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SUMMARY & CONCLUSIONS 

Assuring the reliability of crude unit pipelines in the 

downstream oil and gas industry is highly essential since 

unexpected failures of these pipelines can result in a number of 

negative impacts to the business, including safety, 

environmental, and economic impacts. The objective of this 

work is to understand the degradation behavior of the piping 

system so we can know in advance when the degraded pipeline 

will reach the minimum thickness threshold. 

The damage mechanisms in atmospheric crude tower 

overhead piping has been well researched. Hydrochloric Acid 

(HCL) corrosion is one major type of damage mechanisms seen 

in the atmospheric crude tower overhead piping. This type of 

corrosion is time-dependent and also influenced by different 

operational conditions such as temperature, adequacy of the 

neutralization of the formed HCL and pipeline interior 

protection using corrosion inhibitors. To better monitor the 

degradation of these pipelines and to reduce cost associated 

with scheduled inspections, a number of refineries are resorting 

to real time thickness monitoring using Ultrasonic instruments 

mounted at vantage locations on the pipeline, to provide 

continuous, non-destructive corrosion and erosion monitoring.  

The focus of this paper is to use a stochastic degradation 

model, which is suitable for characterizing wall thickness 

degradation data, to estimate the failure probability of the 

pipeline in the midst of inadequate data. We model the 

degradation of the crude overhead pipeline using a stationary 

Gamma process. To capture the substantial heterogeneity 

among different thickness monitoring locations on the pipe line, 

random effects are incorporated in our stochastic degradation 

model. We illustrate the proposed random effect method using 

the gamma process to model pipe wall thickness degradation 

data observed over a period. 

1 INTRODUCTION 

It is important to understand piping system degradation and 

analyze the reliability of the piping system. As hydrocarbons 

and other products flow through the pipe, there is an irreversible 

accumulation of damage over time that ultimately reaches a 

certain threshold, leading to the pipe failure. Corrosion and 

erosion account for degradation of piping systems in 

downstream oil and gas industry. Piping for fluid transport is 

normally sized to have velocities less than certain thresholds 

depending on the fluid state, to eliminate the erosion damage 

mechanism, making corrosion the main mechanism for pipe 

degradation. Corrosion monitoring is typically done at time 

intervals during plants shutdowns where elevated piping or out 

of reach piping may require scaffold erection to access pipe for 

inspection. Piping that are insulated for heat conservation may 

have to be stripped at various locations to perform these non-

destructive examinations (NDE). To minimize the cost of time 

interval inspections and optimize maintenance intervals, a 

number of refineries have installed on-line ultrasonic (UT) 

thickness probes at various locations on their Atmospheric 

Crude tower overhead Carbon steel piping to provide 

continuous, non-destructive corrosion and erosion monitoring 

through UT testing. The pipeline is said to be in a failed state 

when the pipeline thickness reaches a threshold, beyond which 

the integrity of the pipe cannot be guaranteed, or the piping 

system fails to perform its intended function safely.  At the 

failure threshold, a leak or a pipe rapture is imminent with a 

wide range of negative impacts on the refinery activities. These 

include but not limited to (1) safety impacts due to loss of 

containment causing injury to personnel and damage to 

property; (2) environmental impacts arising from the loss of 

containment and release of hydrocarbons to the atmosphere 

with subsequent flaring events due to unit upsets; (3) business 

or economic impacts being the outcome of a crude unit 

shutdown with multiple rippling effects on other units, causing 

significant amounts of lost profit opportunity and maintenance 

cost.  

1.1 Problem statement 

Collecting degradation data on piping is key to maintaining 

the mechanical integrity of the piping. Due to variations present 

in UT instruments, instrument malfunction, temperature of 
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piping being measured, some measurements over a period do 

not show consistency. This is also the case when inspection 

personnel are used for UT measurements. In some instances the 

data shows a growing pipe wall thickness which is practically 

not possible.  

In this paper, we focus on modeling the degradation path 

of the pipe wall using a stationary Gamma process in the 

presence of inadequate data. This model can be used to compute 

a time dependent failure probability of the pipe. For critical 

piping such as the Crude atmospheric tower overhead piping, it 

is preferred to make the decision two Turnaround cycles ahead 

to replace piping that approaches the minimum threshold. The 

reason is that, although most Refinery Turnarounds average 

five-year cycles, some refineries may make a decision to run 

longer for various reasons such as logistics, manpower, 

coinciding turnarounds with sister facilities in the organization, 

competing with other organizations for resources. We analyze 

piping wall thickness data from six thickness monitoring 

locations, observed over a period of three years. 

2 LITERATURE REVIEW 

Corrosion is material degradation due to environmental 

effects [1]. Hydrochloric acid (HCL) corrosion is the main type 

of corrosion that causes degradation in Crude Unit overhead 

piping systems [2]. Although dewatering, desalting and caustic 

injections are used to minimize the amounts of hydrolysable 

salts making it onto the crude unit heaters, some of these salts 

make it through. HCl is generated in crude heaters when salts 

like magnesium chloride and calcium chloride are heated up 

enough to become hydrolyzed [2]. When HCl finds water in the 

crude overhead it becomes corrosive to most metals. To help 

minimize HCl acid corrosion, neutralizers are injected into the 

overhead. However, the overhead still sees some level of 

corrosion. Sahraoui et al. [3] discussed the use of power law as 

a model to account for wall loss due to uniform corrosion with 

the corrosion power law given as     �� = ���where     �� = 

Thickness of corroded layer, � = elapsed time, � and � are the 

corrosion parameters.  This approach was also used by Lawless 

and Crowder as they replaced a shape function �(�) with 

�(�	
� �) in an accelerated life model, where 
 is an unknown 

vector [4].  

Mahmoodian and Alani [5] used the power law as a means 

to estimate the shape parameter in the gamma degradation 

process in concrete piping. Ahammed [6] used a probabilistic 

approach rather than a deterministic approach to assess the 

safety, integrity, and predict the remnant life of a pipeline with 

active corrosion.  

Degradation over time is usually a stochastic process which 

often possesses a monotone, non-decreasing degradation path 

and independent increments. Measurements of degradation has 

variations due to process conditions, imperfect instruments etc. 

Lu and Meeker [7] used a parametric model, the General Path 

Model of degradation to estimate time to failure considering 

measurement errors. They used the two-stage method to 

estimate parameters of the Path model; some fixed and some 

random. Whitmore [8] employed the Wiener diffusion process 

with measurement errors to capture randomness of degradation 

as well as measurement error due to imperfect instruments, 

procedures, and environments.  Ye et al. [9] discussed the 

Wiener process with positive drift or measurement errors as a 

favorable candidate to degradation modeling. They proposed 

two models in this process; the simple model with measurement 

errors to capture homogeneity and mixed effects model to 

capture heterogeneity in the population. This process was 

successfully used to investigate the wear behavior of a magnetic 

head of a Hard disk Drive (HDD). Ye and Chen [10] proposed 

the Inverse Gaussian process as an alternative to the Wiener 

process of degradation modeling as it has the capability of 

modeling monotone paths. They compared the Inverse 

Gaussian process to the Gamma process as both being limiting 

Poisson processes with the Inverse Gaussian process having 

more flexibility than the Gamma process in terms of 

incorporating random effects. Peng [11] explored the Inverse 

Gaussian process to model degradation from accelerated 

degradation test data with random effects and explanatory 

variables such as Temperature, Voltage etc.  Bagdonavicius and 

Nikulin [12] however used the Gamma process to model 

degradation under the influence of covariates which includes 

the dependency of intensity of traumatic events on degradation. 

Lawless and Crowder [4] explored the use of an extended 

Gamma process to incorporate random effects or covariates 

where the random effects represent the heterogeneity of the 

degradation paths of individual units. Park and Padgett [13] 

used the Gamma Process with acceleration degradation test data 

to model degradation considering the difficulty in observing 

failures due to the slow rate of degradation. Timashev and 

Bushinskaya [14] described the Markov process as a more 

universal approach and adequately described wall-thinning in 

pipelines. Ye et al. [15] introduced the use of semiparametric 

estimation of the Gamma process for degradation modeling. 

They combined the use of non-parametric and parametric 

methods of the Gamma process to model degradation. 

3 CASE STUDY 

In this case study, we reviewed thickness readings from a 

refinery in the Mid-West. These readings were obtained at 

seventeen thickness monitoring locations at various points on 

the crude overhead line logged every twelve hours. The 

locations are normally determined based on history of 

degradation as well as expectation of degradation. Since the 

visual degradation trends were minimal, we used yearly 

averages at each of the seventeen locations. Six locations were 

used in this analysis. Table 1 shows pipe wall thickness data 

from seventeen thickness monitoring locations over the period 

of observation. Six locations – 2,7,9,10,11 and 14 were used in 

this analysis based on the continuous logging of three years of 

thickness data without any interruptions and the annual average 

data showed a trend of degradation. The other locations show 

either increments in pipe wall thickness which is practically not 

possible or readings for only one or two years. We used the 

stationary gamma process with random effects to model pipe 

wall thickness degradation. The pipeline sizes that were 

analyzed included four 12” pipe segments, one 14” pipe 

segment, and one 10” pipe segment. All of them had a minimum 
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wall thickness threshold of 0.11”. It is important to note that the 

cumulative degradation to reach the minimum wall thickness 

from the initial wall thickness of a 12” pipe is 0.39” or 390mils. 

Figure 1 shows a cumulative corrosion rate in milli-inches 

(mils) per year (mpy) for the six locations. 

Table 1. Average wall thickness readings per year for three 
years at seventeen locations 

Thickness 

Monitoring 

Location 

Year 1        

Pipe wall 

thickness 

(inches) 

Year 2        

Pipe wall 

thickness 

(inches) 

Year 3        

Pipe wall 

thickness 

(inches) 

1 0.5089 0.50934 0.5096 

2* 0.5090 0.5052 0.5041 

3 0.5082 0.5091 0.5101 

4 0.4793 0.4833 0.4842 

5 0.5570 0.5573 0.5573 

6 0.3866 0.3885 0.3888 

7* 0.3571 0.3555 0.3551 

8 0.5293 0.5314 0.5319 

9* 0.3978 0.3978 0.3966 

10* 0.3652 0.3638 0.3635 

11* 0.5076 0.5065 0.5060 

12 0.3687 0.3719 0.3731 

13 0.4135 0.4136 - 

14* 0.4641 0.4633 0.4631 

15 - 0.5096 0.5097 

16 - 0.4915 0.4912 

17 - - 0.4811 

*Locations used for analysis and model development 
 

 

Figure 1: Cumulative degradation decrements of pipe wall 
thickness per year over three years at six locations. Each 

color indicates one of the locations 

 

 

Figure 2: Empirical cumulative (Step ladder line) pipe wall 
thickness increments vs the fitted model (Curvilinear line). 

4 ILLUSTRATIONS 

The parameter estimation yielded shape parameter  ��� =
� = 1.26 and a rate parameter � following Gamma (�, �) with 

�� = 11.66 ��� �� = 14.99. Since the degradation process is 

based on a homogeneous Gamma process, the estimated 

parameters are the same for each of the observed readings. With 

the parametric estimation of �, � ��� �, we compare the 

empirical and the fitted distributions by plotting the empirical 

cumulative distribution function associated with the data set 

together with the fitted gamma distribution (Figure 2). We also 

used the Kolmogorov-Smirnov test as the statistical test for 

goodness of fit with a � � ����	 = 0.01. Following this model, 

we are able to calculate the probability of failure. 

5 DEGRADATION MODEL 

5.1 Model Development 

Considering that the carbon steel pipeline is considered 

failed when the wall thickness is depleted or deteriorates by the 

depth to get to the failure threshold ����, we use the Gamma 

process to model the degradation of the crude overhead piping 

due to its independent increments property and monotonic 

increasing function [12]. This implies that for a process 
{ �(�); � � 0}, !�(�) = �(� + ") � �(") is independent of 

�(") and !�(�) follows Gamma (�(� + ") � �("), #) [15] 

where !�(�) represents the annual decrements in the pipe wall 

thickness for � = 6, given that there are six thickness 

monitoring locations, �(�) is the shape function for $ = 3, 

given that there are three years of observations and � is the rate 

parameter. In this paper we assume the shape function is linear 

and for that reason stationary. This implies that �(�) = �� and 

%�(�) follows Gamma(��, �) given that the thickness data is 

analyzed at 1 year intervals for t, i.e,  !��,� = 1. 

The Gamma process as denoted by Ye et al [15] has a 

probability density function (PDF) of:            

  &!'(*)(-: #, �(�)) = /(/5)7(8<>)?7(>)?@
A(B(*CD)EB(D)) exp(�#y) , y > 0    (1) 
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Following the stationary assumption the PDF reduces to: 

&!'(*)(-: #, Gt) = /(/5)H?@
A(I) exp(�#y) , y > 0             (2) 

with a mean of ��/� and a variance of ��/�K. For a process 

with random effects, � follows Gamma(�, �), rerating -(�) 

without changing the shape parameter of the gamma 

distribution [15].  

5.2 Parameter Estimation 

Expectation-Maximization (EM) Algorithm for the 

Random Effect Model. 

In this section we use the EM algorithm for parameter 

estimation. This process is used to iteratively compute the 

maximum likelihood (ML) estimates due its ability to simplify 

complex ML processes. In this process the parameters are 

estimated with initial random values. These parameters are re-

estimated and iteratively until they converge.  

There are two steps in the EM algorithm process; the 

Expectation step or the E-step and the Maximization step or the 

M-step. In the E-step, we let L  assume an initial value 

randomly generated for the first iteration with initial 

values �M�M �M. The M-step maximizes the N(L, L(M)). The E 

and M-steps are repeated alternatively until the likelihoods 

O(LPCQ) � O(LP) = R where R is an arbitrarily small value, in 

our case 0.01  EM algorithm is the better choice for missing 

data problems.  

The conditional distribution of � given the past 

observations up to time � is 

{�|�(�), � S �}~T�$$�U�� + �, � + �(�)V         (3) 

Given L = (�, �, � ) is the parameter vector, where 

� ��� � represent the rate and shape parameters respectively 

for � and � the shape parameter, the log-likelihood function for 

the n units is [15] 

�(L) = W{�X�� + X�Y(��Z + �) � X�Y(�) � [
�

�\Q
��Z

+ �]X�[� + -(�Z)]}
+ W W^_�%�̀ � 1aX�_%��,`a

�

`\Q

�

�\Q
� X�YU�%�̀ Vb                                                 (4) 

E-Step 

To estimate the parameter vector L, the observed data 

cdfg = �Q h �K h … h �� where �� =
{-�(�M), -�(�Q), … -�(��)}, ij = 1, … , �. and the missing data 

cklgg = {��; j = 1, … , �} is given by the complete data c =
cklgg h cdfg. �� is considered as missing data as they are not 

observable [15]. The log-likelihood function based on c, up to 

a constant, can be expressed as: 

                O(L; m) = OQ(� ; m) + OK(�, �; m)         (5) 

where  

OQ(� ; m) = n n _G%�̀ Uln !��,` + ln ��V � ln YUG%�̀ Va�̀\Q��\Q  (6)  

OK(�, �; m) 

= n _� ln � + (� � 1) ln �� � lnUY(�)V � � ��a  ��\Q  (7) 

Denote the estimate at the rth EM iteration by LP =
( �P, �P, �P), the E-step at the next iteration requires 

computation of  ��P = s[��|muvD, LP], w�P = s[ln �� |muvD, LP]  
Based on (4), ��P can be readily obtained as  

            ��P = s[��|muvD, LP] = z�*� C��
��C'�(*�) (8) 

w�P 

= s[ln �� |muvD, LP] = �(�P��  + �P) � lnU�P + ��(��)V(9) 
The values of ��P, w�P obtained are used to update the Q-function 

M-step 

The objective of this step is to find LPCQ that maximizes 

N(L|LP). Note that � and � are involved only in 

s[OK(�, �; m)|muvD, LP], which is a simple likelihood function 

for a Gamma distribution. By differentiating 

s[OK(�, �; m)|muvD, LP] with respect to � and �, setting them to 

zero, and then rearranging the two equations, we can obtain  

                  ln � � �(�) = ln �� P � w�P (10) 
�
  � = �� P 

                           �PCQ = ��<@
���  (11) 

Take the first derivative of  s[OQ(G ; m)|muvD, LP] with 

�������� ��� �� ���� ������ �!�� ����������"�#� �$%��"��� �&���'+�

which yields: 

�OQ(�; m)
�� = W W !�̀ ��!��,`

�

`\Q

P

�\Q
+ w�P%�̀ � %�̀ Y��%�

Y�%�        (12) 

            G�CQ =  �EQ �w�P + Q
� n ��!��,`��\Q �   (13) 

where �EQ(�) is the inverse function of the digamma function.   

The EM algorithm terminates when the increment of the log-

likelihood value is smaller than a given criterion R = 0.01. 

6 CONCLUSION 

In conclusion the homogenous or stationary Gamma 

process with random effects is an appropriate process for 

modeling piping degradation and predicting the remaining 

useful life of the piping. We used random effects in our model 

to capture the heterogeneity of the piping, instrument errors and 

other effects common in real life data from industry. The 

Gamma process’ property of independent increments and 

monotonic increases is consistent with wall thickness 

degradation in piping. The EM algorithm is also appropriate in 

estimating the rate and shape parameters as they are the better 

choice for missing data problems. Kolmogorov-Smirnov test 

Goodness of fit test as well as empirical and fitted model 

comparison is indicative that the gamma process with random 

effect is an appropriate process for measuring wall thinning in 

process plant. As the thickness probe takes continues readings, 

the Gamma model with random effects can be revised with the 

additional yearly readings to obtain a model with less 

uncertainty.  
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