187 1.583 13.169 19.242 

 
The corresponding cumulative functions, shown in Figure 

3, can provide the expected cumulative number of failures 
given specific time interval. The estimated cumulative intensity 
function for the first failure mode is given by 

 % &
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and for the second failure mode, it is presented as  
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To assess goodness of fit, we compare the observed number of 
failures with the estimated expected cumulative number of 
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failures. The observed overall number of failures is the total 
number of failures for both failure modes that occurred by time 
t. There are 47 units in the dataset, having different observation 
windows. Therefore, the expected overall cumulative number 
of failures for all units from time 0 to time t is adjusted by 

 % &
2

1 1

ˆˆ ˆ( ; ) min{ , }; , ,
n

k i k k
i k

E t t T� � � �
� �

� ��  (13) 

where Ti is the endpoint of the observation window for unit i.  

Figure 3 – Estimated cumulative intensity functions 

Figure 4 presents the observed overall cumulative number 
of failures (black dots) and the estimated expected overall 
cumulative number of failures (red solid line) with approximate 
95% pointwise CIs (red dashed line), which are derived from 
the bootstrap samples. The actual cumulative numbers of 
failures are almost within the estimated CIs, which shows that 
the parametric model for the overall failures can reasonably fit 
the observed failure data. 

Figure 4 – Observed overall cumulative number of failures 
(black dots) and estimated expected overall cumulative 

number of failures (red solid line) with approximate 95% 
pointwise CIs (red dashed line) 

In addition, based on MLE �̂ , the CDF of flow meter 

lifetime can be derived as 

 ˆ ˆ( ; ) 1 ( ; ),F t R t� �� �  (14) 

presented in the Figure 5. The corresponding MTTF is 
computed to be around 8.3 years with approximate 95% 
confidence interval  [6.57, 10.82]. The estimated MTTF is very 
useful for the company to design better inspection and 
maintenance scheduling.   

Figure 5 – CDF of flow meter lifetime 

5 CONCLUSION 

In this paper, we conduct reliability analysis of flow meters 
based on complicated field data using the NHPP model with 
power-law intensity functions to address multiple failure 
modes. The proposed framework is flexible and can handle left-
truncated and right-censored cases well. Numerical results 
provide estimated intensity functions for important failure 
modes  to help a process industry company have in-depth 
understanding of the flow meters failure mechanism. Besides, 
the model can quantify the mean time to failure of a flow meter, 
providing useful information to design inspection and 
maintenance schedules and spares inventory policy. Although 
the discuss of this paper is heavily on the basis of flow meters 
failure data, for other systems sharing similar data structure, the 
presented analysis method can also be applied to achieve the 
same goals. 

In this paper, we do not consider the changes in operational 
conditions, which affects the failure mechanisms of devices 
such as flow meters. A natural extension is to incorporate the 
effects of operational conditions into the reliability model. 
These factors that may be constant over time (e.g., design,  
material) or variable over time (e.g., temperature) are modeled 
as covariates by means of a proportional intensity process to 
modify the baseline intensity functions. It is also critical to 
develop effective maintenance and spare parts inventory 
policies based on reliability models to achieve better system 
performance. 
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