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SUMMARY & CONCLUSIONS

Assuring the reliability of crude unit pipelines in the
downstream oil and gas industry is highly essential since
unexpected failures of these pipelines can result in a number of
negative impacts to the business, including safety,
environmental, and economic impacts. The objective of this
work is to understand the degradation behavior of the piping
system so we can know in advance when the degraded pipeline
will reach the minimum thickness threshold.

The damage mechanisms in atmospheric crude tower
overhead piping has been well researched. Hydrochloric Acid
(HCL) corrosion is one major type of damage mechanisms seen
in the atmospheric crude tower overhead piping. This type of
corrosion is time-dependent and also influenced by different
operational conditions such as temperature, adequacy of the
neutralization of the formed HCL and pipeline interior
protection using corrosion inhibitors. To better monitor the
degradation of these pipelines and to reduce cost associated
with scheduled inspections, a number of refineries are resorting
to real time thickness monitoring using Ultrasonic instruments
mounted at vantage locations on the pipeline, to provide
continuous, non-destructive corrosion and erosion monitoring.

The focus of this paper is to use a stochastic degradation
model, which is suitable for characterizing wall thickness
degradation data, to estimate the failure probability of the
pipeline in the midst of inadequate data. We model the
degradation of the crude overhead pipeline using a stationary
Gamma process. To capture the substantial heterogeneity
among different thickness monitoring locations on the pipe line,
random effects are incorporated in our stochastic degradation
model. We illustrate the proposed random effect method using
the gamma process to model pipe wall thickness degradation
data observed over a period.

1 INTRODUCTION

It is important to understand piping system degradation and
analyze the reliability of the piping system. As hydrocarbons
and other products flow through the pipe, there is an irreversible
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accumulation of damage over time that ultimately reaches a
certain threshold, leading to the pipe failure. Corrosion and
erosion account for degradation of piping systems in
downstream oil and gas industry. Piping for fluid transport is
normally sized to have velocities less than certain thresholds
depending on the fluid state, to eliminate the erosion damage
mechanism, making corrosion the main mechanism for pipe
degradation. Corrosion monitoring is typically done at time
intervals during plants shutdowns where elevated piping or out
of reach piping may require scaffold erection to access pipe for
inspection. Piping that are insulated for heat conservation may
have to be stripped at various locations to perform these non-
destructive examinations (NDE). To minimize the cost of time
interval inspections and optimize maintenance intervals, a
number of refineries have installed on-line ultrasonic (UT)
thickness probes at various locations on their Atmospheric
Crude tower overhead Carbon steel piping to provide
continuous, non-destructive corrosion and erosion monitoring
through UT testing. The pipeline is said to be in a failed state
when the pipeline thickness reaches a threshold, beyond which
the integrity of the pipe cannot be guaranteed, or the piping
system fails to perform its intended function safely. At the
failure threshold, a leak or a pipe rapture is imminent with a
wide range of negative impacts on the refinery activities. These
include but not limited to (1) safety impacts due to loss of
containment causing injury to personnel and damage to
property; (2) environmental impacts arising from the loss of
containment and release of hydrocarbons to the atmosphere
with subsequent flaring events due to unit upsets; (3) business
or economic impacts being the outcome of a crude unit
shutdown with multiple rippling effects on other units, causing
significant amounts of lost profit opportunity and maintenance
cost.

1.1 Problem statement

Collecting degradation data on piping is key to maintaining
the mechanical integrity of the piping. Due to variations present
in UT instruments, instrument malfunction, temperature of
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piping being measured, some measurements over a period do
not show consistency. This is also the case when inspection
personnel are used for UT measurements. In some instances the
data shows a growing pipe wall thickness which is practically
not possible.

In this paper, we focus on modeling the degradation path
of the pipe wall using a stationary Gamma process in the
presence of inadequate data. This model can be used to compute
a time dependent failure probability of the pipe. For critical
piping such as the Crude atmospheric tower overhead piping, it
is preferred to make the decision two Turnaround cycles ahead
to replace piping that approaches the minimum threshold. The
reason is that, although most Refinery Turnarounds average
five-year cycles, some refineries may make a decision to run
longer for various reasons such as logistics, manpower,
coinciding turnarounds with sister facilities in the organization,
competing with other organizations for resources. We analyze
piping wall thickness data from six thickness monitoring
locations, observed over a period of three years.

2 LITERATURE REVIEW

Corrosion is material degradation due to environmental
effects [1]. Hydrochloric acid (HCL) corrosion is the main type
of corrosion that causes degradation in Crude Unit overhead
piping systems [2]. Although dewatering, desalting and caustic
injections are used to minimize the amounts of hydrolysable
salts making it onto the crude unit heaters, some of these salts
make it through. HCI is generated in crude heaters when salts
like magnesium chloride and calcium chloride are heated up
enough to become hydrolyzed [2]. When HCI finds water in the
crude overhead it becomes corrosive to most metals. To help
minimize HCI acid corrosion, neutralizers are injected into the
overhead. However, the overhead still sees some level of
corrosion. Sahraoui et al. [3] discussed the use of power law as
a model to account for wall loss due to uniform corrosion with
the corrosion power law given as t, = kT"where ¢, =
Thickness of corroded layer, T = elapsed time, k and n are the
corrosion parameters. This approach was also used by Lawless
and Crowder as they replaced a shape function 7n(t) with
n(te"T £Y in an accelerated life model, where f is an unknown
vector [4].

Mahmoodian and Alani [5] used the power law as a means
to estimate the shape parameter in the gamma degradation
process in concrete piping. Ahammed [6] used a probabilistic
approach rather than a deterministic approach to assess the
safety, integrity, and predict the remnant life of a pipeline with
active corrosion.

Degradation over time is usually a stochastic process which
often possesses a monotone, non-decreasing degradation path
and independent increments. Measurements of degradation has
variations due to process conditions, imperfect instruments etc.
Lu and Meeker [7] used a parametric model, the General Path
Model of degradation to estimate time to failure considering
measurement errors. They used the two-stage method to
estimate parameters of the Path model; some fixed and some
random. Whitmore [8] employed the Wiener diffusion process
with measurement errors to capture randomness of degradation

as well as measurement error due to imperfect instruments,
procedures, and environments. Ye et al. [9] discussed the
Wiener process with positive drift or measurement errors as a
favorable candidate to degradation modeling. They proposed
two models in this process; the simple model with measurement
errors to capture homogeneity and mixed effects model to
capture heterogeneity in the population. This process was
successfully used to investigate the wear behavior of a magnetic
head of a Hard disk Drive (HDD). Ye and Chen [10] proposed
the Inverse Gaussian process as an alternative to the Wiener
process of degradation modeling as it has the capability of
modeling monotone paths. They compared the Inverse
Gaussian process to the Gamma process as both being limiting
Poisson processes with the Inverse Gaussian process having
more flexibility than the Gamma process in terms of
incorporating random effects. Peng [11] explored the Inverse
Gaussian process to model degradation from accelerated
degradation test data with random effects and explanatory
variables such as Temperature, Voltage etc. Bagdonavicius and
Nikulin [12] however used the Gamma process to model
degradation under the influence of covariates which includes
the dependency of intensity of traumatic events on degradation.
Lawless and Crowder [4] explored the use of an extended
Gamma process to incorporate random effects or covariates
where the random effects represent the heterogeneity of the
degradation paths of individual units. Park and Padgett [13]
used the Gamma Process with acceleration degradation test data
to model degradation considering the difficulty in observing
failures due to the slow rate of degradation. Timashev and
Bushinskaya [14] described the Markov process as a more
universal approach and adequately described wall-thinning in
pipelines. Ye et al. [15] introduced the use of semiparametric
estimation of the Gamma process for degradation modeling.
They combined the use of non-parametric and parametric
methods of the Gamma process to model degradation.

3 CASE STUDY

In this case study, we reviewed thickness readings from a
refinery in the Mid-West. These readings were obtained at
seventeen thickness monitoring locations at various points on
the crude overhead line logged every twelve hours. The
locations are normally determined based on history of
degradation as well as expectation of degradation. Since the
visual degradation trends were minimal, we used yearly
averages at each of the seventeen locations. Six locations were
used in this analysis. Table 1 shows pipe wall thickness data
from seventeen thickness monitoring locations over the period
of observation. Six locations — 2,7,9,10,11 and 14 were used in
this analysis based on the continuous logging of three years of
thickness data without any interruptions and the annual average
data showed a trend of degradation. The other locations show
either increments in pipe wall thickness which is practically not
possible or readings for only one or two years. We used the
stationary gamma process with random effects to model pipe
wall thickness degradation. The pipeline sizes that were
analyzed included four 12” pipe segments, one 14” pipe
segment, and one 10 pipe segment. All of them had a minimum
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wall thickness threshold of 0.11”. It is important to note that the
cumulative degradation to reach the minimum wall thickness
from the initial wall thickness of'a 12” pipe is 0.39” or 390mils.
Figure 1 shows a cumulative corrosion rate in milli-inches
(mils) per year (mpy) for the six locations.

Table 1. Average wall thickness readings per year for three
years at seventeen locations

Thickness Year 1 Year 2 Year 3
Monitoring Pipe wall Pipe wall Pipe wall
Location thickness thickness thickness
(inches) (inches) (inches)

1 0.5089 0.50934 0.5096

2% 0.5090 0.5052 0.5041

3 0.5082 0.5091 0.5101

0.4793 0.4833 0.4842

0.5570 0.5573 0.5573

0.3866 0.3885 0.3888

7* 0.3571 0.3555 0.3551

8 0.5293 0.5314 0.5319

9% 0.3978 0.3978 0.3966

10* 0.3652 0.3638 0.3635

11* 0.5076 0.5065 0.5060

12 0.3687 0.3719 0.3731

13 0.4135 0.4136 -

14* 0.4641 0.4633 0.4631

15 - 0.5096 0.5097

16 - 0.4915 0.4912

17 - - 0.4811

*Locations used for analysis and model development
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Figure 1: Cumulative degradation decrements of pipe wall
thickness per year over three years at six locations. Each
color indicates one of the locations
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Figure 2: Empirical cumulative (Step ladder line) pipe wall
thickness increments vs the fitted model (Curvilinear line).

4 ILLUSTRATIONS

The parameter estimation yielded shape parameter An =
a = 1.26 and a rate parameter y following Gamma (4, k) with
1 =11.66 and k = 14.99. Since the degradation process is
based on a homogeneous Gamma process, the estimated
parameters are the same for each of the observed readings. With
the parametric estimation of a,Aand k, we compare the
empirical and the fitted distributions by plotting the empirical
cumulative distribution function associated with the data set
together with the fitted gamma distribution (Figure 2). We also
used the Kolmogorov-Smirnov test as the statistical test for
goodness of fit with a p — value = 0.01. Following this model,
we are able to calculate the probability of failure.

5 DEGRADATION MODEL
5.1 Model Development

Considering that the carbon steel pipeline is considered
failed when the wall thickness is depleted or deteriorates by the
depth to get to the failure threshold T,,;,, we use the Gamma
process to model the degradation of the crude overhead piping
due to its independent increments property and monotonic
increasing function [12]. This implies that for a process
{Y(t);t =0},AY(t) =Y(t +5s)—Y(s)is independent of
Y(s) and AY(t) follows Gamma (n(t +s) —n(s),y) [15]
where AY (t) represents the annual decrements in the pipe wall
thickness for n =6, given that there are six thickness
monitoring locations, n(t) is the shape function for m = 3,
given that there are three years of observations and y is the rate
parameter. In this paper we assume the shape function is linear
and for that reason stationary. This implies that n(t) = at and
AY (t) follows Gamma(at,y) given that the thickness data is
analyzed at 1 year intervals for 7, i.e, At;,, = 1.

The Gamma process as denoted by Ye et al [15] has a
probability density function (PDF) of:

y (yy)nEts)=n(s)-1

fav @y, (6)) = =C s —sexp(=yy),y > 0 (1)

Authorized licensed use limited to: Texas Tech University. Downloaded on August 28,2020 at 22:32:38 UTC from IEEE Xplore. Restrictions apply.



Following the stationary assumption the PDF reduces to:
Yt

T O exp(~yy),y > 0 (@)

with a mean of at/y and a variance of at/y?2. For a process
with random effects, y follows Gamma(k, 4), rerating y(t)
without changing the shape parameter of the gamma
distribution [15].

fary @y, at) =

5.2 Parameter Estimation

Expectation-Maximization (EM) Algorithm for the
Random Effect Model.

In this section we use the EM algorithm for parameter
estimation. This process is used to iteratively compute the
maximum likelihood (ML) estimates due its ability to simplify
complex ML processes. In this process the parameters are
estimated with initial random values. These parameters are re-
estimated and iteratively until they converge.

There are two steps in the EM algorithm process; the
Expectation step or the E-step and the Maximization step or the
M-step. In the E-step, we let® assume an initial value
randomly generated for the first iteration with initial
values @°2° k°. The M-step maximizes the Q(0,0()). The E
and M-steps are repeated alternatively until the likelihoods
L(ON*1) — L(®N) = § where § is an arbitrarily small value, in
our case 0.01 EM algorithm is the better choice for missing
data problems.

The conditional distribution of y given the past
observations up to time t is

Y@, u < t}~Gamma(at +k,A+Y())  (3)

Given © = (k,A, ) is the parameter vector, where
k and A represent the rate and shape parameters respectively
for y and a the shape parameter, the log-likelihood function for
the n units is [15]

n

1) = Z{k!n/l + Inl(aty, + k) — InC(k) — [ aty,

T KR+ e
+ Z Z{[aAt —1]m|AY;]
;nF](a’Atj)} 4
E-Step

To estimate the parameter vector ©, the observed data
Dys =Y,UY,U..UY, where Y, =
{yite), yi(ty), .. vi(t,)}, Vi = 1,...,n.and the missing data
D iss = {yi;i =1, ...,n} is given by the complete data D =
D niss U Dgps. Vi 1s considered as missing data as they are not
observable [15]. The log-likelihood function based on D, up to
a constant, can be expressed as:

L(®;D) = Ly(a;D) + Ly(k,4; D) )
where
Li(a;D) = ¥, X7y [aAt;(InAY; ; + Iny;) — InT(adt;)] (6)

=¥ [kIn2+ (k=D Iny; —In(Tk)) — 1y;] (7)
Denote the estimate at the Nth EM iteration by OV =
(aV, kN, AY), the E-step at the next iteration requires

computation of v = E[y;|Dyps, V], vN = E[Iny; |Dyps, OV]
Based on (4), vY can be readily obtained as

tm +kN
' = E[yi|Dops, O] = :NT(%) (8)
vl
= E[ln Yi |Dobs: GN] = IP(“Ntm + kN) - ln(/lN + Yl(tm))(9)

The values of vV, v obtained are used to update the Q-function

M-step

The objective of this step is to find @V** that maximizes
Q(®]6Y). Note that A and k are involved only in
E[L,(k, 2; D)|D,ps, V], which is a simple likelihood function
for a  Gamma  distribution. By  differentiating
E[L,(k,2; D)|D,ps, ON] with respect to A and k, setting them to
zero, and then rearranging the two equations, we can obtain

Ink — (k) =IlnoV — oV (10)
AN+1 & (11)
N

Take the first derivative of E[L;(a;D)|D,ps, ©V] with
respect to o and solve the corresponding equation system,

which yields:
@Dy _ iiml AY,; +vNAt — At Falt 1y
nar; +v ¢
Jda e TaAt
o =yt TV + 230, Y (13)

where ¥~1(+) is the inverse function of the digamma function.
The EM algorithm terminates when the increment of the log-
likelihood value is smaller than a given criterion § = 0.01.

6 CONCLUSION

In conclusion the homogenous or stationary Gamma
process with random effects is an appropriate process for
modeling piping degradation and predicting the remaining
useful life of the piping. We used random effects in our model
to capture the heterogeneity of the piping, instrument errors and
other effects common in real life data from industry. The
Gamma process’ property of independent increments and
monotonic increases is consistent with wall thickness
degradation in piping. The EM algorithm is also appropriate in
estimating the rate and shape parameters as they are the better
choice for missing data problems. Kolmogorov-Smirnov test
Goodness of fit test as well as empirical and fitted model
comparison is indicative that the gamma process with random
effect is an appropriate process for measuring wall thinning in
process plant. As the thickness probe takes continues readings,
the Gamma model with random effects can be revised with the
additional yearly readings to obtain a model with less
uncertainty.
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